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Carole BERNARD Option Implied Dependence



Motivation

Option markets provide valuable information about future
outcomes

Many useful forward-looking measures can be derived from traded
option prices:

Model-dependent: Black-Scholes ATM implied volatility –
old VIX (CBOE)

Model-free:

Volatility (MFIV) – new VIX (CBOE)

Skewness and kurtosis – Bakshi, Kapadia and Madan (2003);
CBOE SKEW Index

Down- and Up- variance – Andersen and Bondarenko (2009)
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Motivation

Given a cross-section of European options with different strikes and
same maturity, we can infer the whole distribution of future returns.

Call prices are related to the risk-neutral density (RND) as

C(K) = e−rTEQ [(ST − K)+
]
= e−rT

∫ ∞

0
(ST − K)+ f (ST) dST ,

where f (ST) is RND for maturity T.

Ross (1976), Breeden and Litzenberger (1978), Banz and Miller
(1978):

f (ST) = erT ∂2C(K)
∂K2

∣∣∣∣
K=ST .

Several techniques for RND estimation are available. Accurate when
there are enough option strikes and they cover most of RND mass.
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Motivation

Virtually all existing model-free approaches are univariate, handle
one asset at a time

What about a joint distribution of several assets? Important for
many applications:

Portfolio optimization

Multi-asset derivatives (basket options, exchange options,
correlation swaps)

Risk management

Developing forward looking warning signals
contagion/herding/systemic risk

FX markets

However, a very hard problem – few multivariate options trade
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Motivation

In this paper, we propose a novel approach to infer
forward-looking dependence between d ≥ 2 assets, given

(1) marginal distributions of assets X1, . . . , Xd, and
(2) distribution of their weighted sum (index)

S = ω1X1 + . . . + ωdXd

where ω1 + . . . + ωd = 1.

The approach is model-free and is based on a combinatorial
algorithm – Block Rearrangement Algorithm (BRA)

Empirical application: the approach is implemented for the 9
industries that comprise S&P 500 Index

Risk-neutral densities for components X1, . . . , X9 and the index S
are estimated from traded options
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Existing Literature

Often rely on model-dependent approaches or approximations

Cont and Deguest (2013) – a multi-asset model consistent with
observed index options and individual stock options. See also
Avellaneda and Boyer-Olson (2002), Jourdain and Sbai (2012).

CBOE S&P 500 Implied Correlation Index

ρcboe =
σ2

S −∑d
i=1 ω2

i σ2
i

2 ∑d−1
i=1 ∑j>i ωiωjσiσj

.

Driessen, Maenhout, and Vilkov (2009) use S&P 100 options to
estimate the correlation risk; see also Skintzi and Refenes (2005).

Driessen, Maenhout, and Vilkov (2012), Buss and Vilkov (2012),
Jackwerth and Vilkov (2015) – stochastic correlation models.
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Rearrangement Algorithm – Basic Setup

Inputs: d random variables X1 ∼ F1, X2 ∼ F2, ..., Xd ∼ Fd.

Goal: look for a dependence such that the variance of sum
S = X1 + ... + Xd is minimized.

Assume that each Xj is sampled into n equiprobable values, i.e.,

we consider the realizations xij := F−1
j ( i−0.5

n ) and arrange them in

an n× d matrix:

X = [X1, . . . , Xd] =


x11 x12 . . . x1d
x21 x22 . . . x2d

...
...

...
...

xn1 xn2 . . . xnd


Want to rearrange elements xij (by columns), such that after the
rearrangement variance of sum S is minimized.

This is an NP complete problem. Brute force search requires
checking (n!)(d−1) rearrangements.
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Rearrangement Algorithm (RA)

Heuristic algorithm proposed in Puccetti and Rüschendorf
(2012) and Embrechts, Puccetti, and Rüschendorf (2013):

1 For j = 1, . . . , d, make the jth column anti-monotonic with the
sum of the other columns.

2 If there is no improvement in var
(

∑d
k=1 Xk

)
, output the

current matrix X, otherwise return to step 1.

Step 1 ensures that the variance of the sum before rearranging
Xj is larger than after rearranging X̃j

var

(
Xj + ∑

k 6=j
Xk

)
> var

(
X̃j + ∑

k 6=j
Xk

)
.
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Block Rearrangement Algorithm (BRA)

When d > 3, the standard RA can be improved by
considering blocks

1 Select a random sample of nsim possible partitions of the
columns {1, 2, . . . , d} into two non-empty subsets {I1, I2}.

