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What this paper is about

@ Develop a data-driven, non-parametric discount curve estimator
@ Learn discount curve from observable noisy market quotes

@ Unifying, flexible machine learning framework based on a reproducing
kernel Hilbert space, including, e.g., Nelson—Siegel, Svensson,
Smith—-Wilson curves

@ Kernel ridge regression: trade off pricing error against curve regularity
@ Bayesian view: Gaussian process regression
@ Extensive empirical analysis of U.S. treasury data 1961 to present

e Compare with [Fama and Bliss, 1987], [Girkaynak et al., 2007],
[Svensson, 1994], [Liu and Wu, 2021] (ongoing)
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Main results

Highly tractable framework with closed-form discount curve estimator
@ Hyper-parameters chosen via cross-validation (data driven)
o Estimated curves are stable over time and robust to outliers

@ Inside market maturity range (“interpolation region”): curves are
robust w.r.t. hyper-parameters

@ Beyond market maturity range (“extrapolation region"): curves admit
extrapolation, strongly dependent on hyper-parameters

o Compared to [Fama and Bliss, 1987], [Giirkaynak et al., 2007],
[Svensson, 1994], KR has lowest pricing error on average, both
in-sample and out-of-sample
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Applications (and users)

o Study term structure of interest rates (economists)

Predict bond returns (fixed income portfolio managers)

Analyze monetary policy (central banks)

@ Price assets, derivatives, and liabilities (actuaries and insurance
regulators)
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Outline

@ Discount curve by kernel ridge regression
© A workable discount curve space
© Comparison to Smith-Wilson method

@ Empirical study
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Outline

@ Discount curve by kernel ridge regression

Damir Filipovi¢ (EPFL and SFI) Stripping the Discount Curve



Ingredients

@ Unobserved ground truth: g(x) = fundamental value of a
non-defaultable zero-coupon bond with time to maturity x € [0, 0]

@ Observed: M fixed income securities with

» cash flow dates 0 < x3 < -+ - < xpy < 00
» M x N cash flow matrix C
» noisy ex-coupon prices P = (Py,...,Py)T

@ No-arbitrage pricing relation

P,' = C;g(x) + €
~~

fundamental value  pricing error

where x = (x1,...,xy) " and g(x) = (g(x1), .-, g(xw)) "

@ ¢;: deviations from fundamental value, due to market imperfections
(no deep, liquid, transparent market) and data errors
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Hypothesis space

Model discount curve g : [0,00] — R as

with

@ exogenous prior curve p: [0,00] — R with p(0) =1,eg., p=1

e hypothesis function h from a space H of functions h : [0,00] — R
with h(0) =0

Good, flexible, unbiased choice of H: reproducing kernel Hilbert space J
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Reproducing kernel Hilbert spaces

Definition 1.1.

A function k : E x E — R is a kernel if for any n € N and x,...,x, €
the n x n-matrix k(x;, x;) is symmetric and positive semidefinite.

E

Definition 1.2.

A Hilbert space H of functions h: E — R is a reproducing kernel
Hilbert space (RKHS) if, for any x € E there exists kyx € H such that

(h, ks = h(x), heH.

The kernel k(x, y) = (k«, k)% is the reproducing kernel of H.

Theorem 1.3 (Moore).

For any kernel k : E x E — R there exists a unique RKHS H such that
ke = k(-,x) € H and (h, k«)3 = h(x) for all h € H and x € E.
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Kernel ridge regression (KR) problem

Solve

min
g=p+h, heH

{

M

weighted pricing error

2

> wilPi — Cig(x))? +X Al
-~ ——

regularity

|

for

@ exogenous weights 0 < w; < oo
@ w;/\ is precision (1/variance) of price signal P;, see

@ w; = oo corresponds to exact pricing, P; = Cig(x)

@ regularization parameter A > 0

= Trade-off between squared weighted pricing errors and regularity of h J
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Kernel representer theorem

Theorem 1.4.

