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Motivation

Situation
Model provides prediction x ∈ R for outcome Y ∈ R
I Physics-based numerical (weather prediction) model

I Statistical or ML model for mean of Y given covariates

I Expert opinion

“If the prediction increases we expect an increase of the outcome.”

Goal
Quantify uncertainty by predictive distribution for Y
Provide probabilistic prediction for Y

Approach
Use distributional regression model for Y given x
that honors the isotonicity assumption:

Isotonic distributional regression (IDR)
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Isotonic distributional regression (IDR)

Goal’
Flexible distributional regression model for Y ∈ R given x ∈ X
under the assumption:

“If the covariate increases we expect an increase of the outcome.”

I (X ,≤) is a partially ordered set.

I Usual stochastic order on conditional distributions of Y .

3 / 27



Mathematical setup

“If the covariate increases we expect an increase of the outcome.”

x ≤ x ′ =⇒ L(Y | X = x) �st L(Y | X = x ′)

⇐⇒ FY |X=x(y) ≥ FY |X=x ′(y), y ∈ R
⇐⇒ qα(Y |X = x) ≤ qα(Y |X = x ′), α ∈ (0, 1)

IDR estimator (for x ∈ R): Data (xi , yi )
n
i=1, x1 ≤ · · · ≤ xn

Define F̂ = (F̂i )
n
i=1 = (F̂Y |X=xi )

n
i=1 as

F̂ = argmin
F1�st···�stFn

n∑
`=1

CRPS(F`, y`).

Continuous ranked probability score (CRPS)

CRPS(F ,Y ) =

∫
R

(F (z)− 1{Y ≤ z})2 dz
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Then

F̂i (y) = max
j=i ,...,n

min
k=1,...,j

1

j − k + 1

j∑
`=k

1{y` ≤ y}.

Theorem (Universality of IDR)

F̂ minimizes all criteria of the form

`cλ(F) =
1

n

n∑
i=1

∫
R

(Fi (y)− 1{yi ≤ y})2 dλ(y),

`qν(F) =
1

n

n∑
i=1

∫
(0,1)

(1{yi ≤ F−1
i (α)} − α) (F−1

i (α)− yi ) dν(α),

over all stochastically ordered tuples of CDFs F = (F1, . . . ,Fn),
where λ and ν are Borel measures.

Barlow, Bartholomew, Bremner, and Brunk (1972); Henzi, Ziegel, and Gneiting (2021)
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Illustration of IDR: n = 600 draws of Z ∼ Unif(0, 10) and
Y ∼ Gamma(sh =

√
Z , sc = min(max(Z , 1), 6)).
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Computation

I Total order on the covariates: Pool adjacent violators (PAV)
algorithm for each threshold y ∈ {y1, . . . , yn}

I Partial order on the covariates: Quadratic programming
problem for each y ∈ {y1, . . . , yn}

I IDR can be combined with subsample aggregation:
Computational gains and smoother estimated CDFs

I R package by Alexander Henzi available. Python
implementation by Eva-Maria Walz.

Henzi, Mösching, and Dümbgen (2022)
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Prediction

IDR solution F̂ = (F̂1, . . . , F̂n) is defined at covariate values
x1, . . . , xn only.
Procedure for prediction at new covariate value x 6∈ {x1, . . . , xn}:
I Define predecessors and successors of x :

p(x) = {i | xi � xj � x =⇒ xj = xi , j = 1, . . . , n}
s(x) = {i | x � xj � xi =⇒ xj = xi , j = 1, . . . , n},

I Predictive CDF F that respects order constraints must satisfy

max
i∈s(x)

F̂i (y) ≤ F (y) ≤ min
j∈p(x)

F̂j(y), y ∈ R.

I Define

F̂x(y) =
1

2

(
max
i∈s(x)

F̂i (y) + min
j∈p(x)

F̂j(y)

)
.
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What can we do with IDR?