2 For each of the nsim partitions, create block matrices X1 and
X2 with corresponding row sums S1 and S2 and rearrange rows
of X2 so that S2 is anti-monotonic to S1.

3 If there is no improvement in var
(

∑d
k=1 Xk

)
, output the

current matrix X, otherwise, return to step 1.

When d is reasonably small (d 6 10), we can take
nsim = 2d−1 − 1, so that all non-trivial partitions are
considered.
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Inferring Dependence

Bernard, Bondarenko, and Vanduffel, “Rearrangement Algorithm
and Maximum Entropy”, Annals of Operations Research, 2018

Inputs: d random variables X1 ∼ F1, X2 ∼ F2,..., Xd ∼ Fd and
their sum S ∼ FS.

Assume that each Xj and S are sampled into n equiprobable values,
arranged in an n× (d + 1) matrix:

M = [X1, . . . , Xd,−S] =


x11 x12 . . . x1d −s1
x21 x22 . . . x2d −s2

...
...

. . .
...

...
xn1 xn2 . . . xnd −sn

 .

To infer the dependence among X1, . . . , Xd, apply BRA on M.

Ideally, the row sums of the rearranged matrix are all zero and a
compatible dependence has been found. In practice, this situation
does not occur and we obtain a close approximate solution.
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Summary of Theoretical Approach

BRA can be used to infer a possible dependence structure
among d variables given their marginal distributions and the
distribution of the sum

Although there are typically many solutions, BRA finds solutions
that are “close to each other” and exhibit almost maximum entropy

As the level of discretization n increases, BRA solutions converge to
the maximum entropy
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Illustration when X1, X2 are N(0, σi) and S is N(0, σS)
such that implied correlation is 0.

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1

0.5

0

-0.5

0.6
0.4-1 0.2

0
-0.2

-0.4
-0.6

0.05

0.1

Carole BERNARD Option Implied Dependence



Illustration when X1, X2 are N(0, σi) and S is N(0, σS)
such that implied correlation is 0.97.
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Illustration when X1, X2 are N(0, σi) and S is skewed.
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Empirical Application – S&P 500 Sectors

SPDR ETFs, S&P 500 Index and its 9 sectors:

Description Ticker Abbreviation

SPDR S&P 500 ETF Trust SPY spx
Consumer Discretionary Sector SPDR Fund XLY cdi

Consumer Staples Sector SPDR Fund XLP cst
Energy Sector SPDR Fund XLE ene

Financial Sector SPDR Fund XLF fin
Health Care Sector SPDR Fund XLV hea

Industrial Sector SPDR Fund XLI ind
Materials Sector SPDR Fund XLB mat

Technology Sector SPDR Fund XLK tec
Utilities Sector SPDR Fund XLU uti

9 sectors that do not overlap and that cover entire S&P 500

Daily option data from CBOE

Sample: 04/2007 - 09/2017
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S&P 500 Sectors
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Figure: Sector weights in September 2016.
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S&P 500 Sectors
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Figure: Sector weights over time. Pink vertical lines indicate Financial crisis.
Green vertical lines: 08-Sep-08, 20-Nov-08, and 06-May-10.
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Implementation Details

Daily frequency, τ is at least 30 days, or closest available

Estimate RNDs for S and each Xj from traded options on SPY and
d = 9 Sector ETFs

Estimate RNDs nonparametrically with Positive Convolution
Approximation (PCA), Bondarenko (2003)

Discretize each distribution into n = 1000 equiprobable returns and
arrange them in n× (d + 1) matrix:

M = [X1, . . . , Xd,−S] =


x11 x12 . . . x1d −s1
x21 x22 . . . x2d −s2

...
...

. . .
...

...
xn1 xn2 . . . xnd −sn

 .

