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What this paper is about

Develop a data-driven, non-parametric discount curve estimator

Learn discount curve from observable noisy market quotes

Unifying, flexible machine learning framework based on a reproducing
kernel Hilbert space, including, e.g., Nelson–Siegel, Svensson,
Smith–Wilson curves

Kernel ridge regression: trade off pricing error against curve regularity

Bayesian view: Gaussian process regression

Extensive empirical analysis of U.S. treasury data 1961 to present

Compare with [Fama and Bliss, 1987], [Gürkaynak et al., 2007],
[Svensson, 1994], [Liu and Wu, 2021] (ongoing)
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Main results

Highly tractable framework with closed-form discount curve estimator

Hyper-parameters chosen via cross-validation (data driven)

Estimated curves are stable over time and robust to outliers

Inside market maturity range (“interpolation region”): curves are
robust w.r.t. hyper-parameters

Beyond market maturity range (“extrapolation region”): curves admit
extrapolation, strongly dependent on hyper-parameters

Compared to [Fama and Bliss, 1987], [Gürkaynak et al., 2007],
[Svensson, 1994], KR has lowest pricing error on average, both
in-sample and out-of-sample
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Applications (and users)

Study term structure of interest rates (economists)

Predict bond returns (fixed income portfolio managers)

Analyze monetary policy (central banks)

Price assets, derivatives, and liabilities (actuaries and insurance
regulators)
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Damir Filipović (EPFL and SFI) Stripping the Discount Curve 6 / 37



Outline

1 Discount curve by kernel ridge regression

2 A workable discount curve space

3 Comparison to Smith–Wilson method

4 Empirical study
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Ingredients

Unobserved ground truth: g(x) = fundamental value of a
non-defaultable zero-coupon bond with time to maturity x ∈ [0,∞]

Observed: M fixed income securities with
I cash flow dates 0 < x1 < · · · < xN ≤ ∞
I M × N cash flow matrix C
I noisy ex-coupon prices P = (P1, . . . ,PM)>

No-arbitrage pricing relation

Pi = Cig(x)︸ ︷︷ ︸
fundamental value

+ εi︸︷︷︸
pricing error

where x = (x1, . . . , xN)> and g(x) = (g(x1), . . . , g(xN))>

εi : deviations from fundamental value, due to market imperfections
(no deep, liquid, transparent market) and data errors

Damir Filipović (EPFL and SFI) Stripping the Discount Curve 8 / 37



Hypothesis space

Model discount curve g : [0,∞]→ R as

g = p + h

with

exogenous prior curve p : [0,∞]→ R with p(0) = 1, e.g., p ≡ 1

hypothesis function h from a space H of functions h : [0,∞]→ R
with h(0) = 0

Good, flexible, unbiased choice of H: reproducing kernel Hilbert space
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Reproducing kernel Hilbert spaces

Definition 1.1.

A function k : E × E → R is a kernel if for any n ∈ N and x1, . . . , xn ∈ E
the n × n-matrix k(xi , xj) is symmetric and positive semidefinite.

Definition 1.2.

A Hilbert space H of functions h : E → R is a reproducing kernel
Hilbert space (RKHS) if, for any x ∈ E there exists kx ∈ H such that

〈h, kx〉H = h(x), h ∈ H.

The kernel k(x , y) = 〈kx , ky 〉H is the reproducing kernel of H.

Theorem 1.3 (Moore).

For any kernel k : E × E → R there exists a unique RKHS H such that
kx = k(·, x) ∈ H and 〈h, kx〉H = h(x) for all h ∈ H and x ∈ E.
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Kernel ridge regression (KR) problem

Solve

min
g=p+h, h∈H

{ M∑
i=1

ωi (Pi − Cig(x))2︸ ︷︷ ︸
weighted pricing error2

+λ ‖h‖2
H︸ ︷︷ ︸

regularity

}
(1)

for

exogenous weights 0 < ωi ≤ ∞
ωi/λ is precision (1/variance) of price signal Pi , see Gaussian process view

ωi =∞ corresponds to exact pricing, Pi = Cig(x)

regularization parameter λ > 0

⇒ Trade-off between squared weighted pricing errors and regularity of h

Damir Filipović (EPFL and SFI) Stripping the Discount Curve 11 / 37



Kernel representer theorem

Theorem 1.4.

