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Risk measures

VaR (Value-at-risk) and ES (Expected shortfall), defined as
v(p) = inf{x : F (x) ≥ p}, c(p) = E(L|L ≤ v(p)), respectively.

VaR and ES are widely used risk measures in risk management, e.g.
in Basel Accords.

Among all approaches to estimate VaR and ES, the Monte Carlo
simulation approach is widely used,

to incorporate various risk models
to analyze complex portfolios

Efficiency: simulation cost and accuracy.
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Simulation cost

Total time involved: Tp + Tgen + Test + Teva.

Total execution time without the programming time:
Tgen + Test + Teva.

Figure : Standard simulation procedures
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Relative Error

Mean of estimate is 0.1, the SD is 0.3; SD is small but not good.

Relative error (RE) (Glasserman, 2003):

RE(θ̂n) =

√
V ar(θ̂n)

|Eθ̂n|
,

where θ̂n is an estimator.
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Existing methods

For IID samples: Indirect crude Monte Carlo (Glasserman and
Ruiz-Mata, 2006).

For IID samples: Importance sampling (IS) (indirect: Glasserman et
al., 2000; Fuh, 2011; direct: Hong and Sun, 2010).

For dependent samples (Many financial return series are subject to
data dependence, e.g. GARCH, stochastic vol, affined jump diffusion
models): Maximum Transformation (Heidelberger and Lewis, 1984)

Most of the papers did not consider the total execution time, ignoring
the cost in evaluating part

No reported RE
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Compare with Heidelberger and Lewis (1984)

This paper Heidelberger & Lewis (1984)

X1, · · · , Xn X1, · · · , Xn
⇓ sort ⇓ regroup,

find minimal
X(1), · · · , X(n) Y1, · · · , Ym, n = mv

⇓ sort

Y(1), · · · , Y(m)

⇓ ⇓
vn = X([np]) vn = Y([mpv+1])

Note: vn is the estimator of the quantile.
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Compare with Heidelberger and Lewis (1984)

This paper Heidelberger and Lewis (1984)

Risk measures VaR & ES VaR

Stationary preserved not preserved
α−mixing preserved not preserved

Storage cost not reduced reduced

Variance not inflated inflated

RE expansion yes no
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Literature

Table : Some literature on simulating VaR and ES

Panel A: Simulation Methods
A.1: IID setting

Glasserman et al. (2000, 2002) indirect importance sampling (IIS) and indirect
importance sampling with stratification (IIS-Q), VaR

Hong and Sun (2010) direct importance sampling, VaR & ES
Fuh et al. (2011) indirect importance sampling on portfolio with

heavy-tailed risk factors, VaR
A.2: Dependent setting

Heidelberger and Lewis (1984) maximum transformation, VaR
This paper sorted Monte Carlo with reported RE, VaR & ES

Panel B: Relative Error
Yoshiba and Yamai (2002) i.i.d, numerical, VaR & ES
Hult and Svensson (2009) i.i.d, heuristic, VaR & ES
This paper dependent, theoretical, VaR & ES
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Contributions

Our contribution is twofold:

We propose a general sorting method, allowing dependent samples, to
simulate risk measures. The sorting method will preserve stationarity
and α mixing properties. Numerical experiments indicate the method
is easy to implement and fast, compared to existing methods, in
terms of total execution time, even at the level 0.001.

We rigorously derived approximations for RE’s of VaR and ES under
dependent setting. With the approximate formulas we are able to
compute the necessary sample size needed for VaR and ES.
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Classification: dependent samples

Type A: dependent samples from time series stationary model.

Many financial data is subject to stationary time series model (Chen
and Tang, 2005; Chen, 2008). Assume that financial losses {Ls}Ts=1

satisfy some stationary time series model.
Traditional way: (drop mN (i.e. m ≥ 10000) samples)

L
(1)
1 , · · · , L(1)

m , L
(1)
m+1

L
(2)
1 , · · · , L(2)

m , L
(2)
m+1

· · ·
L
(N)
1 , · · · , L(N)

m , L
(N)
m+1

Time series samples: (only drop m (i.e. m ≥ 10000) samples)

L1, · · · , Lm, Lm+1, · · · , Lm+N
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Classification: i.i.d samples

Type B: IID samples from time series non-stationary model
(Glasserman et al., 2000; Glasserman et al., 2002; Fuh et al., 2011)

Simulate samples repeatedly.
Simulate N sample path to get loss samples at time t:

L
(1)
1 , · · · , L(1)

t−1, L
(1)
t

L
(2)
1 , · · · , L(2)

t−1, L
(2)
t

· · ·
L

(N)
1 , · · · , L(N)

t−1, L
(N)
t
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Estimators

For n samples of loss: L1, · · · , Ln, VaR and ES are estimated as
follows:

vn(p) = inf{x : Fn(x) ≥ p} (1)

cn(p) = vn(p)− 1

np

n∑

i=1

[vn(p)− Li]+ (2)

where Fn(x) = 1
n

∑n
i=1 I{Li≤x} is the empirical distribution of L.