KR problem (1) has a unique solution, g = p + h, given by
N
i = Z k(- xj)Bj
j=1
where

8= CT(CKCT + N (P — Cp(x)),
Kij = k(xi,xj), and N = diag(A/w1, ..., A/wy), where we set \/oo = 0.

v

Sketch of proof

= Estimated discount curve is linear in data P )
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Yield-to-maturity (YTM) error
@ Express price P; = Pj(y) of instrument i as function of its YTM y

e Modified duration (=Macaulay duration) D; = —%%’;’

@ Express pricing error in terms of YTM error
P — Cig(x) = DiP; (yf — yi) +o(yi — ¥f)
— ~—
pricing error €; YTM error

where y£ denotes the YTM of the fundamental value Cig(x)

@ This suggests to use weights, as in, e.g., [Girkaynak et al., 2007],
1 1

YT M (DiP)?

in objective function (1), so that up to first order

1
wi(Pi — Cig(x))? ~ o (vi — y£)?

-~

weighted pricing error? YTM error?
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Exogenous target yield at maturity

@ We can enforce g(o0) = 0 by incrementing the number of securities
M<—M+1
and the number of cash flow dates
N« N+1
and setting
Cv=1(0,...,0,1), Py=0, wy=o00, xy=o00

o Similarly, we can enforce g(Xtarger) = € ~*®reet*Ytarset for some
exogenous target yield yiarger at maturity Xearget

Infinite-maturity yield
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Outline

© A workable discount curve space
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A workable discount curve space

RKHS H consisting of twice weakly differentiable functions h : [0, 0] — R
with h(0) = H'(c0) = 0 and finite norm

1A, = /000(5/7’(><)2 + (1= 0)h"(x)*)w(x) dx

for
e weight function w : [0,00) — (0, 00) such that [~ }N‘*'X dx < 00
@ shape parameter § € [0, 1)

Norm ||h||3, penalizes large values of
o H'(x)? to avoid oscillations, forcing h to be flat (tension)

o h"(x)? to avoid kinks, forcing h to be straight (smoothness)

= Trade-off between tension and smoothness of h )
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Advantage of increasing weight function w

@ Tension and smoothness penalty is maturity-dependent increasing,
allowing for greater pricing flexibility at shorter maturities, while
enforcing a smooth long end (as suggested by [Bliss, 1996])
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Reproducing kernel: structural equation
Fix y > 0, find kernel function () = k(-,y):

@ Kernel property
(Wb = hly) = [ 1,00 () o
0
@ Integration by parts, for h € H with compactly supported #/,
(o= [ (@0 COH ) + (1= )0 GOH'(x))w(x)
:/0 (¢ (x)w(x) = (1 = 0)(¥"w) (x))H (x) dx

Gives structural equation for ¢(-) = k(-, y):

'w — (1 =98) (" w) =1p,y (2)
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Reproducing kernel: no tension

General weight

Lemma 2.1.

Assume zero tension, 6 = 0, then reproducing kernel of H is given by

K(x,y) = /Ooo(t A X)( Ay)W dt.

Exponential weight w(x) = ¢®* for some a > 0

Corollary 2.2.

Assume zero tension, 6 = 0, and exponential weight w(x) = e®*, then

’ a? al a? '
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Reproducing kernel: tension, exponential weight

Lemma 2.3.

Assume § € (0,1) and exponential weight w(x) = e, then

O mbx by L (1 el
k(x,y) 7 <1 e e >+a5(1 e )
L (ﬁe—zz(w) ~ e—el(xAy)—ez(xvn)
5vD \ 43

where {1 = 0‘_2‘5, by = %5, and D = a? + 46 /(1 — 6).

Sketch of proof
Infinite-maturity yield
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Boundary case Smith—Wilson: tension, constant weight
Let @ — 0 in Lemma 2.3, we obtain boundary case of our framework:

Corollary 2.4.

Assume § > 0 and constant weight w(x) = 1, then
1 L)
k(x,y) = 5(xAy) = 55 PVY) sinh(p(x A y))

where p = /d/(1 = 6).

Functions h in H are only defined on [0, 00) and unbounded in general,
with maximal growth rate h(x) ~ v/x. E.g., h(x) = (1 + x)1/27¢ -1,
¢ > 0. Hence we cannot impose constraint g(oo) = 0.

Remark ([Smith and Wilson, 2001]).