KR problem (1) has a unique solution, ḡ = p + h̄, given by

h̄ =
N∑
j=1

k(·, xj)βj

where
β = C>(CKC> + Λ)−1(P − Cp(x)),

Kij = k(xi , xj), and Λ = diag(λ/ω1, . . . , λ/ωN), where we set λ/∞ = 0.

Sketch of proof

Gaussian process view

⇒ Estimated discount curve is linear in data P
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Yield-to-maturity (YTM) error
Express price Pi = Pi (y) of instrument i as function of its YTM y

Modified duration (=Macaulay duration) Di = − 1
Pi

∂Pi
∂y

Express pricing error in terms of YTM error

Pi − Cig(x)︸ ︷︷ ︸
pricing error εi

= DiPi (ygi − yi )︸ ︷︷ ︸
YTM error

+o(yi − ygi )

where ygi denotes the YTM of the fundamental value Cig(x)

This suggests to use weights, as in, e.g., [Gürkaynak et al., 2007],

ωi =
1

M

1

(DiPi )2

in objective function (1), so that up to first order

ωi (Pi − Cig(x))2︸ ︷︷ ︸
weighted pricing error2

≈ 1

M
(yi − ygi )2︸ ︷︷ ︸
YTM error2
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Exogenous target yield at maturity

We can enforce ḡ(∞) = 0 by incrementing the number of securities

M ← M + 1

and the number of cash flow dates

N ← N + 1

and setting

CM = (0, . . . , 0, 1), PM = 0, ωM =∞, xN =∞

Similarly, we can enforce ḡ(xtarget) = e−xtarget×ytarget for some
exogenous target yield ytarget at maturity xtarget

Infinite-maturity yield
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A workable discount curve space

RKHS H consisting of twice weakly differentiable functions h : [0,∞]→ R
with h(0) = h′(∞) = 0 and finite norm

‖h‖2
H =

∫ ∞
0

(δh′(x)2 + (1− δ)h′′(x)2)w(x) dx

for

weight function w : [0,∞)→ (0,∞) such that
∫∞

0
1+x2

w(x) dx <∞
shape parameter δ ∈ [0, 1)

Norm ‖h‖2
H penalizes large values of

h′(x)2 to avoid oscillations, forcing h to be flat (tension)

h′′(x)2 to avoid kinks, forcing h to be straight (smoothness)

⇒ Trade-off between tension and smoothness of h
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Advantage of increasing weight function w

Tension and smoothness penalty is maturity-dependent increasing,
allowing for greater pricing flexibility at shorter maturities, while
enforcing a smooth long end (as suggested by [Bliss, 1996])
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Reproducing kernel: structural equation

Fix y ≥ 0, find kernel function ψ(·) = k(·, y):

Kernel property

〈ψ, h〉H = h(y) =

∫ ∞
0

1[0,y ](x)h′(x) dx

Integration by parts, for h ∈ H with compactly supported h′,

〈ψ, h〉H =

∫ ∞
0

(δψ′(x)h′(x) + (1− δ)ψ′′(x)h′′(x))w(x) dx

=

∫ ∞
0

(δψ′(x)w(x)− (1− δ)(ψ′′w)′(x))h′(x) dx

Gives structural equation for ψ(·) = k(·, y):

δψ′w − (1− δ)(ψ′′w)′ = 1[0,y ] (2)
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Reproducing kernel: no tension

General weight

Lemma 2.1.

Assume zero tension, δ = 0, then reproducing kernel of H is given by

k(x , y) =

∫ ∞
0

(t ∧ x)(t ∧ y)
1

w(t)
dt.

Exponential weight w(x) = eαx for some α > 0

Corollary 2.2.

Assume zero tension, δ = 0, and exponential weight w(x) = eαx , then

k(x , y) = −x ∧ y

α2
e−α(x∧y) +

2

α3

(
1− e−α(x∧y)

)
− x ∧ y

α2
e−α(x∨y).
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Reproducing kernel: tension, exponential weight

Lemma 2.3.

