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Abstract

In order to obtain sufficient funds at retirement, plan members of a defined
contribution pension scheme invest their wealth in a portfolio of assets. This
thesis examines the target-based optimization strategy as an alternative to
the popular lifecycle strategies dominating the market. By using either the
dynamic programming approach or the martingale approach, the optimiza-
tion problem is solved in different markets under the additional constraint
of a non-negative wealth process. As the investment horizon is usually very
long, the inflation and the salary risk are taken into account and an index-
linked bond is added to the market. In order to compare the different invest-
ment strategies, a performance methodology is introduced and the results
are illustrated in numerical examples.
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Chapter 1

Introduction

Pension plans and their underlying investment strategies are of huge impor-
tance for plan members on defined contribution (DC) plans, as their wealth
at retirement is directly linked to the performance of the underlying strat-
egy. In recent years, different variants of a lifecycle strategy have gained
favor in the UK pension market. These strategies alter the asset allocations
depending on age and years to retirement, but usually do so independently
of the asset price. Typically, these retirement funds initially have a high allo-
cation to stocks, but move towards less volatile assets as the retirement date
approaches. These lifecycle strategies have many desirable properties, e.g.
reducing the volatility of the wealth outcomes and allowing to plan ahead
more securely than for other strategies, see e.g. [Blake et al., 2001].

On the other hand, these benefits come at the price of giving up sub-
stantial upside potential and might perform very poorly depending on the
performance of the asset. Various recent works have focused on study-
ing this asset allocation problem in more mathematical terms, leading to
the study of stochastic optimal control and stochastic optimization prob-
lems. Two main approaches are of note in this regard, the first being the
maximization of the expected utility of the terminal wealth, studied among
others in [Battocchio and Menoncin, 2004], [Cairns et al., 2006] and more
recently in [Donnelly et al., 2015]. In this approach, the investor is charac-
terized by some utility function which is maximized by the optimal strat-
egy. The second approach is the mean-variance portfolio optimization prob-
lem studied in [Bielecki et al., 2005], [Yao et al., 2013], [Wu et al., 2015] and
[Menoncin and Vigna, 2017]. Instead of characterizing the investor by some
utility function, the variance of the portfolio process is minimized under
some expected terminal wealth.
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For both approaches, the risk aversion of the investor needs to be char-
acterized by some abstract, mathematical parameter. This is either some
parameter in the utility function, or a combination of the expectation and
the variance of the terminal wealth distribution. In this thesis we com-
bine the two approaches by choosing a utility function of quadratic form.
This leads to a target-based method, which has a one-to-one relation to
the mean-variance approach and allows to identify the risk profile of the in-
vestor via the selection of a terminal wealth target, instead of the selection of
some abstract risk aversion coefficient. This one-to-one correspondence was
first introduced by [Zhou and Li, 2000] and extended thenceforth in both
[Vigna, 2014] and [Menoncin and Vigna, 2017].

In most literature analyzing stochastic optimization problems, the wealth
process is allowed to reach negative values as long as the terminal wealth
outweighs this downside risk. This is not desirable, as in practice negative
wealth means bankruptcy and only very few investors can continue bor-
rowing and investing once bankruptcy is reached. Therefore we add the
additional constraint of a non-negative wealth process, which in turn allows
us to study the target-based optimization problem for a general lower bound
on the wealth process.

The remainder of the thesis is organized as follows. Part I focuses on
finding the optimal portfolio strategy in a self-financing manner, for a sim-
ple market model containing any number of risky stocks and one risk-free
bank account. This problem has been well addressed in the literature, see
e.g. [Korn, 1997], [Heunis, 2014] and [Bielecki et al., 2005]. In Chapter 2
a market structure is introduced and the portfolio process with its corre-
sponding wealth process is formally defined. In Chapter 3, the optimization
problem under the constraint of a non-negative wealth process is stated and
the optimal investment strategy is derived. The non-negativity constraint is
transformed into a constraint of a general lower bound in Chapter 4, where
we show that the corresponding optimal strategy consists of a forward con-
tract on the lower bound and the optimal portfolio process with a lower
initial wealth.

Part II introduces stochastic inflation in terms of an indexed-linked
bond to the market. Although inflation has been a strong focus of re-
cent literature on stochastic optimal control, see e.g. [Zhang et al., 2007]
and [Xue and Basimanebotlhe, 2015], the optimal investment strategy for
the quadratic optimization problem under a non-negativity constraint has
to our knowledge not yet been given. In Chapter 5, we lay the groundwork
for the inflation index and define the price process of an inflation-linked
bond. The corresponding optimization problem under the constraint of a

2



non-negative wealth process is solved in Chapter 6.
Part III drops the self-financing assumption of Parts I and II and intro-

duces stochastic contributions to the investment portfolio. Contrary to the
optimal investment strategies derived so far, which are of mainly theoretical
interest, the optimal portfolio process of Part III can directly be used as the
strategy for a DC pension plan. The constraint of a non-negative wealth
process is loosened and only non-negative terminal wealth is required. This
allows to borrow against future contributions and in turn, much more risk is
taken during the first years of the pension plan. After solving the optimiza-
tion problem with and without this constraint in Chapter 9, we introduce
the idea of ”cut-shares”, where a no-shorting constraint is imposed on the
portfolio process ex-post. All the portfolio processes of the first three Parts
are compared in Chapter 11.