Allowing dependent samples, model free sorting method.
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Our RE approximation

Under some regular dependence setting:

RE(vn) ≈ − σn,v
vf(v)

n−1/2, RE(cn) ≈ −σn,c
cp

n−1/2 (3)

where, σ2
n,v = {p(1− p) + 2

∑(n−1)
k=1 γ1(k)},

γ1(k) = cov{1{L1<v}, 1{Lk+1<v}};
σ2
n,c = {V ar[(v − L1)+] + 2

∑(n−1)
k=1 γ2(k)},

γ2(k) = cov{(v − L1)+, (v − Lk+1)+}.
MA(q) Model: σ2

n,v = p(1− p) + 2
∑q

k=1 γ1(k),
σ2
n,c = V ar[(v − L1)+] + 2

∑q
k=1 γ2(k).

IID samples: σ2
n,v = p(1− p), and σ2

n,c = V ar[(v − L1)+].

Compute sample size when controlling the RE level to be α by solving
Equations (3):

nvα ≈
σ2
n,v

v2f(v)2α2
, nvα ≈

σ2
n,c

c2p2α2
(4)

In practice, vn, cn, σ̂n,v, σ̂n,c, f̂(v̂) should be used in (3) and (4).
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Algorithm

Sorted Monte Carlo with reported RE:

I. Initialize: Set iteration i = 0, needed sample size N0 (e.g.
N0 = 10000), RE0 = α0 (α0 � α), sample set S0 = ∅, and total
sample size M0 = ](S0).

II. S-step:

Sub-step 1: Generate {L1, · · · , LNi}, Si+1 = Si
⋃{L1, · · · , LNi},

Mi+1 = ](Si+1) = Mi +Ni.

Sub-step 2: Sort Si+1 in ascending order, θ̂i+1 = vMi+1
for VaR and

θ̂i+1 = cMi+1 for ES.
Sub-step 3: Report REi+1 = RE(vMi+1) for VaR and
REi+1 = RE(cMi+1

) for ES by equations (3).

Sub-step 4: If REi+1 < α, stop with output θ̂i+1 and REi+1.
Otherwise go to the R-step.

III. R-step: Compute Ni+1 = nvα for VaR and Ni+1 = ncα for ES by
equations (4), and return to S-step by replacing i with i+ 1.
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Selection of sorting method

Classic quicksort; dual-pivot quicksort (Yaroslavskiy, 2009);
multi-pivot quicksort (Kushagra et al., 2014); .

The complexity for Quick sorted MC, Bubble sorted MC, and Naive
MC are O(N logN), O(N2), O(N2) respectively.
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Figure : Left one is for VaR estimation, right one is for ES estimation. Samples are drawing
from loss with density function f(x) = ex1{x<0}. p is chosen as 0.05. Average execution time
is estimated with 100 repeats.
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Easy programming

Easy programming due to:

Samples drawing from original loss model.
Based on order statistics, which enables us to use sorting method.
Analytic approximate formulae to compute RE and needed sample size.

Other methods may lack these merits:

Estimators are usually more complicated, i.e, importance sampling,
nonparametric method.
Some may not be easily applicable to dependent samples, i.e.
importance sampling.
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Fast computing

Execution Time: T = Tgen + Test + Teva.

Test is improved significantly with sorting method.
—The computation complexity when choose quick sort method is
O(N logN).
Teva is improved by the expansion for RE’s.
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Time series factor model (10000 stocks; Type A)

Table : VaR and ES of Portfolio return (1/n
∑n
i=1 ri,t) are computed. Portfolio includes

n = 10000 equally weighted stocks. Each stock return ri,t, i = 1, · · · , n (normalized by multiply

100) can be explained by three factors f1,t, f2,t, f3,t, i.e. ri,t = αi +
∑3
k=1 β

(i)
k fk,t + εi,t,

ε ∼ N(0, 1/6). Three factors satisfy the AR(2), ARCH(1), and SV (Stochastic Volatility) Model
that used in Chen and Tang (2005)respectively. For Panel A, αi = −3 + 6i/10000,

β
(i)
1 = −4 + 8i/10000, β

(i)
2 = 8i/10000, and β

(i)
3 = −1 + 4i/10000. ES is only computed with

our framework since ES is not considered in Heidelberger and Lewis (1984). Time is in seconds.