Assume δ ∈ (0, 1) and exponential weight w(x) = eαx , then

k(x , y) = − α

δ`2
2

(
1− e−`2x − e−`2y

)
+

1

αδ

(
1− e−α(x∧y)

)
+

1

δ
√
D

(
`2

1

`2
2

e−`2(x+y) − e−`1(x∧y)−`2(x∨y)

)
where `1 = α−

√
D

2 , `2 = α+
√
D

2 , and D = α2 + 4δ/(1− δ).

Sketch of proof

Infinite-maturity yield
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Boundary case Smith–Wilson: tension, constant weight
Let α→ 0 in Lemma 2.3, we obtain boundary case of our framework:

Corollary 2.4.

Assume δ > 0 and constant weight w(x) = 1, then

k(x , y) =
1

δ
(x ∧ y)− 1

δρ
e−ρ(x∨y) sinh(ρ(x ∧ y))

where ρ =
√
δ/(1− δ).

Functions h in H are only defined on [0,∞) and unbounded in general,
with maximal growth rate h(x) ∼

√
x . E.g., h(x) = (1 + x)1/2−ε − 1,

ε > 0. Hence we cannot impose constraint g(∞) = 0.

Remark ([Smith and Wilson, 2001]).

The Wilson function is given by W (x , y) = e−y∞(x+y)δρk(x , y), where
y∞ = log(1 + UFR), with the ultimate forward rate UFR.
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Smith–Wilson method

[Smith and Wilson, 2001] model discount curve as

g(x) = e−y∞x(1 + h(x))

with

ultimate forward rate parameter y∞ > 0

hypothesis function h from above RKHS with constant weight w = 1,
as in Corollary 2.4

Solve exact pricing problem with regularization

min‖h‖2
H

s.t. P = Cg(x),

g(x) = e−y∞x(1 + h(x)),

h ∈ H

(3)
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Smith–Wilson estimator
Pricing equation in (3) reads

P = Cg(x) = Ĉ (1 + h(x))

where we define Ĉ = C diag(e−y∞x)

⇒ (3) is special case of Theorem 1.4 with prior p = 1, weight w = 1, and
minimal regularization Λ = 0

Corollary 3.1.

Problem (3) has a unique solution, ĝ(x) = e−y∞x(1 + ĥ(x)), given by

ĥ(x) =
N∑
j=1

k(x , xj)β̂j = e y∞x
N∑
j=1

W (x , xj)
1

δρ
e y∞xj β̂j︸ ︷︷ ︸

=ζj

where
β̂ = Ĉ>(ĈK Ĉ>)−1(P − Ĉ1).
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Smith–Wilson penalty term
KR: substitute h(x) = g(x)− 1 in Hα-norm with weight w(x) = eαx

‖h‖2
Hα =

∫ ∞
0

(
δg ′(x)2 + (1− δ)g ′′(x)2

)
eαx dx

directly measures tension and smoothness of g

SW: substitute ĥ(x) = e y∞xg(x)− 1 in norm

‖ĥ‖2
H0

=

∫ ∞
0

(
δ(y∞g(x) + g ′(x))2

+(1− δ)(y2
∞g(x) + 2y∞g ′(x) + g ′′(x))2

)
e2y∞x dx

does not (directly) measure tension and smoothness of g

Consequence [Willems, 2017]

SW discount curves are less smooth than our KR curves

Related literature: [Lager̊as and Lindholm, 2016], [Viehmann, 2019]
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Data

U.S. Treasury securities from the CRSP Treasury data file

end of month, ex-dividend bid-ask averaged mid-prices

June 1961 to December 2017 (679 months)

total of 4,976 issues of Treasury securities and 100,258 price quotes

market maturity range ≤ 10 years
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Implemented baseline specifications

Prior curve p = 1, i.e., model discount curve as g(x) = 1 + h(x)

Weights ωi = 1
M and all prices normalized to P = 100, i.e., we

measure equally-weighted price MSE 1
M ‖P − Cg(x)‖2

RM

Currently: zero tension, δ = 0, and exponential weight w(x) = eαx ,
as in Corollary 2.2, i.e., we measure smoothness