The numerical analysis of the different portfolio processes is conducted
in Part IV. Unlike in most existing literature, where parameters are chosen
as constants, all optimal portfolio processes of this thesis allow for determin-
istic parameter processes. After outlining some possible models to predict
the parameters in Chapter 13, the performance of constant and determinis-
tic parameters are compared in Chapter 14. In Chapter 15 a performance
methodology is developed in order to compare the optimal portfolio pro-
cesses. This methodology is then used in Chapter 16 to show the importance
of including the inflation-linked bond to the investment strategy. Finally, in
Chapter 17, the performance of the target-based optimal portfolio processes
is compared to the performance of lifecycle strategies and popular utility
maximizing strategies.
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Part I

Quadratic Minimization with
Wealth Constraints
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Chapter 2

The Financial Market Model

Remark (Notation). We use the convention that random variables X are
denoted by capital letters, whereas their realizations x are denoted by small
letters. Additionally we use the following notation,

M ′ : the transpose of any vector or matrix M ;

‖M‖ =

√∑
i,j

m2
i,j for any vector or matrix M = (mi,j);

1{A} : the indicator function of some subset A;

I =(1, . . . , 1)′ as the unit vector;

x− = max{−x, 0} for any real number x;

EP : the expectation under the measure P;

ft(t, x) =
∂

∂t
f(t, x) as the derivative with respect to t if it exists ;

f(t, x) ∈ Ci,j : the derivatives ft(t, x), · · · fti(t, x) and

fx(t, x), · · · fxj (t, x) exist and are continuous.

2.1 The Market Model

Choose a complete probability space (Ω,F ,P) on which we have an n-
dimensional Brownian motion W (t) =

(
W1(t), . . . ,Wn(t)

)
, t ∈ [0, T ], for a

given, finite time horizon T > 0. The filtration F is the P-augmentation
of the filtration generated by the Brownian motion. We first assume the
Black-Scholes model consisting of n stocks with price processes (Si(t))t∈[0,T ]

7



2.1. THE MARKET MODEL

and one risk-free bond with price process (B(t))t∈[0,T ], where the dynamics
are given by

dB(t) = r(t)B(t)dt, (2.1)

dSi(t) = Si(t)
[
µi(t)dt+

n∑
j=1

σij(t)dWj(t)
]
, (2.2)

with B(0) = 1 and Si(0) = si > 0, P-a.s. In order to introduce an auxiliary
measure Q which will be of high importance throughout this thesis, we need
to make some assumptions on the coefficients of the market elements.

Assumption 2.1.1. The interest rate process r(t), the vector of mean rates
of return µ(t) and the dispersion matrix σ(t) are uniformly bounded and
Ft-progressively measurable processes on [0, T ] × Ω, with r(t) ∈ R, µ(t) ∈
Rn, σ(t) ∈ Rn×n. Furthermore, σ(t)σ(t)′ shall be positive definite for all
t ∈ [0, T ].

Consider an investor who starts with a fixed, strictly positive wealth x
at time 0, who invests in the various securities and whose actions do not
affect the market prices. At time t ∈ [0, T ] we denote the total wealth of
this investor by X(t) and the amount that is invested in the ith stock by
πi(t), for i = 1, . . . , n.

Definition 2.1.2. A portfolio process π(t) =
(
π1(t), . . . , πn(t)

)
t∈[0,T ]

is a

progressively measurable process with respect to {Ft}0≤t≤T . If π satisfies∫ T

0
‖π(t)‖2dt <∞, P-a.s.

for all t ∈ [0, T ], then π is admissible. We denote the family of admissible
portfolio processes by Π.

We assume for all of Part I and Part II, that the investor follows a self-
financing strategy, i.e. any gains and losses arise solely from changes in the
value of the stocks and the bond. Hence, the amount of wealth invested in
the bond is given by (X(t)−

∑n
i=1 πi(t))t∈[0,T ].

Definition 2.1.3. Given a portfolio process π, the solution X = Xπ to

dXπ(t) = π(t)′
dS(t)

S(t)
+
(
Xπ(t)−

n∑
i=1

πi(t)
)dB(t)

B(t)

=
(
r(t)Xπ(t) + π(t)′

(
µ(t)− r(t)I

))
dt+ π(t)′σ(t)dW (t),

Xπ(0) = x, (2.3)

8



2.2. CHANGE OF MEASURE

is called the wealth process corresponding to the portfolio process π and the
initial capital x > 0.

We will see in (2.8) that a strong solution exists for (2.3) for any π ∈ Π.
By the following proposition, the strong solution will in fact be unique as
well. Note however, that the wealth process is not necessarily non-negative,
which is of high importance for many practical applications, as normal in-
vestors cannot continue investing once bankrupt.

Proposition 2.1.4. If there exists a strong solution to the stochastic dif-
ferential equation (2.3), then it is unique.

Proof. Suppose X1 and X2 are solutions of (2.3) with X1(0) = X2(0) = x.
Define Y (t) = X1(t)−X2(t) for all t ∈ [0, T ]. Then

dY (t) = r(t)Y (t)dt, Y (0) = 0, P-a.s.

The unique solution of this stochastic differential equation is Y (t) ≡ 0,P-a.s.,
for t ∈ [0, T ].