Method Estimate Sample Tgen + Test Teva T (= Tgen+ Estimated Resampled
(SD) size +Test + Teva) RE (SD) RE

Panel A: Portfolio with 10000 equally weighted stocks
VaR

p = 0.01
This paper -23.599(0.1841) 263467 41.392 1.1277 42.519 0.0074(0.0013) 0.0078
Heidelberger & Lewis(1984) -23.409(0.2271) 1750 16.221 1605.9 1622.1 N.A. 0.0097

p = 0.001
This paper -42.053(0.3448) 1435849 260.57 7.0381 267.61 0.0080(0.0016) 0.0082
Heidelberger & Lewis(1984) -42.178(0.4471) 1600 168.79 16711 16879 N.A. 0.0106

ES
p = 0.01

This paper -30.986(0.2262) 722196 136.23 3.0413 139.28 0.0071(0.0020) 0.0073
Heidelberger & Lewis(1984) N.A. N.A. N.A. N.A. N.A. N.A. N.A.

p = 0.001
This paper -54.671(0.4538) 5603487 1112.7 22.618 1135.3 0.0067(0.0021) 0.0083
Heidelberger & Lewis(1984) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
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Time series factor model (20000 stocks; Type A)

Table : VaR and ES of Portfolio return (1/n
∑n
i=1 ri,t) are computed. Portfolio includes

n = 20000 equally weighted stocks. Each stock return ri,t, i = 1, · · · , n (normalized by multiply

100) can be explained by three factors f1,t, f2,t, f3,t, i.e. ri,t = αi +
∑3
k=1 β

(i)
k fk,t + εi,t,

ε ∼ N(0, 1/6). Three factors satisfy the AR(2), ARCH(1), and SV (Stochastic Volatility) Model
that used in Chen and Tang (2005)respectively. For Panel B, αi = −8 + 6i/20000,

β
(i)
1 = −4 + 8i/20000, β

(i)
2 = 8i/20000, and β

(i)
3 = −1 + 4i/20000. ES is only computed with

our framework since ES is not considered in Heidelberger and Lewis (1984).

Method Estimate Sample Tgen + Test Teva T (= Tgen+ Estimated Resampled
(SD) size +Test + Teva) RE (SD) RE

Panel B: Portfolio with 20000 equally weighted stocks
VaR

p = 0.01
This paper -28.235(0.1836) 285385 78.295 1.2862 79.581 0.0074(0.0011) 0.0079
Heidelberger & Lewis(1984) -28.336(0.2427) 1800 30.137 2983.6 3013.7 N.A. 0.0104

p = 0.001
This paper -47.344(0.4383) 1524346 482.36 8.2804 490.64 0.0073(0.0014) 0.0078
Heidelberger & Lewis(1984) -47.020(0.4328) 1700 326.58 32331 32658 N.A. 0.0103

ES
p = 0.01

This paper -36.034(0.2099) 867756 248.09 3.7263 251.81 0.0063(0.0019) 0.0067
Heidelberger & Lewis(1984) N.A. N.A. N.A. N.A. N.A. N.A. N.A.

p = 0.001
This paper -59.597(0.3822) 6282067 2111.3 25.022 2136.3 0.0067(0.0018) 0.0070
Heidelberger & Lewis(1984) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
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Portfolio of Call and Put Options with Time Series Returns (Type B)

Table : VaR and ES of Portfolio value (V (t)− V (0)) are computed. Portfolio includes shorting
10 ATM calls and 5 ATM puts on each of 10 uncorrelated stocks, while all options having a
half-year maturity. We investigate losses over 10 days (t = 10 days). All stock have an initial
value of 100, and they satisfy Johnson NGARCH(1,1) process (model is estimated based on

daily data, see Simonato and Sentoft, 2015): ln Sτ
Sτ−1

= α+ στ ετ ,

σ2
τ = β0 + β1σ2

τ−1 + β2σ2
τ−1(ε− θ)2, ετ ∼ Jsu(a, b), where

α = 3.3×10−4, β0 = 1.1×10−6, β1 = 0.8664, β2 = 0.0631, θ = 0.9937, a = 0.3478, b = 2.1610.