∫∞
0 g ′′(x)2eαxdx

Out-of-sample pricing error: next business day
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Benchmark models

FB [Fama and Bliss, 1987]: bootstrapped piecewise constant forward
rates, only available June 2016 to December 2013 (“short sample”)

NSS [Svensson, 1994]: yield curves

yNSS (x) = β0 +β1
1− e−x/τ1

x/τ1
+β2

(
1− e−x/τ1

x/τ1
− e−x/τ1

)
+β3

(
1− e−x/τ2

x/τ2
− e−x/τ2

)

GWS [Gürkaynak et al., 2007]: NSS yield curves, more restricted data
set: excluding all bonds close to maturity, and on-the-run and first
off-the-run issues.

Lemma 4.1.

hNSS(x) = 1− e−xyNSS (x) ∈ H if β0 > α/2
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Average LOO cross-validation of hyperparameters

Figure 33: Average leave-one-out cross-validation pricing error of the KR model

This figure shows average in-sample pricing error as a function of kernel hyper-parameter α and the ridge penalty
hyper-parameter λ for the KR full model. Results are calculated in the long sample from June 1961 to December
2017. Cross-validation pricing errors are calculating by pricing a security using a discount curve fitted on the rest
of securities observed on the same day and averaging errors in the cross-section. Results are robust to the choice of
hyper-parameters.

58

Results are robust to the choice of hyper-parameters
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Average in-sample and out-of-sample pricing RMSE
Figure 1: Average in-sample pricing RMSE in the short sample

The figure shows average in-sample pricing errors in the short sample from June 1961 to December 2013. In-sample
pricing errors are calculated using curves estimated at t to price securities at t. Pricing errors are averaged within
six maturity bins. There is no outlier removal. The five models are KR full model, KR 7-factor model, GSW, NSS,
and FB.

26

Figure 4: Average out-of-sample pricing RMSE in the short sample

The figure shows average out-of-sample pricing errors in the short sample from June 1961 to December 2013. Out-
of-sample pricing errors are computed by using curves fitted using data at time t to price securities observed on
the next business day. Pricing errors are averaged within six maturity bins. There is no outlier removal. The five
models are KR full model, KR 7-factor model, GSW, NSS, and FB.

29

KR model (“KR Full”) outperforms
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In-sample and out-of-sample pricing RMSE time series

Figure 7: In-sample pricing RMSE

The figure shows in-sample pricing errors in the short sample from June 1961 to December 2013. In-sample pricing
errors are calculated using curves estimated at t to price securities at t. Pricing errors are calculated with or without
grouping securities into maturity bins. There is no outlier removal. The five models are KR full model, KR 7-factor
model, GSW, NSS, and FB.

32

Figure 8: Out-of-sample pricing RMSE

The figure shows out-of-sample pricing errors in the short sample from June 1961 to December 2013. Out-of-sample
pricing errors are computed by using curves fitted using data at time t to price securities observed on the next
business day. Pricing errors are calculated with or without grouping securities into maturity bins. There is no
outlier removal. The five models are KR full model, KR 7-factor model, GSW, NSS, and FB.

33

KR model (“KR Full”) outperforms
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Pricing RMSE: role of outliers
Figure 3: Average in-sample pricing RMSE in the short sample

The plot shows average in-sample pricing errors in the short sample from June 1961 to December 2013. In-sample
pricing errors are calculated using curves estimated at t to price securities at t. We consider two schemes for labelling
outliers: (1) securities whose YTM fitting errors are more than 3 standard deviation away from the average YTM
fitting error on the same day and (2) securities maturing within 90 days. Pricing errors are averaged within six
maturity bins. “Maturity weighted” refers to further averaging results across maturity bins, while “full” corresponds
to using all securities in the cross-section with or without outlier removal. Models under consideration are the KR
full model, KR factor model with 7 to 15 factors, GSW, NSS, and FB.

28

Outlier: (YTM fitting error - CS-average YTM fitting error) > 3 std.