At this point we emphasize the important difference in our definition of
an admissible portfolio process π compared to [Cvitanic and Karatzas, 1992].
We have defined the portfolio process in terms of the amounts invested in
the assets and with our definition of admissibility, the wealth process can
reach negative values. Therefore, the non-negativity required needs to be
posed as an additional constraint.

This is different to the definition of [Cvitanic and Karatzas, 1992], who
instead define it in terms of the proportions invested. With this definition,
it can be shown that the wealth at any time t ≥ 0 is propotional to the
wealth at time t = 0, in the sense that Xπ(t) = xX̃(t), where X̃(t) is P-
a.s. positive for all t ∈ [0, T ]. Consequently, as long as the initial wealth
is positive, the whole wealth process X inherits that property. Note that
the set of strategies which are defined as proportions is in fact a proper
subclass of the set of strategies used here, see e.g. [Bielecki et al., 2005]. We
will see later on, that the resulting optimal strategy cannot be written as a
proportional strategy for out definition of admissibility.

2.2 Change of Measure

From an economic point of view, it is apparent that the non-negativity of
the whole process will be a consequence of the non-negativity of the terminal

9



2.2. CHANGE OF MEASURE

value, once we have shown the existence of an equivalent martingale measure
Q. If this was not the case, an arbitrage opportunity would be necessary in
order to reach a positive value at the end, with an almost sure probability.
Henceforth, we denote by EP the expectation under the measure P and by
EQ the expectation under the measure Q.

To the end of deriving an equivalent martingale measure Q, we introduce
the risk premium process

θ(t) = σ(t)−1(µ(t)− r(t)I),

which exists and is bounded, measurable and adapted to Ft due to As-
sumption 2.1.1. Hence, the Novikov condition is fulfilled and we can apply
Girsanov’s theorem, utilizing the Doléan-Dade exponential

Z(t) = exp
(
−
∫ t

0
θ′(s)dW (s)− 1

2

∫ t

0
‖θ(s)‖2ds

)
. (2.4)

As the Novikov condition is fulfilled and Z(0) = 1, Z is a martingale.

Remark. The function Q : Ω→ [0, 1] is defined by

Q[A] = EP[Z(T )1{A}], for all A ∈ F .

To prove that the two measures P and Q are equivalent, we need to show

P[A] = 0 ⇐⇒ Q[A] = 0, for any A ∈ F . (2.5)

Let A ∈ F be such that P[A] = 0. Then P[Z(T )1{A}] = 0, as it takes the
value zero on the complement of A, which is a set of full measure. But then

0 = EP[Z(T )1{A}] = Q[A].

The opposite direction follows by reversing the roles of P and Q.. Therefore,

Q[Ω] = EP[Z(T )1{Ω}] = EP[Z(T )] = 1.

Lemma 2.2.1. The process Ŵ (t) = W (t) +
∫ t

0 θ(s)ds is an n-dimensional
Brownian motion under Q.

Proof. We use that if the process
(
Z(t)Ŵ (t)

)
t∈[0,T ]

is a martingale under P,

then
(
Ŵ (t)

)
t∈[0,T ]

is a martingale under Q. This follows from

EQ[Ŵ (t) | Fs] =
1

Z(s)
EP[Z(t)Ŵ (t) | Fs] =

1

Z(s)
Z(s)Ŵ (s) = Ŵ (s).

10



2.2. CHANGE OF MEASURE

By Itô’s formula applied to the function f(t, x) = exp(−x− 1
2

∫ t
0 ‖θ(s)‖

2ds),
we have

dZ(t) = −Z(t)θ(t)′dW (t). (2.6)

Now to show that
(
Z(t)Ŵ (t)

)
t∈[0,T ]

is a martingale under P we use the

product rule and compute

d
(
Z(t)Ŵ (t)

)
= Z(t)dŴ (t) + Ŵ (t)dZ(t) + d[Z, Ŵ ](t)

= Z(t)dW (t) + Z(t)θ(t)dt− Ŵ (t)Z(t)θ(t)′dW (t)− Z(t)θ(t)dt

= Z(t)dW (t)− Ŵ (t)Z(t)θ(t)′dW (t).

Therefore,
(
Ŵ (t)

)
t∈[0,T ]

is continuous and a martingale under Q. Since we

also have
d[Ŵi, Ŵj ](t) = d[Wi,Wj ](t) = 1{i = j}dt,

it follows from Lévy’s characterization theorem of Brownian motion, see
e.g. [Karatzas and Shreve, 1998, Theorem 3.16], that (Ŵ (t))t∈[0,T ] is a Q-
Brownian motion.

This measure change allows us to solve the stochastic differential equa-
tion (2.3).

dXπ(t) = r(t)Xπ(t)dt+ π(t)′
(
µ(t)− r(t)I

)
dt+ π(t)′σ(t)dW (t)

= r(t)Xπ(t)dt+ π(t)′σ(t)dŴ (t).

Introducing the bank account numéraire
(
β(t)

)
t∈[0,T ]

by

β(t) =
1

B(t)
= exp(−

∫ t

0
r(s)ds), (2.7)

for t ∈ [0, T ], we apply Itô’s formula to the product of Xπ and β and obtain

d(Xπ(t)β(t)) = π(t)′σ(t)β(t)dŴ (t),

Xπ(t)β(t) = x+

∫ t

0
β(s)π(s)′σ(s)dŴ (s). (2.8)

From this it is apparent that the process (M(t))t∈[0,T ] defined by M(t) =
β(t)X(t) is a continuous local martingale with respect to the measure Q.
Together with (2.5), this proves that Q is an equivalent martingale measure.

