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What is not telematics car driving 
data?

• Classical covariates:
– Car-related features

Type of car, brand, vehicle model, horsepower, etc.

– Driver related features
Age, gender, health condition, children, occupation, etc.

– Insurance contract information
Type of contract, duration and other features

– Annual mileage, vehicle use, claims experience, etc.

• In general, 50 potential covariates are typically 
used in classical motor insurance pricing
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How do raw telematics data look like?

Telematics raw data file. Sun et al. (2021)

DATA IN MOTOR INSURANCE, EVERY 1’’
7

Vehicle ID,                          Timestamp,   Date,  Distance, Acceleration, Road type, County



What is, then, telematics data?

– Global Positioning Signal (GPS) –not always-
– Speed, acceleration, braking, and turn intensity
– Vehicle sensors and cameras
– Engine information
– Timestamp and mileage
– Traffic rules and context conditions
– Passengers, distractions, smartphone use

• High-frequency time series information 
recorded during driving

• A challenge? The volume of raw data. What are 
the relevant summaries? How much
monitoring is enough? 



Questions
• Insurance companies collect telematics data about drivers’ 

exposure to traffic (distance driven, usage frequency and type 
of road) and their driving behavior (excess speed, 
aggressiveness, operating hours). In addition, context 
information (traffic conditions, weather) can also be accessed.

• This information can be used to: 
– improve the insurance ratemaking process. 
–promote safe driving.

(1) How are pay-per-mile insurance schemes be designed? 
(2) How can near-miss (risky event) telematics be used to identify risky drivers? 
(3) Does risk analytics and percentile charts help monitoring drivers? 
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What has been written so far about 
telematics car driving data?

• Transportation Literature

– Vehicle emissions, energy consumption and traffic 
impact.

– Driving behavior and accidents.

• Insurance Literature (Usage Based Insurance UBI)

– The beginings: PAYD, milleage and accidents

– Driving habits, skills and behavior:
Pay-as-you-drive  pay-how-you-drive

– The problem of low frequency of claims: 
A new concept: near-miss incidents



Actuarial literature & telematics driving data
• Telematics ratemaking recent research: 

Barry & Charpentier (2020) -personalization/pooling-,  

Geyer, Kremslehner & Mürmann (2020)–contract choice-

Eling & Kraft (2020) – 52 articles in  20 years-, 

So, Boucher & Valdez(2021) – synthetic data set -,  

Duval, Boucher & Pigeon(2021) -3 months of telematics data is enough-

...and lately a lot on Machine Learning.

Gao, Wang & Wüthrich (2022) – data sources interact-

Richman & Wüthrich (2022) – improves interpretation-

Fung, Tzougas & Wüthrich (2022) – claim severity-

• Key methodological questions:
• Time frame (yearly, monthly, weekly rates)

• Distance driven (linear or log-linear)

• Driving style (which indicators? which conditions?)

– Urban/Non urban; Younger drivers/Older drivers; Type of vehicle

• Score/Classify drivers (Wüthrich, Gao & Wang)

• The quality of telematics data:
– Raw data are not always as good as they should be

(sensor errors, clock errors, inertial measurement failures, summertime/wintertime issues, GPS blanks,…)11



MORE DETAILS

Telematics data: today in 2022
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Tesla’s Safety Score



Tesla’s Five Factors
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Forward Collision 
Warnings per 
1,000 Miles*

*capped 102

Hard Braking
[>3 m/s2, Prop
0.3G/0.1G] 

Aggressive Turning
[Prop. 0.4G/0.2G 
lateral acceleration]

Unsafe Following
[Prop. 1sec/3sec
Speed >50mph (80Km/h)]

Forced Autopilot Disengagement
[After 3 warnings of inatentive, 
no hands on the wheel



Forward Collision Warnings per 1,000 Miles

Forward Collision Warnings are audible and visual alerts provided to you, the driver, in events where a possible collision due to an object in front of the vehicle is considered 
likely without your intervention. Events are captured based on the 'medium' Forward Collision Warning sensitivity setting regardless of your user's setting in the vehicle. 
Forward Collision Warnings are incorporated into the Safety Score formula at a rate per 1,000 miles. The value is capped at 101.9 per 1,000 miles in the Safety Score formula.