KR Results are not driven by over-fitting to outliers
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Yield curve estimates: examples 1961-06 and 2013-12

Figure 12: Yield curve estimates on 1961-06-30

This figure shows examples of yield curve estimates on 1961-06-30. The five models are KR full model, KR 7-factor
model, GSW, NSS, and FB. FB curves are not smooth especially in earlier dates.

37

Figure 14: Yield curve estimates on 2013-12-31

This figure shows examples of yield curve estimates on 2013-12-31. The five models are KR full model, KR 7-factor
model, GSW, NSS, and FB. Yield estimates are quite close in more recent years. GSW and NSS curves sometimes
have excessive curvature in the short end.

39

FB curves not smooth

GSW and NSS curves can have excessive curvature in the short end
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Yield curve with varying regularization: example 1986-06
Figure 49: Yield curve estimates by KR 7-factor model (left) and KR full model (right) with

varying values of λridge on 1986-06-30

This figure shows yield curve estimates by KR 7-factor model and KR full model with various choices of the ridge
hyper-parameter λ on 1986-06-30. For both models, α is fixed to 0.05. For the full model, curves are overly wiggly
for λ values that are too small and are overly smooth for large λ values.

74

Smoother for larger λ

Damir Filipović (EPFL and SFI) Stripping the Discount Curve 35 / 37



Extrapolation depends on α: example 2011-06Figure 44: Yield curve and discount curve estimates constrained and unconstrained KR full
model on 2011-06-30

This figure shows yield curve and discount curve estimates by constrained and unconstrained KR full model on
2011-06-30 for α ranging from 0.01 to 0.1. λ is fixed at its baseline value 1.

69

Curve inside market maturity range is robust to choice of α

Extrapolation of curve depends strongly on α

⇒ Extrapolation requires judgement call: exogenous target yield
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Conclusion and outlook

Our method is simple, fast, transparent and more robust and precise
than other existing methods.

New method of choice for insurance and banking industry, regulators and
central banks, to estimating the discount curve.

Extended empirical studies ongoing, including:

U.S., EUR, and CHF data on maximum market maturity range

Target yield ytarget(xtarget): judgement call

Tension: more flexible curve shape and extrapolation
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Sketch of proof of Theorem 1.4

Sampling operator S : H → RN , Sh = h(x), has adjoint

S∗β =
∑N

j=1 k(·, xj)βj

and SS∗ : RN → RN has matrix representation K

Rewrite KR problem (1) in operator form

min
h∈H

{∑M
i=1 ωi (Pi − Cip(x)− CiSh)2 + λ‖h‖2

H

}
(4)

Solution h of (4) must be orthogonal to null space of CS :

h = S∗C>q, some q ∈ RM

Problem (4) becomes quadratic in q ∈ RM , solve by FOC

Back to main
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Infinite-maturity yield

Zero-coupon yield ȳ(x) = − log ḡ(x)
x , define ȳ(∞) = limx→∞ ȳ(x)

Lemma 7.1.

Assume that there exists a function q > 0 and parameter α > 0 such that

lim
x→∞

1

x
log q(x) = 0,

lim
x→∞

(p(x)− p(∞))q(x)eαx = γ0,

lim
x→∞

(k(x , xj)− k(∞, xj))q(x)eαx = γj , j = 1, . . . ,N,

for some real γ0, . . . , γN such that γ0 +
∑N

j=1 βjγj > 0. Then

ḡ(∞) = 0⇐⇒ ȳ(∞) = α.
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Sketch of proof of Lemma 7.1

Decompose

ḡ(x) = ḡ(∞) + ḡ(x)− ḡ(∞)

= ḡ(∞) + p(x)− p(∞)︸ ︷︷ ︸
→0

+
∑N

j=1 (k(x , xj)− k(∞, xj))︸ ︷︷ ︸
→0

βj

Hence: ḡ(∞) = limx ḡ(x) = 0 if ȳ(∞) = α > 0

Now assume ḡ(∞) = 0 and decompose

ȳ(x) =
− log(ḡ(x)q(x)eαx)

x︸ ︷︷ ︸
→0

+
log q(x)

x︸ ︷︷ ︸
→0

+α

Back to main
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Gaussian processes

