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What is not telematics car driving
data?

* Classical covariates:
— Car-related features
Type of car, brand, vehicle model, horsepower, etc.

— Driver related features
Age, gender, health condition, children, occupation, etc.

— Insurance contract information
Type of contract, duration and other features

— Annual mileage, vehicle use, claims experience, etc.

* |In general, 50 potential covariates are typically
used in classical motor insurance pricing
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How do raw telematics data look like?

-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:38,"2017-06-08",10.23,0,254,19 8
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:39,"2017-06-08",9.45,9.45,254,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:40,"2017-06-08",8.83,0.053333,253,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:41,"2017-06-08",8.41,-0.606667,254,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:42,"2017-06-08",8.29,-0.386667,254,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:43,"2017-06-08",8.72,-0.036665,254,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:44,"2017-06-08",8.75,0.113333,254,19
-4c81-11e7-bd41-0a7942277526" ,2017-06-08 19:21:45,"2017-06-08",8.42,0.043333,254,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:46,"2017-06-08",7.95,-0.256667,254,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:47,"2017-06-08",7.85,-0.3,254,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:48,"2017-06-08",7.92,-0.166667,254,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:49,"2017-06-08",8.5,0.183334,254,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:50,"2017-06-08",9.17,0.44,254,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:51,"2017-06-08",10.13,0.736667,254,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:52,"2017-06-08",10.76,0.753333,253,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:53,"2017-06-08",11.14,0.656667,253,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:54,"2017-06-08",11.44,0.436667,253,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:55,"2017-06-08",11.64,0.293333,253,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:56,"2017-06-08",11.22,0.026667,253,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:57,"2017-06-08",11.11,-0.11,253,19
-4c81-11e7-bd41-0a7942277526",2017-06-08 19:21:58,"2017-06-08",11.21,-0.143333,253,19 v

Vehicle ID, Timestamp, Date, Distance, Acceleration, Road type, Couhty

Telematics raw data file. Sun et al. (2021)
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What is, then, telematics data?

— Global Positioning Signal (GPS) —not always-

— Speed, acceleration, braking, and turn intensity
— Vehicle sensors and cameras

— Engine information

— Timestamp and mileage

— Traffic rules and context conditions

— Passengers, distractions, smartphone use

* High-frequency time series information
recorded during driving

* A challenge? The volume of raw data. What are
the relevant summaries? How much
monitoring is enough?




Questions

* Insurance companies collect telematics data about drivers’
exposure to traffic (distance driven, usage frequency and type
of road) and their driving behavior (excess speed,
aggressiveness, operating hours). In addition, context
information (traffic conditions, weather) can also be accessed.

* This information can be used to:
—improve the insurance ratemaking process.

— promote safe driving.

(1) How are pay-per-mile insurance schemes be designed?
(2) How can near-miss (risky event) telematics be used to identify risky drivers?
(3) Does risk analytics and percentile charts help monitoring drivers?



What has been written so far about
telematics car driving data?

* Transportation Literature

— Vehicle emissions, energy consumption and traffic
Impact.

— Driving behavior and accidents.

* Insurance Literature (Usage Based Insurance UBI)
— The beginings: PAYD, milleage and accidents
— Driving habits, skills and behavior:

Pay-as-you-drive = pay-how-you-drive

— The problem of low frequency of claims:

A new concept: near-miss incidents



Actuarial literature & telematics driving data

Telematics ratemaking recent research:
Barry & Charpentier (2020) -personalization/pooling-,
Geyer, Kremslehner & Mirmann (2020)—contract choice-
Eling & Kraft (2020) — 52 articles in 20 years-,
So, Boucher & Valdez(2021) — synthetic data set -,
Duval, Boucher & Pigeon(2021) -3 months of telematics data is enough-
...and lately a lot on Machine Learning.
Gao, Wang & Wiithrich (2022) — data sources interact-
Richman & Withrich (2022) — improves interpretation-
Fung, Tzougas & Wiithrich (2022) — claim severity-