Method Estimate Sample Tgen + Test Teva T (= Tgen+ Estimated Resampled
(SD) size +Test + Teva) RE (SD) RE

VaR
p = 0.01

This paper -81.479(0.6599) 27643 5.5602 0.0094 5.5696 0.0082(0.0004) 0.0081
Heidelberger & Lewis(1984) -81.731(0.8664) 400 5.3006 524.76 530.06 N.A. 0.0106

p = 0.001
This paper -103.83(0.8668) 56479 13.627 0.0242 13.651 0.0084(0.0010) 0.0083
Heidelberger & Lewis(1984) -104.19(1.0836) 90 12.177 1205.5 1217.7 N.A. 0.0104

ES
p = 0.01

This paper -90.946(0.7922) 30080 6.4069 0.0007 6.4076 0.0083(0.0005) 0.0087
Heidelberger & Lewis(1984) N.A. N.A. N.A. N.A. N.A. N.A. N.A.

p = 0.001
This paper -110.75(0.9414) 95170 21.254 0.0061 21.261 0.0080(0.0010) 0.0085
Heidelberger & Lewis(1984) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
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Portfolio of Call and Put Options with I.I.D. Gaussian Returns (Type B)

Table : VaR and ES of Portfolio value (V (t)− V (0)) are computed. Portfolio (Glasserman et
al., 2000): shorting 10 ATM calls and 5 ATM puts (all half year maturity) on each of 10
uncorrelated stocks, where ∆S = St − S0 is normal, S0 = 100, t = 0.04, σ = 0.3, and r = 5%.

Method Estimate Sample Tgen + Test Teva T (= Tgen+ Estimated Resampled
(SD) size +Test + Teva) RE (SD) RE

VaR
p = 0.01

This paper -160.33(1.3391) 23086 0.0731 0.0079 0.0810 0.0077(0.0003) 0.0083
Hong and Sun (2010) -159.38(1.6575) 300 0.0058 0.5743 0.5801 N.A. 0.0104
Glasserman et al. (2000)IIS -158.93(1.5592) 135 0.1119 11.077 11.189 N.A. 0.0098
Glasserman et al. (2000)IIS-Q -159.17(1.6596) 40 0.0995 9.8495 9.9490 N.A. 0.0108

p = 0.001
This paper -197.86(1.7687) 56316 0.1819 0.0211 0.2030 0.0083(0.0010) 0.0088
Hong and Sun (2010) -198.05(1.9104) 160 0.0031 0.3021 0.3052 N.A. 0.0097
Glasserman et al. (2000)IIS -197.39(1.9937) 38 0.0439 4.3477 4.3916 N.A. 0.0101
Glasserman et al. (2000)IIS-Q -196.96(2.0681) 12 0.0532 5.2666 5.3198 N.A. 0.0105

ES
p = 0.01

This paper -174.07(1.4100) 26551 0.0862 0.0006 0.0868 0.0078(0.0004) 0.0081
Hong and Sun (2010) -175.19(1.7869) 400 0.0018 0.1801 0.1819 N.A. 0.0102
Glasserman et al. (2000)IIS N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Glasserman et al. (2000)IIS-Q N.A. N.A. N.A. N.A. N.A. N.A. N.A.

p = 0.001
This paper -213.41(1.7723) 91474 0.2647 0.0083 0.2730 0.0081(0.0010) 0.0083
Hong and Sun (2010) -212.52(2.1677) 50 0.0011 0.1067 0.1078 N.A. 0.0102
Glasserman et al. (2000)IIS N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Glasserman et al. (2000)IIS-Q N.A. N.A. N.A. N.A. N.A. N.A. N.A.
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Portfolio of Call and Put Options with I.I.D. Heavy-tailed Returns (Type B)

Table : VaR and ES of Portfolio value (V (t)− V (0)) are computed. Portfolio (Fuh et al.,
2011) consists of options with heavy-tailed underlying stock returns. Parameters satisfy
ν = 5, bj = 0.1 + j/100, λj = 0.05× j, j = 1, · · · , 15

Method Estimate Sample Tgen + Test Teva T (= Tgen+ Estimated Resampled
(SD) size +Test + Teva) RE (SD) RE