Define the state price deflator

ξ(t) = β(t)Z(t) = exp
(
−
∫ t

0
θ(s)′dW (s)−

∫ t

0
(r(s) +

1

2
‖θ(s)‖2)ds

)
, (2.9)
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2.2. CHANGE OF MEASURE

for t ∈ [0, T ], we see by Bayes’ rule, see e.g. [Karatzas and Shreve, 1998,
Lemma 5.3], that the process (N(t))t∈[0,T ], defined by N(t) = ξ(t)X(t) is a
continuous local martingale under P.
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Chapter 3

The Constrained Optimal
Strategy: Non-Negativity

We start by analyzing the trading strategy which minimizes the mean-square
difference of the terminal wealth to some predetermined target, under all
portfolio processes with affordable, non-negative paths. The resulting strat-
egy and terminal wealth distribution will then be investigated in more detail
and compared to the optimal strategy when the non-negativity constraint
is dropped.

3.1 Problem Formulation

3.1.1 The Constrained Portfolio Problem

In order to mathematically formulate the quadratic optimization problem,
we still need to formally prove the claim of Section 2.2 that we can focus
solely on the non-negativity of the terminal wealth X(T ), rather than the
non-negativity of the process X(t) over the entire time interval t ∈ [0, T ].
In order to do this, we apply results on backward stochastic differential
equations from [El Karoui et al., 1997].

Proposition 3.1.1. Let Xπ be a wealth process under an admissible port-
folio π. If Xπ(T ) ≥ 0 a.s., then Xπ(t) ≥ 0 a.s., for all t ∈ [0, T ].

Proof. Fix some π ∈ Π and assume that the wealth process Xπ corre-
sponding to (2.3) exists and satisfies Xπ(T ) = Ψ ≥ 0, a.s. By defining
P (t) = σ(t)′π(t) for all t ∈ [0, T ] in (2.3), we obtain the backward stochastic

13



3.1. PROBLEM FORMULATION

differential equation

dXπ(t) =
(
r(t)Xπ(t) + θ(t)P (t)

)
dt+ P (t)′dW (t),

Xπ(T ) = Ψ.

By [El Karoui et al., 1997, Theorem 2.1], there exists a unique, square inte-
grable solution (X,P ). Furthermore, by Assumption 2.1.1,

EP[( sup
t∈[0,T ]

|Xπ(t)|)2
]
<∞, EP[( sup

t∈[0,T ]
|ξ(t)|)2

]
<∞.

Hence, the local martingale ξ(t)Xπ(t) is uniformly integrable and therefore
equal to the conditional expectation of its terminal value, i.e.

Xπ(t) = ξ(t)−1EP[ξ(T )Xπ(T )
∣∣Ft], for all t ∈ [0, T ]. (3.1)

It follows from the definition of the state price deflator ξ in (2.9) that
Xπ(t) ≥ 0 a.s., for all t ∈ [0, T ].

Proposition 3.1.1 states that a.s. non-negative terminal wealth leads to
an a.s. non-negative wealth process. Therefore, we only need to show non-
negativity, P-a.s., of the terminal wealth of some optimal portfolio process
in order to solve the optimization problem.

Problem 3.1.2. Choose x > 0 and let the family of all admissible portfolio
processes that lead to non-negative terminal wealth be denoted by

A(x) =
{
π ∈ Π | Xπ(0) ≤ x and Xπ(T ) ≥ 0, P-a.s.

}
.

Given a constant C > 0, the problem is to determine a portfolio process
π̂ ∈ A(x) such that

EP[(C −X π̂(T ))2
]

= inf
π∈A(x)

EP[(C −Xπ(T ))2
]
, (3.2)

and the pair
(
X π̂(t), π̂(t)

)
satisfies the stochastic differential equation (2.3).

One application of this problem, and the main focus of this thesis, is
an investor who does not have enough money to reach the target wealth C
at maturity by solely investing in the bank account. The optimal portfolio
process of Problem 3.1.2 will then be the investment strategy which comes as
close to C as possible, while assuring the investor to never become bankrupt.
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3.1. PROBLEM FORMULATION

3.1.2 Conditions on Admissibility

In order to solve Problem 3.1.2, we express the condition π ∈ A(x) by
an inequality, which then allows us to use Lagrangian techniques to find
the optimal terminal wealth. We use the fact that the continuous local
martingales M and N (under Q and P, respectively), introduced in Section
2.2, are bounded from below for π ∈ A(x) to show that they are in fact
supermartingales.

Lemma 3.1.3. Let M(t) be a continuous local martingale, i.e. there is a
sequence of stopping times (τn)n∈N increasing to infinity a.s. such that M(t∧
τn) is a martingale for all n. Suppose that M(t) is bounded from below by
some fixed constant c. Then M(t) is a supermartingale.

Proof. Since this proof works for general probability measures P, we forgo
the specification of the underlying probability measure for the expecation.
Let M̃(t) = M(t) − c, which is also a continuous local martingale for some
sequence of stopping times (τ̃n)n∈N, i.e. M̃n(t) := M̃(t ∧ τn) is a martingale
for all n ∈ N. That is, for all 0 ≤ s ≤ t we have

E[M̃n(t) | Ft] = M̃n(s).