The Wilson function is given by W(x,y) = e Y=0Ht)§pk(x, y), where
Yoo = log(1 + UFR), with the ultimate forward rate UFR.
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Outline

© Comparison to Smith-Wilson method
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Smith—Wilson method

[Smith and Wilson, 2001] model discount curve as
g(x) = e™=*(1 + h(x))

with
@ ultimate forward rate parameter y., > 0

@ hypothesis function h from above RKHS with constant weight w = 1,
as in Corollary 2.4

Solve exact pricing problem with regularization

min|[ 1%,
s.t. P = Cg(x),
g(x) = e7">*(1 + h(x)),
heH
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Smith—Wilson estimator
Pricing equation in (3) reads

P = Cg(x) = C(1+ h(x))
where we define € = C diag(e ~Y>*)

= (3) is special case of Theorem 1.4 with prior p =1, weight w = 1, and
minimal regularization A =0

Corollary 3.1.

Problem (3) has a unique solution, §(x) = e ~¥=*(1 + h(x)), given by

Z k(x, x)5; = ey“XZ W(x, x; (%peymxfﬁ

j=1 —
=
where
B=CT(CKCT) (P -C1).
V.



Smith-Wilson penalty term
e KR: substitute h(x) = g(x) — 1 in Hy-norm with weight w(x) = e®*

||h||%-za = /000 (5g’(x)2 +(1— 5)g"(x)2) 00X gy

‘directly measures tension and smoothness of g‘

o SW: substitute h(x) = e¥*g(x) — 1 in norm

Ik, = [ " (5 () + £

+(1 = 0)(Y2g(x) + 2yseg’(x) + £"(x))?) e™>=*dx

‘does not (directly) measure tension and smoothness of g‘

Consequence [Willems, 2017] J

SW discount curves are less smooth than our KR curves

Related literature: [Lageras and Lindholm, 2016], [Viehmann, 2019]
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Outline

@ Empirical study
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Data

@ U.S. Treasury securities from the CRSP Treasury data file

@ end of month, ex-dividend bid-ask averaged mid-prices

@ June 1961 to December 2017 (679 months)

o total of 4,976 issues of Treasury securities and 100,258 price quotes

@ market maturity range < 10 years
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Implemented baseline specifications

@ Prior curve p =1, i.e., model discount curve as g(x) =1 + h(x)

o Weights w; = ﬁ and all prices normalized to P = 100, i.e., we
measure equally-weighted price MSE ;||P — Cg(x)||2

@ Currently: zero tension, 6 = 0, and exponential weight w(x) = e,
as in Corollary 2.2, i.e., we measure smoothness fooo g”(x)2e°‘de

@ Out-of-sample pricing error: next business day
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Benchmark models

e FB [Fama and Bliss, 1987]: bootstrapped piecewise constant forward
rates, only available June 2016 to December 2013 (“short sample™)

@ NSS [Svensson, 1994]: yield curves

1—e—X/m 1—e—X/m 1—e—X/72
yss(x) = Bo+ 1 —— +52( ° —efx/”>+,33<67—67x/72)

x/T1 x/T1 x/T2

o GWS [Giirkaynak et al., 2007]: NSS yield curves, more restricted data
set: excluding all bonds close to maturity, and on-the-run and first
off-the-run issues.

Lemma 4.1.
hnss(x) = 1 — e ss() € H if By > /2 J
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Average LOO cross-validation of hyperparameters

10

Results are robust to the choice of hyper-parameters J
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Average in-sample and out-of-sample pricing RMSE

-®- KRFull
05

-e- FB
04
03
02
01

< 1Year 1to2Years 2to3Years 3todYears 4to5Years > 5years
Time-to-Maturity Buckets

KR model (“KR Full") outperforms

06

05

04

03

02

01

KR Full
KR 7-FM
GswW
NS5

< 1vear 1to2Years 2to3Years 3todYears 4to5Years » 5years

Time-te-Maturity Buckets
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In-sample and out-of-sample pricing RMSE time series

Full

1960 1970 1980 1990 2000 2010 2020

1960 1970 1980 1990 2000 2010 2020

KR model (“KR Full") outperforms
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Pricing RMSE: role of outliers

No outlier removal

07

05

03 -8 il

04 KR 15.F10
R 10FM

03 KR -
- R AN

02 - R 7
- 5w

01 -5
- rp

00

Ful Moty Weighted < 1yr Lio2yr 2t03yr 3todyr 4tosyr =5
NSS for outlier removal

07

05

0 - Pl

04 KR 1511
KR 10

03 KR S-FM
- KR O

02 — KR 7
=

01 =
-5

00

Full Maturity Weighted <lyr Ltozyr 2to3yr Itodyr 4tosyr > 5yr

@ Outlier: (YTM fitting error - CS-average YTM fitting error) > 3 std.

