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Abstract

Extensive work on extreme value copulas (EVCs) can be found in the literature, but
their associated densities are mainly studied in the bivariate case. This work aims to
bridge the gap between bivariate and multivariate densities, as an explicit expression
of the density is of utmost importance in many multivariate statistical applications.
After a brief overview of copula-related theory, we present a general formula for the
density of EVCs. This formula depends on the derivatives of the underlying stable tail
dependence function of the copula, so we briefly recall the construction principle of the
stable tail dependence function of the Smith and multivariate t distributions, see also
Joe et al. (2008). A result based on Archimedean copulas with inverse generators that
are regularly varying at one with tail index bigger than one is presented in Genest and
Rivest (1989), and based on their representation of the stable tail dependence function,
we can apply our formula for the density of a general EVC and construct new tractable
EVC densities from Archimedean copulas. Under similar assumptions, we can extend
the construction to nested Archimedean copulas and we are able to derive the stable
tail dependence function of nested Archimedean copulas. Finally, we obtain an implicit
expression for the density of the copula of the N -largest order-statistics.
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1 Introduction

1 Introduction

This thesis will be focused on a specific class of copulas, called extreme value copulas.
Being the limits of copulas of appropriately scaled componentwise maxima in indepen-
dent d-variate random samples, extreme value copulas provide appropriate models for
the dependence structure between so-called rare, or exceptional, or extreme events. On a
side note, we want to mention that extreme value copulas are often a convenient choice
for the modelling of data with positive lower orthant dependence.

The study of copulas and similarly standardized distribution functions can be traced
back to the mid 1930s, although applications of copula theory to finance-related topics,
such as risk management and derivatives pricing, is a rather modern phenomenon. The
financial platform offers many situations in which one needs to consider randomness in-
duced by various factors, and in that regard, a central issue is to describe the dependence
structure between these factors. Indeed, understanding and describing dependence be-
tween random variables, the said factors, can be complicated, especially when working
in higher dimensions.

In this context, copulas are appealing because, at first, they provide a great way of
studying and understanding scale-free measures of dependence, and secondly, they facil-
itate a bottom-up approach to model building by linking individual univariate models
to their joint model.

Since the year 1999, there as been a significant increase in copula-related new publi-
cations in the field of finance, where the flag example is Embrechts et al. (2002), which
existed in 1998 as an ETH Zurich RiskLab Report. Due to the development of quantita-
tive risk management, copulas are now commonly used by practicioners in the financial
industry. This explosive development is mainly due to the growing presence of reg-
ulatory bodies, such as the Basel Committee, the FSA, FINMA and others imposing
stronger guidelines in market practices, as well as the need for creating new financial
products.

To illustrate the above claim, one could cite as an example Starica (1999), where
the joint behavior of extreme returns in foreign exchange rate is investigated. On the
insurance side, one can look at Cebrian et al. (2003), where extreme value copulas are
applied to the SOA medical large claims database.

Section 2 provides the general framework we need throughout the thesis. Besides
introducing relevant copula-related theory, emphasis is put on stable tail dependence
functions and regular variation. In Section 3, we briefly present the results of Joe et al.
(2008) on the Smith model and t distributions. However, the heart of the thesis is Section
4, where a general expression for the density of extreme value copulas is obtained using
Faà di Bruno’s Formula. Bivariate applications of our formula to Pickand’s dependence
functions are investigated in Section 5. In Section 6, we extend the work of Genest and
Rivest (1989) by constructing tractable extreme value copula densities from Archimedean
copulas satisfying certain regular variation assumptions. We continue our work in Section
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2 Framework

7, where results from Section 6 are extended and a recursive expression for the stable
tail dependence function of nested Archimedean copulas is obtained. Finally, using the
Extremal Types Theorem, we derive an implicit expression for the density of the copula
of the N largest order-statistics in Section 8.

2 Framework

In this section, we present the cornerstones of the theory we need in order to investigate
the densities of extreme value copulas. The theory concerning copulas is quite vast, but
in this section, we focus on the main results providing insights in our line of work.

2.1 Basic notation

To begin, we need to establish a standard notation that will be used throughout this
work. First, we let x denote a vector (x1, . . . , xd) ∈ Rd, where d is always assumed to
be an integer greater than or equal to 2. If not otherwise stated, all expressions such as
x+ y, x ≤ y and others of the sort are considered as componentwise operations. Note
that in this thesis, the notation R+ is understood as the positive real line excluding
zero.

We will reserve the symbolX to represent a random vector in Rd, that is (X1, . . . , Xd),
where Xj denotes a random variable in R. Such a random vector is understood to have
a distribution function (H) and a survival function (H̄), defined by

H(x) = P (X ≤ x), x ∈ Rd,

and
H̄(x) = P (X > x), x ∈ Rd,

respectively. For the vector X with distribution H as above, the marginal distribution
of Xj , denoted Fj , is given by

Fj(xj) = P (Xj ≤ xj) = H(∞, . . . ,∞, xj ,∞, . . . ,∞), xj ∈ R.

Since we will mostly work in the general d-dimensional case, we reserve the notation J
for the index set {1, . . . , d}. For any set ∅ 6= B ⊆ J , we also introduce J−B for the set
J \B, that is the set J without the elements in B. In the case where B is a singleton
{j} ∈ J , we write J−j for J \{j}.

As the thesis is oriented at densities of extreme value copulas, we will often need to
perform high order partial differentiation operations. In order to make the formulas less
cumbersome, we introduce two operators that we will use throughout the thesis, that
is

D = ∂d

∂xd . . . ∂x1
and DB = ∂|B|∏

j∈B ∂xj
.

2



2 Framework

Also, for two positive univariate functions f and g, we write f(x) ∼ g(x) as x → ∞
if limx→∞ f(x)/g(x) = 1. If we have f(x) ∼ 0, it is to be understood as limx→∞ f(x) =
0.

Furthermore, when considering random variables, we will be mainly concerned with
their distributional properties. We then note that one can always find a probability space
(Ω,F ,P) where these random variables exist as a consequence of Skorokhod’s Represen-
tation Theorem. This being clarified, we will make no further mention of probability
spaces in what follows.

2.2 Copulas

Before defining an extreme value copula, one needs to first define and understand what
a copula is.

Definition 2.1
A d-dimensional copula C is a d-dimensional distribution function with standard uniform
univariate margins.

The above definition is the simplest we can give, so we complement it with an equiv-
alent definition providing more insights on copula properties.

Definition 2.2
A function C : [0, 1]d → [0, 1] is a d-dimensional copula if and only if

(i) C(u) = 0 whenever uj = 0 for some j ∈ J ,

(ii) C(u) = uj for all uj ∈ [0, 1] if uk = 1 for all k ∈ J−j ,

(iii) ∆(a≤b]C =
∑
i∈{0,1}d(−1)

∑d

j=1 ij
C(ai11 b

1−i1
1 , . . . , aidd b

1−id
d ) ≥ 0 for a, b ∈ [0, 1]d.

If (iii) holds, we say that the copula C is d-increasing, which means that for each
non-empty hyperrectangle (a ≤ b], the C-volume ∆(a≤b]C is non-negative. Having a
positive volume is equivalent to having a proper non-negative density, if the latter one
exists.

One can observe that for any d-dimensional copula C for which d ≥ 3, each k-
dimensional margin of C is itself a k-dimensional copula, for k = 2, . . . , d− 1.

From the definitions given above, it is not yet clear why and how copulas are useful
for understanding dependence between the components of a random vector. The key
theorem in copula theory dates back to Sklar (1959), and explicitly links copulas as
mathematical objects to their role in dependence modelling.

Theorem 2.3 (Sklar’s Theorem)
For any distribution function H with margins Fj for j ∈ J , there exists a copula C such

3
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that
H(x) = C(F1(x1), . . . , Fd(xd)), x ∈ Rd. (1)

C is uniquely determined on
∏d
j=1 ranFj (product range) and is given by

C(u) = H(F−1 (u1), . . . , F−d (ud)), u ∈
d∏
j=1

ranFj . (2)

Conversely, given any copula C and univariate distribution functions Fj for j ∈ J , H
defined by (1) is a distribution function with margins Fj for j ∈ J .

Remark 2.4
Sklar’s Theorem allows one to decompose any multivariate distribution function into
its margins and a copula. This way, one can study multivariate distribution functions
independently of the margins.

In (2), F−j is known as the generalised inverse of the marginal distribution Fj , defined
as below.

Definition 2.5
Let T : R→ R and be increasing. The generalised inverse T− : R→ R̄ = [−∞,∞] of T
is defined as

T−(u) = inf{x ∈ R | T (x) ≥ u}

where T−(∅) =∞.

Definition 2.5 emphasizes that flat parts of T correspond to jumps in T−, and that
jumps in T correspond to flat parts in T−. For further properties of T−, see Embrechts
and Hofert (2012).

One might note that not all univariate distribution functions are invertible. Although,
since they are non-decreasing by definition, the generalised inverse of a distribution
function is always well-defined and known as the quantile function.

For various reasons, one might rather investigate certain probability distributions on
Rd given their survival function H̄ rather than their distribution function H. In that
case, it is convenient to restate Theorem 2.3 in terms of survival functions.

Theorem 2.6 (Survival Sklar’s Theorem)
For any survival function H̄ with margins F̄j for j ∈ J , there exists a copula Ĉ, referred
to as the survival copula, such that

H̄(x) = Ĉ(F̄1(x1), . . . , F̄d(xd)), x ∈ Rd. (3)

Ĉ is uniquely determined on
∏d
j=1 ran F̄j and is given by

Ĉ(u) = H̄(F̄−1 (u1), . . . , F̄−d (ud)), u ∈
d∏
j=1

ran F̄j . (4)

4
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Conversely, given any copula Ĉ and univariate survival functions F̄j for j ∈ J , H̄ defined
by (3) is a d-dimensional survival function with margins F̄j for j ∈ J .

It is to be noted that the generalized inverse F̄− of a survival function F̄ is defined
as F̄−(u) = F−(1− u) for u ∈ [0, 1]. Before going any further, we provide Figure 1 and
Figure 2 for readers not familiar with the subject to visualize the behavior of copulas.
Figure 2 provides a nice way of visualizing high-dimensional data in a pairwise manner,
and was generated using the splom2 function in R.
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Gumbel copula
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U
2

Figure 1 BC2 copula with parameters a = 0.9 and b = 0.4 (left) generated using the
algorithm presented in Mai and Scherer (2011); note the easily observable
singular component. Gumbel copula with parameter θ = 5 (right). In both
samples, the sample size is n = 2500.

Getting this first glimpse at different copula scatterplots is interesting to see the joint
behaviour of the variables, but keeping in mind that copulas are in fact distribution
functions, it is relevant to be aware of the well-known bounds governing every copula.
These bounds are known as the Fréchet-Hoeffding bounds, attributed to Fréchet (1935)
and Hoeffding (1940).

Theorem 2.7 (Fréchet-Hoeffding bounds)
For any d-dimensional copula C with d ≥ 2, it holds that

W (u) = max
{ d∑
j=1

uj − d+ 1, 0
}
≤ C(u) ≤ min

1≤j≤d
{uj} = M(u), u ∈ [0, 1]d,

where M , the upper Fréchet-Hoeffding bound, is a copula for any d, and W , the lower
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Figure 2 Three-dimensional nested Clayton copula with parameters chosen such that
the Kendall’s tau of the respective bivariate margins are 0.2 and 0.5. The
sample size is n = 500.

Fréchet-Hoeffding bound, is a copula only when d = 2. Figure 3 explicitly shows M and
W in a comparative graph.

In the next section, we introduce the notion of extreme value copulas, and present
some relevant theory around the concept.

2.3 Extreme value copulas

Consider a sample of independent and identically distributed random vectors Xi =
(Xi1, . . . , Xid) with common distribution function H, margins F1, . . . , Fd, and copula
CH , under the assumption that H is continuous. To perform multivariate extreme value
theory analysis, one may consider the vector of componentwise maxima, defined as

Mn = (Mn,1, . . . ,Mn,d), where Mn,j = max
1≤i≤n

Xij . (5)

It follows by construction that the distribution of the componentwise maxima is given
by an easy expression, as shown below.

HMn,j (x) = P (Mn,j ≤ x) = P (X1j ≤ x, . . . ,Xnj ≤ x) = P (X1j ≤ x) . . . P (Xnj ≤ x)
= Fj(x) . . . Fj(x)
= Fnj (x)

6



2 Framework

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4
0.6

0.8
1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4
0.6

0.8
1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3 Lower Fréchet-Hoeffding bound W (left); upper Fréchet-Hoeffding bound M
(right)

This shows that the joint distribution, as well as the marginal distributions, of Mn are
given by Hn, Fn1 , . . . , Fnd respectively. It follows that the copula of Mn, which we call
Cn, is given by

Cn(u1, . . . , ud) = CH(u1/n
1 , . . . , u

1/n
d )n, u ∈ [0, 1]d. (6)

The family of extreme value copulas arises from (6) when the sample size n goes to
infinity, in the weak sense. This limit concept is enclosed in the following definition.

Definition 2.8
A d-dimensional copula C is a d-dimensional extreme value copula if there exists a copula
CH such that, for n→∞,

CH(u1/n
1 , . . . , u

1/n
d )n → C(u1, . . . , ud), u ∈ [0, 1]d. (7)

In this case, we say that the copula CH is in the domain of attraction of C.

In fact, the representation of extreme value copulas can be simplified using the concept
of max-stability, as nicely explained in Segers and Gudendorf (2009).

Definition 2.9
A d-dimensional copula C is max-stable if it holds that

C(u) = C(u1/m
1 , . . . , u

1/m
d )m, u ∈ [0, 1]d,

for every m ∈ N0.

7
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From Definition 2.9, one sees that any max-stable copula is in its own domain of
attraction, making it an extreme value copula from Definition 2.8. The converse can
also be observed, and a very useful theorem ensues.

Theorem 2.10
A copula C is an extreme value copula if and only if it is max-stable.

By letting uj = e−xj , we can take the negative logarithm on each side of (7) and by
applying a linear expansion on the left-hand side, we see that (7) is equivalent to

lim
q↓0

q−1 (1− CH (1− qx1, . . . , 1− qxd)) = − logC(e−x1 , . . . , e−xd). (8)

By setting the left-hand side of (8) equal to a function `(x) for x ∈ [0,∞)d and by
manipulating the equation, one obtains

C(e−x1 , . . . , e−xd) = exp(−`(x))

where the function `(x) is referred to as the stable tail dependence function of C.

As the concept of homogeneity will become recurrent in this thesis, we first define the
notion of homogeneous function before going any further.

Definition 2.11
A function f : Rd → R satisfying

f(tw) = tnf(w), t > 0, w ∈ Rd, (9)

is said to be homogeneous of order n. For n > 0, we say that the function f is positive
homogeneous.

In order to formalize the last few statements, Segers (2012) presents precise conditions
under which a function ` properly defines an extreme value copula.

Theorem 2.12
A d-dimensional copula C is an extreme value copula if and only if

C(u) = exp(−`(− log u1, . . . ,− log ud)), u ∈ (0, 1]d, (10)

where the stable tail dependence function ` : [0,∞)d → [0,∞) is given by

`(x) =
∫

∆d−1
max

1≤j≤d
(wjxj)dH(w1, . . . , wd), x ∈ [0,∞)d, (11)

for a Borel measure H on ∆d−1, called the spectral measure, satisfying the constraints∫
∆d−1

wjdH(w1, . . . , wd) = 1, j ∈ {1, . . . , d}. (12)

8
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It is worth mentionning that the stable tail dependence function obtained is convex
and homogeneous of order one. Further, it satisfies the following inequalities

max{x1, . . . , xd} ≤ `(x) ≤
d∑
i=1

xi, x ∈ [0,∞)d.