By Fatou’s lemma and the positivity of M̃ , we have

E[|M̃(t)|] = E[M̃(t)] = E[lim inf
n

M̃n(t)] ≤ lim inf
n

E[M̃n(t)] = E[M̃(0)].

Moreover,

E
[
M̃(t) | Fs

]
= E

[
lim inf

n
M̃n(t) | Fs

]
≤ lim inf

n
E
[
M̃n(t) | Fs

]
= M̃(s).

Hence, M̃ is a supermartingale and so is M .

We use the previous lemma in order to obtain an initial condition for
the optimal wealth process. Applying Itô’s formula to the product of Z(t)
and β(t)Xπ(t), we write

d(Z(t)β(t)Xπ(t)) =Z(t)d(β(t)Xπ(t)) + β(t)Xπ(t)dZ(t) + d[Z, βXπ](t)

=Z(t)π(t)′σ(t)β(t)dW (t) + Z(t)π(t)′σ(t)β(t)θ(t)′dt

− β(t)Xπ(t)Z(t)θ(t)′dW (t)− Z(t)π(t)′σ(t)β(t)θ(t)′dt,

where the second step follows from (2.8) and (2.6). Hence, the process
(N(t))t∈[0,t] satisfies

N(t) = ξ(t)Xπ(t) = x+

∫ t

0
ξ(s)

(
π(s)′σ(s)−Xπ(s)θ(s)′

)
dW (s).
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3.1. PROBLEM FORMULATION

Since N(t) is a supermartingale for all π ∈ A(x), we have shown that

EP
[
ξ(T )Xπ(T )

]
≤ x, for all π ∈ A(x). (3.3)

A similar inequality can be shown under the measure Q for the discount
factor β(t). As ξ is the state price deflator, the inequality (3.3) takes the
role of a budget constraint, i.e. the expected value of the current wealth up
to date, deflated to t = 0, does not exceed the initial capital. We now prove
that this condition is in fact also sufficient for admissibility in the sense
that if it is fulfilled by a wealth process, there will exist a corresponding
admissible portfolio process π.

Theorem 3.1.4. For every non-negative, FT -measurable Ψ which satisfies
E[ξ(T )Ψ] = x, there exists a unique π ∈ A(x) such that the corresponding
wealth process satisfies Xπ(T ) = Ψ, a.s.

Proof. By [El Karoui et al., 1997, Theorem 2.1], the linear backward stochas-
tic differential equation

dX(t) =
(
r(t)X(t) + θ(t)P (t)

)
dt+ P (t)′dW (t),

X(T ) = Ψ,

admits a unique, square integrable, Ft-adapted solution (X,P ), since the
coefficients are uniformly bounded due to Assumption 2.1.1 (see proof of
Proposition 3.1.1). Furthermore,

(
X(t)

)
t∈[0,T ]

is a continuous, adapted

process and
(
P (t)

)
t∈[0,T ]

is a progressively measurable process satisfying∫ T
0 ‖P (t)‖2dt <∞. Define

π(t) = (σ(t)′)−1P (t),

which is square integrable due to the uniform boundedness of (σ(t)′)−1 and
the square-integrability P (t). Moreover, it follows from (3.1) that

X(0) = EP[ξ(T )Ψ] = x.

Hence, π ∈ A(x) and
(
X(t), π(t)

)
satisfies the dynamics of (2.3).

3.1.3 Feasibility

We follow [Bielecki et al., 2005, Section 3] to determine under what condi-
tions a solution to Problem 3.1.2 exists and if such a solution is unique.
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3.1. PROBLEM FORMULATION

By Theorem 3.1.4, we may study the feasibility of the following problem
instead.

Minimize EP[(C −Ψ)2
]
,

subject to EP[ξ(T )Ψ
]

= x and Ψ ≥ 0, P-a.s., (3.4)

over all FT -measurable processes Ψ.

Proposition 3.1.5. Problem (3.4) either has no feasible solution, or it ad-
mits a unique optimal solution.

Proof. Let

D =
{

Ψ ∈ FT | EP[ξ(T )Ψ
]

= x and Ψ ≥ 0, P-a.s.
}
,

be the constraint set of Problem (3.4), where we write Ψ ∈ FT to denote
that Ψ is FT -measurable. If there exists some Ψ1 ∈ D, then an optimal
solution must be in the set

D′ = D ∩
{

Ψ ∈ FT | EP[(C −Ψ)2
]
≤ EP[(C −Ψ1)2

]}
.

If there exists some Ψ0 ∈ D′, then D′ is non-empty, closed and convex. As
the quadratic function

(
C − Ψ

)2
is strictly convex with a lower bound of

zero, the optimal solution to (3.4) must be unique.

Define

a = inf
Ψ≥0,P-a.s.

EP[ξ(T )Ψ
]
,

b = sup
Ψ≥0,P-a.s.

EP[ξ(T )Ψ
]
. (3.5)

Proposition 3.1.6. If a < x < b, then there must be a feasible solution to
Problem (3.4) and hence to Problem 3.1.2.

Proof. By definition of a and b, there exist non-negative, FT -measurable
processes Ψ1 and Ψ2 such that for any x > 0,

EP[ξ(T )Ψ1

]
< x < EP[ξ(T )Ψ2

]
.