Key methodological questions:
* Time frame (yearly, monthly, weekly rates)
* Distance driven (linear or log-linear)
* Driving style (which indicators? which conditions?)
— Urban/Non urban; Younger drivers/Older drivers; Type of vehicle
* Score/Classify drivers (Wiithrich, Gao & Wang)

The quality of telematics data:

— Raw data are not always as good as they should be
(sensor errors, clock errors, inertial measurement failures, summertime/wintertime issues, GPS bIanks,...)11



Telematics data: today in 2022
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Tesla’s Five Factors
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Forward Collision Hard Braking Aggressive Turning
Warnings per [>3 m/s?, Prop [Prop. 0.4G/0.2G
1,000 Miles” 0.3G/0.1G] lateral acceleration]

*capped 102

Wy

Unsafe Following Forced Autopilot Disengagement
[Prop. 1sec/3sec [After 3 warnings of inatentive,

Speed >50mph (80Km/h)] no hands on the wheel T



g,

https://www.tesla.com/support/safety-score

Forward Collision Warnings per 1,000 Miles

Forward Collision Warnings are audible and visual alerts provided to you, the driver, in events where a possible collision due to an object in front of the vehicle is considered
likely without your intervention. Events are captured based on the 'medium' Forward Collision Warning sensitivity setting regardless of your user's setting in the vehicle.
Forward Collision Warnings are incorporated into the Safety Score formula at a rate per 1,000 miles. The value is capped at 101.9 per 1,000 miles in the Safety Score formula.

Hard Braking

Hard braking is defined as backward acceleration, measured by your Tesla vehicle, in excess of 0.3g. This is the same as a decrease in the vehicle’s speed larger than 6.7 mph,
in one second. Hard braking is introduced into the Safety Score formula as the proportion of time (expressed as a percentage) where the vehicle experiences backward
acceleration greater than 0.3g relative to the proportion of time where the vehicle experiences backward acceleration greater than 0.1g (2.2 mph in one second). Hard
braking while on Autopilot is not factored into the Safety Score formula. The percentage shown in the app is the percentage of manual braking that is done with excessive
force when driving and Autopilot is not engaged. The value is capped at 7.4% in the Safety Score formula.

Aggressive Turning

Aggressive turning is defined as left/right acceleration, measured by your Tesla vehicle, in excess of 0.4g. This is the same as an increase in the vehicle’s speed to the
left/right larger than 8.9 mph, in one second. Aggressive turning is introduced into the Safety Score formula as the proportion of time (expressed as a percentage) where the
vehicle experiences lateral acceleration greater than 0.4g, in either the left or right direction, relative to the proportion of time where the vehicle experiences acceleration
greater than 0.2g (4.5 mph in one second), in either the left or right direction. Aggressive turning while on Autopilot is not factored into the Safety Score formula. The
percentage shown in the app is the percentage of turning that is done with excessive force when driving and Autopilot is not engaged. The value is capped at 17.1% in the
Safety Score formula.

Unsafe Following

Your Tesla vehicle measures its own speed, the speed of the vehicle in front and the distance between the two vehicles. Based on these measurements, your vehicle
calculates the number of seconds you would have to react and stop if the vehicle in front of you came to a sudden stop. This measurement is called “headway.” Unsafe
following is the proportion of time where your vehicle’s headway is less than 1.0 seconds relative to the time that your vehicle’s headway is less than 3.0 seconds. Unsafe
following is only measured when your vehicle is traveling at least 50 mph and is incorporated into the Safety Score formula as a percentage. Unsafe following while on
Autopilot is not factored into the Safety Score formula. The percentage shown in the app is the percentage of unsafe following when driving and Autopilot is not engaged.
The value is capped at 60.0% in the Safety Score formula.

Forced Autopilot Disengagement

The Autopilot system disengages for the remainder of a trip after you, the driver, have received three audio and visual warnings. These warnings occur when your Tesla
vehicle has determined that you have removed your hands from the steering wheel and have become inattentive. Forced Autopilot Disengagement is introduced into the
Safety Score formula as a 1 or O indicator. The value is 1 if the Autopilot system is forcibly disengaged during a trip, and 0 otherwise.