Apply BRA on matrix M to infer dependence structure
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Implementation Details

Compute various dependence statistics:

Pairwise correlations and their value-weighted average

Correlations conditional on various events
ρ(Ri, Rj | Scenario), which can depend on the aggregate
market or other factors:

localized or “corridor” correlation:
Scenario = {q1 ≤ RS ≤ q2} for some quantiles q1, q2
Down and Up correlations: Let RM

S be the median of RS

ρd,Q
i,S = corrQ(Ri, RS | RS ≤ RM

S )

ρu,Q
i,S = corrQ(Ri, RS | RS > RM

S ),

Also Spearman’s rho – not affected by changes in marginal
distributions (not sensitive to changes in volatility)

Spearman’s rho(Ri, Rj) = ρ(Fi(Ri), Fj(Rj))

Other tail indices
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Selective Date: 08-Sep-2008
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Figure: Implied Dependence.
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Selective Date: 08-Sep-2008

Correlation Matrix
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Figure: Implied Correlations.
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Selective Date: 20-Nov-2008
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Figure: Implied Dependence.
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Selective Date: 20-Nov-2008

Correlation Matrix
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Figure: Implied Correlations.
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Up and down average pairwise correlations

From option prices, we estimate:

ρ
g,Q
i,j = corrQ(Ri, Rj)

ρd,Q
i,j = corrQ(Ri, Rj | RS ≤ RM

S )

and
ρu,Q

i,j = corrQ(Ri, Rj | RS > RM
S ),

We then average

ρx,Q =
∑i<j πiπjρ

x,Q
i,j

∑i<j πiπj
,

with πi = ωiσi
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Implied Correlation
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Up and down correlation risk premia

From option prices, we estimate:

ρd,Q
i,j = corrQ(Ri, Rj | RS ≤ RM

S )

and
ρu,Q

i,j = corrQ(Ri, Rj | RS > RM
S ),

From corresponding stock prices daily returns

ρd,P
i,j = corrP(Ri, Rj | RS ≤ RM

S )

and
ρu,P

i,j = corrP(Ri, Rj | RS > RM
S ),

Correlation risk premium (global, up and down):

ρ
g,P
i,j − ρ

g,Q
i,j , ρu,P

i,j − ρu,Q
i,j , ρd,P

i,j − ρd,Q
i,j
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Implied and Realized Correlation
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Results

What we observe

ρu,Q
i,j < ρu,P

i,j < ρd,P
i,j < ρd,Q

i,j

Asymmetry under P was observed in the literature: Longin
and Solnik (JOF 2001), Ang and Bekaert (RFS 2002), Hong, Tu
and Zhou (RFS 2007), Jondeau (CSDA, 2016)... higher
correlations in “bear markets”

Under Q, this asymmetry is amplified and we give evidence that
this asymmetry in the correlations comes from an asymmetry in
the dependence and not from properties of the marginal
distributions.
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Margins or Dependence?
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Additional Elements To Be Found in the Paper

Implied dependence is non-Gaussian, time-varying, and
asymmetric

Global Correlation Risk Premium disappears when computed
with Spearman’s Rho, whereas the Down (resp. Up)
Correlation Risk Premium stays significantly negative (resp.
positive)

Alternative semi-parametric approach to our model-free
approach to model the joint distribution of assets in the
risk-neutral world:

Fit margins with model-free approach
Fit dependence using a two-parameter Skewed Normal
Copula

Model sufficiently flexible to re-obtain the results on the
global, down and up correlation risk premia
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Conclusions (1/2)

A novel algorithm to infer the dependence among variables given
their marginal distributions and distribution of the sum

Consistent with maximum entropy. This is a desirable property: a
dependence with lower entropy would mean that we use information
that we do not possess

Application to S&P 500 Sector options:

Implied dependence is non-Gaussian, time-varying, and
asymmetric
Down correlation is larger than Up correlation
Correlation risk premium: Down (strongly negative), Up
(positive), Global (negative)
Parsimonious multivariate model with a two-parameter copula
Evidence of extreme events / left tail dependence
Correlation indices (down, up), improving on CBOE index
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Conclusions (2/2)

A number of potential applications:

Identify properties of a “good” multivariate model to reproduce
option prices available in the market (such as stochastic correlation,
asymmetry between average up and down correlation, etc).

A new approach to price any path-independent multivariate
derivatives (basket options and correlation swaps). Joint work with
Oleg Bondarenko and Steven Vanduffel.

Detection of arbitrage opportunities – Dispersion arbitrage

Disentangle modelling of volatility (margins) and of the
dependence (copula)

New forward-looking indicators of contagion/tail risk

Covariance matrix estimation / Optimal portfolio construction
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