KR Results are not driven by over-fitting to outliers
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Yield curve estimates: examples 1961-06 and 2013-12

0.0375 0.030
0.0350 0025
00325 0.020
0.0300
0015
00275
0010
0.0250
0.005
00225
0.000
T T T T T y y y - - . v v y r r
0 500 1000 1500 2000 2500 3000 3500 [ 500 1000 1500 2000 2500 3000 3500
Time to Maturity in Days Time to Maturity in Days

@ FB curves not smooth

@ GSW and NSS curves can have excessive curvature in the short end
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Yield curve with varying regularization: example 1986-06

0080

0075

0.070

0.065 == KR Full Ari==0.0001
= KR Full Ara-=0.001
—— KR Full Angpe=01
= KR Full Ayge=10

0.060
= KR Full Ange=50
—— KR Full Anigpe=50.0
KR Full Asix==3000.0

0.055 T

0 500 1000 1500 2000 2500 3000 3500

Smoother for larger A
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Extrapolation depends on a: example 2011-06

Yield curve estimates Discount curve estimates

R, a=005, o \
a=01,g(x) =33 -01

] 2000 000 5000 2000 10600 1] 200 000 6000 2000 10000

Yield curve estimates under gl) constraint Discount curve estimates under g(=) constraint

@ Curve inside market maturity range is robust to choice of «
@ Extrapolation of curve depends strongly on «

= Extrapolation requires judgement call: exogenous target yield
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Conclusion and outlook

@ Our method is simple, fast, transparent and more robust and precise
than other existing methods.

New method of choice for insurance and banking industry, regulators and
central banks, to estimating the discount curve.

Extended empirical studies ongoing, including:

e U.S., EUR, and CHF data on maximum market maturity range
o Target yield yiarget(Xtarget): judgement call

@ Tension: more flexible curve shape and extrapolation
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Outline

© Discount curve by kernel ridge regression (backup)
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Sketch of proof of Theorem 1.4
@ Sampling operator S : H — RN, Sh = h(x), has adjoint
§°8 = jLs k(- x)B;
and S5* : RN — RN has matrix representation K

o Rewrite KR problem (1) in operator form

; M P _ . _ r.Ch)2 2
min {2, wi(Pi = Cip(x) = C;Sh)? + Allhl13 } (4)

@ Solution h of (4) must be orthogonal to null space of CS:
h=5*C'q, someqeRM
o Problem (4) becomes quadratic in g € RM, solve by FOC
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Infinite-maturity yield

Zero-coupon yield y(x) = —%, define y(00) = limy_ 00 ¥(x)
Lemma 7.1.

Assume that there exists a function q > 0 and parameter o > 0 such that

Iin;o % log g(x) =0,
Jim (p(x) = p(20))q(x)e™ = 70,
Iin;o(k(x,xj) — k(00,x)))q(x)e® =~;, j=1,...,N,

X—r

for some real g, . ..,yn such that vy + ZJN:1 Bjy; > 0. Then

8(00) =0 < y(o0) = .
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Sketch of proof of Lemma 7.1

@ Decompose

8(x) = &(0) + &(x) — &(0)
= g(00) + p(x) = p(00) + 301, (k(x, %) — k(00, %)) 5
—_

~~

—0 —0

@ Hence: g(c0) =limy g(x) =0 if y(co) =a >0

@ Now assume g(co) = 0 and decompose

— log(&(x)q(x)e®) +|ogq(><) ta

y(x) =
X X
~~ 7 N——
—0 —0
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Outline

@ Gaussian process view
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Gaussian processes

@ Assume g : [0,00] — R is a Gaussian process with mean function m

and covariance kernel k. That is, for any choice x = (x1,...,xn) ",

g(x) ~ N(m(x), k(x,x"))

@ Assume m(0) =1 and k(0,0) =0, so that g(0) =1
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GP pricing model

Model pricing relation as
P,' = C,-g(x) + €

with
e pricing errors € = (e1,...,epm) " ~ AN(0,X) independent of g
e variance parameters © = diag(o%,...,03%,), for o; > 0

e 0; = 0 corresponds to exact pricing, P; = Cig(x)
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GP posterior distribution

o N arbitrary dates X = (%1,...,%g)"

e Fact: Conditional distribution of g(x) given (P, x) is Gaussian,
N(m,¥), with mean vector

m=m(x)+k(x,x")CT(CKC" +X£)"Y(P — Cm(x))
and covariance matrix

(%,%7) — k(%,x")CT(CKCT + %) 1Ck(x,x")

M
»

= obtain confidence ranges for prices v g(X) ~ N (7 m,vTXy)
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GP posterior prediction

e Consequence: Obtain the posterior predicted discount curve g,
given the observed prices P, for a generic cash flow date X = x,

g(x) = Elg(x) | P,x] = m(x) + k(x,x")B
for coefficients

B=C'(CKCT +X) P - Cm(x)).