VaR
p = 0.01

This paper -59.089(0.4964) 312680 0.9519 0.2176 1.1695 0.0080(0.0010) 0.0084
Glasserman et al. (2002) -59.319(0.5932) 1000 1.3922 137.83 139.22 N.A. 0.0100
Fuh et al. (2011) -59.191(0.6452) 850 13.481 1334.6 1348.1 N.A. 0.0109

p = 0.001
This paper -159.10(1.3046) 2266233 7.5765 1.1339 8.7104 0.0082(0.0011) 0.0084
Glasserman et al. (2002) -158.73(1.5931) 930 1.2052 119.31 120.52 N.A. 0.0101
Fuh et al. (2011) -159.43(1.6561) 800 9.7891 969.12 978.91 N.A. 0.0106

p = 0.0005
This paper -212.86(1.7029) 6251108 20.720 3.3899 24.110 0.0072(0.0016) 0.0080
Glasserman et al. (2002) -211.54(2.2423) 850 1.1334 112.21 113.34 N.A. 0.0100
Fuh et al. (2011) -212.13(1.9516) 780 9.1624 907.08 916.24 N.A. 0.0092

ES
p = 0.01

This paper -103.35(0.8061) 1695129 4.9997 0.0718 5.0715 0.0078(0.0011) 0.0078
Glasserman et al. (2002) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Fu et al. (2011) N.A. N.A. N.A. N.A. N.A. N.A. N.A.

p = 0.001
This paper -268.68(2.2569) 12522977 34.615 0.3624 34.977 0.0082(0.0011) 0.0084
Glasserman et al. (2002) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Fuh et al. (2011) N.A. N.A. N.A. N.A. N.A. N.A. N.A.
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More Application: Intra-horizon risk

Bakshi and Panayotov (2010, JFE): intra-horizon risk (VaR-I).

Let Xt, t ∈ [0, T ] with X0 = 0 be a real-valued random process.
Denote Xmin

T := min0<t<T Xt. VaR-I is defined as the value of a
quantile of the random variable Xmin

T .

VaR-I is related with first passage time, and hence can be computed
by solving some PIDE as Bakshi and Panayotov (2010) suggested.

Our algorithm provides an alternative way to compute VaR-I and VaR
without solving PIDE.
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Intra-horizon risk: Merton’s jump-diffusion model

Table : VaR-I and VaR multiples over benchmark VaR for a two-week horizon are showed.
Reported are values of te multiples VaR-I/(2.32σ̂ − µ̂) and VaR/(2.32σ̂ − µ̂), where Benchmark
VaR is the quantile of Normal distribution N(µ̂, σ̂), where µ̂ = 0 and σ̂ is the standard deviation
of the returns time series. Log stock price is modeled by three processes: Merton’s
jump-diffusion (JD) process, CGMY process, and Stochastic Volatility (SV) process. JD:

dXt = µdt+ σdWt + dJt with Levy measure k[x] = λ
σJ
√
2π
exp(− (x−µJ )2

2σ2
J

), where

µ = −(σ2/2)− λ(exp(µJ + σ2
J/2)− 1), λ = 17.8922, µJ = −0.0073, σJ = 0.0306, σ = 0.1139

(parameters are calibrated from 1995-2015 weekly S& P 500 index return, also see Bakshi and
Panayotov (2010) for the calibration method).

Method Risk Estimate Sample Tgen + Test Teva T (= Tgen+ Estimated Resampled
Measure (SD) size +Test + Teva) RE (SD) RE
Panel A: Merton’s jump-diffusion model

p = 0.01
This paper VaR-I 1.3319(0.0115) 26822 76.664 0.0173 76.681 0.0085(0.0009) 0.0086

VaR 1.1958(0.0104) 37171 86.746 0.0271 86.773 0.0086(0.0011) 0.0087
Heidelberger & Lewis (1984) VaR-I 1.3287(0.0154) 350 62.851 6222.2 6285.1 N.A. 0.0116

VaR 1.2026(0.0135) 400 78.878 7808.9 7887.8 N.A. 0.0112
p = 0.001

This paper VaR-I 1.4152(0.0110) 123011 325.79 0.0852 325.88 0.0083(0.0009) 0.0078
VaR 1.3364(0.0112) 149501 364.95 0.1078 365.06 0.0080(0.0008) 0.0084

Heidelberger & Lewis (1984) VaR-I 1.4213(0.0163) 115 198.46 19648 19846 N.A. 0.0115
VaR 1.3321(0.0143) 130 206.85 20478 20685 N.A. 0.0108
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Intra-horizon risk: CGMY model

Table : VaR-I and VaR multiples over benchmark VaR for a two-week horizon are showed.
Reported are values of te multiples VaR-I/(2.32σ̂ − µ̂) and VaR/(2.32σ̂ − µ̂), where Benchmark
VaR is the quantile of Normal distribution N(µ̂, σ̂), where µ̂ = 0 and σ̂ is the standard deviation
of the returns time series. Log stock price is modeled by three processes: Merton’s
jump-diffusion (JD) process, CGMY process, and Stochastic Volatility (SV) process. CGMY: a

pure-jump Levy process with Levy measure k[x] = λ
exp(−β−|x|)
|x|1+α 1{x<0} + λ

exp(−β+x)
x1+α

1{x>0},

where λ = 5.8656, β− = 41.3185, β+ = 60.7789, α = 0.50 (parameters are calibrated from
1995-2015 weekly S& P 500 index return, also see Bakshi and Panayotov (2010) for the
calibration method).