Define the function f : [0, 1]→ [0,∞] by

f(λ) = EP
[
ξ(T )

(
λΨ1 + (1− λ)Ψ2

)]
,
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3.2. OPTIMIZATION OF TERMINAL WEALTH

which is continuous and f(1) < x < f(0). Hence, there exists some λ0 ∈
(0, 1) such that x = f(λ0). Set

Ψ0 = λ0Ψ1 + (1− λ0)Ψ2.

Clearly, Ψ0 is FT measurable, non-negative and satisfies EP[ξ(T )Ψ0] = x.

In order to guarantee the feasibility of the problem, we restrict ourselves
to a subset of parameter values, such that a < x < b for all x > 0.

Assumption 3.1.7. The risk premium process θ(t) is deterministic and
satisfies ∫ T

0
‖θ(s)‖2ds 6= 0.

Under Assumption 3.1.7, the state price deflator (2.9) at time T is the
sum of a bounded random variable and a normal random variable with
strictly positive variance. In that case we have a = 0 and b =∞, and hence
Problem 3.1.2 has a unique optimal solution for any initial wealth x > 0.

Remark. Note that the assumption of a deterministic risk premium process
is very strong. As applications usually have very long time horizons, it is
unreasonable to expect to know the risk profile for the whole duration at the
beginning. We evaluate the effect of a deterministic risk premium process
during the numerical analysis in Chapter 14 and give some insight about
when we can reduce on the assumption of a deterministic risk premium
process.

3.2 Optimization of Terminal Wealth

We give an overview of the martingale method in finding a solution to
the constrained optimization problem of terminal wealth, as it was done
in [Karatzas, 1989] and [Korn and Trautmann, 1995]. Solving the problem
at hand will then be a special case where a specific utility function is chosen.
The main idea of this section is to reduce the problem at hand as close as
possible to a Lagrange problem. If a Lagrange multiplier for this problem
exists, the Kuhn-Tucker optimality conditions immediately give necessary
and sufficient conditions for optimality. These conditions are then used to
construct an optimal portfolio in terms of the Lagrange multiplier.

Definition 3.2.1. Let U : (0,∞)→ R be strictly concave and C1 with
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3.2. OPTIMIZATION OF TERMINAL WEALTH

• the derivative U ′(c) satisfies U ′(0) = limc→0 U
′(c) > 0;

• there exists z ∈ R ∪ {+∞} with U ′(z) = 0.

Then U is called a generalized utility function.

Assumption 3.2.2. We impose the additional assumptions

U ∈ C2 and U ′′ is non-decreasing on (0,∞).

Remark. U ′ : [0, z]→ [0, U ′(0)] is strictly decreasing on [0, z] and hence has
a strictly decreasing inverse function Î : [0, U ′(0)] → [0, z]. By Assumption
3.2.2, Î is convex and of class C1. Denote by

I(y) =

{
Î(y) if y ∈ [0, U ′(0)],

0 otherwise,
(3.6)

the truncated inverse function of U ′.

Problem 3.2.3. Consider the utility function U and maximize

J(x, π) = EP[U(Xπ(T ))
]
, (3.7)

over the class

A2(x) =
{
π ∈ A(x) | EP[U−(Xπ(T ))] <∞

}
.

We denote by
V (x) = sup

π∈A2(x)
J(x, π), (3.8)

the optimal value function of this problem.

Remark. By choosing a utility function of the form

U(x) = −1

2
(C − x)2,

optimization Problem 3.1.2 is equivalent to the constrained portfolio Prob-
lem 3.2.3.

Recall the notation of the state price deflator ξ from (2.9). In light of
the admissibility constraint (3.3) we obtain the Lagrangian expression

L = EP[U(Xπ(T ))
]

+ y
(
x− EP[Xπ(T )ξ(T )

])
, (3.9)

for Problem 3.2.3. The maximization of L is achieved by choosing Xπ(T ) to
maximize U(Xπ(T ))−yXπ(T )ξ(T ), which leads to the first order constraint
U ′(Xπ(T )) = yξ(T ). We determine how to specify y to make sure that
EP[Xπ(T )ξ(T )] = x. In that regard, define H(y) = EP[ξ(T )I(yξ(T ))] for all
y ∈ (0,∞).
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3.2. OPTIMIZATION OF TERMINAL WEALTH

Lemma 3.2.4. Assume H(y) < ∞ for all y ∈ (0,∞). The function H is
continuous and strictly decreasing. Furthermore,

H(∞) = lim
y→∞

H(y) = 0, (3.10)

H(0) = lim
y→0
H(y) =

{
∞ if limz→∞ U

′(z) = 0,

z̃EP[ξ(T )] else,
(3.11)

where z̃ is defined by U ′(z̃) = 0.

Proof. • The continuity of H follows from the continuity of I by the
dominated convergence theorem.

• Because I is non-increasing and strictly decreasing on (0, U ′(0)), once
we have shown that

P
[
ξ(T ) <

U ′(0)

y

]
> 0, (3.12)

for every fixed y ∈ (0,∞), it follows that H is strictly decreasing,
as ξ(T )I(yξ(T )) is then strictly decreasing on the set in (3.12) and
identically zero everywhere else. But

log
(
ξ(T )

)
= −

∫ T

0
θ′(s)dW (s)− 1

2

∫ T

0
‖θ(s)‖2ds−

∫ T

0
r(s)ds

= W̃DT −
∫ T

0
(r(s) +

1

2
‖θ(s)‖2)ds,

where W̃ is a standard Brownian motion and D(t) =
∫ t

0 ‖θ(s)‖
2ds. As

by Assumption 2.1.1 r(t) and σ(t) are uniformly bounded and D(t) is
positive and by Assumption 3.4.1 deterministic, we have

P
[

log(ξ(T )) < u
]
> 0,

for u > 0 arbitrary and especially for u of the form u = exp(U
′(0)
y ).