18



Tesla’s Safety Score

Predicted Collision Frequency (PCF) =

0.68 x
1.01 Forward Collision Warnings per 1,000 Miles X

1.13 Hard Braking X

102 Aggressive Turning X
1.00 Unsafe Following Time X

1.32 Autopilot Disengagement

The current formula was derived based on statistical modeling using 6 billion
miles of fleet data. Tesla expects to make changes to the formula in the future
as more customer and data insights are gained

The PCF is converted into a O to 100 Safety Score using the following formula:

Safety Score = 115.382324 - 22.526504 x PCF

19



Tesla’s Safety Score in log link

Predicted Collision Frequency (PCF) = exp{-0,166 +
0,006 Forward Collision Warnings per 1,000 Miles +
0,052 Hard Braking +
0,008 Aggressive Turning +
0,001 Unsafe Following Time
0,120 Autopilot Disengagement}

Safety Score

Safety Score =

115.38 —22.53 x PCF
90

PCF=1,13

20



Yearly Accident frequency to

Safety Score
PCF /year Safety Score
0.03 109
0.06 102
0.0/ 100
0.08 97
0.09 95
0.10 93
0.12 33
0.14 34

0.20 /70



Is Tesla’s Safety Score complete?

* No information on driver’s characteristics
* No information on vehicle

* No information on external factors

* Weather
* Traffic congestion

* Road type
* Time of day / weekday or weekend
e ——- Performance relative to other drivers.

22



An overview of methods

e Count data regression model )
e Count data regression panel

e GLM / GAM

e Machine learning approaches )
e Correlate with claims & reveal information :
e New instruments to score drivers )

e Risk maps, driving pulse diagrams (DPD), percentile

e Predictive models of accident risk ]
charts

Prevention

23



Notation and classical Poisson model
specification (timeframe: yearly data)

* Y; number of claims at fault policyi, i =1, ...,n
* T, risk exposure, offset for policy i

* X;,Zi vectors of ratemaking factors (traditional x; ,
telematics z;)

A common assumption then is that the numbers of
claims Y; are independent across all policy holders and
they can be modeled by a Poisson regression model

E(Yilx;,zi, Ty) = Tjexp(xiB + zi'a) =
T; exp(x;B) exp(z;'a) =
[,l(Xi, Zi, hl)

Guillen et al. (2021) & Gao, Meng, Withrich (2022)




Poisson deviance loss

L(A(x;,2i, T;),T) =

2 a(x;i, zi, Tj) A(x;, 23, T)
— Y: 1—1 +

Y;#0

2
7 Z 2 - A(x4,zi, Ty)
=0

Y;=0

T is the test data set



Model Boosting: formulas
E(Yilx;, zi, T) = T exp(x{B) p(zi) = u(x;, z, Ti)

* Two-step approach of first fitting a GLM and then
building the telematics risk factor around this
GLM corresponds to the combined actuarial
neural network (CANN) model proposed by
Woithrich and Merz (2019).

e Gao et al. (2022) interpret it by studying the
network weights and find that hard braking in low
speeds contributes most to a high telematics risk
factor.

26



Model Boosting: formulas, with more
telematics information

E(Yilxi, zi, v, T) =T, eXP(Xi’ B) p(zi)p(u;)

e With estimated 8 and 5(+), then the second
telematics risk factor ¢ () is modelled.



Telematics data by trip data

* Take some risky drivers and some safe drivers.
* Take the series of trip data for these drivers.
* Construct a classifier from these trips.

* Classify all trips by all drivers based on
telematics data:

l//)\(Zi’j), I = 1, ...,Tl;j — 1, ""]i

* Define a score for each driver:
_ 1 Ji
Y =+ Y(z;i ;)

Ji b=j=1



Telematics trip score in the Poisson
model specification

Starting from the classical approach:
E(Yilxi, 23, T) = Tiexp(xiB + zi'a) =
T; exp(x{B) exp(z; o)
Insert the driver’s score based on trips or a

smoothed credibility version:
E(Yl |Xi) Zj, Tl) —

T exp(xi' B) exp(ag + “11/31')

Gao, Meng, Wiuthrich (2022) find poorer out-of-sample prediction
compared to the v-a heatmap



Panel binary model specification
(timeframe: weekly data)

Y;; binary (claim at fault) policy i, week t,
i=1..,n t=1,.,W,

T;; risk exposure offset for policy i, week t,
(days?)