Hard Braking

Hard braking is defined as backward acceleration, measured by your Tesla vehicle, in excess of 0.3g. This is the same as a decrease in the vehicle’s speed larger than 6.7 mph, 
in one second. Hard braking is introduced into the Safety Score formula as the proportion of time (expressed as a percentage) where the vehicle experiences backward 
acceleration greater than 0.3g relative to the proportion of time where the vehicle experiences backward acceleration greater than 0.1g (2.2 mph in one second). Hard 
braking while on Autopilot is not factored into the Safety Score formula. The percentage shown in the app is the percentage of manual braking that is done with excessive 
force when driving and Autopilot is not engaged. The value is capped at 7.4% in the Safety Score formula.

Aggressive Turning

Aggressive turning is defined as left/right acceleration, measured by your Tesla vehicle, in excess of 0.4g. This is the same as an increase in the vehicle’s speed to the 
left/right larger than 8.9 mph, in one second. Aggressive turning is introduced into the Safety Score formula as the proportion of time (expressed as a percentage) where the 
vehicle experiences lateral acceleration greater than 0.4g, in either the left or right direction, relative to the proportion of time where the vehicle experiences acceleration 
greater than 0.2g (4.5 mph in one second), in either the left or right direction. Aggressive turning while on Autopilot is not factored into the Safety Score formula. The 
percentage shown in the app is the percentage of turning that is done with excessive force when driving and Autopilot is not engaged. The value is capped at 17.1% in the 
Safety Score formula.

Unsafe Following

Your Tesla vehicle measures its own speed, the speed of the vehicle in front and the distance between the two vehicles. Based on these measurements, your vehicle 
calculates the number of seconds you would have to react and stop if the vehicle in front of you came to a sudden stop. This measurement is called “headway.” Unsafe 
following is the proportion of time where your vehicle’s headway is less than 1.0 seconds relative to the time that your vehicle’s headway is less than 3.0 seconds. Unsafe 
following is only measured when your vehicle is traveling at least 50 mph and is incorporated into the Safety Score formula as a percentage. Unsafe following while on 
Autopilot is not factored into the Safety Score formula. The percentage shown in the app is the percentage of unsafe following when driving and Autopilot is not engaged. 
The value is capped at 60.0% in the Safety Score formula.

Forced Autopilot Disengagement

The Autopilot system disengages for the remainder of a trip after you, the driver, have received three audio and visual warnings. These warnings occur when your Tesla 
vehicle has determined that you have removed your hands from the steering wheel and have become inattentive. Forced Autopilot Disengagement is introduced into the 
Safety Score formula as a 1 or 0 indicator. The value is 1 if the Autopilot system is forcibly disengaged during a trip, and 0 otherwise.
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Tesla’s Safety Score
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Predicted Collision Frequency (PCF) = 
0.68 x
1.01 Forward Collision Warnings per 1,000 Miles x
1.13 Hard Braking x 
1.02 Aggressive Turning x 
1.00 Unsafe Following Time x 
1.32 Autopilot Disengagement

The current formula was derived based on statistical modeling using 6 billion 
miles of fleet data. Tesla expects to make changes to the formula in the future 
as more customer and data insights are gained

The PCF is converted into a 0 to 100 Safety Score using the following formula:

Safety Score = 115.382324 - 22.526504 x PCF



Tesla’s Safety Score in log link
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Predicted Collision Frequency (PCF) = exp{ -0,166 + 

0,006 Forward Collision Warnings per 1,000 Miles +

0,052 Hard Braking + 

0,008 Aggressive Turning + 

0,001 Unsafe Following Time 

0,120 Autopilot Disengagement}

Safety Score = 

115.38 – 22.53 x PCF

PCF=1,13



Yearly Accident frequency to 
Safety Score

PCF / year Safety Score
0.03 109
0.06 102
0.07 100
0.08 97
0.09 95
0.10 93
0.12 88
0.14 84
0.20 70
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Is Tesla’s Safety Score complete? 