However, these properties do not characterize the class of stable tail dependence functions
unless d = 2. We suggest the reader to look at the counterexample in Beirlant et al.
(2004), p.257.

By restricting the stable tail dependence function to the unit simplex, one can obtain
a characterization through the use of the so called Pickand’s dependence function A :
∆d−1 → [1/d, 1] of the form

`(x) = (x1 + . . .+ xd)A(w1, . . . , wd−1), wj = xj
x1 + . . .+ xd

, j ∈ J−d, (13)

for x ∈ [0,∞)d\{0}. Note that some authors express the above A function in terms of
(w1, . . . , wd), but we suppressed the variable wd in our representation as it is obvious
that wd = 1− w1 − . . .− wd−1.

Since u ∈ (0, 1]d ⊂ [0,∞)d\{0}, we can define w̃j = log uj/
∑d
j=1 log uj , j ∈ J−d, and

rewrite (10) in the following way:

C(u) = exp {−`(− log u1, . . . ,− log ud)}

= exp

−
 d∑
j=1
− log uj

A( − log u1

−
∑d
j=1 log uj

, . . . ,
− log ud−1

−
∑d
j=1 log uj

)
= exp


 d∑
j=1

log uj

A( log u1∑d
j=1 log uj

, . . . ,
log ud−1∑d
j=1 log uj

)
=
( d∏
j=1

uj

)A(w̃1,...,w̃d−1)
.

Even though A is convex and homogeneous of order 1, it is important to mention that
the class of extreme value copulas is not defined by the class of Pickand’s dependence
functions A, unless d = 2, which is related to our prior comment on the issue.

Since bivariate extreme value copulas are frequently used in many fields and will be of
interest to us in Section 5, we provide a characterization based on the use of the formula
obtained above.

Theorem 2.13
A bivariate copula C is an extreme value copula if and only if

C(u1, u2) = exp
{

log(u1u2)A
( log u1

log(u1u2)

)}
, (u1, u2) ∈ (0, 1]2\{(1, 1)}, (14)

where A : [0, 1]→ [1/2, 1] is convex and satisfies min{t, 1−t} ≤ A(t) ≤ 1 for all t ∈ [0, 1].

9
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Figure 4 provides the reader with a visual example of three Pickand’s dependence
functions. It is worth noticing that the three curves are within the bounds defined in
Theorem 2.13 and that the curves may not be symmetric nor smooth.

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Model: Beta
Model:  BC_2
Model: Assymetric logistic

Figure 4 Different Pickand’s dependence functions; red curve arises from a beta distri-
bution with parameters q1 = 2 and q2 = 3, the black curve arises from a BC2
with parameters a = 0.9 and b = 0.4 and the blue curve arises from an asym-
metric logistic distribution with parameters ψ1 = 0.2, ψ2 = 0.7, t = 2. The
grey area emphasizes the zone max{t, 1− t} ≤ A(t) ≤ 1.

The notion of tail dependence describes the amount of dependence in the tail of a
distribution, mainly in the bivariate case, and has been discussed profusely in financial
applications related to market and credit risk, and is known to strongly influence the
Value-at-Risk (VaR) measure. The lower tail dependence function and upper tail depen-
dence function introduced in Jaworski (2006), Klüppelberg et al. (2008) and Joe et al.
(2010) are defined as follows.

Definition 2.14
Let C be the copula of U , a d-dimensional random vector with uniform margins, and let
Ĉ be the survival copula of C. Then, one defines the lower tail dependence function as

λL(w) = lim
q↓0

C(qwj , j ∈ J )
q

, w = (w1, . . . , wd) ∈ Rd+, (15)

and the upper tail dependence function as

λU (w) = lim
q↓0

Ĉ(qwj , j ∈ J )
q

, w = (w1, . . . , wd) ∈ Rd+, (16)

provided that the limits exist.

In the upcoming section, we address two ways to construct extreme value copulas from
Representations (15) and (16), and summarize our results in a theorem. Since (15) and

10
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(16) are very closely related, we present the developments using λL(w), which are easily
translatable to λU (w).

Following the setup presented in Joe et al. (2008), we consider a d-dimensional copula C
with continuous second-order partial derivatives. We also consider the set J = {1, . . . , d}
introduced before, along with its collection of subsets ∅ 6= S ⊆ J , and we denote the
marginal copula corresponding to indices in S by CS . We now introduce marginal lower
tail dependence functions λS of C, ∅ 6= S ⊆ J , which are defined as

λLS(wj , j ∈ S) = lim
q↓0

CS(qwj , j ∈ S)
q

, w = (w1, . . . , wd) ∈ Rd+. (17)

The above function is used as the primary tool in Joe et al. (2008) to investigate extreme
value properties of multivariate t copulas. We now proceed by investigating a relevant
property of λLS , that is, homogeneity.

Proposition 2.15
The lower tail dependence functions λLS(w) are homogeneous of order one for any ∅ 6=
S ⊆ J .

Proof. Fixing t > 0, and for any ∅ 6= S ⊆ J we have that

λLS(tw) = lim
q↓0

CS(qt wj , j ∈ S)
q

= t lim
q↓0

CS(qt wj , j ∈ S)
qt

= t lim
q̃↓0

CS(q̃ wj , j ∈ S)
q̃

= tλLS(w),

where we set q̃ = qt. Therefore, it follows that λLS(w) is a positive homogeneous function
of order one for any ∅ 6= S ⊆ J .

Having confirmed that we have a homogeneous function, we now need to ensure that
λLS is continuously differentiable, as we will be interested in densities further on in this
thesis. We do so by formulating the Uniform Convergence Condition, an assumption on
the partial derivatives of the marginal copulas CS . Furthermore, we assume that this
statement holds for the rest of the thesis.

Assumption 2.16 (Uniform Convergence Condition)
Assume that any partial derivative of order |S| or less of the ratios

CS(qwj , j ∈ S)
q

and ĈS(qwj , j ∈ S)
q

converges uniformly on R|S|+ as q ↓ 0, where ∅ 6= S ⊆ J .

Now, continuously differentiable function that are positive homogeneous are charac-
terized by Euler’s Homogeneous Theorem, see Wilson (1912).

11
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Theorem 2.17 (Euler’s Homogeneous Theorem)
Suppose that the function f : Rd+ → R is continuously differentiable, and let a ·b denote
the scalar product of a and b. Then, the function f is positive homogeneous of degree
n if and only if

nf(x) = x · ∇f(x) =
d∑

k=1
xk

∂

∂xk
f(x), x ∈ Rd+. (18)

It is now possible for us to apply Theorem 2.17 to λLS(w) as we have shown it is homo-
geneous of order one and as it is continuously differentiable by the Uniform Convergence
Condition. Doing so, it then follows that

λLS(w) = lim
q↓0

∑
k∈S

wk
∂λLS
∂wk

. (19)

It is important to realize that Assumption 2.16 allows us to interchange the limit and
the differential operator. By construction of λLS(w), we obtain, k ∈ S,

∂λLS
∂wk

= ∂

∂wk

(
lim
q↓0

CS(q wj , j ∈ S)
q

)
= lim

q↓0

1
q

∂

∂wk
CS(q wj , j ∈ S)

= lim
q↓0

∂

∂uk
CS(uj , j ∈ S)

∣∣∣∣
uj=q wj

= lim
q↓0

∂

∂uk
P (Uj ≤ uj , j ∈ S)|uj=q wj

= lim
q↓0

P (Uj ≤ qwj , j ∈ S−k| Uk = qwk).

The above expression for the partial derivatives of λLS(w) is thus given in terms of a
conditional probability of the vector U ∼ C, and allows us to rewrite (19) as

λLS(w) = lim
q↓0

∑
k∈S

wk P (Uj ≤ qwj , j ∈ S−k | Uk = qwk), w ∈ Rd+, (20)

for all ∅ 6= S ⊆ J .

In order to express an extreme value copula in terms of λLS , we need a relationship
linking λLS to the lower stable tail dependence function `L. This link, which is related to
the Sylvester-Poincaré sieve, is the one used by Joe et al. (2008) and can also be found
in Li and Wu (2013), that is,

`L(w) = lim
q↓0

1
q

(1− Ĉ(1− qw)) =
∑
∅6=S⊆J

(−1)|S|−1λLS(w). (21)

We notice that by leveraging Representation (20) of λLS , we can modify (21) and
manipulate the terms in order to get

`L(w) =
∑
∅6=S⊆J

(−1)|S|−1λLS(w) (22)

12
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=
∑
∅6=S⊆J

(−1)|S|−1
(

lim
q↓0

∑
k∈S

wk P (Uj ≤ qwj , j ∈ S−k| Uk = qwk)
)

(23)

= lim
q↓0

∑
∅6=S⊆J

(−1)|S|−1
(∑
k∈S

wk P (Uj ≤ qwj , j ∈ S−k| Uk = qwk)
)

= lim
q↓0

d∑
k=1

wk

(
1−

∑
S:|S|≥2

(−1)|S|−2P (Uj ≤ qwj , j ∈ S−k | Uk = qwk)
)

(24)

= lim
q↓0

d∑
k=1

wk P (Uj ≥ qwj , j ∈ J−k | Uk = qwk) (25)

= lim
q↓0

d∑
k=1

wk P (1− Uj ≤ 1− qwj , j ∈ J−k | 1− Uk = 1− qwk) (26)

= lim
q↓0

d∑
k=1

wkĈ(1− qwj , j ∈ J−k | 1− qwk) (27)

where going from (22) to (23) is achieved by (21) and goind from (24) to (25) requires
the use of the inclusion-exclusion formula. Doing so, we were able to generate two
representations for `L, that is, the standard version linked to (8), and its homogeneous
counterpart (27). It has to be pointed out that we are able to obtain the homogeneous
representation of Joe et al. (2008) in a much simpler way, see Section 6.

The theorem below is the formalized counterpart of Theorem 2.12 for copulas known
in the literature as lower extreme value copulas and upper extreme value copulas.

Theorem 2.18
Let C be the d-dimensional copula of (U1, . . . , Ud) with standard uniform margins.

1. The lower extreme value copula of C can be expressed as
CLEV (u) = exp(−`L(− logu)), u ∈ (0, 1]d,

where

`L(u) = lim
q↓0

d∑
k=1

wkĈ(1− qwj , j ∈ J−k | 1− qwk) = lim
q↓0

1
q

(1− Ĉ(1− qw)).

2. The upper extreme value copula of C can be expressed as
CUEV (u) = exp(−`U (− logu)), u ∈ (0, 1]d,

where

`U (u) = lim
q↓0

d∑
k=1

wkC(1− qwj , j ∈ J−k | 1− qwk) = lim
q↓0

1
q

(1− C(1− qw)).

We now introduce the concept of regular variation, as it will be highly useful in the
context of our work. In fact, most of our work in Section 6 and Section 7 will revolve
around the use of regular variation properties.
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2.4 Regular variation

The material contained in this section of the thesis is standard, but for readers inter-
ested in detailed discussions concerning univariate and multivariate regular variation,
we recommend Resnick (2007).

Without loss of generality, assume that X is non-negative componentwise, and as-
sume that the marginal survival functions (F̄j)j∈J are right tail equivalent, defined as
follows.

Definition 2.19
Consider the above setup. The marginal survival functions of a distribution are said to
be right tail equivalent if

F̄j(x)
F̄1(x)

= 1− Fj(x)
1− F1(x) → 1, as x→∞,

for all j ∈ J .

One is able to encode the extremal dependence structure of X in a so-called intensity
measure ν arising from multivariate regular variation, as presented in Definition 2.20.
This will be of high importance later on, as it will allow us to connect our work to the
concept of VaR in Section 6.

Definition 2.20
The distribution function H of X is said to be multivariate regularly varying with in-
tensity measure ν if

lim
t→∞

P (X ∈ tR)
P (X1 > t) = ν(R), R ⊂ Rd+,

where R is a relatively compact hyperrectangle, such that ν(∂R) = 0.

The measure ν is a Radon measure with homogeneity order −α, that is ν(tR) =
t−αν(R) where t > 0, for all relatively compact subsets R bounded away from the
origin. In the above context, α > 0 is known as the tail index.

The translation from multivariate regular variation to univariate regular variation is
easily done. In general, we say that a Borel measurable function f : R+ → R+ is
regularly varying at infinity with tail index α ∈ R if and only if

f(x) = xαL(x), x ≥ 0,

where L(t) is slowly varying at infinity, that is, a function satisfying

lim
t→∞

L(tx)/L(t) = 1, x > 0.

It is standard to write RVα for the set of regularly varying functions with tail index α,
and SV , or RV0, for the set of slowly varying functions.
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Remark 2.21
Regular variation of a function f can also be defined at any point x0 ∈ R by requiring
that f(x0 − x−1) is regularly varying at infinity.

There are two predominant theorems that are highly important and powerful. These
are used a lot in the context of extreme value theory, and even though they will not
be used explicitly in this thesis, we decide to briefly present them to highlight their
importance.

Theorem 2.22 (Karamata’s Theorem)
Let L ∈ SV be locally bounded on [x0,∞], for x0 > 0. Then

(i) If α < −1, then
∫∞
x tαL(t)dt ∼ −xα+1

α+1 L(x) as x→∞.

(ii) If α > −1, then
∫ x
x0
tαL(t)dt ∼ xα+1

α+1 L(x) as x→∞.

(iii) The function x 7→
∫∞
x t−1L(t)dt is slowly varying, if finite.

Theorem 2.23 (Monotone Density Theorem)
Let U(x) =

∫ x
0 u(y)dy where u is an ultimately monotone function. If U(x) ∼ cxαL(x)

as x→∞ with c ≥ 0, α ∈ R and L ∈ SV , then u(x) ∼ cαxα−1L(x) as x→∞.

Theorem 2.22 and Theorem 2.23 can be found in Bingham et al. (1989), along with
their respective proofs.

2.5 Measures of concordance

For various applications, see Ghoudi et al. (1998), it is often desirable to measure the
degree of association between random variables by the means of a simple real number.
This allows for an easier comparison between random variables.

These measures of association are mainly studied in the case where d = 2, although
multivariate extensions can be found in the literature. It goes without a doubt that one
of the most widely used measure of association is Pearson’s correlation coefficient, given
by

ρ = ρ(X1, X2) = Cov(X1, X2)√
Var(X1)

√
Var(X2)

,

where it is assumed that both X1 and X2 have finite second moment. See Stigler (1989)
for the history of the uprising of this coefficient.

In order to avoid well-known flaws of the correlation coefficient as a measure of as-
sociation (see Embrechts et al. (2002)), the two following measures have been intro-
duced.

Definition 2.24 (Spearman’s rho and Kendall’s tau)
Let Xj ∼ Fj , j ∈ {1, 2}, be continuously distributed random variables with bivariate
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copula C. Spearman’s rho is defined by

ρS = ρ(F1(X1), F2(X2)) = 12
∫

[0,1]2
uvdC(u, v)− 3,

which equals ρ(F1(X1), F2(X2)).