Xj, Zir vectors of ratemaking factors (traditional x;
, telematics z;;)

We assume a panel structure where Yj; are
independent across all policy holders. If there is
independence over time:

E(Yie|xi, zit, Tit) = u(Xi, Zip Tit)
= Prob(Yj: = 1%, Zit, Tit) = Pit

Work in progress at RISKcenter UB



Panel binary model specification
(timeframe: weekly data)

* Consider all information to (t-1), =;_4:
Prob(Yi; = 1|x;, Zit, Tie, Ec-1) = Pit

* We assume a panel structure where Yj; are
independent across all policy holders, but they
have an autoregressive behavior within the
same policy holder.

Pit = K(Pi(t—1)—9i - f(t—l)) Nie +60; + &

Work in progress at RISKcenter UB
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CASE STUDY |

* Pricing with near-misses
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What is a near-miss?

Near-crash, risky event

* A near-miss is a term borrowed from aviation
safety — a situation in which an accident is
narrowly avoided, such as when a driver

brakes suddenly in order to avoid a crash (Arai
et al., 2001).

Near-misses (or incidents) have been shown to

be correlated with claims in auto insurance

Ma, Y. L., Zhu, X., Hu, X. and Chiu, Y. C. (2018). The use of context-sensitive
insurance telematics data in auto insurance ratemaking,
Transportation Research Part A 113, 243-258.

Guillen, M. et al. (2021) Near-miss telematics in motor insurance. Journal of
Risk and Insurance (OPEN ACCESS)

https://onlinelibrary.wiley.com/doi/epdf/10.1111/jori.12340



Examples: near-misses

Acceleration: >6m/s?, (Hynes & Dickey, 2008).
Braking: <-6m/s?

Dangerous Turns: speed combined with angle
Use of smart phone while driving

North American Actuarial Journal (2019) we
proposed modeling near-miss events

Problem: (at fault near-misses?)

* (Very recent...) Events of excess speed
The driver exceeds by more
than 10% the legal speed limit
during one trip.



Near-miss telematics

motor insurance pricing

Motor policy 1is 1ssued > A baseline premium 1is established

based on risk factors (age, driving
(((.))) zone, type of vehicle)

On-board device starts
collecting telematics data and

near-miss events

Telematics data feed insurer’s
database and are combined

with claims mformatlon

parameters are estimated and 4. Insurance invoice is the sum of
mvoice formula 1s updated > baseline premium plus cost of
(near-miss ratemaking) telematics events

Near-miss events cost

Guillen et al. (2021)
40



Notation and Poisson model
specification
* Y; number of claims at fault policy i,
(=1, ..,n
* T; risk exposure, offset for policy i

* X;j, E; vectors of ratemaking factors
(traditional, telematics, E; stands for “events”)

E(Yilx;, Ej) = T exp(xiB + Ej'a)
= T exp(x;B) exp(E;'a)



Transforming the log-link into an
additive structure

* We do not consider distance driven (Tj:= 1).
Coefficients, o, are percent increases due to each
near-miss event of the base rate P; p,50. An
approximate linear rate that would penalize each
additional near-miss is:

C exp(x B) eXp(E1ta) P pase exp(Elta)
Pl base(1 + E; ta) < Pl base + E/{ itAmax>

where o, 4, = {nax (aP; pase)-
<1<

* Note that a,,,,, depends on the maximum value of P; 5. In
practice, in order to determine a,,,4, a reasonable threshold for

P; pase could be, for example, three times the average of P pase-

Guillen et al. (2021)



Aproximate additive structure &
linearising exposure to risk

* The following approximation for the weekly
premium that would penalize each additional

near-miss (E;; ) and each additional unit of
distance (Tj; > 0) is:

CTit exp(x;B) exp(Ej;0)=P; pase Tic exp(Ejra) =
Pipase(1 + Ei,ta + In(Ty)) <

Pi base + Ei,ta Pmax + Pmax ln(Tit) )

where prax = 1n<lfa<)r(1(Pl base)r Umax= Pmax -

Guillen et al. (2022) in progress



Data

Anonymous telematics information from 641 drivers

Collected between 30th week of 2016 until the 30th
week of 2019 & past claims records

Southern Europe
Weekly data 7,570 vehicle-week observations in the telematics data set

IFABLE 2 Descriptive statistics in the telematics and claims data sets

Variable Mean SD Minimum Maximum
EBrakl 1.8629 6.3567 0 93
EBrak2 0.6764 2.7104 0 33
EBrak3 0.1703 1.1368 0 29
EBrak 2.7095 8.6934 0 119
EAclrl 1.3931 7.1128 0 202
EAclr2 0.1180 0.7488 0 20
EAclr3 0.1655 1.1916 0 30
EAclr 1.6766 7.9614 0 219
EPhone 16.0008 T1.7907 0 4150
DistThous 0.1523 0.1865 0.0010 2.7230
EngineCapacity 1.8383 0.7328 0.4250 6.2550
NumT 0.0764 0.4352 0 ]

ExpoT 287.3532 53.5283 52.2857 545.8571



Frequency

Near-miss telematics
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0<EAcIr<50 0<EBrak<50 0<EPhone

Figure 1, 2 and 3 show the histogram of EBrak, EAclr and EPhone. Due to the large
frequency of zeroes we decided to remove them from the graphs, therefore only
positive observations are represented. The data present a long right tail, so we also
decided to limit the representation up to a maximum value, specifically 50 for EAcIr
and EBrak, and 300 for EPhone. Note that EAcIr has 83.66% of zeroes, and 0.62% are
equal or greater than 50. EBrak has 80.91% of zeroes, and 0.82% are equal or greater
than 50, and finally EPhone has 79.78% of zeroes and 0.65% are higher than 300.

47



Claims frequecy using near-miss
events as covariates

Table 3. Parameter estimates of the Poisson model of the weekly rate of at fault
claims for the telematics and claims data set

Parameter Estimate Standard Error p-value
Intercept -8.0637 0.0673 <.0001
EAcIrl -0 0825 0.0265 0.0019
EAcIr2 0.3069 0.1277 0.0162
EAcIr3 0.0095 0.0390 0.8072
EBrakl 0.0268 0.0086 0.0018
EBrak?2 -0.4966 0.0770 <.0001
EBrak3 0.0984 0.0336 0.0034
EPhon 0.0004 0.0002 0.0776
EngineCapacity 0.3644 0.0287 <.0001

The AIC equals 7345.00 and the BIC equals 7407.39. The pseudo-R* equals
21.83%.
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Claims frequency using near-miss
events as covariates

Table 3. Parameter estimates of the Poisson model of the weekly rate of at fault
claims for the telematics and claims data set

Parameter Estimate Standard Error p-value
Intercept -8.0637 0.0673 <.0001
EAcIrl -0.0825 0.0265 0.0019
EAcIr2 0.3069 0.1277 0.0162
EAcIr3 0.0095 0.0390 0.8072
EBrakl 0.0268 0.0086 0.0018
EBrak?2 -0.4966 | 0.0770 <.0001
EBrak3 0.0984 0.0336 0.0034
EPhon 0.0004 0.0002 0.0776
EngineCapacity 0.3644 0.0287 <.0001

The AIC equals 7345.00 and the BIC equals 7407.39. The pseudo-R* equals
21.83%.



Near-miss telematics ratemaking

e Basic rate plus additional cost of near misses.

Table 1. Weekly breakdown of a total bill per week. Pure premium in motor insurance
as a function of near-miss events for a driver of a car with engine capacity 1,769 cc.

Basic weekly rate 1.95 Eur.