IDR

Statistical consistency

Generalization beyond 
empirical distributions

Uncertainty 
Quantification

Extensions
Conformal IDR

Censored observations
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Statistical consistency
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Statistical consistency
Let (Xin,Yin)in be a triangular array of iid random variables, and
suppose that the model assumption holds

x ≤ x ′ =⇒ L(Y | X = x) �st L(Y | X = x ′).

Under reasonable assumptions, IDR is uniformly consistent

I for a categorical covariate
El Barmi and Mukerjee (2005)

I for a real-valued covariate
Mösching and Dümbgen (2020)

I for a vector-valued covariate
Henzi, Ziegel, and Gneiting (2021)

What if the “covariate” is a prediction, that is, it depends on the data?

I Distributional (single) index models (DIM): Consistency still holds.
Henzi, Kleger, and Ziegel (2023)
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Generalization beyond empirical distributions
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Generalization of IDR: Isotonic conditional laws

(X ,≤) measurable space with partial order
Random vector (X ,Y ) with X ∈ X , Y ∈ R defined on (Ω,F ,P)

I Conditional law L(Y | X ) of Y given X is distribution of Y
“given all information about X”.

I What is the conditional law of Y given X under the constraint
that an increase in X results in an increase in Y ?

I “Best” approximation L′ to L(Y | X ) that satisfies

x ≤ x ′ =⇒ L′(Y | X = x) �st L′(Y | X = x ′).

Solution: Isotonic conditional law of Y given X

L(Y | A(X )),

where A(X ) is the σ-lattice generated by X .
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σ-lattice C ⊆ F
C contains ∅,Ω and is closed under countable unions and
intersections.

I Random variable Z is C-measurable if {Z > a} ∈ C for all
a ∈ R.

I E(Y | C) is L2-projection of Z onto closed convex cone of
C-measurable random variables. Brunk (1965)

L(Y | C)

I Markov kernel from (Ω,F) to (R,B(R)).

I ω 7→ L(Y | C)(ω, (a,∞)) is a version of E(1{Y > a} | C)
for any a ∈ R.
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σ-lattices and increasing functions

I Collection U of all upper sets in (X ,≤) is a σ-lattice

I f : X → R is increasing if and only f is U-measurable, that is,
{f > a} ∈ U for all a ∈ R.

σ-lattice generated by X

(X , d ,≤) ordered metric space

A(X ) = {X−1(B) | B ∈ B(X ) ∩ U}

I IDR is the isotonic conditional law of Y given X if the joint
distribution of (X ,Y ) has finite support.

I Isotonic conditional laws are also CRPS minimizers in a
suitable sense, and share the calibration properties of IDR.

Arnold and Ziegel (2023)
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Uncertainty quantification
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IDR for uncertainty quantification: EasyUQ approach
I Training data of predictions x and outcomes Y .

“If the prediction increases we expect an increase of the outcome.”

Basic EasyUQ

I Apply IDR to training data with x as covariate.

I For new prediction x , obtain predictive cdf F̂x by interpolation.

Smooth EasyUQ

I Apply IDR to training data with x as covariate.

I For new prediction x , obtain smooth predictive cdf as

F̌x(y) =

∫
R
F̂x(t)Kh(y − t) dt, y ∈ R,

where Kh(u) = (1/h)κ(u/h) for some kernel κ.

Henzi, Kleger, and Ziegel (2023); Walz, Henzi, Ziegel, and Gneiting (2023+)
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Case study: Intensive care unit length of stay

Predicting length of stay (LoS) of patients in intensive care units
(ICUs) has always been useful for . . .

I planning

I quality improvement

I benchmarking (risk-adjusted LoS)

Ideally: Predict LoS using data available 24 hours after admission.

With corona pandemic: ICU LoS has suddently become a topic of
general public interest.