If (X ′1, X ′2) is an iid copy of (X1, X2), then Kendall’s tau is defined by

τ = E[sign{(X1 −X ′1)(X2 −X ′2)}] = 4
∫

[0,1]2
C(u, v)dC(u, v)− 1,

where sign(x) = 1(0 < x <∞)− 1(−∞ < x < 0)

3 Stable tail dependence functions of elliptical distributions

We find it important to shortly address the class of elliptical distributions as we will
encounter them again in Section 6. This class is one of the most widely used in modelling,
and can be defined via its stochastic representation

X
d= µ+RAU ,

where µ ∈ Rd is the location vector, R is a non-negative variable known as the radial
part, U ∼ U({x ∈ Rk : ‖x‖ = 1}) is independent of R, and A ∈ Rd x k. The dispersion
matrix of X is Σ = AA>. Note that the characteristic function of an elliptical random
vector X is

φX(t) = E[exp(it>X)] = eit
>µψ(tΣt),

where ψ is known as the characteristic generator.

For a vector X that is elliptically distributed, we write X ∼ Ed(µ,Σ, ψ). It is to be
noted that µ is unique, but both ψ and Σ are unique only up to a positive constant,
since for any c > 0, X ∼ Ed(µ,Σ, ψ) = Ed(µ, cΣ, ψ(·/c)).

We want to point out that the greek letter ψ is the standard symbol used in the
literature when referring to characteristic generators of elliptical distributions, and is
not to be confused with Archimedean generators, which will be an important part of our
work in Section 6.

3.1 Relevant properties of elliptical distributions

In this section, we start by highlighting relevant properties of elliptical distributions
that make this class of distributions one of the favorites of practioners in many fields of
applications.
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Property 3.1
Univariate marginal distribution functions and higher-dimensional margins of an ellipti-
cally distributed vector X are themselves elliptical.

Property 3.2
Elliptical distributions are symmetric around µ. That is, for X ∼ Ed(µ,Σ, ψ), it holds
that

P (X > a) = P (X ≤ 2µ− a), a ∈ Rd.

Property 3.3
Conditional distributions of elliptical distributions are themselves elliptical, but in gen-
eral with a different generator ψ̃. We note that some insights on the new characteristic
generator ψ̃ are provided in Embrechts et al. (2002).

That last property is so important that it can be formalized as a theorem, which is
very well known and can be found in many books. See Kotz and Nadarajah (2004) for
further details.

Theorem 3.4
For X ∼ Ed(µ,Σ, ψ) where X1 = (X1, . . . , Xk) and X2 = (Xk+1, . . . , Xd), µ =

(
µ1
µ2

)

and Σ =
(

Σ11 Σ12
Σ21 Σ22

)
, it holds that

X1|X2 = x2 ∼ Ek(µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 Σ21, ψ̃). (28)

Using the standard notation, we minimize the notational burden by defining the fol-
lowing two new variables

µ1,2 = µ1 + Σ12Σ−1
22 (x2 − µ2) and Σ11,2 = Σ11 − Σ12Σ−1

22 Σ21.

As pointed out in Joe et al. (2010), limq↓0 P (Uj ≥ qwj , j ∈ J−k | Uk = qwk) can be
expressed as Hk(wj/wk, j ∈ J−k), for 1 ≤ k ≤ d, where Hk is a (d − 1)-dimensional
subdistribution. Here, the interesting fact is that the limit disappears.

Through the use of Properties 3.1, 3.2, 3.3, Theorem 3.4 and the above comment, Joe
et al. (2008) are able to obtain a closed-form expression for the stable tail dependence
functions of the Smith and the multivariate t distributions. The simplicity of these
expressions, which will be discussed below, arise from the fact that elliptical distributions
are closed under various operations.

3.2 Multivariate t distribution and Smith model

The normal distribution is part of the elliptical distribution class, and is considered to be
the flag model of the family. For multiple reasons, the multivariate normal distribution is
very appealing in finance. Indeed, under the simplifying assumptions of Black & Scholes,
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one could consider a basket of assets for which every individual components’ returns
behave in a normal way. Within the same class, the t distribution is very interesting due
to its heavy tails, meaning that it is more prone to producing values that fall far from its
mean. This last property explains the uprising of its use in mathematical finance.
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Figure 5 Tail comparison of the Student’s t density with νred = 5, νgreen = 2, νblue = 1
(left) and the Normal density with σred = 0.7, σgreen = 1, σblue = 2 (right).

As explicitly shown in Joe et al. (2008), the stable tail dependence function of the
joint model of X = (X1, . . . , Xd) ∼ Td,υ,Σ for υ and Σ = (ρij) its degrees of freedom and
dispersion matrix, respectively, where Fj = Tυ for j ∈ J , is given by

`(w1, . . . , wd) =
d∑

k=1
wk Td−1,υ+1,Rk

(√
υ + 1

1− ρ2
jk

[
(wj/wk)−

1
υ − ρjk

]
, j ∈ J−k

)
, (29)

where

Rk =



1 . . . ρ1,k−1;k ρ1,k+1;k . . . ρ1,d;k
... . . . ...

...
...

...
ρ1,k−1;k . . . 1 ρk−1,k+1;k . . . ρk−1,d;k
ρ1,k+1;k . . . ρk−1,k+1;k 1 . . . ρk+1,d;k

...
...

...
... . . . ...

ρ1,d;k . . . ρk−1,d;k ρk+1,d;k . . . 1


,

where ρj,i;k = ρji−ρjkρik√
1−ρ2

ji

√
1−ρ2

ik

for j 6= k, i 6= k ∈ J .

Having an expression for the t extreme value copula, Joe et al. (2008) leverage on
the result of Hüsler and Reiss (1989) by letting ν → ∞ with ρij → 1, and under the
restriction that

ρij(ν) = 1− 2θ2
ij/ν,
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it was shown in Joe et al. (2008) that the stable tail dependence function of the Smith
model is given by

`(w) =
d∑

k=1
wk Φd−1,Rk

(
θ−1
jk + θjk

2 log
(
wk
wj

)
, j ∈ J−k

)
, (30)

where Rk is the correlation matrix whose (i, k)-th entry is given by

ρik =
1/θ2

ik + 1/θ2
jk − 1/θ2

ij

2/(θikθjk)

for i, j ∈ I\{k}. More will be adressed on Hüsler and Reiss (1989) in Section 5, and
in Section 6, we will comment on how one can use the results of Joe et al. (2008)
and Joe et al. (2010) to obtain the extreme value copula densities arising from their
representation.

4 The function for densities of extreme value copulas

In this section, we leverage the copula theory that was presented in Section 2. Our goal
here is to design and present a methodology to obtain a general formula for the density
of any d-dimensional extreme value copula. This is of utmost importance for statistical
applications such as estimating copula parameters.

The above goal is achieved by relying on Representation (10) of extreme value copulas,
that is,

C(u) = exp(−`(− log u1, . . . ,− log ud)), u ∈ (0, 1]d,

and by introducing Faà di Bruno’s Formula.

4.1 Faà di Bruno’s Formula

One formula that proves to be very useful in the context of our work is the one for
the d-th derivative of a composition of two functions f and g involving the differential
operator D. The formula is named after the mathematician Faà di Bruno, and can
be found in various forms, although it originally dates back to the work of Arbogast
(1800). We refer the reader to Craik (2005) for information and developments on these
various forms, as we focus on the use of one specific form of the formula that proves to
be consistent with our work setup.

The version of Faà di Bruno’s Formula we use holds regardless of whether the d vari-
ables are all distinct, all identical, or partitioned into several indistinguishable variables,
and states that

∂d

∂xd . . . ∂x1
f(g(x)) =

∑
π∈Π

f (|π|)(g(x)) ·
∏
B∈π

∂|B|g(x)∏
j∈B ∂xj
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=
∑
π∈Π

f (|π|)(g(x)) ·
∏
B∈π

DB g(x) (31)

where π runs through the set Π of all partitions of the set {1, . . . , d} and B ∈ π means
that B runs through the list of all elements of the partition π. Note that |π| denotes the
number of sets in π.

Here, x = (x1, . . . , xd) ∈ Rd. One might want to note that a further generalization of
this formula considers the case where g(x) is a vector valued function, and is due to Ma
(2009).

In order to avoid any confusion, we will finish this section of the thesis by properly
defining the notion of a partition of a set. This definition will also help us further on
when performing combinatorial manipulations.

Definition 4.1
Consider the set P = {P1, . . . , Pn}. P is a partition of the set Ω if and only if Pi 6= ∅ for
all i ∈ {1, . . . , n},

⋃n
i=1 Pi = Ω and Pj ∩ Pk = ∅ for all j 6= k ∈ {1, . . . , n}.

4.2 General formula for the density of an extreme value copula

In Section 2, we have shown that it is possible to express a multivariate extreme value
copula C in the form of (10), namely

C(u) = exp{−`(− log u1, . . . ,− log ud)}, u ∈ (0, 1]d.

The key here is to note that C can be expressed as a composition of functions of the
form C(u) = f(g(u)), where we have

f(x) = exp{−x}

and
g(u) = `(− log u1, . . . ,− log ud).

Therefore, using Faà di Bruno’s Formula (31) and letting x = − logu, we obtain an
expression for the density of an extreme value copula in the following way

c(u) = D C(u1, . . . , ud) = Df(g(u)) =
∑
π∈Π

f (|π|)(g(u)) ·
∏
B∈π

DBg(u)

=
∑
π∈Π

(−1)|π|f(g(u)) ·
∏
B∈π

(
DB`(x) ·

∏
j∈B

∂xj
∂uj

)
,

= f(g(u))
∑
π∈Π

(−1)|π| ·
∏
B∈π

(
DB`(x) ·

∏
j∈B
− 1
uj

)

= C(u)
∑
π∈Π

(−1)|π| ·
(∏
B∈π

∏
j∈B
− 1
uj

) ∏
B∈π

DB`(x)
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5 Applications in the bivariate case

= C(u)
∑
π∈Π

(−1)|π| ·
( d∏
j=1
− 1
uj

) ∏
B∈π

DB`(x)

= C(u)
Π(u)

∑
π∈Π

(−1)|π|+d
∏
B∈π

DB`(x) (32)

= C(u)
Π(u)

d∑
m=1

∑
π:|π|=m

(−1)m+d ∏
B∈π

DB`(x). (33)

Formula (33) is computationally intensive, as the total number of partitions of an n-
element set is the Bell number Bn, where the first Bell number is B0 = 1, and further
numbers are defined via the recursion

Bn+1 =
n∑
k=0

(
n

k

)
Bk.

In order to maintain a nice order amongst the set {π ∈ Π}, we chose to rewrite (32) into
(33) using the relationship

∑
π∈Π =

∑
π:|π|=m, as it provides us with a more tracktable

result. This will become especially important for implementation purposes.

So, by relying on the stable tail dependence function representation of extreme value
copulas, and by using Faà di Bruno’s Formula, we were able to provide a general for-
mula for the density of extreme value copulas, which we summarize in the theorem
below.

Theorem 4.2 (Main Theorem)
If the derivatives of ` exist and are well-defined, the density of a d-dimensional extreme
value copula C is of the form

c(u) = C(u)
Π(u)

d∑
m=1

(−1)d−m
∑

π:|π|=m

∏
B∈π

DB`(x)|x=− log(u) , (34)

where u ∈ (0, 1)d, Π(u) is the independence copula, and

(i) π runs through the set Π of all partitions of the set J = {1, . . . , d},

(ii) B ∈ π means that B runs through the list of all elements of the partition π.

We apply Theorem 4.2 in Sections 5, 6 and 7. In the next section, we rely on the
Pickand’s dependence function representation of bivariate extreme value copulas.

5 Applications in the bivariate case

A lot of work can be found on bivariate extreme value copulas, see Capéraà et al. (1997)
and Genest et al. (2011). Therefore, this section of the thesis aims at providing the
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5 Applications in the bivariate case

reader with an application of Theorem 4.2 in the bivariate case. This will allow us to
better understand and visualize the objects we are working with, and we will be able
to leverage the insights from this section and use them as stepping stones for further
developments in Sections 6 and 7.

Before we go any further, the following observation must be made. Consider any pair
(X1, X2) having a bivariate extreme value distribution and marginal distributions F1
and F2. By defining the mapping

T (x) = −1/ ln x, x ∈ (0,∞],

we see that T (x) is strictly increasing for x ∈ (0, 1]. Using the fact that copulas are
invariant under strictly increasing mappings, it follows that the pair (X1, X2) has the
same copula as the pair (−1/ lnF1(X1),−1/ lnF2(X2)).

Using the above in combination with Theorems 2.3 and 2.13, we get that the distri-
bution of the modified pair can be written as

H(x, y) = exp
[
−
(1
x

+ 1
y

)
A

(
y

x+ y

)]
. (35)

5.1 Bivariate density

We know from Equation (14) that in the bivariate case, it holds that

`(u1, u2) = (u1 + u2)A
(

u1
u1 + u2

)
.

Now, it trivially follows that the only two partitions of Π = {1, 2} are π1 = {{1}, {2}}
and π2 = {{1, 2}}. Letting q = u1

u1+u2
, we have the following partial derivatives:

∂q

∂u1
= u2

(u1 + u2)2 ,
∂q

∂u2
= − u1

(u1 + u2)2 .

As mentionned before, the key elements arising from the application of Faà di Bruno’s
Formula are the building blocks given by DB`(w). Letting u = (u1, u2), we are now
able to compute these blocks with the help of the partial derivatives found above.

For B = {1}, we have

∂`(u)
∂u1

= A(q) + (u1 + u2)∂A(q)
∂q

∂q

∂u1
= A(q) + (1− q)A′(q).

For B = {2}, we have

∂`(u)
∂u2

= A(q) + (u1 + u2)∂A(q)
∂q

∂q

∂u2
= A(q)− qA′(q).
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5 Applications in the bivariate case

For B = {1, 2}, we have

∂2`(u)
∂u1∂u2

= −A′′(q)(1− q) u1
(u1 + u2)2 .

Now, with the above building blocks at hand, one can apply Theorem 4.2 for d = 2 and
obtain the expression for any bivariate extreme value copula with Pickand’s dependence
function A.

c(u1, u2) = C(u1, u2)
u1u2

[(
∂`(x)
∂x1

∂`(x)
∂x2

)
− ∂

2`(x)
∂x1∂x2

]
x=(− log u1,− log u2)

(36)

In order to use Formula (36), one has to explicitly know the Pickand’s dependence func-
tion associated to the bivariate copula being considered. Pickand’s dependence functions,
introduced by Pickands (1981) have been extensively covered in modern literature, see
Bücher et al. (2011), and are used in many applications. Therefore, we present in the
next section a general method to compute it for various bivariate models.

5.2 Computing the Pickand’s dependence function of a bivariate copula

Pickand’s dependence functions arise in various contexts when studying copulas, whether
it is when trying to compute Kendall’s tau, or when creating a scheme such as the
Ghoudi-Khoudraji-Rivest algorithm, presented in Ghoudi et al. (1998). In multiple
cases, one can compute the function A using the technique we will present below.

To present the method, we show the steps that need to be performed by applying
our technique to an example model, which we have chosen to be the bivariate beta
distribution. This example will serve as a guideline for any other models the reader
might consider, and we will simply state our results for other famous bivariate models
without showing our calculations.