• No information on driver’s characteristics

• No information on vehicle

• No information on external factors
• Weather

• Traffic congestion

• Road type

• Time of day / weekday or weekend

• --- Performance relative to other drivers.
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An overview of methods

Claims

• Count data regression model

• Count data regression panel

• GLM / GAM

• Machine learning approaches

Near
misses

• Correlate with claims & reveal information

• New instruments to score drivers

Prevention

• Predictive models of accident risk

• Risk maps, driving pulse diagrams (DPD), percentile 
charts

23
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Notation and classical Poisson model
specification (timeframe: yearly data)

• Yi number of claims at fault policy 𝑖 , 𝑖 = 1,… , 𝑛

• Ti risk exposure, offset for policy 𝑖

• xi, zi vectors of ratemaking factors (traditional xi , 
telematics zi)

• A common assumption then is that the numbers of 
claims Yi are independent across all policy holders  and 
they can be modeled by a Poisson regression model 

E Yi xi, zi, Ti = Ti exp xi
′β + zi′α =

Ti exp xi
′β exp zi′α = 

𝜇(xi, zi, Ti)

Guillen et al. (2021) &  Gao, Meng, Wüthrich (2022)
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𝐿 Ƹ𝜇 xi, zi, Ti , 𝒯 =

2

𝒯
෍
𝑖∈𝒯
𝑌𝑖≠0

𝑌𝑖
Ƹ𝜇 xi, zi, Ti

𝑌𝑖
− 1 − log(

Ƹ𝜇 xi, zi, Ti
𝑌𝑖

+

2

𝒯
෍
𝑖∈𝒯
𝑌𝑖=0

2 · Ƹ𝜇 xi, zi, Ti

Poisson deviance loss

𝒯 is the test data set



Model Boosting: formulas
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E Yi xi, zi, Ti = Ti exp xi
′β 𝜌 zi = 𝜇(xi, zi, Ti)

• Two-step approach of first fitting a GLM and then 
building the telematics risk factor around this 
GLM corresponds to the combined actuarial 
neural network (CANN) model proposed by 
Wüthrich and Merz (2019). 

• Gao et al. (2022) interpret it by studying the 
network weights and find that hard braking in low 
speeds contributes most to a high telematics risk 
factor.



Model Boosting: formulas, with more 
telematics information

27

E Yi xi, zi, 𝑢𝑖 , Ti = Ti exp xi
′β 𝜌 zi 𝜑(𝑢𝑖)

• With estimated ෠β and ො𝜌 · , then the second 
telematics risk factor 𝜑() is modelled.



Telematics data by trip data
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• Take some risky drivers and some safe drivers.

• Take the series of trip data for these drivers.

• Construct a classifier from these trips.

---

• Classify all trips by all drivers based on 
telematics data: 

෠𝜓(𝑧𝑖,𝑗), 𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝐽𝑖

• Define a score for each driver:

ത𝜓𝑖 =
1

𝐽𝑖
෍

𝑗=1

𝐽𝑖
෠𝜓(𝑧𝑖,𝑗)
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Telematics trip score in the Poisson
model specification

Starting from the classical approach:
E Yi xi, zi, Ti = Ti exp xi

′β + zi′α =

Ti exp xi
′β exp zi′α

Insert the driver’s score based on trips or a 
smoothed credibility version:

E Yi xi, zi, Ti =

Ti exp xi
′β exp 𝛼0 + 𝛼1 ത𝜓𝑖

Gao, Meng, Wüthrich (2022) find poorer out-of-sample prediction 
compared to the v-a heatmap
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Panel binary model specification
(timeframe: weekly data)

• Yi𝑡 binary (claim at fault) policy 𝑖, week t , 
𝑖 = 1,… , 𝑛 𝑡 = 1,… ,𝑊𝑖

• Tit risk exposure offset for policy 𝑖, week t ,
(days?)