Assume g : [0,∞]→ R is a Gaussian process with mean function m
and covariance kernel k. That is, for any choice x = (x1, . . . , xN)>,

g(x) ∼ N (m(x), k(x , x>))

Assume m(0) = 1 and k(0, 0) = 0, so that g(0) = 1
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GP pricing model

Model pricing relation as

Pi = Cig(x) + εi

with

pricing errors ε = (ε1, . . . , εM)> ∼ N (0,Σ) independent of g

variance parameters Σ = diag(σ2
1, . . . , σ

2
M), for σi ≥ 0

σi = 0 corresponds to exact pricing, Pi = Cig(x)
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GP posterior distribution

N̄ arbitrary dates x̄ = (x̄1, . . . , x̄N̄)>

Fact: Conditional distribution of g(x̄) given (P, x) is Gaussian,
N (m̄, Σ̄), with mean vector

m̄ = m(x̄) + k(x̄ , x>)C>(CKC> + Σ)−1(P − Cm(x))

and covariance matrix

Σ̄ = k(x̄ , x̄>)− k(x̄ , x>)C>(CKC> + Σ)−1Ck(x , x̄>)

⇒ obtain confidence ranges for prices γ>g(x̄) ∼ N (γ>m̄, γ>Σ̄γ)
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GP posterior prediction

Consequence: Obtain the posterior predicted discount curve ḡ ,
given the observed prices P, for a generic cash flow date x̄ = x ,

ḡ(x) = E[g(x) | P, x ] = m(x) + k(x , x>)β

for coefficients

β = C>(CKC> + Σ)−1(P − Cm(x)).

⇒ Equivalent to KR with prior m = p and variance weights ωi = λ/σ2
i .

Back to main
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Sketch of proof of Lemma 2.3

Structural equation (2),

δψ′w − (1− δ)(ψ′′w)′ = 1[0,y ],

becomes non-homogeneous linear differential equation with constant
coefficients for f (·) = ψ′(·):

δf (t)− (1− δ)αf ′(t)− (1− δ)f ′′(t) = 1[0,y ](t)e−αt .

Solve by the variation of constants method:

characteristic equation, δ/(1− δ)− αt − t2 = 0, has roots t = `1, `2,
so that

f (t) = c1(t)e `1t + c2(t)e `2t

boundary conditions and cumbersome integration (by parts) gives the
result

Back to main
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Infinite-maturity yield: exponential weight

Theorem 9.1.

Assume w(x) = eαx , constraint ḡ(∞) = 0, and g̃(∞) > 0 where g̃ is the
estimated curve without constraint on g̃(∞). Then

ȳ(∞) = α.

Back to main
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Discount curve compression in H

Sampling operator Sh = (h(x1), . . . , h(xN))>

Adjoint given by S∗β =
∑N

j=1 k(·, xj)βj

Hence we can write g = p + S∗β

SS∗ : RN → RN has matrix representation K

h ∈ H RN 3 β

RN

S

S∗

D1/2V>
U

Spectral decomposition K = VDV> for

V = (v1, . . . , vN) orthonormal eigenvectors vi of K

D = diag(µ1, . . . , µN) with eigenvalues µ1 ≥ · · · ≥ µN ≥ 0

Singular value decomposition S∗ = UD1/2V> for

U = (u1, . . . , uN) : RN → H orthonormal eigenfunctions ui = 1√
µi
S∗vi of

S∗S : H → H with eigenvalues µi , i.e., S∗Sui = µiui .
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Discount curve compression in H

Write

h = S∗β = U D1/2V>β︸ ︷︷ ︸
=β̃

= Uβ̃

with principal components β̃

Note that ‖h‖H = ‖β̃‖RN

h ∈ H RN 3 β

RN 3 β̃

S

S∗

D1/2V>U

→ Obtain the low rank approximation (compression)

h ≈
d∑

j=1

β̃juj

for the first d PCs β̃i corresonding to largest singular values
√
µi
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KR d-factor models

