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Simpson'’s paradox

= restment | Placebo

Male 50/100 150/500
Female 50/500 o/100
Total 100/600 150/600

Hypothetical recovery rates, separated by gender

e Among males, treatment is better
e Among females, treatment is better
e Overall, placebo is better

References: Yule (1903), Biometrika; Simpson (1951), JRSS-B; Hernan, Clayton and Keiding
(2011), Int J. Epidemiology; Pearl (2014), The American Statistician 68, 8-13.



Visual representation
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Simpson'’s paradox

| Treatment | Placebo _ [NIEERRNC T

use the treatment

Male 50/100 150/500
Female 50/500 o/100
Total 100/600 150/600

Simpson (1951), in an example similar to this one:
“The treatment can hardly be rejected as valueless to the race
when it is beneficial when applied to males and to females.”

Replace gender by - Treatment | Placebo Don’t control for BP;

blood pressure (BP) don’t use the treatment

High BP 50/100 150/500
Low BP 50/500 0/100
Total 100/600 150/600

Simpson (1951), in an example similar to this one:
..., yetitis the combined table which provides
what we would call the sensible answer...”



Simpson’s paradox and causal diagrams

e Same numbers, different conclusions....

* We must use additional information:
story behind the data, causal assumptions

e We want to know the causal effect of treatment on recovery.
Possible scenarios:

gender BP
treatment — recovery treatment — recovery
gender is a confounder; BP is an intermediate variable;
control for gender don’t control for BP




Simpson’s paradox and causal diagrams

e Same numbers, different conclusions....

* We must use additional information:
story behind the data, causal assumptions

e We want to know the causal effect of treatment on recovery.
Possible scenarios:

gender BP
treatment — recovery treatment — recovery
gender is a confounder; BP is an confounder;

control for gender control for BP




Simpson’s paradox in regression

Color encodes third variable Z

Source: http://www.r-bloggers.com/fun-with-simpsons-paradox-simulating-confounders/



Regression

e Different variablesin model can lead to different conclusions:

* pBj reflects the partial association between X; and Y
when all other variables in the model are held constant

* Simpson’s paradox is an extreme case where the sign flips

* Often little guidance about the choice of variables in the
model, apart from standard model selection techniques

e We can make this more precise by using causal reasoning



Outline for the remainder of the talk

e Terminology:
* Causal versus non-causal questions
* Experimental versus observational data
* Total causal effects
e Adjustment sets for total causal effects:
* What are valid and invalid sets?
* Which valid set provides the most efficient estimator?
* Examples

What to do when the causal structure is unknown?
e Summary and conclusion



Causal versus non-causal questions

e Non-causal questions are about predictions in the same system:
* Predicting life expectancy of smokers

* Predicting the recidivism rate of prisoners based on their
participation in a rehabilitation program and other covariates

e (Causal questions are about the mechanism behind the data or
about predictions after some outside intervention

* Does smoking cause lung cancer?

* Does the rehabilitation program for prisoners lower the
recidivism rate?

* How much money is saved by a health insurance company by
assigning case managers to patients with complex diseases?
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Estimating causal effects from observational data

e (Causal questions are ideally answered by randomized controlled
experiments. Examples:

* agricultural experiments
¢ clinical trials to test new drugs
If possible: do such experiments!

e Sometimes such experiments are impossible, as they may be:
* unethical (smoking)
¢ infeasible (global warming)

* expensive [ time consuming (gene knock-outs)

e How to estimate causal effects from observational data?
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Definition of total causal effect

> Interventional notion of causal effect: If | set X to different
values by an outside intervention, do | see a change in Y?

» do-operator (Pearl): do(X = a): mathematical notation for
setting the variable X to the value a by an outside intervention

» Telmed example:

> Let Y be health care costs
> Let X = 1if a patient uses a Telmed model; X = 0 otherwise

> E(Y|do(X =1)) versus E(Y|X =1)



Definition of total causal effect

> Interventional notion of causal effect: If | set X to different
values by an outside intervention, do | see a change in Y?

» do-operator (Pearl): do(X = a): mathematical notation for
setting the variable X to the value a by an outside intervention

» Telmed example:

> Let Y be health care costs
> Let X = 1if a patient uses a Telmed model; X = 0 otherwise

> E(Y|do(X =1)) versus E(Y|X =1)
» Total causal effect of X on Y: %E(Y]do(X = a))
» Telmed example:

> E(Y|do(X =1)) — E(Y|do(X = 0)) versus
E(Y|X=1)—E(Y|X=0)



How can we estimate causal effects from observational data?

observational data experimental data

observational densities post-intervention densities

prediction/classification:
E(Y|X = a)

causal predictions:
E(Y|do(X = a))



How can we estimate causal effects from observational data?