. Mumber of  Number of  Minutes of Cost of near- Bill per
nstance

Week driven near-miss near-miss smart misses week
(km) brakes accelerations  phone use (Eur) {Eur)
(2) (b) (c) (d) (&)
| 30 0 0 0 0,00 1,95
2 T3 i (1] 2 0,37 232
3 [ 04 2 2 2 6,59 E.54
-4 2ai f 2 1 0. 440 11,25
] N5 19 4 21 27.51 29 46

Todal kil for five weeks: 53.6]1 Eur,
(e)~1.95+d)
(dF=0.T5(a)+ 2 36{b) 0. 18(c)

51



Near-miss telematics ratemaking

e Basic rate with a reward for safe driving and
additional charge for near misses.

Table 2. Weekly bill of pure premium in motor insurance as a function of near-miss
events for a driver of a car with engine capacity 1,769 cc). Basic weekly rate (6.66 Eur)
minus discounts for safe driving, or plus penalizations for near misses.

. Number of Number of  Minutes of COSt.Of Total
Distance : . near-misses weekly
) near-miss  near-miss smart ;
Week driven : (Eur) bill
brakes  acceleration  phone use
(km) b (d) (Eur)
(a) (b) (©) ©
1 30 0 0 0 -5.65 1.01
2 73 0 0 2 -5.29 1.37
3 104 2 2 2 0.93 7.59
4 260 6 2 1 9.00 15.66
5 705 19 4 21 54.94 61.60

Total bill for five weeks: 87.23 Eur
(e)=6.66+(d)
(d)=if ((a)>2, 1.5(a), -0.75(1-(a)),)+if ((b)>2, 4.71(b), -2.36(2-(b)))+if ((c)>2, 0.36(c), -0.18(1-(c)))



Case study |: Take aways

* Driver pays per risky-events/ gets a discount for absence of risky-
events.

 We are unable to say from our empirical analysis whether drivers
adopting telematics schemes will in general change their
behavior in the long term as a consequence of the impact on the
price of their usage-based insurance ratemaking.

* Near-miss ratemaking is easily introduced. After some weeks, an
insurer can start pricing and re-adjust the formula to improve
predictive performance and fairness.

- First step towards Pay-How-You-Drive (PHYD) on a Pay per
trip schemes! And ....Pay-Where-You-Drive (PWYD).
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Abstract

‘We present a method to integrate telematics data in a pay-
how-you-drive insurance pricing scheme that penalizes
some near-miss events. We illustrate our method with a
sample of drivers for whom information on near-miss
events and claims frequency records are available. We
discuss the implications for motor insurance ratemaking.
Our pricing principle is to combine a baseline insurance
premium with added extra charges for near-miss events
indicating risky driving (or discounts) that can be updated
on a weekly basis. This procedure provides an incentive for
safe driving. In our realcase study illustration, hard-
braking and acceleration events as well as smartphone use

while driving increase the cost of insurance.
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CASE STUDY i

 Contextual data
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Driving context and hazardous
patterns

i) Does the driving context carry predictive
power for measuring driving risk?

ii) What are the most relevant contextual
features to evaluate risk exposure?

iii) How contextual factors influence the
occurrence of risky-events (near-misses) and

hazardous patterns?



The influence of the driving context

* Most commonly studied contextual factors
categories:
— Road environment
— Road infrastructure and topology
— Traffic conditions
— Road signs
— Weather and lighting conditions
> There is not specific research on how driving

under several combinations of these factors
influences exposure to dangerous events



Data

* Anonymous telematics information from 32 drivers
* Collected between July, 2021 and February, 2022
* Belgium, France, Germany, Luxembourg,
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Contextual attributes of the driving
context

Contextual Attribute | & o
Category 69200 P00 00 s W0 H

0 00T 700 P oo
(a) Speed limit [km/h] (b) Slope [] (c) Road quality [IRI]

‘Environment Speed limit [km/h]
Road type -

Road infrastructure Intersection (distance to intersection B i
and topology less than 30 m) — — — B e S g
Road quallty (IR_[) (d) Traffic category (e) Weather visibility [m] (f) Weather temperature |[°
Lane category : :
Road bend
Road slope [°] - P
Tunnel ‘ﬂﬂ(g) ‘\\"il:l‘x‘lvxpo(;‘iv[lill‘l‘,’lxj o '(‘h) I’r‘;«-‘i;inuin;;:‘u’un/h]hV ) (‘i‘)”‘\«;'omh:'rwmndilim\
Traffic conditions  Traffic category o
Traffic signs Presence of no-overtaking sign
Presence of traffic lights
Presence of yield sign
(j) Road type (k) Lane category (1) Lighting conditions