By Theorem 1.4, the KR problem (1) is equivalent to

min
g=p+Uβ̃, β̃∈RN

{
M∑
i=1

ωi (Pi − Cig(x))2 + λ‖β̃‖2
RN

}

Obtain d-factor model by solving

min
g=p+

∑d
j=1 β̃juj , β̃∈Rd

{
M∑
i=1

ωi (Pi − Cig(x))2 + λ‖β̃‖2
Rd

}

Sparsity check: run LASSO, selecting d factors,

min
g=p+Uβ̃, β̃∈RN

{
M∑
i=1

ωi (Pi − Cig(x))2 + λ‖β̃‖2
RN + λLASSO‖β̃‖RN

}

Question: does LASSO select first principal components β̃1, . . . , β̃d?
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First 6 PCA loadings estimated on panelsFigure 25: PCA loadings on discount curve in the short sample

This figure shows the first 8 PCA loadings estimated on panels of discount curve estimates in the short sample from
June 1961 to December 2013. The five models are KR full model, KR 7-factor model, GSW, NSS, and FB. Methods
give similar estimates for loadings of the first three factors.
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GSW and NSS are unstable in the short end
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Eigenvectors of kernel matrix (=loadings of factor model)

Figure 28: The first 10 eigenvectors of the kernel matrix with baseline α = 0.05

This figure plots the first 10 eigenvectors of the KR kernel matrix as in Equation (13). α is set to 0.05.
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Striking similarity to panel PCA
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Sparsity check: LASSO selects first principal components
Figure 54: Frequencies of factors selected by LASSO for fixed λridge = 1 and α = 0.05 over the

sampling period with 679 months

This figure shows frequencies of KR factors selected by LASSO as in Equation 47 for fixed λridge = 1 and α = 0.05
over the sampling period with 679 months. Top factors are most often selected.

79
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Regularization shrinks magnitude of principal components
Figure 61: β̃ in KR full model as a function of λridge on 1986-06-30

This figure shows estimates of β̃ in KR full model as a function of λridge on 1986-06-30. Shrinkage reduces the
magnitude of β̃ coefficient estimates.
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Increasing regularization λ shrinks principal components β̃

⇒ Ridge has similar effect as LASSO
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Smoothness measure
∫
g ′′(x)2dx comparison

Figure 9: Average roughness with (left) and without (right) including Fama-Bliss estimates in
the short sample

The plot shows average degree of roughness in the short sample from June 1961 to December 2013. Roughness
measure is computed according to Equation (53) within maturity bins. The left panel includes FB and the right
panel does not. The five models are KR full model, KR 7-factor model, GSW, NSS, and FB. FB is the least smooth.
The short ends of GSW and NSS are not stable and have excessive curvature.
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FB least smooth

Short ends of GSW and NSS are not stable (excessive curvature)
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Yield curve for KR FMs and full: example 1986-06

Figure 46: Yield curve estimates by KR factor model with up to 7 factors and KR full model on
1986-06-30

This figure shows yield curve estimates by KR factor model with up to 7 factors and KR full model on 1986-06-30.
α and λ are fixed to baseline values of 0.05 and 1. Estimates get close to that given by the full model as the number
of factor increases.

71

Figure 49: Yield curve estimates by KR 7-factor model (left) and KR full model (right) with
varying values of λridge on 1986-06-30

This figure shows yield curve estimates by KR 7-factor model and KR full model with various choices of the ridge
hyper-parameter λ on 1986-06-30. For both models, α is fixed to 0.05. For the full model, curves are overly wiggly
for λ values that are too small and are overly smooth for large λ values.
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Smoother for less factors and larger λ

Damir Filipović (EPFL and SFI) Stripping the Discount Curve 64 / 37



Extrapolation to infinite-maturity yield α
Figure 38: Average βN+1 coefficient estimate in the constrained KR model

This figure shows the average βN+1 coefficient estimate as a function of kernel hyper-parameter α and the ridge
penalty hyper-parameter λ for the constrained KR full model. βN+1 corresponds to the infinite maturity. Results
are calculated in the long sample from June 1961 to December 2017.
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Average βN for constrained KR model ḡ(∞) = 0

Extrapolation to infinite-maturity yield α = ȳ(∞) only if βN < 0

Including tension, δ > 0, should improve the results (ongoing)
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