5.2.1 Bivariate beta distribution

The beta distribution is due to Tawn and Coles (1994), and it can be written as fol-
lows

H(x, y) = exp
[
−1
x

{
1−B

(
q1 + 1, q2; x q1

x q1 + y q2

)}
− 1
y

{
B

(
q1, q2 + 1; x q1

x q1 + y q2

)}]
,

(37)

where q1, q2 > 0, x, y ∈ [0, 1] and B(α, β; ρ) = Γ(α+β)
Γ(α)Γ(β)

∫ ρ
0 w

α−1(1 − w)β−1dw, which is
a normalized incomplete beta distribution. It is interesting to know that the bivariate
beta distribution is widely used in the modeling of hydrological variables, see Murshed
et al. (2012).
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5 Applications in the bivariate case

By equating (37) with (35), and taking the logarithm on each side, we can divide each
side of the equality by −

(
1
x + 1

y

)
, and after simple algebraic manipulations, obtain

A

(
y

x+ y

)
= y

x+ y

{
1−B

(
q1 + 1, q2;

x
x+y q1

x
x+y q1 + y

x+y q2

)}

+ x

x+ y

{
B

(
q1, q2 + 1;

x
x+y q1

x
x+y q1 + y

x+y q2

)}
.

Now, letting q = y
x+y , it follows that 1− q = x

x+y , and we finally obtain

A(q) = q

{
1−B

(
q1 + 1, q2; (1− q) q1

(q2 − q1)q + q1

)}
+ (1− q)

{
B

(
q1, q2 + 1; (1− q) q1

(q2 − q1)q + q1

)}
.

Summarizing the three major steps of the procedure used above, we infer the following
steps to recover the Pickand’s dependence function A from a given bivariate model.

1. Equate the bivariate distribution H with the Pickand’s dependence function Rep-
resentation (35).

2. Take the logarithm on each side of the obtained equality and perform the necessary
algebraic manipulations.

3. Set q = y
x+y and simplify the equation.

With the above function A, one is now able to use Formula (36), as it is not difficult
to compute A′ and A′′ using standard calculus. By using Formula (36) and any function
A obtained through the above procedure, we can write a compact R code generating
various plots of bivariate extreme value copula densities.

5.2.2 Bivariate asymmetric logistic distribution

The bivariate asymmetric logistic extreme value distribution is due to Tawn (1988) and
is frequently found in the survival analysis literature. The model is given by

Hψ1,ψ2(x, y) = exp

−(1− ψ1)
x

− (1− ψ2)
y

−
[(

ψ1
x

)θ
+
(
ψ2
y

)θ]1/θ
 ,

where 0 ≤ ψ1, ψ2 ≤ 1 and θ > 1. Using our procedure described above, we find that its
associated Pickands dependence function is given by

A(q) = (ψ2 − ψ1)q − ψ2 + 1 +
[
(q ψ1)θ + (ψ2(1− q))θ

]1/θ
.
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Figure 6 Density (left) and contour plot (right) of a bivariate beta copula with beta
parameters q1 = 2, q2 = 5
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Figure 7 Density (left) and contour plot (right) of a bivariate asymmetric logistic copula
with asymmetry parameters ψ1 = 0.3, ψ2 = 0.7 and θ = 3
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5.2.3 Bivariate asymmetric negative logistic distribution

The model for the bivariate asymmetric negative logistic distribution is given by

Hψ1,ψ2(x, y) = exp

−1
x
− 1
y
−
[(

ψ1
x

)θ
+
(
ψ2
y

)θ]1/θ
 ,

where 0 ≤ ψ1, ψ2 ≤ 1 and θ < 0. An application of the presented procedure yields that
the Pickands dependence function of the model is defined by

A(q) = 1−
[
(q ψ1)θ + (ψ2(1− q))θ

]1/θ
.

This model is similar in structure to the one introduced by Tawn when ψ1 = ψ2 = 1,
giving a symmetric version of the family. The limiting cases θ ↑ 0 and θ → −∞
respectively generate the commonotonicity and independence models.
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Figure 8 Density (left) and contour plot (right) of a bivariate asymmetric negative lo-
gistic copula with asymmetry parameters ψ1 = 0.8, ψ2 = 0.2 and θ = 3

5.2.4 Hüsler-Reiss distribution

The Hüsler-Reiss model, see Hüsler and Reiss (1989), is used in various applications be-
yond the field of finance, such as the modelling of spatial variation of extreme storms, see
Smith (1990). The model arises as Hüsler and Reiss (1989) let the correlation coefficient
ρ of the bivariate Gaussian copula be dependent on the sample size n, that is, ρ = ρn,
such that ρn → 1 as n→∞. If

(1− ρn) logn → λ2 ∈ [0,∞],
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5 Applications in the bivariate case

then the bivariate model is given by

H(x, y) = exp
{
−1
y

Φ
(
s

(
x

x+ y

))
− 1
x

Φ
(
a− s

(
x

x+ y

))}
,

where s(w) = {a2+2 log(w)−2 log(1−w)}
2a , a = 2λ and Φ is a N(0, 1) distribution function.

Its associated Pickands dependence function is

A(q) = (1− q) Φ
(
a

2 + log
(1− q

q

) 1
a

)
+ q Φ

(
a

2 + log
(

q

1− q

) 1
a

)
.
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Figure 9 Density (left) and contour plot (right) of a bivariate Hüsler-Reiss copula with
λ = 2

5.2.5 Bivariate circular distribution

This distribution is due to Coles andWalshaw (1994), but it arises from the previous work
of Smith on the topology of circles. Coles and Walshaw used the circular distribution
for directional modelling of extreme wind speeds. The model is given by

H(x, y) = exp
{
−
∫
B f0(w, θ, ξ)dw

x
−
∫
B̂ f0(ŵ,−θ, ξ)dŵ

y

}
where θ2 ≥ θ1, θ2 − θ1 ≤ π and θ = (θ1 − θ2)/2. Furthermore,

f0(w, θ, ξ) = 1
2 π I0(ξ) exp{ξ cos(w − θ)},

27
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and
B =

{
w ∈ (0, 2π] : sin(w) > log(w)− log(1− w)

2 π sin(θ)

}
, B̂ = (0, 2π]\B.

Its associated Pickands dependence function is

A(q) = q

∫
B
f0(w, θ, ξ)dw + (1− q)

∫
B̂
f0(ŵ,−θ, ξ)dŵ.

5.2.6 Asymmetric mixed model

The asymmetric mixed distribution was introduced by Tawn (1988). It is comprehen-
sively discussed in Klüppelberg and May (2006), where a full characterization of polyno-
mial models by means of their dependence function is given. The model for the bivariate
asymmetric mixed model distribution is given by

H(x, y) = exp
{
−
(1
x

+ 1
y

)
+ (2β + α)x+ (β + α)y

(x+ y)2

}
,

where β ≥ 0, β + 2α ≤ 1 and β + 3α ≥ 0.

It is interesting to note that the strength of dependence increases when α is fixed
and β increases, and that complete dependence cannot be obtained. Independence is
obtained when both parameters are zero. Its associated Pickands dependence function
given by

A(q) = αq3 + βw2 − (α+ β)q + 1.
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Figure 10 Density (left) and contour plot (right) of a bivariate mixed model copula with
asymmetry parameters α = 0.4, β = 0.1
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6 Constructing extreme value copula densities from given copulas

6 Constructing extreme value copula densities from given
copulas

It is important to mention that not every copula C will have well-defined lower or upper
stable tail dependence functions. Focusing on copulas for which such functions exist,
we realize through an application of Theorem 4.2 that we are now in the position to
obtain the formula for the density of an extreme value copula constructed from any
initial copula C with well-defined `L or `U .

We proceed as follows: Given a copula C, we compute its stable tail dependence
function `, if well-defined, using Theorem 2.18 and then we apply Theorem 4.2 using
as inputs C and its associated `. The approach of Joe et al. (2008) can be seen as a
special case of the procedure based on C being the EVC of the multivariate t or the
Smith model. The approach of Genest and Rivest (1989) for C being Archimedean
under certain regular variation assumptions, which will be discussed later, will lead to
an explicit form of new EVC density constructed from Archimedean copulas.

Before going any further, we first note a nice simplifying result arising from radial
symmetry

6.1 Radially symmetric copulas

The observation of interest is that if the initial copula C is radially symmetric, we can
obtain a nice relationship between `L and `U . We first introduce the concept of radial
symmetry for vectors and copulas, see Nelsen (2006) p.36.

Definition 6.1
A random vector X is called radially symmetric about a if X − a d=a−X.

Proposition 6.2
Let X ∼ H with continous margins Fj for j ∈ J , copula C and survival copula Ĉ. If
Xj is symmetric around aj for j ∈ J , then X is radially symmetric about a if and only
if C = Ĉ.

Proof. See Nelsen (2006), p.37. The proof addresses the bivariate case, but can easily
be extended to higher dimensions.

By Proposition 6.2, a copula is radially symmetric if and only if C = Ĉ. In this case,
the lower and upper stable tail dependence functions are equal, that is,

`L(w) = `U (w). (38)

This statement might not be surprising, but we deem it important to highlight as various
commonly used copulas are radially symmetric, such as elliptical copulas. Another
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6 Constructing extreme value copula densities from given copulas

trivial example would be the independence copula Π(u), as well as the Fréchet-Hoeffding
bounds M and W .

Having just mentioned elliptical copulas as flag examples of radially symmetric copulas,
we deem it appropriate to follow-up on the work of Joe et al. (2008) and Joe et al. (2010)
presented in Section 3. By relying on the homogeneous representation of the stable tail
dependence function of a copula, they have obtained explicit representations of ` for
both the Smith model and the multivariate t distribution.

With their expression for `, we can apply Theorem 4.2, where the only non trivial
terms are DB`(w). Investigating these terms by applying the chain rule, we see that in
the case of the Smith model, we have

DB`(w) =
d∑

k=1
wk DBΦd−1,Rk

(
δ−1
jk + δjk

2 log
(
wk
wj

)
j ∈ J−k

)

+
∑
k∈B

DB\{k}Φd−1,Rk

(
δ−1
jk + δjk

2 log
(
wk
wj

)
j ∈ J−k

)
,

and in the case of the multivariate t, we have

DB`(w) =
d∑

k=1
wk DBTd−1,υ+1,Rk

(√
υ + 1

1− ρ2
jk

[
(wj/wk)−

1
υ − ρjk

]
, j ∈ J−k

)

+
∑
k∈B

DB\{k}Td−1,υ+1,Rk

(√
υ + 1

1− ρ2
jk

[
(wj/wk)−

1
υ − ρjk

]
, j ∈ J−k

)
.

The above expressions are fairly non-trivial to compute, but highly similar in structure,
as they were based on the homogeneous form of the stable tail dependence function.
What we conclude from the above is that this form is interesting to investigate EVCs
arising from certain models, as you can leverage knowledge of conditional distributions,
but they are not useful in the context of our work, that is, the application of Theorem
4.2.

6.2 General copulas

As we will need to access the partial derivatives of the `L and `U functions generated by
a copula C, we start by investigating the limiting behaviour of limq↓0(1−C(1− qw))/q
before performing differentiation.

Remark 6.3
In the case where one has knowledge about the initial copula C, and remembering that
we are working under the Uniform Convergence Condition, it is tempting to say that

DB`U (w) = DB

(
lim
q↓0

1− C(1− qw)
q

)
= − lim

q↓0

1
q
DBC(1− qw), (39)
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6 Constructing extreme value copula densities from given copulas

but the reader must be warned. Interchanging the limit and the differential operator
early in the process will result in a loss of information, as the impact of 1/q as q ↓ 0 is
drastic. We must take the limit first, and then perform differentiation.

Taking Remark 6.3 into consideration, we realize that a combination of L’Hospital’s
rule and the multivariate chain rule could provide us with a better expression, that
is,

DB

(
lim
q↓0

1− C(1− qw)
q

)
H= DB

(
− lim

q↓0

∂C(1− qw)
∂q

)
= DB lim

q↓0
∇C|>1−qw

·w,

where ∇C|1−qw is the gradient of C evaluated at 1− qw. However, the latter is neither
more simple nor more explicit than our starting point, and in fact, we recognize the above
expression to be the homegenous form of the stable dependence function! Basically, we
have recovered the expression derived in Joe et al. (2008), but with much less work.

Now, one has to realize that we are looking at properties in the far tails of the cop-
ula, which links directly to the concept of regular variation we introduced in Section 2.
Therefore, we look into classes of copulas that can exhibit nice regular variation prop-
erties, such as the class of Archimedean copulas. It is to be noted that from this section
onwards, we will use ` := `U to shorten the notation.

6.3 Archimedean copulas

A specific class of copulas that is of high interest is the class of Archimedean copu-
las. They are interesting to us as the family contains several well-known members, see
Table 1, and its explicit construction makes it convenient to work with. In order to
present Archimedean copulas, we use the definition provided in McNeil and Nešlehová
(2009).

Definition 6.4
A non-increasing and continuous function ψ : [0,∞]→ [0, 1] such that ψ(0) = 1, ψ(∞) =
limx→∞ ψ(x) = 0 and ψ is strictly decreasing on [0, inf{x : ψ(x) = 0}) is called an
Archimedean generator with inverse ψ−1 : (0, 1]→ [0,∞) where ψ−1(0) = inf{x : ψ(x) =
0} by convention. A (d-dimensional) copula C is called Archimedean if it permits the
representation

C(u) = ψ(ψ−1(u1) + . . .+ ψ−1(ud)) = ψ(t(u)), u ∈ [0, 1]d, (40)

where

t(u) =
d∑
j=1

ψ−1(uj).

A generator is said to be completely monotone if (−1)kψ(k)(t) ≥ 0 for all k ∈ N0, t ∈
(0,∞), and we denote the set of all completely monotone Archimedean generators by
Ψ∞.
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Remark 6.5
Many authors define Archimedean copulas in terms of φ = ψ−1, and refer to φ as the
generator. Although it appears to be a simple matter of convention, Definition 6.4 turns
out to be more natural for studying the structure of Archimedean copulas.

Family Parameter Generator ψ(t) Inverse ψ−1(t)
Gumbel θ ∈ [1,∞) exp(−t1/θ) (− log(t))θ
Clayton θ ∈ (0,∞) (1 + t)−1/θ t−θ − 1
AMH θ ∈ [0, 1) (1− θ)(et − θ)−1 log(1− θ(1− t))− log(t)
Joe θ ∈ [1,∞) 1− (1− e−t)1/θ − log(1− (1− t)θ)

Frank θ ∈ (0,∞) − log(1− (1− e−θ)e−t)/θ − log(1− e−θt) + log(1− e−θ)

Table 1 Well-known one-parameter Archimedean generators ψ with corresponding in-
verse generators ψ−1.

6.3.1 Foundations for our work

As previously mentioned, we will be interested in Archimedean copulas satisfying certain
regular variation properties. This has been discussed in Genest and Rivest (1989), on
which we base all the work performed further in this thesis. It is to be noted that from
now on, the notation ψ−1(1− t) ∈ RVα is to be interpreted as ψ−1 is regularly varying
at 1 with tail index α. The next proposition is at the core of the work presented by
Genest and Rivest (1989).

Proposition 6.6
Let C = ψ(t(u)) be an Archimedean copula where the inverse generator ψ−1(1−t) ∈ RVα
for α > 1. Then, the stable tail dependence function ` arising from C is given by

`(w) = (
d∑
j=1

wαj )1/α.

The above can be understood as such; distributions whose copula is an Archimedean
copula with Representation (40) and inverse generator satisfying ψ−1(1 − t) ∈ RVα for
α > 1 belongs to the MDA of the Gumbel distribution.