Method Risk Estimate Sample Tgen + Test Teva T (= Tgen+ Estimated Resampled
Measure (SD) size +Test + Teva) RE (SD) RE
Panel B: Exponentially dampened power law model of CGMY

p = 0.01
This paper VaR-I 1.2166(0.0111) 8523 255.68 0.0049 255.69 0.0081(0.0012) 0.0091

VaR 1.1227(0.0098) 6523 197.58 0.0037 197.59 0.0091(0.0006) 0.0087
Heidelberger & Lewis (1984) VaR-I 1.2113(0.0138) 85 142.68 14125 14268 N.A. 0.0114

VaR 1.1246(0.0136) 75 123.74 12250 12372 N.A. 0.0121
p = 0.001

This paper VaR-I 1.3899(0.0131) 36793 1155.4 0.0262 1155.4 0.0088(0.0014) 0.0094
VaR 1.3246(0.0122) 25841 687.74 0.0156 687.76 0.0087(0.0013) 0.0092

Heidelberger & Lewis (1984) VaR-I 1.3901(0.0149) 45 830.11 82181 83011 N.A. 0.0107
VaR 1.3197(0.0149) 30 560.70 55509 56070 N.A. 0.0113
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Dependence setting

α−mixing: For a sequence of r.vs {Li}ni=1, let F l
k be the σ−algebra of events

generated by {Li, k ≤ i ≤ l} for l ≥ k. The α−mixing coefficient introduced by
Rosenblatt (1956) is

α(k) = sup
A∈Fi

1,B∈Fn
i+k

|P (AB)− P (A)P (B)|.

The series is said to be α−mixing if limk→∞ α(k) = 0.
The series is said to be geometric α−mixing if α(k) ≤ cρk for some
constants c > 0 and ρ ∈ (0, 1).

Examples of stationary geometric α−mixing (Chen and Tang, 2005):
ARMA(p,q), GARCH(p,q), Diffusion Model (Vasicek Model), Stochastic Volatility
Model
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A heuristic method in the existing literature

(Hult and Svensson, 2009) For i.i.d samples, assuming central limit theorem√
n(θ̂ − θ)⇒ αN(0, 1), then SD(θ̂) and E(θ̂) can be approximated by

SD(θ̂) ≈ α/
√
n+ op(1/

√
n); E(θ̂) ≈ θ + op(1).

Thus

RE(θ̂) =
SD(θ̂)

|E(θ̂)|
≈ α/

√
n+ op(1/

√
n)

|θ|+ op(1)
≈ α√

n|θ|
.

Extend to dependent samples

Asymptotic normality of VaR estimator (Yoshihara, 1995) and ES estimator
(Chen, 2008)

√
nf(v)σ−1

n,v(vn − v)⇒ N (0, 1);
√
npσ−1

n,c(cn − c)⇒ N (0, 1)

Similarly, we obtain

RE(v̂) ≈ − σn,v
vf(v)

n−1/2, RE(ĉ) ≈ −σn,c
cp

n−1/2
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An counter example

Let Zn = z + Tn + 1√
n
N(0, 1), where z is a positive constant and

P (Tn = n) = 1/n, P (Tn = 0) = 1− 1/n. Suppose Tn and N(0, 1) are
independent. Notice that

√
nTn → 0 in probability, then√

n(Zn − z)⇒ N(0, 1).

Heuristic method implies:

RE(Zn) =
SD(Zn)

|E(Zn)| ≈
1/
√
n+ op(1/

√
n)

z + op(1)
≈ 1

z
√
n
.