• xi, zit vectors of ratemaking factors (traditional xi
, telematics zit)

• We assume a panel structure where Yit are 
independent across all policy holders. If there is 
independence over time:

E Yi𝑡 xi, zit, Tit = 𝜇 xi, zit, Tit
= 𝑃𝑟𝑜𝑏 Yi𝑡 = 1 xi, zit, Tit = pit

Work in progress at RISKcenter UB
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Panel binary model specification
(timeframe: weekly data)

• Consider all information to (t-1), Ξ𝑡−1:

𝑃𝑟𝑜𝑏 Yi𝑡 = 1 xi, zit, Tit, Ξ𝑡−1 = pit

• We assume a panel structure where Yit are 
independent across all policy holders, but they 
have an autoregressive behavior within the 
same policy holder. 
pit = 𝜅(𝑝i(t−1)−𝜃𝑖 − 𝜉 𝑡−1 ) + 𝜂𝑖𝑡 + 𝜃𝑖 + 𝜉𝑡

Work in progress at RISKcenter UB
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CASE STUDY I
•Pricing with near-misses

•Contextual data

35



5. RESULTS

NEAR-MISSES
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NEAR-MISSES



What is a near-miss?

• A near-miss is a term borrowed from aviation 
safety – a situation in which an accident is 
narrowly avoided, such as when a driver 
brakes suddenly in order to avoid a crash (Arai 
et al., 2001).

Near-misses (or incidents) have been shown to 
be correlated with claims in auto insurance
Ma, Y. L., Zhu, X., Hu, X. and Chiu, Y. C. (2018). The use of context-sensitive 

insurance telematics data in auto insurance ratemaking, 
Transportation Research Part A 113, 243–258. 

Guillen, M. et al. (2021) Near-miss telematics in motor insurance. Journal of 
Risk and Insurance (OPEN ACCESS)
https://onlinelibrary.wiley.com/doi/epdf/10.1111/jori.12340
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Near-crash, risky event



Examples: near-misses

• Acceleration: >6m/s2, (Hynes & Dickey, 2008).

• Braking: <-6m/s2

• Dangerous Turns: speed combined with angle

• Use of smart phone while driving

Problem: (at fault near-misses?)

North American Actuarial Journal (2019) we 
proposed modeling near-miss events

39

• (Very recent…) Events of excess speed
The driver exceeds by more 
than 10% the legal speed limit 
during one trip.



Near-miss telematics
motor insurance pricing

40

Guillen et al. (2021)



Notation and Poisson model
specification

• Yi number of claims at fault policy 𝑖 , 
𝑖 = 1, … , 𝑛

• Ti risk exposure, offset for policy 𝑖

• xi, Ei vectors of ratemaking factors 
(traditional, telematics, Ei stands for “events”)

E Yi xi, Ei = Ti exp xi
′β + Ei′α

= Ti exp xi
′β exp Ei′α
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Transforming the log-link into an
additive structure

44

• We do not consider distance driven (Tit= 1). 
Coefficients, α, are percent increases due to each 
near-miss event of the base rate Pi base. An 
approximate linear rate that would penalize each 
additional near-miss is:

തC exp xi
′β exp Eit

′ α =Pi base exp Eit
′ α ≅

Pi base 1 + Eit
′ α ≤ Pi base + Eit

′ α𝑚𝑎𝑥 ,

where α𝑚𝑎𝑥 = max
1≤i≤n

αPi base .