In order to better understand Proposition 6.6, we present a proposition commonly
used in the literature, see Larsson and Nešlehová (2011). We prove this proposition
thoroughly on our own, as it will be a key for our further developments in Section
7.

Proposition 6.7
Let ψ be an Archimedean generator. Assume that ψ−1(1− q) ∈ RVα for α > 1, that is

lim
q↓0

ψ−1(1− qw)
ψ−1(1− q) = wα.
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Then it follows that
lim
q↓0

1− ψ(qw)
1− ψ(q) = w1/α.

Proof. The inverse of f(w) = wα is f−1(w) = w1/α and both functions are continuous
and monotone. Now, we define the function fq(w) = ψ−1(1−qw)

ψ−1(1−q) . By the properties
of Archimedean generators, we know that fq(w) is continuous in both q and w, and
monotone in w. By construction, it follows that

lim
q↓0

fq(w) = f(w) = wα.

An application of Theorem 1.5.12 in Bingham et al. (1989) implies that

lim
q↓0

f−1
q (w) = f−1(w) = w1/α.

The inverse of f−1
q (w) can be obtained via,

w =
ψ−1(1− qf−1

q (w))
ψ−1(1− q) ⇔ ψ(w(ψ−1(1− q)) = 1− qf−1

q (w))

⇔ f−1
q (w) = 1− ψ(w(ψ−1(1− q))

q
.

We now have that

w1/α = lim
q↓0

f−1
q (w) = lim

q↓0

1− ψ(w(ψ−1(1− q))
q

= lim
q↑1

1− ψ(w(ψ−1(q))
1− q ,

and since q ↑ 1 behaves similarly as ψ(q) when q ↓ 0 , we let q := ψ(q), to finally obtain

w1/α = lim
q↓0

1− ψ(qw)
1− ψ(q) ,

which proves the claim we were interested in.

To investigate the tail index α of an inverse generator ψ−1 that is regularly varying at
one, we suggest applying the definition of regular variation as presented in Remark 2.21
and subsequently using l’Hospital’s rule with respect to q. For example, model 4.2.14 in
Nelsen (2006) has ψ−1(t) = (t−1/θ − 1)θ for θ ∈ [1,∞) and yields

lim
q↓0

ψ−1(1− qw)
ψ−1(1− q) = lim

q↓0

((1− qw)−1/θ − 1)θ

((1− q)−1/θ − 1)θ
=
(

lim
q↓0

(1− qw)−1/θ − 1
(1− q)−1/θ − 1

)θ
H= wθ,

so α = θ ∈ [1,∞), which confirms that this copula is applicable in the framework of
Genest and Rivest (1989).
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6 Constructing extreme value copula densities from given copulas

Note that one can construct and sample new Archimedean copulas by considering
certain generator transforms to construct new generators ψ̃ from generators ψ ∈ Ψ∞,
see Hofert (2010). One such transformation leads to tilted generators, that is,

ψ̃(t) = ψ(t+ h)
ψ(h) , h ≥ 0,

see Hofert (2010) p.104. Another transformation, which is of high interest to us, leads
to tilted outer power generators, that is,

ψ̃(t) = ψ{(cθ + t)1/θ − c}, (41)

for c > 0, θ ∈ [1,∞), see Hofert (2010) p.111. The latter transformation yields a proper
generator because the function (cθ + t)1/θ − c is non-negative and has a completely
monotone derivative. The composition of two completely monotone functions is itself
monotone, so ψ̃ ∈ Ψ∞. In the case where c = 0, this transformation then yields the com-
monly called outer power transformation. From (41), one can easily obtain that

ψ̃−1(t) = (ψ−1(t) + c)θ − cθ, t ∈ (0, 1].

The latter structure is interesting to us, because when c = 0, we have that

ψ̃−1(t) = (ψ−1(t))θ, t ∈ (0, 1],

which means that if ψ−1(1 − t) ∈ RVα, it follows that for transformation (41) with
c = 0,

lim
q↓0

ψ̃−1(1− qw)
ψ̃−1(1− q)

=
(

lim
q↓0

ψ−1(1− qw)
ψ−1(1− q)

)θ
= wαθ,

which implies that ψ̃−1 is regularly varying at one with tail index α̃ = αθ, that is,
ψ̃−1(1− t) ∈ RVα̃. In order to be able to apply the result of Genest and Rivest (1989) to
the outer power generator ψ̃, we simply need to have α > 1/θ to ensure that α̃ > 1.

This is particularly interesting as many generators from Table 4.1 of Nelsen (2006) (see
p.116) have inverse generators regularly varying at one with tail index exactly equal to
one. The outer power transform discussed above allows us to obtain a higher tail index
for these generators, making them applicable in the framework of Genest and Rivest
(1989).

By combining (8) and Theorem 2.18 from Section 2, we have shown that we can
represent the stable tail dependence function as

lim
q↓0

1
q

(1− C(1− qw)) = `(w),

and by combining the above with the result of Proposition 6.6, it follows that for any
Archimedean copula C with inverse generator ψ−1(1 − t) ∈ RVα for α > 1, we have
that

lim
q↓0

1
q

(1− C(1− qw)) = `(w) = (
d∑
j=1

wαj )1/α, (42)
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6 Constructing extreme value copula densities from given copulas

where the right-hand side of (42) follows from Genest and Rivest (1989) and has a simple
structure. Therefore, one can use an iteration technique to apply the differential operator
DB, and verify that for any set ∅ 6= B ⊆ J , we have

DB`(w) = αwα−1
j1

(
∂|B|−1∏

j∈B\{j1} ∂wj
(wα1 + . . .+ wαd )1/α−1

) 1
α

= α2wα−1
j1

wα−1
j2

(
∂|B|−2∏

j∈B\{j1,j2} ∂wj
(wα1 + . . .+ wαd )1/α−2

) 1
α

( 1
α
− 1

)
= . . .

= α|B|(
∏
j∈B

wj)α−1(
d∑
j=1

wαj )1/α−|B|
|B|−1∏
b=0

( 1
α
− b
)

= α|B|(
∏
j∈B

wj)α−1(
d∑
j=1

wαj )1/α−|B|(1/α)|B| , (43)

where (1/α)|B| =
∏|B|−1
b=0 ( 1

α − b) is the falling factorial function evaluated at x = 1/α.
Formula (43) is very convenient to manipulate, and we notice that for every partition π
of {1, . . . , d}, it follows that

∏
B∈π

DB`(w) =
∏
B∈π

α|B|
∏
B∈π

(
∏
j∈B

wj)α−1 ∏
B∈π

(
d∑
j=1

wαj )1/α−|B| ∏
B∈π

(1/α)|B|

= αd(
d∏
j=1

wj)α−1(
d∑
j=1

wαj )
∑

B∈π( 1
α
−|B|) ∏

B∈π
(1/α)|B|

= αd(
d∏
j=1

wj)α−1(
d∑
j=1

wαj )|π|/α−d
∏
B∈π

(1/α)|B| . (44)

By plugging formula (44) in Theorem 4.2, we obtain a formula for the density c∗ of an
extreme value copula constructed from any Archimedean copula C with inverse generator
ψ−1 being regularly varying at one with tail index α > 1. The expression of c∗ is as
follows

c∗(u) = C(u)
Π(u)

d∑
m=1

(−1)d−mαd(
d∏
j=1

wj)α−1(
d∑
j=1

wαj )m/α−d
∑

π:|π|=m

∏
B∈π

(1/α)|B| , (45)

but we may obtain a more convenient version of the above expression. First, we de-
fine

aαd,m(w) = αd(
d∏
j=1

wj)α−1(
d∑
j=1

wαj )m/α−d.

Then, we investigate the rightmost term in (45). Let i = (i1, . . . , id) ∈ Nd0 and define
Pd,m as

Pd,m =
{
i ∈ Nd−m+1

0 :
d−m+1∑
j=1

ij = m,
d−m+1∑
j=1

jij = d

}
.
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6 Constructing extreme value copula densities from given copulas

Thinking of ij as the number of blocks in a given partition π with |π| = m for which
|B| = j, B ∈ π, it follows that we can write

∑
π:|π|=m

∏
B∈π

(1/α)|B| =
∑

i∈Pd,m

d−m+1∏
j=1

(1/α)ij
j
,

as by construction, m ≤ d immediately implies ij = 0 for all j > d−m+ 1.

In our case, the order of the summands in Pd,m is irrelevant, so identifying the tuples
i composing Pd,m directly relates to solving a problem known in combinatorial math-
ematics as the partition problem of the positive integer d − m + 1; we briefly remark
that in the case the order of the summands is relevant, the problem is referred to as the
composition of a positive integer d.

For every 1 ≤ m ≤ d and possible tuple i ∈ Nd−m+1
0 satisfying the partition of the

integer d−m+ 1 problem, there are exactly( d
i1,...,id−m+1

)
∏d−m+1
j=1 j!ij

= d!∏d−m+1
j=1 ij ! j!ij

tuples having the same composing elements i1, . . . , id−m+1. The reason we divide the
multinomial coefficient by

∏d−m+1
j=1 j!ij is to account for the fact that permutations within

a given tuple should not be counted multiple times.

We provide the reader with Example 6.8 to illustrate the concept explained above, as
the problem is best understood with a visual example.

Example 6.8
Consider the problem for m = 4. Then, solving the partition of 4 problem as presented
in its full generality yields the following,

m = 1 m = 2 m = 2 m = 3 m = 4
|B1| 4 3 2 2 1
|B2| 0 1 2 1 1
|B3| 0 0 0 1 1
|B4| 0 0 0 0 1

For example, consider m = 3. There are exactly
( 4
2,1,1

)
/2! = 15 ways to partition a

set of size 4 into two sets of size 1 and one set of size 2. We divided by (2!) because
there are exactly two blocks of size one in the partition. To confirm our reasoning, we
split possible allocations along the number ways to partition d objects into m non-empty
subsets, which is equal to the Stirling number of the second kind denoted S(d,m), and
sum over all m. (

4
4

)
︸ ︷︷ ︸

= S(4, 1)

+
(

4
3, 1

)
+
( 4
2,2
)

2!︸ ︷︷ ︸
= S(4, 2)

+
( 4
2,1,1

)
2!︸ ︷︷ ︸

= S(4, 3)

+
( 4
1,1,1,1

)
4!︸ ︷︷ ︸

S(4, 4)

= 15,

36



6 Constructing extreme value copula densities from given copulas

This shows that our counting technique is correct.

The partition problem of d − m + 1 can be thought of as allocating d distinguishable
balls into m indistinguishable bins, where the number of balls per bin is fixed.

So, we have shown that

∑
π:|π|=m

∏
B∈π

(1/α)|B| =
∑
Pd,m

d!∏d−m+1
j=1 ij !

d−m+1∏
j=1

((1/α)j
j!ij

)ij
.

The above formula is useful, as we recognize it to be exactly the so-called Bell polynomial
Bd,m(x1, . . . , xd−m+1) evaluated at (x1, . . . , xd−m+1) = ((1/α)1 , . . . , (1/α)

d−m+1), that
is, ∑

Pd,m

d!∏d−m+1
j=1 ij !

d−m+1∏
j=1

((1/α)j
j!ij

)ij
= Bd,m((1/α)1 , . . . , (1/α)

d−m+1). (46)

Leveraging on the first item of Proposition 3.2 presented in Hofert and Pham (2013), we
have that for all m ∈ {0, . . . , d},

Bd,m((x)1y
x−1, . . . , (x)d−m+1y

x−(d−m+1)) = yxm−d
d∑

l=m
s(d, l)S(l,m)xl,

where s(d, l) is the Stirling number of the first kind. From this statement, we see that
letting y = 1 and x = 1/α in the above yields the right-hand side of (46). With this
explicit and quantifiable expression of the Bell polynomial, we are now in a position to
formulate the theorem below.

Theorem 6.9
Let C(u) = ψ(t(u)) be an Archimedean copula, and assume that the inverse generator
ψ−1(1− t) ∈ RVα with tail index α > 1. Then,

c∗(u) = C(u)
Π(u)

d∑
m=1

(−1)m−daαd,m(− logu)Bd,m((1/α)1 , . . . , (1/α)
d−m+1), u ∈ (0, 1)d,

(47)
describes the density of a d-dimensional extreme value copula.

Summarizing, we obtained (47), which is the density of an extreme value copula arising
from an Archimedean copula that is not an extreme value copula itself, but falls in
the MDA of the Gumbel. We now tackle the numerical implementation of Formula
(47).

6.3.2 Numerical evaluation

For statistical inference, one aims at using the likelihood function in order to paramet-
rically estimate the parameter vector θ ⊆ Θ ∈ Rd of the considered model. For many
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6 Constructing extreme value copula densities from given copulas

applications, it is more convenient to work in terms of the log-likelihood function, as it
will achieve its maximum value at the same points as the likelihood function itself due
to the monotonicity of the logarithm function.

As such, one often sees theoretical uses of the log-densities, but when dealing with
numerical implementation, one can not always numerically evaluate the density and
take the logarithm afterwards. Hence, we suggest an alternative method to access the
log-density.

The first thing one wants to do is to look at the signs of the constituants of our
equation. One can easily show that sign(C(u)/Π(u)) = 1. For each j ∈ {1, . . . , d}, we
have uj ∈ (0, 1), and it follows that − log uj > 0. Moreover, αd > 0 since α > 1, and it
follows that sign aαd,m(− logu) = 1.

Since the remaining Bell polynomial term involves multiple falling factorial functions
evaluated at 1/α for α > 1, there is potential for the remaining term to be nega-
tive. Recalling the initial structure of the falling factorial function, it is clear that
sign(1/α)|B| = (−1)|B|−1 for α > 1, and so for π ∈ Π such that |π| = m, we get

sign
∏
B∈π

(1/α)|B| = (−1)

m∑
i=1
|Bi|−1

= (−1)d−m.

From here, it becomes obvious that

signBd,m((1/α)1 , . . . , (1/α)
d−m+1) = sign

∑
π:|π|=m

∏
B∈π

(1/α)|B| = (−1)d−m.

This implies that by moving the (−1)d−m term as follows,

c∗(u) = C(u)
Π(u)

d∑
m=1

aαd,m(w)
(

(−1)d−mBd,m((1/α)1 , . . . , (1/α)
d−m+1)

)
,

all the terms in the above are positive, and we can access the log-density of our newly
constructed density via

log c∗(u) = log C(u)
Π(u) + log

( d∑
m=1

aαd,m(w)(−1)d−mBd,m((1/α)1 , . . . , (1/α)
d−m+1)

)
.

Since taking the logarithm of the first term is trivial, we focus on the latter one. We
start by defining

xm = log(aαd,m(w)) + log
(

(−1)d−mBd,m((1/α)1 , . . . , (1/α)
d−m+1)

)
,

and we let xmax = max1≤m≤d{xm}. Now, we note that

log
( d∑
m=1

aαd,m(w)(−1)d−mBd,m((1/α)1 , . . . , (1/α)
d−m+1)

)
= log

d∑
m=1

exp(xm)
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6 Constructing extreme value copula densities from given copulas

= xmax + log
d∑

m=1
exp(xm − xmax),

and since all the summands in the latter sum are in the interval (0,1], the corresponding
logarithm can easily be computed.

6.3.3 Testing the code with the Gumbel-Hougaard copula

It is pretty straightforward to realize that if the copula C being passed in Theorem 6.9
is the Gumbel copula, which is defined by generator and inverse generator as presented
in Table 1, then c∗(u) is in fact the density of the Gumbel-Hougaard copula.