observational data experimental data

observational densities----|---

-» post-intervention densities

prediction/classification:
E(Y|X = a)

causal predictions:
E(Y|do(X = a))

Common assumption:
Data are generated from a known directed acyclic graph (DAG)



Example: linear structural equation model

Directed acyclic graph (DAG) with weighted edges:
1

Zs X Z Y
Pl b
Z Z3 Zy

Each variable is generated as a linear function of its parents:

n <- 100000 # sample size
eps <- matrix(rnorm(7*n,0,1), ncol=7) # random noise
Z5 <- epsl[,1]

X <- 25 + epsl[,2]

Z1 <- 0.8*X + eps[,3]

Y <- 2%xZ1 + Z5 + eps[,4]

Z2 <- X + epsl[,5]

Z3 <- Z1 + eps[,6]

Z4 <-Y + epsl[,T7]



Example: linear structural equation model

/l\
ZS 1 X 0.8 Zl 2 y
bk
2 Z Z

Key assumption is autonomy: each structural equation is invariant
to changes in the other structural equations.

experimental data

DAG l

——————— » post-intervention densities

l

causal predictions:
E(Y|do(X = a))

observational data

observational densities — —

prediction/classification:
E(Y|X = a)



Example: linear structural equation model

Zs Z y
bk
2 Z Z

We can easily simulate from this system under do(X = a):

n <- 100000

eps <- matrix(rnorm(7*n,0,1), ncol=7)

Z5 <- epsl[,1]

X <- rep(a,n) # before: X <- Z5 + eps[,2]
Z1 <- 0.8*X + eps[,3]

Y <- 2%Z1 + Z5 + eps[,4]

Z2 <- X + epsl[,5]

Z3 <- Z1 + epsl[,6]

Z4 <- Y + epsl[,7]



Example: linear structural equation model

Zs Z 1%
ool
2 Z Z

The total effect of X on Y in this example is 1.6.
Now suppose we know the DAG, but not the edge weights:

» can we compute the total effect of X on Y via regression?

» if so, what variables to adjust for / not to adjust for?



Example: linear structural equation model

T e T
27, x 08, 5 2%y

Pl b

Z Z Z
> 1Im(Y™X) $coeff [2]
2.0975 # wrong
> 1m(Y"X+Z5) $coeff [2]
1.6038 # OK!
> 1m(Y~X+Z5+Z2) $coeff [2]
1.6025 # OK!
> 1m(Y~X+Z5+Z3) $coeff [2]
0.8082 # wrong
> 1m(Y~X+Z1+Z2+Z3+Z4+75) $coeff [2]
0.000185 # wrong



|dentifying total causal effects

Set-up:

» Given: i.i.d. observational data and causal DAG

» Goal: identify f(y|do(x)) via covariate adjustment



|dentifying total causal effects

» A probability density f is compatible with a causal DAG D if
for any X C V we have

F(v\x| do(X = a)) = [Ty,evx (vilpa(y;: D) __



|dentifying total causal effects

» A probability density f is compatible with a causal DAG D if
for any X C V we have

F(v\x| do(X = a)) = [Ty,evx (vilpa(y;: D) __

» S is an adjustment set relative to (X,Y) in a causal DAG D if
for any f compatible with D:

_[FoR) s =0,
f(y|do(x)) = {fs f(y|x,s)f(s)ds = Es{f(y|x,s)} otherwise



|dentifying total causal effects

» A probability density f is compatible with a causal DAG D if
for any X C V we have

F(v\x| do(X = a)) = [Ty,evx (vilpa(y;: D) __

» S is an adjustment set relative to (X,Y) in a causal DAG D if
for any f compatible with D:

_[FoR) s =0,
f(y|do(x)) = {fs f(y|x,s)f(s)ds = Es{f(y|x,s)} otherwise

» In a linear system, the total effect of X on Y is then the
coefficient of X in the linear regression Y ~ X 4+ S



Graphical criteria for adjustment sets

> Sufficient:
Backdoor criterion (Pearl '93)

> Necessary and sufficient:
Adjustment criterion (Shpitser et al '10; Perkovi¢ et al '15, '17, '18)



Adjustment criterion

S satisfies the adjustment criterion relative to (X, Y) in DAG D if:

» no node in S is a descendant of any W ¢ X that lies on a
causal path from X to Y in D; and

» S blocks all non-causal paths from X to Y in D

S is an adjustment set relative to (X, Y) in a causal DAG D <
S satisfies these graphical criteria relative to (X, Y) in G



Back to the linear structural equation model

T

Z5 X Zy Y
ZQ Z3 Z4

» Zs is required to block the non-causal path X «+ Zs — Y

» 71, Z3 and Z, are forbidden, since they are descendants of
nodes other than X on a causal path

> 7, is optional

» Hence, the only valid adjustment sets are {Z5} and {Z>, Zs}



Back to Simpson’s paradox

gender BP
treatment — recovery treatment — recovery
control for Z=gender; don’t control for Z=BP;
(Z is before treatment) (Z is after treatment)

Rule: control for pre-treatment covariates, and not for post-
treatment covariates?