18 / 27



Case study: Intensive care unit length of stay
Dataset
Single patient data from 86 ICUs in Switzerland (2007-2018) 1

I Between 700 and 46’000 observations per ICU

I Mean (median) LoS ranging from 1 (0.7) to 8 (2.2) days

I Variables used for prediction available 24 hours after admission

I ICU patient groups are highly heterogeneous.
Age Sex From SAPS NEMS Interv Diag Admission Discharge LoS

81 M emergency 28 9 I00 T1 2017-01-21 15:40:00 2017-01-23 11:20:48 1.82
29 M op 39 9 I80 T1 2017-08-28 16:20:00 2017-09-16 19:56:00 19.15
64 M op 34 20 I30 A1 2018-04-15 15:00:00 2018-04-16 15:57:36 1.04

Model for mean log-LoS (Verburg et al., 2017)

log(LoS + 1) ∼ N (θ(X ), σ2),

θ(X ) = spline(age) + spline(severity)

+ Dummy variables for diagnosis, admission source, . . .
1

Provided by G.-R. Kleger and Schweizerische Gesellschaft für Intensivmedizin. Data is internal hospital data
and not publicly available. ICU identifiers are generated randomly.
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Model for mean log-LoS
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Figure: In-sample predicted and observed LoS (top) and empirical
distribution function (ECDF) of LoS stratified by prediction (bottom).
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Patient Age Sex From SAPS NEMS Interv Diag LoS
1 81 M emergency 28 9 I00 T1 1.82
2 29 M op 39 9 I80 T1 19.15
3 64 M op 34 20 I30 A1 1.04
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Figure: Predictive CDFs for the selected patients.
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Results: Computed on validation dataset (last 20%)

Compare distributional index model (DIM, EasyUQ approach)
predictions to

I empirical distribution of LoS on training dataset,

I Cox proportional hazards regression,

I quantile regression.

Mean CRPS of different LoS forecasts
ICU p DIM Quantile reg. Cox reg. ECDF Point

ICU4 1.18 · 10−11 1.074 1.076 1.089 1.191 1.399
ICU24 0 1.099 1.111 1.141 1.265 1.416
ICU52 7.40 · 10−5 1.845 1.866 1.868 2.121 2.580
ICU76 0 2.420 2.448 2.458 2.783 3.468
...

Mean 1.359 1.372 1.392 1.607 1.853

Henzi, Kleger, and Ziegel (2023)
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Case study: Precipitation data

I 24-hour accumulated precipitation at Frankfurt airport,
Germany, lead times 1–5 days

I Single-valued forecasts:
I HRES model output of ECMWF
I weakly climatology

I Training data 2007–2014

I Evaluation data 2016–2017
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Results: Computed on evaluation data

Forecast CRPS
Type Method 1 Day 3 Days 5 Days

Single-v. Climatology 2.187 2.187 2.187
HRES 1.125 1.412 1.686

Distrib. CP on Climatology 1.382 1.382 1.382
CP on HRES 0.886 1.063 1.129
Censored CP on Climatology 1.324 1.324 1.324
Censored CP on HRES 0.850 1.031 1.100

Distrib. EasyUQ on Climatology 1.242 1.242 1.242
EasyUQ on HRES 0.732 0.876 1.001

Distrib. ECMWF Ensemble 0.752 0.856 0.981

CP: Conformal predictive system (Least squares prediction machine)

Walz, Henzi, Ziegel, and Gneiting (2023+)
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Discussion of EasyUQ approach

I EasyUQ approch converts single-valued predictions into
distributional ones: output-based uncertainty quantification
technique.

I Basic EasyUQ is “just” IDR and does not involve tuning
parameters. It finds the support of the distributions
automatically.

I Extensive comparison of uncertainty quantification methods in
machine learning examples in Walz, Henzi, Ziegel, and Gneiting

(2023+)

I EasyUQ/IDR shows better performance than CP with respect
to CRPS but CP comes with calibration guarantees (under
exchangeability.)
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Summary

I IDR is a non-parametric distributional regression technique
under order constraints.

I IDR is in-sample optimal with respect to all weighted CRPS.

I IDR provides guarantees for calibration in-sample.

I Population version of IDR are isotonic conditional laws.

I IDR can be used to “add” a distribution to a given model for
a univariate functional such as the mean: EasyUQ approach.

I Extensions (work in progress):
I IDR for censored observations
I Conformal IDR

Thank you!
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