However, since SD(Zn) =
√
n+ 1/n,EZn = z + 1, we have

RE(Zn) =
SD(Zn)

EZn
=

√
(n+ 1/n)

(z + 1)
→∞
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Main technical difficulties

(Hong and Sun, 2010) develops asymptotic results for vn and cn in
terms of op and Oa.s.:

vn = v +
1

f(v)
(p− 1

n

n∑

i=1

1{Li≤v}) +An

cn = c+ (
1

n

n∑

i=1

[v − 1

p
(v − Li)+]− c) +Bn

where An = op(n
−1/2), Bn = op(n

−1/2), or
An = Oa.s.(n

3/4(log n)3/4), Bn = Oa.s.(n
−1 log n)

However: Xn = op(g(n)) ; EX2
n = o(g(n)2) or even EX2

n = O(1),
Xn = Oa.s.(g(n)) ; EX2

n = O(g(n)2) or even EX2
n = O(1).

Main difficulties: evaluating the moments of errors:
E(vn − v)m;E(cn − c)m.
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Solution: Careful Analysis of Moments of Errors

Using Berry-Essen bound (Tikhomirov, 1980) and Bernstein
inequality (Merlevede, Peligrad, and Rio, 2009) under dependent
setting, and by improving techniques of Liu and Yang (2012, Adv.
Appl. Prob.), we obtain

E(vn − v)m =
σmn,v
f(v)m

EZmn−m/2 + o(n−m/2−1/4), (5)

E(cn − c)m =
σmn,c
pm

EZmn−m/2 + o(n−m/2−1/4+ε). (6)

Hall and Martin (1988) provides similar results of (5) for i.i.d samples.

Chen (2008) heuristically develops a bound for E(cn − c)2 under
dependent setting.
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Main Technical Results: Approximation of REs

Theorem 1 (Dependent samples)

For samples that satisfy geometric α−mixing and strict stationarity, under
some regular conditions, as n→∞,

RE(vn) = − σn,v
vf(v)

n−1/2 + o(n−3/4) (7)

RE(cn) = −σn,c
cp

n−1/2 + o(n−3/4+ε) (8)

where σ2
n,v = {p(1− p) + 2

∑(n−1)
k=1 γ1(k)}, γ1(k) = cov{1{L1<v}, 1{Lk+1<v}},

and σ2
n,c = {V ar[(v − L1)+] + 2

∑(n−1)
k=1 γ2(k)}, γ2(k) = cov{(v − L1)+, (v − Lk+1)+}.

In particular, when the samples are i.i.d, we have σ2
n,v = {p(1− p)}, and

σ2
n,c = {V ar[(v − L1)+]}.
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Implication: Estimators for RE

RE estimators:

R̂E(vn) = − σ̂n,v

vnf̂(vn)
n−1/2, R̂E(cn) = − σ̂n,c

cnp
n−1/2. (9)

where vn and cn are from estimates in S-step, σ̂n,v, σ̂n,c are

estimators from spectral method (Heidelberger et al., 1981) and f̂(·)
is standard kernel estimator of density function.

Resampled RE: repeat the estimation m times and obtain

θ̂(1), · · · , θ̂(m),
¯̂
θ =

∑m
i=1 θ̂

(i)/m, the resampled RE is computed by

R̃E(θ̂) =

√∑m
i=1(θ̂(i) − ¯̂

θ)2/(m− 1)

¯̂
θ

. (10)
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Numerical results of Theorem 1

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Sample size (× 1000)

RE of VaR estimates: MA(1) model
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Estimated RE by Eq. (9)
Exact first term in Eq. (7)
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Figure : Estimated REs and resampled REs for VaR and ES. Loss samples satisfy the MA(1)
Model: Lt+1 = 0.5εt + εt+1, εt ∼ N(0, 1). p = 0.05 and simulated REs are obtained with 200
repeats.
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Figure : Estimated REs and resampled REs for VaR and ES. Loss distributions here are i.i.d
with density function f(x) = ex1{x<0}, and f(x) = (1− x/3)−41{x<0} respectively. p = 0.05
and simulated REs are obtained with 200 repeats.
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Comparison of VaR and ES

Theorem 2
(I)(Dependent samples) Under some regular conditions,

lim
n→∞

RE(vn(p))

RE(cn(p))
=

cpσ∞,v
vf(v)σ∞,c

<∞.

where σ2
∞,v = {p(1− p) + 2

∑∞
k=1 γ1(k)}, σ

2
∞,c = {V ar[(v − L1)

+] + 2
∑∞
k=1 γ2(k)}.

.
(II)(IID samples) For i.i.d samples under Assumptions A1, B1, C, further assuming the

existence of limx→−∞ xh
′
(x) and limx→−∞ h(x), where h(x) = F (x)

xf(x)
, then

lim
p→0

lim
n→∞

RE(vn(p))

RE(cn(p))
≤ 1√

2
.

Remark: 1) Both
∑∞
k=1 γ1(k) and

∑∞
k=1 γ2(k) converge under geometric α−mixing.