No....

Reference: Pearl (2014). The American Statistician 68, 8-13. .



Back to Simpson’s paradox

gender BP
treatment — recovery treatment — recovery
control for Z=gender; don’t control for Z=BP;
(Z is before treatment) (Z is after treatment)
Ly L, L4 > 7

| >z 1 1

treatment — recovery
treatment — recovery

don’t control for Z; control forZ
(Z can be before/after treatment) (Z can be before/after treatment)

Reference: Pearl (2014). The American Statistician 68, 8-13. .



Example: mutual adjustment or "Table 2 fallacy"

Z

15

2

bk
N

Z3

» {Z1} is a valid adj. set for the total effect of X on Y.
» {X} is not a valid adj. set for the total effect of Z1 on Y.

» There is no “mutual adjustment".

> 1m(Y"X+Z1)$coef
Intercept X Z1
0.004809 7.4961  1.0072



Example: mutual adjustment or "Table 2 fallacy"

Work-related Violence and Use of Psychotropics 1359

Table2. Cause-specific Hazard Ratios for Use of Psychotropics in Association With Work-related Violence and Covariates, Denmark, 1996-2008

::gdepr_ess,a_ms only

HR? 95% CI HR? 95% CI HR? 95% CI HR? 95% ClI
Work-related violence (yes vs. no) 1.38 1.09,1.75 1.74 1.13,2.70 1.05 0.76,1.45 105 0.75,1.46
Women vs. men 1.41 1.18,1.68 1.56 1.09,2.22 173 1.39,2.16 1.45 117,179
Age per 5-year increase 1.01 0.98, 1.06 1.09 1.00, 1.17 1.16 1.10, 1.22 1.21 1.15,1.27
Cohabitation (yes vs. no) 0.81 067,097 089 061,129 086 068,109 082 0.64,1.03
Education per SD increase 088 0.81,096 086 0.73,1.02 097 0.87,1.07 1.04 0.94,1.15
Income per quartile increase 0.91 0.83, 0.99 078 065,093 097 0.87,1.09 1.06 0.94,1.18

Social support from colleagues per unit increase 095 0.87,1.05 093 078,112 097 0.87,1.09 1.00 0.89,1.12
Social support from supervisor per unit increase 0.95 0.87,1.03 1.00 0.85,1.18 1.05 095,116 097 0.87,1.07
Influence per unit increase 0.93 0.86, 1.02 0.95 0.81,1.12 0.96 0.87,1.05 0.94 0.85, 1.04
Quantitative demands per SD increase 1.02 0.94,1.11 1.04 0.88, 1.22 0.97 0.88, 1.08 0.99 0.89, 1.10

Abbreviations: Cl, confidence interval; HR, hazard ratio; SD, standard deviation.
2 Statistical model includes the following: work-related violence, gender, age, cohabitation, education, income, social support from colleagues,
social support from supervisor, influence at work, and quantitative demands at work.

From: Am. J. of Epidemiology



Take home message so far

Many common ideas about adjustment are wrong:

vV v v v v Y

adjusting for more variables is always better. No!

one should adjust for all variables correlated to X and Y. No!
adjusting for pre-treatment variables is always safe. No!
adjusting for descendants of X is always bad. No!

mutual adjustment works. No!



Take home message so far

Many common ideas about adjustment are wrong:

adjusting for more variables is always better. No!

one should adjust for all variables correlated to X and Y. No!
adjusting for pre-treatment variables is always safe. No!
adjusting for descendants of X is always bad. No!

mutual adjustment works. No!

vV v v v v Y

Valid approach: use graphical criteria for adjustment sets



Efficiency: among the valid sets, which one should we use?

A\X/Z\Y/R

e

U

Asymptotic variances for 7 random parameter settings:

Valid adj. sets

1

2

3

4

5

6

7

{Z,A}
(Z,AR}
{2}

{Z,R}
(Z,A,U}
{Z,A,R, U}
{Z,U}
{Z,R, U}

4.59
4.21
4.58
4.19
4.71
4.32
4.70
4.30

1.64
1.18
0.97
0.70
19.49
14.04
18.82
13.56

0.59
0.56
0.57
0.54
0.59
0.56
0.57
0.54

0.60
0.19
0.34
0.11
0.90
0.29
0.64
0.21

4.59
3.08
3.92
2.63
5.23
3.51
4.56
3.06

1.76
1.60
1.40
1.27
2.73
2.48
2.37
2.15

2.16
0.11
2.16
0.11
5.92
0.31
5.92
0.31

{Z,A, R} is always better than {Z, A}
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2.16
0.11
2.16
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5.92
0.31
5.92
0.31

{Z,A,R} and {Z} cannot be compared



Efficiency: among the valid sets, which one should we use?