The copula package in R, which is the go-to standard in mathematical applications
related to copulas, is already equipped with an algorithm for the multidimensional den-
sity of the Gumbel copula. Therefore, we use it as a benchmark to test our code by
measuring the absolute error of our algorithm against the copula result, for various
combinations of d and θ, over a sample of 200 random points in (0, 1)d.

th
et
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dim

2
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0e+00

1e−13

2e−13

3e−13

4e−13

Figure 11 Absolute error of our algorithm against the copula result for various combi-
nations of d and θ, over a sample of size 200.

The above values, which are of the order of .Machine$double.eps on our computer,
confirm that our algorithm works properly in all dimensions, and therefore, we can now
be confident that we obtain relevant density and log-density values for models other than
the Gumbel up to family-related issues. We provide our code in Appendix B.
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6 Constructing extreme value copula densities from given copulas

Remark 6.10
It is interesting to notice from Table 1 that when θ = 1, the resulting copula is the
independence copula, and when θ tends to infinity, the copula tends to the comono-
tonicity copula. This means that the Gumbel-Hougaard copula interpolates between
independence and perfect positive dependence through the variation of θ.

u1
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z

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
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6
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8
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0

Figure 12 EVC density constructed by passing an Archimedean copula with generator
ψ(t) = (1 + x1/θ)−1 with θ = 2.3 in Theorem 6.9, see 4.2.12 in Nelsen (2006),
p.116

6.3.4 Special case: Galambos copula

A famous copula model is the Galambos copula, which we denote CGlb, also known as
the Negative Logistic copula. In fact, this copula is the survival copula of the Gumbel-
Hougaard copula studied in the previous section, denoted here by CGu.

For this specific case, we do not rely on the technique we developped in the prior
sections, and rather rely on a trick linking the copula to its survival copula, the Sylvester-
Poincaré sieve. Indeed, using the latter sieve, one can write

CGlb(u) = ĈGu(u) =
∑
π⊆J

(−1)|π|CGu
(
(1− u1)1π(1) , . . . , (1− ud)1π(d)

)
,

where, for j ∈ J , we define

1π(j) =
{

1 if j ∈ π,
0 if j /∈ π.
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Figure 13 EVC density constructed by passing an Archimedean copula with generator
ψ(t) = (1 +x1/θ)−θ with θ = 7/2 in Theorem 6.9, see 4.2.14 in Nelsen (2006),
p.116

Using the fact that differentiation is a linear operator, one gets

cGlb(u) = D CGlb(u) =
∑
π⊆J

(−1)|π|D CGu
(
(1− u1)1π(1) , . . . , (1− ud)1π(d)

)
,

and since the only summand that will not vanish under the differential operator D is
the one where π = {1, . . . , d}, we get

= (−1)dD CGu ((1− u1), . . . , (1− ud))
= (−1)2dcGu(1− u1, . . . , 1− ud)
= cGu(1− u)

So, the density of the Galambos copula is fully described by the density of the Gumbel-
Hougaard copula, which we can obtain from Theorem 6.9. A proper application of our
code provides the density obtained numerically.

6.3.5 The bridge to Value-at-Risk

There exists a strong link between our previous work and the concept of Value-at-Risk
(VaR), as tail dependence is one of the main drivers of the latter measure. One can find
many publications on aggregated dependent losses, we refer to Barbe et al. (2006) as an
example, since this concept is one of high importance in the financial industry.
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The asymptotic analysis of VaR for aggregated dependent losses mainly consists in
evaluating the integral of the upper tail density

Γ(w) = D

(
lim
q↓0

Ĉ(qw)
q

)
, w ∈ Rd,

of a copula C over some upper subset in Rd. In the context of our work, we have
that

lim
q↓0

1− C(1− qw)
q

= lim
q↓0

1−
∑
π⊆J (−1)|π|Ĉ

(
(qu1)1π(1) , . . . , (qud)1π(d)

)
q

= lim
q↓0

∑
∅6=π⊆J (−1)|π|−1Ĉ

(
(qu1)1π(1) , . . . , (qud)1π(d)

)
q

.

Using the above manipulations, and assuming that C is Archimedean with inverse gen-
erator ψ−1(1− t) ∈ RVα with α > 1, we can leverage on our prior work and obtain

Γ(w) = D

(
lim
q↓0

Ĉ(qw)
q

)
= (−1)d−1Dd

(
lim
q↓0

1− C(1− qw)
q

)
= (−1)d−1aαd,1(w)(1/α)d

= (
d∏
j=1

wj)α−1(
d∑
j=1

wαj )1/α−d
d∏
j=2

((j − 1)α− 1). (48)

Now, consider a multivariate regularly varying loss vector X = (X1, . . . , Xd) with upper
tail density (48), joint distribution H and tail equivalent continuous margins F1, . . . , Fd.
Moreover, consider any componentwise order-preserving norm ||·|| in Rd+. Using the
multivariate regular variation property of X, we then get

lim
t→∞

P (||X|| > t)
F̄1(t)

= lim
t→∞

P (X ∈ tW )
P (X1 > t) = ν(W ), (49)

whereW = {wj ≥ 0, j ∈ J : ||w|| > 1}. Li and Wu (2013) provide the following theorem
linking the intensity measure ν to the regular variation of the margins Fj , the upper tail
density Γ of the underlying copula, and the norm ||·||.

Theorem 6.11
LetH be a distribution with tail equivalent margins F1, . . . , Fd. If the marginal densities,
assumed to exist, are regularly varying with tail index β + 1, β > 0, and the copula
C has upper tail density Γ and satisfies the Uniform Convergence Condition, then H is
multivariate regularly varying with tail density ΓH such that

ΓH(w) = βdΓ(w−β1 , . . . , w−βd )
d∏
j=1

w−β−1
j .

Using a theorem from de Haan and Resnick (1987), it follows that ν(W ) =
∫
W ΓH(w)dw.

Therefore, we have that

ν(W ) = βd
∫
W

Γ(w−β1 , . . . , w−βd )
d∏
j=1

w−β−1
j dw
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= βd
d∏
j=2

((j − 1)α− 1)
∫
W

(
d∏
j=1

wj)−αβ−1(
d∑
j=1

w−αβj )1/α−ddw

Corollary 2.4 in the seminal paper by Embrechts et al. (2009) shows that we can go
from (49) to the following expression

lim
p↑1

VaRp(||X||)
VaRp(X1) = ν(W )1/β,

where ||X|| =
∑d
j=1Xj . This means that in the context of our work, we have insights

on the asymptotics of VaR for aggregated dependent losses X with Archimedean copula
such that the inverse generator ψ−1(1− t) ∈ RVα with α > 1.

In this context, it is worth mentioning that Theorem 2.5 from Embrechts et al. (2009)
is applicable, and so for all β > 1, there exists a p0 > 0 such that for all p0 < p < 1, it
holds that

VaRp(
d∑
j=1

Xj) <
d∑
j=1

VaRp(Xj),

and for all 0 < β < 1, there exists a p1 > 0 such that for all p1 < p < 1, it holds
that

VaRp(
d∑
j=1

Xj) >
d∑
j=1

VaRp(Xj).

7 Extensions to nested Archimedean copulas

Recently, there has been a lot of interest in multivariate hierarchical models, that is,
models capturing different dependencies between and within different groups of random
variables. For example, Puzanova (2011) introduces a hierarchical model of tail depen-
dent asset returns for measuring portfolio credit risk, where the degrees of dependence
between and within sub-portfolios are controlled through the use of nested Archimedean
copulas.

The goal of this section is to leverage the results we obtained in Section 6 and extend
it to the class of nested Archimedean copulas (NACs).

As the name mentions, the basic notion behing NACs is to nest Archimedean copulas.
At each level of the NAC, the idea is to aggregate copulas from the previous level. A
d-dimensional copula C is called a NAC if it is an Archimedean copula with arguments
possibly replaced by other NACs.

As presented in Hofert (2011), if C is given recursively by (40) for d = 2 and, up to
permutation of the arguments, for d ≥ 3, by

C(u1, . . . , ud;ψ0, . . . , ψd−2) = ψ0(ψ−1
0 (u1) + ψ−1

0 (C(u2, . . . , ud;ψ1, . . . , ψd−2))), (50)
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then C is called fully nested Archimedean copula with d − 1 nesting levels. Otherwise,
C is called partially nested Archimedean copula. Both fully nested Archimedean copula
and partially nested Archimedean copula are summarized as NACs.

In order for (50) to be a copula, McNeil (2008) introduces the sufficient nesting con-
dition stating that ψ−1

i ◦ ψj is completely monotone for all nodes appearing in a NAC,
where i is understood as the parent node, and j is the child node, borrowing language
from graph theory.

We start by considering a partially nested Archimedean copula with 2 nesting levels
and d0 groups. The representation of such a copula is

C(u) = C0(C1(u1;ψ1), . . . , Cd0(ud0 ;ψd0);ψ0), u = (u1, . . . ,ud0), (51)

where d0 denotes the dimension of C0 and each copula Cs, s ∈ {0, . . . , d0} is Archimedean
with generator ψs. It is obvious that one can rewrite the above equation in a more explicit
way, as follows,

C(u) = ψ0(
d0∑
s=1

ψ−1
0 (Cs(us))) = ψ0(

d0∑
s=1

ψ−1
0 (ψs(

ds∑
l=1

ψ−1
s (usl)))).

C0(u;ψ0)

C1(u1;ψ1)

uk0=1 ... uk1

... ... ... Cd0(ud0 ;ψd0)

ukd0−1+1 ... ukd0=d

Figure 14 Tree decomposition of a d-dimensional partially nested Archimedean copula
with 2 nesting levels and d0 groups.

7.1 Derivation of the stable tail dependence function of nested
Archimedean copulas

Leveraging on Proposition 6.7 and the tricks we used in its proof, we obtain the following
theorem.

Theorem 7.1
Let C be a d-dimensional two-level partially nested Archimedean copula of the form of
(51), and assume that for s ∈ {0, . . . , d0}, the inverse generator ψ−1

s (1− t) ∈ RVαs where
αs > 1. Then, the stable tail dependence function of the copula C is given by

`(w) = (
S∑
s=1

(
ds∑
l=1

w
αs
sl )α0/αs )1/α0 .
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7 Extensions to nested Archimedean copulas

Proof. We start by looking at the limit version of the result from Genest and Rivest
(1989) stated earlier, that is, for each s ∈ {0, . . . , d0}, we have

lim
q↓0

1− Cs(1− qws)
q

= (
ds∑
l=1

wαssl )1/αs .

Since αs > 1 and ws ∈ R+
s , it follows that for every s ∈ {1, . . . , d0}, there exists a small

enough qs and δs > 0 such that for all 0 < q < qs, we have

(
ds∑
l=1

(wsl − δs)αs)1/αs ≤ lim
q↓0

1− Cs(1− qws)
q

≤ (
ds∑
l=1

(wsl + δs)αs)1/αs . (52)

Now, from the monotonicy property of Archimedean generators, it holds that for every
a < b such that a, b ∈ (0, 1],

1− ψ0(
d0∑
s=1

ψ−1
0 (1− a)) < 1− ψ0(

d0∑
s=1

ψ−1
0 (1− b)).

If we let q be such that 0 < q < mins=1,...,d0{qs}, and define `q(w) = 1−C(1−qw)
q , we get

lim sup
q↓0

`q(w) = lim sup
q↓0

1
q

(
1− ψ0(

d0∑
s=1

ψ−1
0 (Cs(1− qws)))

)

= lim sup
q↓0

1
q

(
1− ψ0

( d0∑
s=1

ψ−1
0

(
1− 1− Cs(1− qws)

q
q

)))

≤ lim sup
q↓0

1
q

(
1− ψ0(

d0∑
s=1

ψ−1
0 (1− (

ds∑
l=1

(wsl + δs)αs)1/αsq))
)

= lim sup
q↓0

1
q

1− ψ0


d0∑
s=1

ψ−1
0

(
1− (

∑ds
l=1(wsl + δs)αs)1/αsq

)
ψ−1

0 (1− q)

ψ−1
0 (1− q)

 .
Relying on the fact that ψ−1

0 (1− t) ∈ RVα0
for α0 > 1, there exists a q0 and δ0 > 0 such

that for all 0 < q < q0,

(x− δ0)α0 ≤ ψ−1
0 (1− xq)
ψ−1

0 (1− q)
≤ (x+ δ0)α0 .

If q0 > mins=1,...,d0{qs}, we set q0 = mins=1,...,d0{qs} Then, it follows that

lim sup
q↓0

`q(w) ≤ lim sup
q↓0

1
q

(
1− ψ0

( d0∑
s=1

(
((

ds∑
l=1

(wsl + δs)αs)1/αs + δ0)α0 q

))
ψ−1

0 (1− q)
)
.
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7 Extensions to nested Archimedean copulas

Substituting q := 1− ψ0(q) in the above equation, we get

lim sup
q↓0

`q(w) ≤ lim sup
q↓0

1− ψ0

(∑d0
s=1((

∑ds
l=1(wsl + δs)αs)1/αs + δ0)α0 q

)
1− ψ0(q) .

Relying on the use of Proposition 6.7, we get that

lim sup
q↓0

`q(w) ≤ (
d0∑
s=1

((
ds∑
l=1

(wsl + δs)αs)1/αs + δ0)α0 )1/α0 .

Using similar arguments, we are able to obtain a lower bound for the lim inf, so we finally
obtain

(
d0∑
s=1

((
ds∑
l=1

(wsl−δs)αs)1/αs−δ0)α0 )1/α0 ≤ lim
q↓0

`q(w) ≤ (
d0∑
s=1

((
ds∑
l=1

(wsl+δs)αs)1/αs+δ0)α0 )1/α0 .

Since δs is arbitrary for all s ∈ {0, . . . , d0}, an application of the Squeeze Lemma finalizes
the proof of the claim.

Theorem 7.1 is only applicable to partially nested Archimedean copulas with two
nesting levels, but we realize we can leverage knowledge from the steps performed in its
proof to extend the scope of our results to any NAC structure by creating a recursive
expression for the stable tail dependence function representation.

Borrowing concepts from the field of graph theory, we can think of a NAC with L
nesting levels as a rooted tree with depth L, where it is understood that the root copula
C0 has depth 0. We want to point out that in R, the root copula has depth equal to
one.

Let us define Nl to be the number of copulas present at depth l ∈ {0, . . . , L− 1}, and
Ml to be the number of final nodes, that is, a node of the form uj which is a component
of u. Then, in the spirit of Theorem 7.1, we start at depth L− 1, where for each copula
CL−1,L−1j such that j ∈ {1, . . . , NL−1}, we can find a qL−1,L−1j and εL−1,L−1j > 0 such
that by selecting qL−1 = min1≤j≤NL−1{qL−1,L−1j}, we can apply a step as in (52). From
there, we repeatedly apply steps as in our proof of Theorem 7.1 working our way updward
towards the root, building a sequence (ql)L−1

l=0 and a sequence of sequences ((δl,lj )
Nl
j=1)L−1

l=0 .
Then by selecting q = min0≤l≤L−1{ql}, we can find the lim inf and lim sup bounds and
proceed by applying the Squeeze Lemma to obtain

`(w) = (
N1∑
j=1

`
α0
1,j +

M1∑
m=1

wα0
1im)1/α0 , (53)

where `1,j is the stable tail dependence function stemming from the tree rooted at C1,j
and w1im are the final nodes of the first level. This notation might not be the prettiest
nor the most convenient, but it provides us with a recursive tool to express the stable
tail dependence function of any NAC.
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7 Extensions to nested Archimedean copulas

Example 7.2
In order to understand (53), we provide an example. Consider a nine-dimensional par-
tially nested copula C (see Figure 15 for the tree representation) of the form

C(u) = C0(u1, u2, u3, C1(u4, u5, u6, u7, C2(u8, u9;ψ2);ψ1);ψ0), u ∈ (0, 1)9,

and assume that the inverse generators ψ−1
s (1− t) ∈ RVαs for αs > 1 where s ∈ {0, 1, 2}.