Weather and lighting Lighting conditions

information Precipitation [mm/h]
Temperature [°C]
Visibility [m]

wersecton || =78 100,00
roadtend [ S 100,00
No-overtaking sign - 1628 100.00

Traffic signal .4.5! 100.00
Weather conditions
Yield sign |2.75 100.00
Wind speed [km/h]
Tunnel l 128 100.00
0 20 40 60 80 100

Proportion [%]



Target risky events

Cornering: accelerations exceeding 7.5 m/s2 in curves
Harsh Acceleration: accelerations exceeding 6 m/s2

Harsh Breaking: brakings with magnitudes less than -6
m/s2

Phone Call: % kilometres driven while making phone
calls

Phone Unlocking

Speeding: % kilometres driven exceeding the legal
speed limit



Modelling techniques in driving risk
assesment

* What models can be used?
— Generalized Linear Models (GLM)
— Machine Learning Techniques (ML):

Logistic Regression
Neural Networks
Decision Trees

* Trade-off > Predictive gains vs. interpretability
* Explainable Artificial Intelligence
Shapley Additive Explanations (SHAP)



Modelling techniques employed

— Random Forest
— XGBoost

— Neural Networks
— GLM

e Model results:

— XGBoost and Random Forest significantly outperform
neural networks and GLM

— XGBoost is generally better than random forest
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Contextual feature importance for
our six risky events: SHAP values
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How every contextual feature
contributes to the model output?
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Case study Il: Take aways

* The most powerful predicting features are :
— Speed limits
— Weather temperatures
— Wind speed
— Traffic conditions
— Road slope

 Moreover, many combinations of contextual features
are strongly associated with risky events

- First step towards Pay-Where-You-Drive (PWYD) schemes.



Accident Analysis and Prevention
(submitted)

Joint with Leandro Masello, German Castignani, Barry Sheehan and Finbarr Murphy

Using contextual data to predict risky driving events: A novel
methodology from Explainable Artificial Intelligence

Abstract

Usage-based msurance has allowed msurers to dynamically failor msurance prenuums by understanding when and
how safe policvholders dove. However, telematics information can also be used to understand the dnving contexts
expenenced by the dnver within each trip (e.g.. road types, weather, traffic). Since different combinations of these
conditions affect the exposure to accidents, this understanding introduces predictive opportunities in driving risk
assessment. This paper mvestigates the relationships between driving context combinations and nisk using a
naturalistic driving dataset of 77.859 km. In particular, XGBoost and Random Forests are used to determine the
predictive significance of driving contexts for near-misses, speeding and distraction events. Moreover, the most
important contextual factors in predicting these risky events are identified and ranked through Shapley Additive
Explanations. The results show that the driving context has significant power in predicting driving risk. Speed linut,
weather temperature. wind speed. traffic conditions and road slope appear in the top ten most relevant features for
most risky events. Low-speed limits increase the predicted frequency of speeding and phone unlocking events,
whereas high-speed limits decrease harsh accelerations. Low temperatures decrease the expected frequency of harsh
manoeuvres, and precipitations increase harsh acceleration, harsh braking, and distraction events. Furthermore, road
slope, intersections and pavement quality are the most critical factors among road layout attributes. The methodology
presented in this study aims to support road safety stakeholders and insurers by providing insights to study the

contextual risk factors that influence road accident frequency and driving nisk.

Keywords: driving context; explainable Al; machine learning; risk assessment; usage-based insurance.



Contents

4. Conclusions & take-home



How will motor insurance
ratemaking change?

e Consumers

* Personalization
e More interaction with insurers

 Manufacturers

* Vehicles will be equipped with telematics and possibly
vehicles provide a service (insurance included)

* Insurers
* Products are more demanding 24/7
e Data analysts are needed. Preprocessing is crucial
 Communication to mass consumers of complex pricing
* Prevention and service provision
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