2) Most distributions with smooth tail densities satisfy our regular conditions, including
Normal, Lognormal, Exponential, Weibull, Pareto distributions.
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Comparison of Media Shortfall (MS) and ES

Theorem 2
(I)(Dependent samples) Under some regular conditions,

lim
n→∞

RE(mn(p))

RE(cn(p))
=

c(p)pσ∞,m
m(p)f(m(p))σ∞,m

<∞

where σ2
∞,m = {1/2p(1− p/2) + 2

∑∞
k=1 γ1(k, p/2)},

σ2
∞,m = {V ar[(v(p/2)− L1)

+] + 2
∑∞
k=1 γ2(k, p/2)}.

.
(II)(IID samples) Under the conditions of Assumptions A1, B1, C, denote F (x)

xf(x)
= h(x),

and assume the existence of limx→−∞ xh
′
(x) and limx→−∞ h(x). Moreover, we assume

∃θ ≤ 1 such that v(p)f(v(p))

pθ
is a slowly varying function at p = 0. Then

lim
p→0

lim
n→∞

RE(mn(p))

RE(cn(p))
≤ 1.

Remark: According to Kou and Peng (2014), MS at level p (i.e. m(p)) is exactly the
VaR at level p

2
(i.e. v( p

2
)), i.e. m(p) = v( p

2
).
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Numerical results: dependent samples and i.i.d samples
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Figure : Ratio of REs for VaR and ES as p varies. Loss samples in left figure satisfy MA(1)
Model: Lt+1 = αεt + εt+1, εt ∼ N(0, 1), α = 0.5 or −0.5. Loss p.d.f in right satisfies
f(x) = ex1{x<0} and f(x) = (1− x

K
)−K−11{x<0} respectively. Sample size is chosen to be

106, and p varies from 0.0002 to 0.01. The estimation of RE is based on 200 times.
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Summary

A sorted Monte Carlo with reported RE is introduced to simulate risk
measures for dependent samples. Numerical experiments indicate this
method is easy to implement and fast, compared to existing methods,
in terms of total execution time, even at the level 0.001.

Rigorous expansions of RE’s of risk measures are given, which enable
us to compute needed sample size, and to make comparison between
different risk measures.
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Thanks!
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Appendix A: Regularity Conditions

Assumption A: Sample process L1, · · · , Ln is strictly stationary and geometric
α−mixing. Each Li is distributed with f and F as its density function
and distribution function, respectively.

Assumption A1: Samples L1, · · · , Ln are i.i.d. Each Li is distributed with f and F as
its density function and distribution function, respectively

Assumption B: F has bounded second derivative in a neighborhood of v, and
vf(v) < 0.

Assumption B1: F has bounded second derivative in a neighborhood of v, and
xf(x) < 0 is satisfied for all x ≤ v.

Assumption C: L has finite moment for all orders, that is E|L|2+δ <∞ for all δ > 0.

Assumption C1: L has finite first moment, that is E|L| <∞.
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Appendix B

Example: Let random variables Xn defined as:

Xn(ω) =
1

n
1{ 1

n2≤ω≤1} + (
1

n
+ n2)1{0≤ω< 1

n2 }
.

By definition P (|n1−εXn| > θ) = 1/n2 → 0, hence Xn = op(n
−1+ε).

However, EX2
n = O(n2) 6= o(n−2+2ε).

Furthermore,EX2
n = O(n2)→∞ as n→∞.
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Appendix B

Example: Define random variables as Yn = 2n1Un + n−11Vn , where Un, Vn are
defined recursively: U1 = (0, 1/3) ∪ (2/3, 1), V1 = [1/3, 2/3], if

Uk = ∪2k

i=1(ai, bi), Vk = ∪2k−1
i=1 [ci, di], then

Uk+1 = ∪2k

i=1(ai, ai + (bi − ai)/3) ∪ (ai + 2(bi − ai)/3, bi), Vk+1 =

Vk ∪2k

i=1 [ai + (bi − ai)/3, ai + 2(bi − ai)/3].
Since

∑∞
k=1 P (|Yn| > 1/n) =

∑∞
k=1(2/3)

k <∞, by Borel-Cantelli Lemma, we
have Yn = Oa.s.(1/n).

However, since
limn→∞ n

2EY 2
n = limn→∞ n

2{(2/3)n22n + (1− (2/3)n)1/n2} =∞, then
EY2

n 6= O(1/n2).
Furthermore, we have EY2

n = O((8/3)n)→∞.
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