• Note that α𝑚𝑎𝑥 depends on the maximum value of Pi base. In 
practice, in order to determine α𝑚𝑎𝑥 a reasonable threshold for 
Pi base could be, for example, three times the average of Pi base. 

Guillen et al. (2021)



Aproximate additive structure & 
linearising exposure to risk

45

• The following approximation for the weekly 
premium that would penalize each additional 

near-miss (Eit ) and each additional unit of 
distance (Tit > 0) is:

തCTit exp xi
′β exp Eit

′ α =Pi baseTit exp Eit
′ α ≅

Pi base 1 + Eit
′ α + ln Tit ≤

Pi base + Eit
′ α p𝑚𝑎𝑥 + p𝑚𝑎𝑥 ln Tit ,

where p𝑚𝑎𝑥 = max
1≤i≤n

Pi base , α𝑚𝑎𝑥= αp𝑚𝑎𝑥 .

Guillen et al. (2022) in progress



Data
• Anonymous telematics information from 641 drivers 
• Collected between 30th week of 2016 until the 30th 

week of 2019 & past claims records
• Southern Europe
• Weekly data 7,570 vehicle‐week observations in the telematics data set



Near-miss telematics

Figure 1, 2 and 3 show the histogram of EBrak, EAclr and EPhone. Due to the large
frequency of zeroes we decided to remove them from the graphs, therefore only
positive observations are represented. The data present a long right tail, so we also
decided to limit the representation up to a maximum value, specifically 50 for EAclr
and EBrak, and 300 for EPhone. Note that EAclr has 83.66% of zeroes, and 0.62% are
equal or greater than 50. EBrak has 80.91% of zeroes, and 0.82% are equal or greater
than 50, and finally EPhone has 79.78% of zeroes and 0.65% are higher than 300.
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Table 3. Parameter estimates of the Poisson model of the weekly rate of at fault 

claims for the telematics and claims data set 

 

Parameter Estimate Standard Error p-value 

Intercept -8.0637 0.0673 <.0001 

EAclr1 -0.0825 0.0265 0.0019 

EAclr2 0.3069 0.1277 0.0162 

EAclr3 0.0095 0.0390 0.8072 

EBrak1 0.0268 0.0086 0.0018 

EBrak2 -0.4966 0.0770 <.0001 

EBrak3 0.0984 0.0336 0.0034 

EPhon 0.0004 0.0002 0.0776 

EngineCapacity 0.3644 0.0287 <.0001 
The AIC equals 7345.00 and the BIC equals 7407.39. The pseudo-R

2
 equals 

21.83%. 

 

Claims frequecy using near-miss 
events as covariates
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claims for the telematics and claims data set 
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The AIC equals 7345.00 and the BIC equals 7407.39. The pseudo-R

2
 equals 

21.83%. 

 

Claims frequency using near-miss 
events as covariates
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Near-miss telematics ratemaking

• Basic rate plus additional cost of near misses.
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Near-miss telematics ratemaking

• Basic rate with a reward for safe driving and 
additional charge for near misses.

Table 2. Weekly bill of pure premium in motor insurance as a function of near-miss 

events for a driver of a car with engine capacity 1,769 cc). Basic weekly rate (6.66 Eur) 

minus discounts for safe driving, or plus penalizations for near misses. 

Week 

Distance 

driven 

(km) 

Number of 

near-miss 

brakes 

(a) 

Number of 

near-miss 

acceleration 

(b) 

Minutes of 

smart 

phone use  

(c) 

Cost of 

near-misses 

(Eur) 

(d) 

Total 

weekly 

bill  

(Eur) 

(e) 

1 30 0 0 0 -5.65 1.01 

2 73 0 0 2 -5.29 1.37 

3 104 2 2 2 0.93 7.59 

4 260 6 2 1 9.00 15.66 

5 705 19 4 21 54.94 61.60 

Total bill for five weeks: 87.23 Eur 

(e)=6.66+(d) 

(d)=if ((a)>2, 1.5(a), -0.75(1-(a)),)+if ((b)>2, 4.71(b), -2.36(2-(b)))+if ((c)>2, 0.36(c), -0.18(1-(c))) 
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Case study I: Take aways

 First step towards Pay-How-You-Drive (PHYD) on a Pay per 
trip schemes! And ….Pay-Where-You-Drive (PWYD).

