Extreme Value Theory
 and American Options

Gabriela Baumgartner and Andrew D Smith ansmith@ucd.ie

Presented to the ETH Risk Day
Zürich, 14 September 2018

When to Refinance a Mortgage?

Loan balance: €500 000 Remaining term: 20 years. Interest:
 Fixed at 4\% pa
 Capital repayment: End of term
 Early redemption penalty: None

- You might refinance if another bank offers you a rate substantially below 4%.
- But how far below? Would a rate of 3\% be enough?
- Related problems:
- When to cash in a guaranteed rate deposit
- Surrender of term assurance with fixed premiums
- Investment fund with fixed guarantee charges
- Fixed price energy supply, phone contract, ...

Optimal Refinancing

When I refinance at a new interest rate m :

- I save interest at 4\% pa
- I pay interest at m pa
- For s remaining years
- Overall saving $=s \times(4 \%-m) \times 500000$
- The optimal stopping problem is to choose a refinancing (stopping) date to maximise the saving.

Simplified Interest Model

Non-Negative Random Walk

Time t-1 Time t

From a point $(t-1, w)$
The random walk can move to

- $(t, w-1)$, or to
- $(t, w+1)$

Both with probability $1 / 2$

Unless $w_{t-1}=0$
In which case the next moves are
$(t, 0)$, or
$(t, 1)$
Both with probability $1 / 2$

The Game Value on Stopping

Stopping the First Time W = 2

Game values in green

Theoretically Optimal Behaviour

Generally: Maximise $E\left\{W_{\tau} s(\tau)\right\}$

Nested Solutions for general $s(t)$

Maximise $E\left[W_{\tau} s(\tau)\right]$ for a survival function $s(\tau)$

Nested Solutions for general $s(t)$

Maximise $E\left[W_{T} s(\tau)\right]$

Method of Images

Generalised Pareto Distributions

Original Distribution \boldsymbol{T}		Conditional distribution of T-1, given that $\boldsymbol{T}>1$			
Mean	Stdev	Type	Mean	Stdev	Type
2	0	Point			
2	$2 / \sqrt{ } 3$	Uniform $[0,4]$			

Generalised Pareto Distributions

Original		Distribution T	Conditional distribution of T-1, given that $T>1$		
Mean	Stdev	Type	Mean	Stdev	Type
2	0	Point	1	0	Point
2	$2 / \sqrt{ } 3$	Uniform[0,4]	$3 / 2$	$\sqrt{ } 3 / 2$	Uniform[0,3]

Generalised Pareto Distributions

Original Distribution T		Conditional distribution of T-1, given that $T>1$			
Mean	Stdev	Type	Mean	Stdev	Type
2	0	Point	1	0	Point
2	$2 / \sqrt{ } 3$	Uniform $[0,4]$	$3 / 2$	$\sqrt{ } 3 / 2$	Uniform[0,3]
2	$V(12 / 5)$	$8 \times \operatorname{Beta}(1,3)$	$7 / 4$	$7 / 8 \times V(12 / 5)$	$7 \times$ Beta(1,3)
2	2	Exponential	2	2	Exponential
2	V8	Pareto(4,6)	$7 / 3$	$7 / 6 \times \sqrt{ } 8$	Pareto(4,7)

Generalised Pareto Distributions

Original Distribution T		Conditional distribution of T-1, given that $T>1$			
Mean	Stdev	Type	Mean	Stdev	Type
2	0	Point	1	0	Point
2	$2 / \sqrt{ } 3$	Uniform $[0,4]$	$3 / 2$	$\sqrt{ } 3 / 2$	Uniform[0,3]
2	$V(12 / 5)$	$8 \times$ Beta(1,3)	$7 / 4$	$7 / 8 \times V(12 / 5)$	$7 \times$ Beta(1,3)
2	2	Exponential	2	2	Exponential
2	V8	Pareto(4,6)	$7 / 3$	$7 / 6 \times \sqrt{ } 8$	Pareto(4,7)

The scaling property of the GPD, combined with the scaling property of Brownian motion, permit us to reduce the PDE for the optimal stopping problem to an ODE and hence find closed-form solutions to movable boundary problems.

Solutions: Beta Example

$\boldsymbol{\beta}$	value(w) proportional to:	Boundary b_{1}	
$-1 / 2$	$\Phi(w)$	N/A	
0 Bachelier	$w \Phi(w)+\phi(w)$	infinite	
$1 / 2$	$\frac{1}{2}\left(w^{2}+1\right) \Phi(w)+\frac{w}{2} \phi(w)$	0.839924	
1 Uniform	$\frac{1}{6}\left(w^{3}+3 w\right) \Phi(w)+\frac{1}{6}\left(w^{2}+2\right) \phi(w)$	0.638833	

Solutions: Beta Example

β	value (w) proportional to:	b_{1}	
$-1 / 2$	$\Phi(w)$	N/A	
Bachelier	$w \Phi(w)+\phi(w)$	infinite	
$1 / 2$	$\frac{1}{2}\left(w^{2}+1\right) \Phi(w)+\frac{w}{2} \phi(w)$	0.839924	
1	$\frac{1}{6}\left(w^{3}+3 w\right) \Phi(w)+\frac{1}{6}\left(w^{2}+2\right) \phi(w)$	0.638833	
Uniform	...each solution is the integral of the	0.537259	
$3 / 2$	row above it ...	0.472862	
2			

Solutions: Beta Example

β	value(w) proportional to:	b_{1}	
$-1 / 2$	$\Phi(w)$	N/A	
Bachelier	$w \Phi(w)+\phi(w)$	infinite	
$1 / 2$	$\frac{1}{2}\left(w^{2}+1\right) \Phi(w)+\frac{w}{2} \phi(w)$	0.839924	
1	$\frac{1}{6}\left(w^{3}+3 w\right) \Phi(w)+\frac{1}{6}\left(w^{2}+2\right) \phi(w)$	0.638833	
Uniform	..each solution is the integral of the	0.537259	
$3 / 2$	row above it ...		

These are solutions with $v(-\infty)=0$. For the reflecting problem, use $v(w)+v(-w)$.

Solutions: Beta Example

β	value(w) proportional to:	b_{1}	$\mathrm{~b}_{2}$
$-1 / 2$	$\Phi(w)$	N / A	N / A
Bachelier	$w \Phi(w)+\phi(w)$	infinite	infinite
$1 / 2$	$\frac{1}{2}\left(w^{2}+1\right) \Phi(w)+\frac{w}{2} \phi(w)$	0.839924	1.000000
1	$\frac{1}{6}\left(w^{3}+3 w\right) \Phi(w)+\frac{1}{6}\left(w^{2}+2\right) \phi(w)$	0.638833	0.764226
Uniform	...each solution is the integral of the	0.537259	0.643594
$3 / 2$	row above it \ldots		

These are solutions with $v(-\infty)=0$. For the reflecting problem, use $v(w)+v(-w)$. The constant $b_{1}=0.638833$ in the uniform case also arises in the asymptotic expansion of American options on GBM assets; see Dewynne et al (1993). When 2β not an integer, solution involves confluent hypergeometric functions.

GPD shape and Optimal Boundary

GPD shape and Optimal Boundary

GPD shape and Optimal Boundary

Customer Optimal Behaviour

- There are various reasons why customers might lapse a financial contract.
- Not all customers will apply backward induction or solve PDEs with movable boundary conditions.
- However, not all lapses are random either.
- For risk management purposes you want to know what is at stake if customers suddenly wise up.
- And perhaps underwrite to avoid smart customers.
- Full paper at http://ssrn.com/abstract=3213781