= | Equivalent to KR with prior m = p and variance weights w; = )\/01-2.

Damir Filipovi¢ (EPFL and SFI) Stripping the Discount Curve 50 /37



Outline

@ A workable discount curve space (backup)
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Sketch of proof of Lemma 2.3

Structural equation (2),

o'w — (1= 0)("'w) =1p,

becomes non-homogeneous linear differential equation with constant
coefficients for f(-) = ¢/(-):

of(t) — (1= d)af'(t) — (1 = 6)f"(t) = 1, (t)e "

Solve by the variation of constants method:

e characteristic equation, §/(1 — §) — at — t2 = 0, has roots t = {1, {,
so that
F(t) = ca(t)e™t + co(t)e

@ boundary conditions and cumbersome integration (by parts) gives the
result
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Infinite-maturity yield: exponential weight

Theorem 9.1.

Assume w(x) = e, constraint g(co0) = 0, and g(co0) > 0 where g is the
estimated curve without constraint on g(oc). Then

y(o0) = a.
y
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Outline

@ KR Factor models
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Discount curve compression in H

@ Sampling operator Sh = (h(x1),..., h(xy))"

S
h —— RN
o Adjoint given by S*3 = S| k(- %) CHZ RIS

J/DI/Z\/T
. . U
@ Hence we can write g = p+ 5*f8 RN
@ 55* : RN — RN has matrix representation K
Spectral decomposition K = VDV T for
@ V =(v,...,vy) orthonormal eigenvectors v; of K
o D =diag(p, ..., un) with eigenvalues g > -+ > puy >0
Singular value decomposition S* = UDY2V'T for
@ U= (u,.... uy) : RV — H orthonormal eigenfunctions ; = \/I—E,S* v; of

5*S : H — H with eigenvalues p;, i.e., S*Su; = pju;.
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Discount curve compression in H

o Write
h=S"3=UDY2vT3=Up —2 5 RN
B / B=Up heH o RN >3
=4 b lDl/sz
with principal components /3 RV 5 3

@ Note that ||h[|3 = [|5]|gw

— Obtain the low rank approximation (compression)
d
h=~ Zﬂjuj
j=t

for the first d PCs f3; corresonding to largest singular values VI
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KR d-factor models

@ By Theorem 1.4, the KR problem (1) is equivalent to

min {Zw, (Pi — C,g(x)) +)‘HBHR’V}

g=p+Up, BeRN

@ Obtain d-factor model by solving

min {Zw: i — Cig(x))? "‘)‘Hﬁ”Rd}

g=p+X5_, Bju;, BER?

@ Sparsity check: run LASSO, selecting d factors,

min wi(P; — 24\ B + ALasso B N
_min {Z ((Py = Cig(x))? + X3 151
o Question: does LASSO select first principal components i, ..., 47
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Outline

© Empirical study (backup)
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First 6 PCA loadings estimated on panels

@ —
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@ GSW and NSS are unstable in the short end
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Eigenvectors of kernel matrix (=loadings of factor model)
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@ Striking similarity to panel PCA
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Sparsity check: LASSO selects first principal components
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Regularization shrinks magnitude of principal components
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@ Increasing regularization A shrinks principal components B
= Ridge has similar effect as LASSO
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Smoothness measure [ g”(x)?dx comparison
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@ FB least smooth

@ Short ends of GSW and NSS are not stable (excessive curvature)
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Yield curve for KR FMs and full:

example 1986-06
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@ Smoother for less factors and larger A
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Extrapolation to infinite-maturity yield «
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@ Average [y for constrained KR model g(c0) =0

e Extrapolation to infinite-maturity yield ‘a = y(o0) only if By < 0‘

@ Including tension, 6 > 0, should improve the results (ongoing)
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