• As I(∞) = 0, (3.10) follows from the monotone convergence theorem.
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3.2. OPTIMIZATION OF TERMINAL WEALTH

• To prove (3.11), we distinguish two cases. First, assume limz→∞ U
′(z) =

0. As I is non-negative, we can apply Fatou’s lemma to obtain

lim inf
y→0

H(y) ≥ EP[ξ(T ) lim inf
y→0

I(yξ(T ))
]

=∞.

In the other case we have lim supy→0H(y) ≤ z̃EP[ξ(T )], because for
every x ∈ [0, U ′(0)] we have I(x) ≤ z̃. Applying Fatou’s lemma again
yields

lim inf
y→0

H(y) ≥ EP[ξ(T ) lim inf
y→0

I(yξ(T ))
]

= z̃EP[ξ(T )].

Note that ξ is fully determined by the market and not by the utility
function of the investor. In turn, ξ determines the number y > 0 that serves
as initial value of the process

Y (t) = yξ(t).

Once the constant y > 0 is determined, the further evolution of the process
Y and in turn the wealth process X depends only on the market. The
following theorem shows how y is chosen for the maximization of the utility
from wealth.

Theorem 3.2.5. For any x > 0 define

Ψ =

{
z̃ if x ≥ H(0),

I
(
Y(x)ξ(T )

)
else ,

(3.13)

where Y : (0,H(0))→ (0,∞) denotes the inverse of H. Then, there exists a
portfolio process π ∈ A2(x) with corresponding wealth process {Xπ, 0 ≤ t ≤
T} such that

Xπ(T ) = Ψ, a.s.,

and Xπ solves Problem 3.2.3, i.e. V (x) = EP[U(Xπ(T ))].

Proof. Case 1: x ≥ H(0)

We know that U achieves its maximum at z̃, as it is the only extremum
of a strictly concave function. Hence

U(z̃) ≥ U(Xπ(T )), a.s.,
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3.3. SOLUTION TO THE CONSTRAINED PROBLEM

for every π ∈ A2(x). Therefore, Xπ(T ) = z̃ is optimal for the constrained
portfolio, for x ≥ H(0). Notice further that Xπ(T ) is in this case determin-
istic, which for x = H(0) leads to

EP[U(Xπ(T ))−
]

= U(z̃)− <∞.

The existence of a portfolio process π ∈ A2(x) and a corresponding wealth
process with Xπ(T ) = Ψ follows from Theorem 3.1.4.
Case 2: x < H(0)

By construction, there is exactly one number y = Y(x) such that H(y) =
x. Hence, EP[ξ(T )Ψ] = x and by Theorem 3.1.4, there exists a unique
admissible portfolio process π ∈ A(x) such that Xπ(T ) = Ψ. Furthermore,
for any utility function, we have for all y ∈ (0,∞)

U(I(y)) ≥ U(c) + y(I(y)− c), for all c ≥ 0.

Hence, for any other wealth process X̃, we have

EP[U(Xπ(T ))
]
≥ EP[U(X̃(T ))

]
+ Y(x)

(
x− EP[ξ(T )X̃(T )]

)
as the term inside the brackets is positive, we are finished.

3.3 Solution to the Constrained Problem

Returning to Problem 3.1.2 and especially equation (3.2) we now have the
tools to show that a solution exists and to characterize the corresponding
optimal terminal wealth.

Proposition 3.3.1. Let the initial wealth x > 0 and assume the deter-
ministic mean-variance trade-off of Assumption 3.1.7. Then, there exists
a portfolio process π ∈ A(x) that solves Problem 3.1.2. The corresponding
optimal terminal wealth Xπ(T ) is given by

Xπ(T ) =

{
C if x ≥ EP[ξ(T )C],(
C − Y(x)ξ(T )

)+
else.

(3.14)

Proof. As the preference ordering derived from utility functions is invariant
under affine transformations, we choose as utility function

U(x) = −1

2
(C − x)2.
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Then U ′(x) = C − x and Î(y) = C − y for y ∈ [0, U ′(0)]. As in (3.6) we
define the truncated inverse function of U ′ by

I(y) =

{
C − y if y ≤ C,
0 else.

Optimization Problem 3.1.2 reads as

inf
π∈A(x)

EP[(C −Xπ(T ))2
]
.

Hence, it is equivalent to the constrained portfolio problem

sup
π∈A(x)

EP[U(Xπ(T ))
]
,

and we may proceed with the help of our findings in Section 3.2. Define
H(y) = EP[ξ(T )I(yξ(T ))] = EP[ξ(T )

(
C − yξ(T )

)+
] which has a strictly

decreasing inverse function Y(x) on (0,H(0)). We have H(0) = CEP[ξ(T )].
In the case of x ≥ H(0), Theorem 3.2.5 implies

Xπ(T ) = C.

In the case of x < H(0), Theorem 3.2.5 implies

Xπ(T ) = I(Y(x)ξ(T )) =
(
C − Y(x)ξ(T )

)+
.