Then, using the recursive expression (53), we get that the stable tail dependence function
of C is

`(w) = `0(w1, w2, w3, `1(w4, w5, w6, w7, `2(w8, w9))),

or in its fully explicit form,

`(w) = (wα0
1 + wα0

2 + wα0
3 + (wα1

4 + wα1
5 + wα1

6 + wα1
7 + (wα2

8 + wα2
9 )α1/α2)α0/α1)1/α0 .

C0(· ;ψ0)

u1 u2 u3 C1(· ;ψ1)

u4 u5 u6 u7 C2(· ;ψ2)

u8 u9

Figure 15 Tree structure of the nine-dimensional partially nested Archimedean copula
C described in Example 7.2.

7.2 Extreme value copula densities constructed from partially nested
Archimedean copulas

Note that the stable tail dependence function obtained in Theorem 7.1, by construction,
the one of a nested Gumbel copula with d0 groups and two nesting levels where θs = αs.
Therefore, an application of Theorem 2.12 yields

C(u) = exp(−`(− logu)) = exp((
d0∑
s=1

(
ds∑
l=1
− log uαssl )α0/αs)1/α0 ),

where C(u) is as (51). In item 2 of Remark 4.1 in Hofert and Pham (2013), the authors
show that the density of a nested Gumbel copula with d0 groups and two nesting levels
can be expressed as

c(u) = C(u)
Π(u)

(
(−1)d

d∑
k=d0

bd0
d,k(t(u))(

k∑
j=1

(−t(u)1/θ0)jskj(1/θ0))
) d0∏
s=1

θdss (
ds∏
j=1
− log usj)θs−1,
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8 Copulas of extreme-value distributions

where ψ̊0s = ψ−1
0 ◦ ψs and

t(u) = ψ−1
0 (C(u)),

t(u) = (t1(u1), . . . , td0(ud0)),

as,nk(t) = Bn,k(ψ̊′0s(t), . . . , ψ̊
(n−k+1)
0s (t)),

bd0
d,k =

∑
j∈Qd0

d,k

d0∏
s=1

as,dsjs(ts(us)),

with d = (d1, . . . , dd0) and

Qd0
d,k =

{
j ∈ Nd0 :

d0∑
s=1

js = k, js ≤ ds, s ∈ {1, . . . , d0}
}
.

Equating their expression with the one we obtained from Theorem 4.2, it follows that
we must have

d∑
m=1

(−1)d−m
∑

π:|π|=m

∏
B∈π

DB`(w) =

(
(−1)d

d∑
k=d0

bd0
d,k(t(u))(

k∑
j=1

(−t(u)1/θ0)jskj(1/θ0))
) d0∏
s=1

θdss (
ds∏
j=1

wsj)θs−1

whenever the function ` is given by `(w) = (
∑d0
s=1(

∑ds
l=1w

θs
sl )θ0/θs)1/θ0 . So, leveraging on

the work of Hofert and Pham (2013), we are able to formulate the following result.

Theorem 7.3
Let C be a d-dimensional partially nested Archimedean copula with two nesting levels
and d0 groups of the form of (51), and assume that for s ∈ {0, . . . , d0}, the inverse
generator ψ−1

s (1− t) ∈ RVαs where αs > 1 for all s. Then,

c∗(u) = C(u)
Π(u)

(
(−1)d

d∑
k=d0

bd0
d,k(t(u))(

k∑
j=1

(−t(u)1/α0 )jskj(1/α0))
)

·
d0∏
s=1

αdss (
ds∏
j=1
− log usj)αs−1

where C(u) is (51), describes the density of a d-dimensional extreme value copula.

8 Copulas of extreme-value distributions

For this section, we extend the work of Mendes and Sanfins (2007) to the multivariate
case by heavily relying on the so-called Extremal Types Theorem, which can be found
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8 Copulas of extreme-value distributions

in Embrechts et al. (1997). For any fixed N ≥ 2 and any n ≥ N , let M1,n, . . .MN,n be
the N largest order statistics of an iid sample of size n for which Xi ∼ F is independent
of n. If for sequences (an)∞n=1 and (bn)∞n=1, the random variables anM1,n + bn converge
in distribution, then the random vector

(anM1,n + bn, . . . , anMN,n + bn) (54)

also converges in distribution, where the limit distribution is parametrized by (ξ, µ, σ)
with µ, ξ ∈ (−∞,∞) and σ > 0. For any j ≥ 1, it follows that the j-th marginal
distribution is given by

Fj(x) =


0 , x < µ− σ/ξ, ξ > 0,
exp(−Λ(x))

∑j−1
k=0

Λ(x)k
k! , ξ

(x−µ
σ

)
> −1 for ξ 6= 0 or x ∈ R for ξ = 0,

1 , x > µ− σ/ξ, ξ < 0,
(55)

where
Λ(x) =

{
(1 + ξ(x−µσ ))−1/ξ , ξ 6= 0,
exp(−x−µ

σ ) , ξ = 0.

Distributions Fj(x) as above are known as Generalized Extreme Value distributions
(GEV).

We spare the details of our calculations to the reader, but for any j ≥ 1, Fj(x)
can easily be differentiated through the use of the product rule, and then simplified
using a telescoping sum argument. Doing so, we obtain its density fj(x), with explicit
representation

fj(x) =
{
− exp(−Λ(x))Λ′(x)Λ(x)j−1

(j−1)! , ξ
(x−µ

σ

)
− 1 for ξ 6= 0 or x ∈ R for ξ = 0,

0 , otherwise.

Previous work by Smith (1986) shows from the Extremal Types Theorem that the joint
density hN of a limiting extreme value distribution for normalized sums of the N largest
order statistics of a sequence as in (54) is given by

hN (x1, . . . , xN ) =
{

(−1)N exp(−Λ(xN ))
∏N
i=1 Λ′(xi), (x1, . . . , xN ) ∈ Ωµ,σ,ξ

0 , otherwise.

where the set Ωµ,σ,ξ is defined as

Ωµ,σ,ξ =


{(x1, . . . , xN ) ∈ RN x1 > . . . > xN > µ− σ/ξ}, ξ > 0,
RN , ξ = 0,
{(x1, . . . , xN ) ∈ RN µ− σ/ξ > x1 > . . . > xN}, ξ < 0.

A distribution with density hN as above is referred to as a Multivariate Generalized
Extreme Value distribution (MGEV).
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0.5 1.0 1.5 2.0 2.5 3.0 3.5
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j=4
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Figure 16 Densities of the first five largest order-statistics, that is, j = 1, . . . , 5 with
parametrization µ = 2, σ = 0.4 and ξ = 0, without loss of generality

8.1 Copula densities arising from Multivariate Generalized Extreme Value
distributions

As we just saw, the Extremal Types Theorem provides us with plenty of information on
the joint distribution and marginal distributions of the model, along with their respective
densities. By applying the d-dimensional differential operator to (2), we obtain a general
formula copula densities via

c(u) = h(F−1 (u1), . . . , F−d (ud))
f1(F−1 (u1)) . . . fd(F−d (ud))

, u ∈
d∏
j=1

ranFj . (56)

Inserting the expressions of hN and fj , j ∈ {1, . . . , N} in (56), we obtain a general
formula for the density of a copula corresponding to a multivariate extreme value distri-
bution. After algebraic manipulations and various simplifications, we get

c(u1, . . . , uN ) = (N − 1)!
Λ(F−N (uN ))N−1

N−1∏
j=1

(j − 1)!
exp{−Λ(F−j (uj))} Λ(F−j (uj))j−1 (57)

Now, the only non-explicit components in (57) are the inverses of the marginal distribu-
tion functions. The structure of the functions Fj(x) for j ∈ {1, . . . , N} does not allow us
to describe their respective inverses explicitly in all generality. Therefore, we investigate
a way to obtain these inverses implictly.
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8 Copulas of extreme-value distributions

Note that Fj(xj) = FPoi(Λ(xj))(j − 1) for a fixed xj , where FPoi(λ)(j) describes the
distribution function of the Poi(λ) evaluated at j. It is to be noted that Λ(xj) > 0, so
our application of the Poisson distribution is valid. Luckily for us, this quantile function
is already implemented in R as qpois and we can use it to evaluate F−j , j ∈ {1, . . . , N},
which we need as input for (57).

8.2 A side note for j = 1 and j = 2

In this section, we consider two specific cases, that is, j = 1 and j = 2, and we focus on
the terms in (57) containing F−1 and F−2 . The first inverse is in fact a proper inverse, so
we write, F−1

1 , and we can compute it to be

F−1
1 (y) =

{
σ
ξ [(− log y)−ξ − 1] + µ, ξ 6= 0, y ∈ (0, 1],
−σ log(− log y) + µ , ξ = 0, y ∈ (0, 1].

Using the expression of F2(x) as given in (55), it follows that

u = F2 ◦ F−2 (u) = exp(−Λ(F−2 (u)))(1 + Λ(F−2 (u))), u ∈ (0, 1),

and by defining Υ2(u) = exp(−Λ(F−2 (u))), the above can be rewritten as

u = Υ2(u)(1− log Υ2(u)), u ∈ (0, 1). (58)

Because of the presence of the logarithms, which are intricately connected to exponential
functions, we leverage on the structure of (58) to obtain a nice solution for Υ2(u), that
is,

u = Υ2(u)(1− log Υ2(u)), ⇔ − u

Υ2(u) + 1 = log Υ2(u),

⇔ − u

Υ2(u) exp(−u/Υ2(u)) = −u/e,

⇔ −u/Υ2(u) = W (−u/e),
⇔ Υ2(u) = −u/W (−u/e).

where W is the so-called Lambert W function. The Lambert W function defines the
set of branches of the inverse relation of the function f(w) = w exp(w) where w is any
complex number. In other words, the defining equation for W (z) is

z = W (z)eW (z), z ∈ C.

The history of the Lambert W function is, in our opinion, one of great interest, and we
invite the reader to look into it, as we will not cover it in the thesis. As the Lambert
W function is part of the gsl package in R, the obtained expression for Υ2(u) can be
implemented as

1 ## Implementation of Upsilon_2(u)
2 upsilon_2 ← function(x) -x/(lambert_W0(-x/exp(1)))
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9 Conclusion

We can now insert the obtained expressions for j = 1 and j = 2 into (57), as opposed to
relying on the quantile function qpois as suggested before. However, it has to be noted
that for j ≥ 3, reliance on qpois will be necessary for numerical evaluations.

9 Conclusion

After presenting an overview of the important theory related to copulas, EVCs, and reg-
ular variation, we investigated the construction of the stable tail dependence functions
of the Smith and multivariate t distributions, as presented in Joe et al. (2008). At the
core of our work, however, was the derivation of an explicit formula for the density of
EVCs though the use of Faà di Bruno’s Formula. Our main theorem requires knowledge
of the stable tail dependence function of the initial copula, so we leveraged the work
of Genest and Rivest (1989) to create new tractable EVC densities from Archimedean
copulas with generator inverses satisfying certain regular variation assumptions. Doing
so, we connected our work on Archimedean copulas to the additive properties of VaR as
presented in Embrechts et al. (2009). We implemented our results in R and provided an
efficient log-density implementation for inference-based statistical applications. More-
over, a recursive expression for the stable tail dependence function of nested Archimedean
copulas was obtained, and the EVC density arising from partially nested Archimedean
copulas with generator inverses satisfying certain regular variation assumptions was de-
rived, based on the work of Hofert and Pham (2013). Finally, we derived an implicit
expression for the density of the limiting copula of the N largest order-statistics as an
extension of the work of Mendes and Sanfins (2007).

Further research could be conducted to see if one can imbed the obtained expression
of the stable tail dependence function of nested Archimedean copulas in the framework
of Theorem 2.5 as presented in Embrechts et al. (2009).
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A Implementation of various Pickand’s dependence functions and their first and second
order derivatives

A Implementation of various Pickand’s dependence functions
and their first and second order derivatives

1 ##’ GUMBEL PICKANDS’ DEPENDENCE FUNCTION AND DERIVATIVES
2 ##’ w: in [0,1]
3 ##’ th.: theta parameter of Gumbel
4 ##’ assy1,assy2: assymetry parameters
5 ##’ Functions below return A, A’ and A’’ for the Gumbel model
6 ##’ Author: Gabriel Doyon
7 AfuncGU ← function(w,th.,assy1,assy2) (assy2-assy1)*w-assy2+1+((assy1*w)∧(th

.)+(assy2*(1-w))∧(th.))∧(1/th.)
8 AfuncDGU ← function(w,th.,assy1,assy2) ((th.* assy1* (w* assy1)∧(th.-1)-th. *

assy2 *((1-w)* assy2)∧(th.-1))* ((w *assy1)∧th.+((1-w) *assy2)∧th.)∧(1/th
.-1))/th.-assy1+assy2

9 AfuncDDGU ← function(w,th.,assy1,assy2) ((th.-1)* (w *assy1)∧th.* (assy2-w*
assy2)∧th. *((w *assy1)∧th.+(assy2-w* assy2)∧th.)∧(1/th.-2))/((w-1)∧2* w∧2)

1 ##’ GALAMBOS PICKANDS’ DEPENDENCE FUNCTION AND DERIVATIVES
2 ##’ t: in [0,1]
3 ##’ th.: theta parameter of Galambos
4 ##’ assy1,assy2: assymetry parameters
5 ##’ Functions below return A, A’ and A’’ for the Galambos model
6 ##’ Author: Gabriel Doyon
7 AfuncGA ← function(t,th.,assy1,assy2) 1-((assy1*t)∧(-th.)+(assy2*(1-t))∧(-th

.))∧(-1/th.)
8 AfuncDGA ← function(t,th.,assy1,assy2) ((th.*assy2 *((1-t)* assy2)∧(-th.-1)-

th.* assy1 *(t* assy1)∧(-th.-1)) *((t *assy1)∧(-th.)+((1-t)* assy2)∧(-th.))
∧(-1/th.-1))/th.

9 AfuncDDGA ← function(t,th.,assy1,assy2) ((-(-th.-1)* th. *assy1∧2 *(t* assy1)
∧(-th.-2)-(-th.-1) *th. *assy2∧2 *((1-t)* assy2)∧(-th.-2))* ((t* assy1)∧(-
th.)+((1-t)* assy2)∧(-th.))∧(-1/th.-1))/th.+((-1/th.-1) *(th. *assy2 *((1-t
)* assy2)∧(-th.-1)-th.* assy1 *(t* assy1)∧(-th.-1))∧2* ((t* assy1)∧(-th.)
+((1-t)* assy2)∧(-th.))∧(-1/th.-2))/th.