• Driver pays per risky-events/ gets a discount for absence of risky-
events.

• We are unable to say from our empirical analysis whether drivers 
adopting telematics schemes will in general change their 
behavior in the long term as a consequence of the impact on the 
price of their usage‐based insurance ratemaking. 

• Near-miss ratemaking is easily introduced. After some weeks, an 
insurer can start pricing and re-adjust the formula to improve 
predictive performance and fairness.



Journal of Risk and Insurance (2021)
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CASE STUDY II
•Pricing with near-misses

•Contextual data
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Driving context and hazardous 
patterns

i) Does the driving context carry predictive 
power for measuring driving risk?

ii) What are the most relevant contextual 
features to evaluate risk exposure?

iii) How contextual factors influence the 
occurrence of risky-events (near-misses) and 
hazardous patterns?



The influence of the driving context

• Most commonly studied contextual factors 
categories:
– Road environment

– Road infrastructure and topology

– Traffic conditions

– Road signs

– Weather and lighting conditions

 There is not specific research on how driving 
under several combinations of these factors 

influences exposure to dangerous events



Data
• Anonymous telematics information from 32 drivers 

• Collected between July, 2021 and February, 2022

• Belgium, France, Germany, Luxembourg, 
Netherlands

3,220 trips with at least 5km  77,859 km (24,9km/trip)



Contextual attributes of the driving 
context



Target risky events

• Cornering: accelerations exceeding 7.5 m/s2 in curves 

• Harsh Acceleration: accelerations exceeding 6 m/s2

• Harsh Breaking: brakings with magnitudes less than -6 
m/s2 

• Phone Call: % kilometres driven while making phone 
calls 

• Phone Unlocking

• Speeding: % kilometres driven exceeding the legal 
speed limit 



Modelling techniques in driving risk 
assesment

• What models can be used?

– Generalized Linear Models (GLM)

– Machine Learning Techniques (ML):

Logistic Regression

Neural Networks

Decision Trees

• Trade-off  Predictive gains vs. interpretability

• Explainable Artificial Intelligence 

Shapley Additive Explanations (SHAP)



Modelling techniques employed
– Random Forest

– XGBoost

– Neural Networks

– GLM

• Model results:

– XGBoost and Random Forest significantly outperform 
neural networks and GLM

– XGBoost is generally better than random forest



Contextual feature importance for 
our six risky events: SHAP values

a) Speeding % b) Phone Call % c) Harsh acceleration

d) Harsh braking e) Cornering f) Phone Unlocking



SHAP dependence for top ranked 
contextual features

a) Speeding % b) Phone Call % c) Harsh acceleration

d) Harsh braking e) Cornering f) Phone Unlocking



How every contextual feature 
contributes to the model output?



Case study II: Take aways

• The most powerful predicting features are :
– Speed limits

– Weather temperatures

– Wind speed

– Traffic conditions

– Road slope

• Moreover, many combinations of contextual features 
are strongly associated with risky events

 First step towards Pay-Where-You-Drive (PWYD) schemes.



Accident Analysis and Prevention 
(submitted)
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How will motor insurance
ratemaking change?

• Consumers
• Personalization

• More interaction with insurers

• Manufacturers
• Vehicles will be equipped with telematics and possibly 

vehicles provide a service (insurance included)

• Insurers
• Products are more demanding 24/7 

• Data analysts are needed. Preprocessing is crucial

• Communication to mass consumers of complex pricing

• Prevention and service provision
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