A\X/Z\Y/R

e

U

Asymptotic variances for 7 random parameter settings:

Valid adj. sets

1

2

3

4

5

6

7

{Z,A}
{Z,A,R}
{2}

{Z,R}
(Z,A,U}
{Z,A,R, U}
{Z,U}
{Z,R, U}

4.59
4.21
4.58
4.19
4.71
4.32
4.70
4.30

1.64
1.18
0.97
0.70
19.49
14.04
18.82
13.56

0.59
0.56
0.57
0.54
0.59
0.56
0.57
0.54

0.60
0.19
0.34
0.11
0.90
0.29
0.64
0.21

4.59
3.08
3.92
2.63
5.23
3.51
4.56
3.06

1.76
1.60
1.40
1.27
2.73
2.48
2.37
2.15

2.16
0.11
2.16
0.11
5.92
0.31
5.92
0.31

{Z, R} yields optimal asymptotic variance, regardless of parameters



» We have graphical criteria for the optimal adjustment set in
terms of asymptotic variance
(Henckel et al, 2019; Witte et al, 2019)

» Intuition: Try to explain as much variance of Y as possible
while avoiding unnecessary correlation with X



Complication: the DAG may be unknown

» Approach 1: Hypothesize possible DAGs

» Drawing DAGs formalizes the causal assumptions

» Each hypothesized DAG can be used to determine valid
adjustment sets and the corresponding total effect

> Allows sensitivity analysis and informed discussion



Complication: the DAG may be unknown

» Approach 2: Try to learn the DAG from data

» Under some assumptions, one can learn an equivalence class of
DAGs that could have generated the data:

» Assuming no latent variables:
PC, GES, MMHC, ARGES = CPDAG
(Spirtes et al '00, Chickering '02, Tsarmardinos et al '06, Nandy et al '17)

> Allowing arbitrarily many latent variables:
FCI, RFCI, FCl+ = PAG

(Spirtes et al '00, Colombo et al '12, Claassen et al '13)

» Then use adjustment again



» The variables that are included in a model matter

» Carefully define research question. If interested in causal
effects:

>

specify the type of causal effect:
total effect, direct effect, indirect effect, ...

state causal assumptions (e.g., draw DAG)

use causal methods (e.g., graphical criteria for covariate
adjustment)



» The variables that are included in a model matter

» Carefully define research question. If interested in causal
effects:

>

>
>

specify the type of causal effect:
total effect, direct effect, indirect effect, ...

state causal assumptions (e.g., draw DAG)

use causal methods (e.g., graphical criteria for covariate
adjustment)

» This does not replace randomized controlled trials, but:

>

>
| 4
>

it uses observational data in a principled way
it allows formal discussion
it allows sensitivity analysis wrt different causal assumptions

if possible, follow-up with validation experiments



Open source software

R packages pcalg and dagitty:

» pc, ges, fci, rfci

» gac(G, X,Y,S, graph.type)

» adjustment(G, graph.type, X,Y, type="all")
> optAdjSet(G,X,Y)



Q>
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CPDAG DAG DAG DAG

There is no adjustment set for the effect of X on Y.
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NN

X—Y X Y X Y

CPDAG DAG example DAG example

The set {A, Z} is an adjustment set for the effect of X on Y.



Overview of graphical criteria

DAG MAG CPDAG PAG

Backdoor criterion

, v
Pearl '93
Adjustment criterion
Shpitser et al '12, Perkovi¢ et al '17a
Adjustment criterion v v
Van der Zander et al '14
Generalized backdoor criterion v Y v v

MM & Colombo '15
Generalized adjustment criterion v v Ve v
Perkovi¢ et al '15, '17a

v': sufficient for adjustment
V': necessary and sufficient for adjustment
*. CPDAGs with background knowledge (Perkovic et al '17b)



Going away from identifiability: IDA

Observational data

Apply the PC algorithm

Local method
Estimated CPDAG

List all DAGs in the
equivalence class

[DAGl] [DAGj] [DAGm]

List all possible parent sets
of the intervention node

For each PaSet, obtain the causal

. i effect from adjusted regression
Multi-set of estimates



> Assuming no latent variables:

» IDA (MM et al '09,'10)

» Allowing arbitrarily many latent variables:
> LV-IDA (Malinsky & Spirtes '17)

> Allowing some latent variables:
» LGES-IDA (Frot et al '17)



Application

Gene expression data of Arabidopsis thaliana:

> Data: n =188, p = 33 (Wille et al '04)

» Three groups of genes:
MVA pathway, MEP pathway, mitochondrial genes
(we do not use this information)




Results

GES
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