1 ##’ MIXED MODEL PICKANDS’ DEPENDENCE FUNCTION AND DERIVATIVES
2 ##’ t: in [0,1]
3 ##’ assy1,assy2: assymetry parameters
4 ##’ Functions below return A, A’ and A’’ for the Mixed model
5 ##’ Author: Gabriel Doyon
6 AfuncMM ← function(t,assy1,assy2) assy1*t∧3 + assy2*t∧2 - (assy1+assy2)*t + 1
7 AfuncDMM ← function(t,assy1,assy2) 3*assy1*t∧2 + 2*assy2*t - (assy1+assy2)
8 AfuncDDMM ← function(t,assy1,assy2) 6*assy1*t + 2*assy2
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1 ##’ BETA MODEL PICKANDS’ DEPENDENCE FUNCTION AND DERIVATIVES
2 ##’ t: in [0,1]
3 ##’ q1,q2: beta distribution parameters
4 ##’ Functions below return A, A’ and A’’ for the Mixed model
5 ##’ Author: Gabriel Doyon
6 AfuncBE ←function(t,q1,q2) t*(1-BETA1(t,q1,q2))+(1-t)*BETA2(t,q1,q2)
7 AfuncBED ←function(t,q1,q2) (1-BETA1(t,q1,q2))-BETA2(t,q1,q2)+(1-t)*BETA2.

diff(t,q1,q2)-t*BETA1.diff(t,q1,q2)
8 AfuncBEDD ←function(t,q1,q2) -2*(BETA1.diff(t,q1,q2)+BETA2.diff(t,q1,q2))-t*

BETA1.ddiff(t,q1,q2)+(1-t)*BETA2.ddiff(t,q1,q2)
9

10 ## Required auxiliary functions for beta model
11 h ← function(t,q1,q2) ((1-t)*q1)/(t*(q2-q1)+q1)
12 h.diff ← function(t,q1,q2) -q1/(t*(q2-q1)+q1)-(1-t)*q1*(q2-q1)/(t*(q2-q1)+q1)

∧2
13 h.ddiff ← function(t,q1,q2) 2*q1*(q2-q1)/(t*(q2-q1)+q1)∧2+(2*(1-t))*q1*(q2-q1

)∧2/(t*(q2-q1)+q1)∧3
14

15 BETA1 ← function(t,q1,q2) pbeta(h(t,q1,q2),q1+1,q2)
16 BETA2 ← function(t,q1,q2) pbeta(h(t,q1,q2),q1,q2+1)
17 BETA1.diff ← function(t,q1,q2) dbeta(h(t,q1,q2),q1+1,q2)*h.diff(t,q1,q2)
18 BETA2.diff ← function(t,q1,q2) dbeta(h(t,q1,q2),q1,q2+1)*h.diff(t,q1,q2)
19 BETA1.ddiff ← function(t,q1,q2){
20 (1/beta(q1+1,q2))*((h.diff(t,q1,q2))∧2 * (q1*(h(t,q1,q2))∧(q1-1)*(1-h(t,q1,q2

))∧(q2-1)
21 - (q2-1)*(h(t,q1,q2))∧(q1)*(1-h(t,q1,q2))∧(q2-2)) + h.ddiff(t,q1,q2)*(h(t,q1

,q2))∧q1 * (1-h(t,q1,q2))∧(q2-1))
22 }
23 BETA2.ddiff ← function(t,q1,q2){
24 (1/beta(q1,q2+1))*((h.diff(t,q1,q2))∧2 * ((q1-1)*(h(t,q1,q2))∧(q1-2)*(1-h(t,

q1,q2))∧(q2) - (q2)*
25 (h(t,q1,q2))∧(q1-1)*(1-h(t,q1,q2))∧(q2-1)) + h.ddiff(t,q1,q2)*(h(t,q1,q2))∧(

q1-1)*(1-h(t,q1,q2))∧(q2))
26 }

1 ##’ HUSLER REISS MODEL PICKANDS’ DEPENDENCE FUNCTION AND DERIVATIVES
2 ##’ t: in [0,1]
3 ##’ lambda: in [0,infty]
4 ##’ Author: Gabriel Doyon
5

6 A.HR ← function(t,lambda) (1-t)*pnorm(f(t,lambda)) + t*pnorm(g(t,lambda))
7 A.HR.diff ← function(t,lambda){
8 -pnorm(f(t,lambda)) + pnorm(g(t,lambda)) + t*dnorm(g(t,lambda))*g.diff(t,

lambda)
9 +(1-t)*dnorm(f(t,lambda))*f.diff(t,lambda)

10 }
11 A.HR.ddiff ← function(t,lambda){
12 -2*dnorm(f(t,lambda))*f.diff(t,lambda)+2*dnorm(g(t,lambda))*g.diff(t,lambda)+

t*(phi.diff(g(t,lambda))*(g.diff(t,lambda))∧2 + dnorm(g(t,lambda))*g.
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ddiff(t,lambda))+(1-t)*(phi.diff(f(t,lambda))*(f.diff(t,lambda))∧2 +dnorm
(f(t,lambda))*f.ddiff(t,lambda))

13 }
14

15 ## Required auxiliary functions for Husler-Reiss model
16 f ← function(t,lambda) lambda+log((1-t)/t)*(1/(2*lambda))
17 f.diff ← function(t,lambda) -(1/(2*lambda))*(1/(t*(1-t)))
18 f.ddiff ← function(t,lambda) (1/(2*lambda))*((1-2*t)/(t∧2*(1-t)∧2))
19

20 g ← function(t,lambda) lambda-log((1-t)/(t))*(1/(2*lambda))
21 g.diff ← function(t,lambda) (1/(2*lambda))*(1/(t*(1-t)))
22 g.ddiff ← function(t,lambda) (1/(2*lambda))*((2*t-1)/(t∧2*(1-t)∧2))
23

24 phi.diff ← function(t) -dnorm(t)*t
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B Code for constructing extreme value copula densities from
Archimedean copulas

1 ## ’Copyright (C) 2013 Gabriel Doyon’
2

3 #Setup ###################################################################
4 set.seed(1)
5 ## necessary packages
6 require(copula)
7 require(partitions)
8 require(matrixStats)
9

10 #Auxiliary functions #####################################################
11

12 ##’ @title Compute the middle term of the expression
13 ##’ @param cube: hypercube representation of (0,1]∧d
14 ##’ @param d: dimension
15 ##’ @param tailIndex: from the inverse archimedean generator regularly varying

with alpha=tailIndex
16 ##’ @return the term identified as a_{d,m}∧alpha in Theorem
17 ##’ @author Gabriel Doyon
18 middle.term ← function(cube,d,tailIndex){
19 w ← -log(cube) #modifiy initial vector in -log form
20 componentwise.product ← matrix(apply(w,1,prod)∧(tailIndex-1),nrow=nrow(w))
21 componentwise.sum ← matrix(apply(w∧tailIndex,1,sum),nrow=nrow(w))
22 comp.sum.exp ← matrix(nrow=nrow(w),ncol=d)
23 for(m in 1:d){comp.sum.exp[,m]←componentwise.sum∧(m/tailIndex - d)}
24 output ← tailIndex∧d *comp.sum.exp*componentwise.product[,]
25 return(output)
26 }
27

28

29 ##’ @title Computes the falling factorial of x with parameter B
30 ##’ @param x: argument of the falling factorial
31 ##’ @param B: falling factorial computed until (x-(B-1))
32 ##’ @return The evaluated falling factorial for parameters x and B.
33 ##’ @author Gabriel Doyon
34 falling.factorial ← function(x,B){
35 output ←1
36 for(i in 1:B){output ← output * x
37 x ← x - 1}
38 return(output)
39 }
40

41

42 ##’ @title Computes the Bell polynomial value
43 ##’ @param d: desired dimension
44 ##’ @param m: subdimension of Bell polynomial
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45 ##’ @param tail.Index: tail index of inverse generator
46 ##’ @return The B_{d,m} evaluated along the falling factorial sequence
47 ##’ @author Gabriel Doyon
48 combinatorialArgs ← function(d,m,tail.Index){
49 ## Case m=1
50 if(m==1){return((-1)∧(m+d)*falling.factorial(1/tail.Index,d))}
51 ## Cases 1<m≤d
52 else{
53 #Obtaining and modifying the matrix of restricted partitions
54 r.parts ← restrictedparts(d,m)
55 focused.parts← r.parts[,r.parts[nrow(r.parts),] 6= 0] #removing the

columns ending with 0
56 if(!is.matrix(focused.parts)){focused.parts ← matrix(focused.parts)} #

ensure we have matrices as output
57

58 #Computing the multinomial coefficient of the columnwise allocation
59 num ← factorial(d)/colProds(factorial(focused.parts)) #will act as our

numerator
60

61 #Computing the number possible permutations for our adjustment
62 denom ← matrix(nrow=d,ncol=ncol(focused.parts))
63 for(j in 1:d){ denom[j,]= colSums(focused.parts == j)}
64 denom ← colProds(factorial(denom)) #will act as our denominator
65

66 #Number of possible ways
67 factors ← matrix(num/denom)
68

69 falling.factorial.matrix ← matrix(mapply(falling.factorial,1/tail.Index,
focused.parts),nrow=m)

70 aggregation ← matrix(colProds(falling.factorial.matrix))
71

72 return((-1)∧(m+d)*sum(factors*aggregation))
73 }
74 }
75

76

77 #Main function ##########################################################
78

79

80 ##’ @title Computes the d-dimensional density and log-density of an EVC created
via the initial selected AC model

81 ##’ @param d: desired dimension
82 ##’ @param theta: desired dimension
83 ##’ @param model: desired initial AC model
84 ##’ @param mesh: divides the interval [0,1] in sizes 1/mesh (allows user for

selection of fine or coarse grid)
85 ##’ @param npoints: number of random points in the hypercube to be considered (

recommended for d3)
86 ##’ @param c is a predefined hypercube passed by the user
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87 ##’ @return result$dens: density, result$log.dens: log-density, result$cube:
points in hypercube

88 ##’ @author Gabriel Doyon
89 EVCD.from.Arch ← function(d, theta, mesh=NULL, model = c("Clayton","Gumbel","2

","12","14","15","21"),c=NULL, npoints=NULL,...)
90 {
91

92 ## variable instantiation
93 tail.Index ← NULL
94 psi ← NULL
95 psi.inverse ← NULL
96 Acop ← NULL
97 cube ← c
98

99 ## input checks
100 stopifnot(d>1) #require at least d=2
101 model ← match.arg(model)
102 if(is.null(npoints) && is.null(mesh)) return(print("You need to supply either

a ‘mesh‘ or a ‘npoints‘ parameter"))
103

104 ## model switch
105 switch(model,
106 "Clayton"={
107 ## model specific parameters
108 stopifnot(theta>0)
109 tailIndex ← 1
110 psi ← function(x) (1+x)∧(-1/theta)
111 psi.inverse ← function(x) x∧(-theta)-1
112 Acop ← function(x) (psi(sum(psi.inverse(x))))
113 print("Selected model: Clayton")
114 },
115 "Gumbel"={
116 ## model specific parameters
117 stopifnot(theta>1)
118 tailIndex ← theta
119 psi ← function(x) exp(-x∧(1/theta))
120 psi.inverse ← function(x) (-log(x))∧theta
121 Acop ← function(x) (psi(sum(psi.inverse(x))))
122 print("Selected model: Gumbel")
123 },
124 "2"={
125 ## model specific parameters
126 stopifnot(theta>1)
127 tailIndex ← theta
128 psi ← function(x) 1-x∧(1/theta)
129 psi.inverse ← function(x) (1-x)∧theta
130 Acop ← function(x) max(psi(sum(psi.inverse(x))),0)
131 print("Selected model: Nelsen 4.2.2")
132 },
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133 "12"={
134 ## model specific parameters
135 stopifnot(theta>1)
136 tailIndex ← theta
137 psi ← function(x) (1+x∧(1/theta))∧(-1)
138 psi.inverse ← function(x) (1/x-1)∧theta
139 Acop ← function(x) max(psi(sum(psi.inverse(x))),0)
140 print("Selected model: Nelsen 4.2.12")
141 },
142 "14"={
143 ## model specific parameters
144 stopifnot(theta>1)
145 tailIndex ← theta
146 psi ← function(x) (1+x∧(1/theta))∧(-theta)
147 psi.inverse ← function(x) (x∧(-1/theta)-1)∧theta
148 Acop ← function(x) psi(sum(psi.inverse(x)))
149 print("Selected model: Nelsen 4.2.14")
150 },
151 "15"={
152 ## model specific parameters
153 stopifnot(theta>1)
154 tailIndex ← theta
155 psi ← function(x) (1-x∧(1/theta))∧(theta)
156 psi.inverse ← function(x) psi(x)
157 Acop ← function(x) max(psi(sum(psi.inverse(x)))∧(1/theta),0)∧theta
158 print("Selected model: Nelsen 4.2.15")
159 },
160 "21"={
161 ## model specific parameters
162 stopifnot(theta>1,d==2)
163 tailIndex ← theta
164 fct ← function(x) (1-(1-x)∧theta)∧(1/theta)
165 Acop ← function(x) 1-(1-max(sum(fct(x))-1,0)∧(theta))∧(1/theta)
166 print("Selected model: Nelsen 4.2.21. Only implemented for d=2")
167 },
168 {
169 return(print("No model selected"))
170 }
171 )
172

173 ## Hypercube generation & instantiation of necessary data-holding variables
174 if(is.null(cube)){
175 if(is.null(npoints)==FALSE){cube ← matrix(data = runif(npoints*d,min

=0.0001,max=0.9999), nrow = npoints, ncol = d)}
176 else{cube ← do.call(expand.grid,replicate(d, seq_len(mesh)/(mesh+1),

simplify=FALSE))}
177 }
178 dEVC ← matrix(nrow=nrow(cube),ncol=1)
179 log.dEVC ← matrix(nrow=nrow(cube),ncol=1)
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180

181

182 ## creates function C(u)/Pi(u) ("C.o.I" stands for Copula over Independence
)

183 C.o.I ← function(u) (Acop(u))/prod(u)
184

185 ## density formula
186 comb.arg ← matrix(mapply(combinatorialArgs, d, 1:d, tailIndex),nrow=1) #

computes combinatorial args
187 adm ← middle.term(cube,d,tailIndex)
188 mult.mat ← apply(t(t(adm)*comb.arg[,]),1,sum) # elementwise multiplication

of...
189 #...the middle term matrix by the comb. args. and

summing along rows
190

191 first.vec ← apply(cube,1,C.o.I)
192 dEVC ← first.vec * mult.mat
193

194 ## log density formula
195 repmat ← do.call("rbind", rep(list(comb.arg), nrow(cube)))
196 xm ← log(repmat) + log(adm) #log(0)=-Inf
197 xmax ← matrix(apply(xm,1,max),byrow=T)
198 exp_xm.minus.xmax ← exp(xm - do.call("cbind", rep(list(xmax),d))) #exp(xm-

xmax)
199 log.dEVC← (xmax + log(apply(exp_xm.minus.xmax,1,sum))) + log(first.vec)
200

201 ## grapical processing for d=2
202 if(d==2 && is.null(npoints)){
203 par(mfcol=c(1,2), mar=c(1,1,1,1), oma=c(1,1,0,1))
204 persp(x=(1:mesh)/(mesh+1),y=(1:mesh)/(mesh+1),matrix(dEVC,nrow=mesh),xlab="

u1", ylab="u2",zlab = "z")
205 contour(matrix(dEVC,nrow=mesh),levels=cbind(0.5,1:10))
206 }
207

208 ## function returns both the density and the log density
209 return(list(dens=dEVC,logDens=log.dEVC,cube=cube))
210 }
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