Remark. Note that using the truncated inverse function from (3.6) assures
non-negativity of the wealth process Xπ. If we use the inverse function
Î(y) = C − y instead, we would obtain as optimal solution

X̂(T ) =

{
C if x ≥ EP[ξ(T )C],

C − Ŷ(x)ξ(T ) else.
(3.15)

It is clearly apparent that in this case, non-negativity of the wealth process
is not guaranteed. For the unconstrained terminal wealth (3.15), we can
express the function Ŷ(x) explicitly. Note that Ĥ(y) = E[ξ(T )(C − yξ(T ))],
and hence

Ŷ(x) =
CEP[ξ(T )]− x

EP[ξ(T )2]
. (3.16)
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Unlike in the unconstrained portfolio problem, where the function Ŷ(x)
can be calculated explicitly by (3.16), the function Y(x) must be calculated
numerically. It will be shown in Proposition 3.4.11 how this can be done
under Assumption 3.1.7.

In order to compare the optimal portfolio problem leading to non-negative
terminal wealth to the unconstrained portfolio problem we need to formally
define the probability of ruin, as well as the probability of ending with a
higher terminal wealth than the strategy of only investing in the bank ac-
count.

Definition 3.3.2. The ruin probability is defined by

P[Xπ(T ) < 0], (3.17)

whereas the probability of success is defined by

P[Xπ(T ) > xe
∫ T
0 r(t)dt]. (3.18)

Remark. It is clear, that the probability of ruin is zero for the constrained
portfolio process. However, it is useful in order to quantify the advantage
over the unconstrained process.

Example 3.3.3. In order to illustrate the effect of the restriction on non-
negative terminal wealth, we plot the empirical distribution of the optimal
terminal wealth for both the constrained process (3.14) as well as the un-
constrained process (3.15).

For this example we suppose that all parameters are constant over time
and that there is only one stock in the market. We set the market parameters
as r = 0.05, µ = 0.08 and σ = 0.15. The investor starts with an initial wealth
x = 1000 and tries to reach C = 5000 over a time horizon of T = 10 years.
In Figure 3.1 we plot the empirical terminal wealth distributions for 10’000
realizations. For both strategies, the target C acts as an upper bound of
the terminal wealth. This follows directly from (3.14) and (3.15), as both
ξ(T ) and Y(x), resp. Ŷ(x), are strictly positive functions. Therefore, the
probability of reaching or overshooting the target C is zero. We also note,
that even though the ruin probability of the constrained strategy is zero,
the probability of ending up with very little money is fairly high.

In order to study the advantages and disadvantages more thoroughly,
we report some statistics of the final wealth out of 10’000 simulations in
Table 3.1. On average, the constrained strategy leads to a lower terminal
wealth, as expected. From this we see that the no-ruin option has its price,
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Figure 3.1: Histograms of the terminal wealth distribution for the con-
strained and unconstrained portfolio problem.

and in particular results in lower expected terminal wealth. On the other
hand we see that the terminal distribution of the unconstrained strategy
is much broader and the underlying risk is larger than for the constrained
strategy. In Chapter 15 we will introduce a performance methodology which
will enable us to compare the risks and the rate of return simultaneously, to
decide when one of the strategies outperforms the other.

Unconstrained Constrained

2.5% Quantile -1’560 0

Mean 2’710 2’450

97.5% Quantile 4’470 4’360
√

L2-Distance 2’810 2’870

Median Rate of Return 11.4% 10.0%

Ruin Probability 5.7% 0.0%

Success Probability 82.9% 74.0%

Table 3.1: Properties of the empirical terminal wealth distribution for the
constrained and unconstrained portfolio problem.
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3.4 The Optimal Portfolio Process

In order to understand the effects of requiring the wealth process to be
non-negative, we explicitly derive the optimal portfolio process and the cor-
responding wealth process with and without the non-negativity requirement.
Without the additional requirement, we can use (3.15) and solve the stochas-
tic differential equation (2.3) directly with the help of the Hamilton-Jacobi-
Bellman equation. On the other hand, the optimal portfolio process leading
to the non-negative payoff (3.14) can be seen as a put-option on a certain
type of underlying, which we will use in order to find an explicit solution.

In order to explicitly derive the optimal portfolio processes we add an
additional assumption to the market model.

Assumption 3.4.1. The interest rate process r(t) and the risk premium
process θ(t) are deterministic functions.

3.4.1 Without Bankruptcy Prohibition

To find an explicit form for the portfolio process π̂ leading to the optimal
terminal wealth X̂ π̂(T ) of (3.14) we use the Hamilton-Jacobi-Bellman (HJB)
equation. The main idea is to expand the problem by not only considering
a wealth process starting from t = 0, but from any t ∈ [0, T ]. Hence for
this section only, we denote the value of the wealth process at time t by
Xπ(t) = y. With this, the wealth process satisfies

dXπ(s) =
(
Xπ(s)r(s) + π(s)′

(
µ(s)− r(s)I

))
ds+ π(s)′σ(s)dW (s),

Xπ(t) = y, (3.19)

for s ∈ [t, T ]. We give a summary of Theorem 14.5 from [Björk, 2007] in
showing that the task of finding the optimal portfolio process is equivalent to
finding a solution to the HJB equation. This approach is henceforth called
the dynamic programming approach.

Theorem 3.4.2. Extending the definition of the optimal value function from
(3.8), we write

V (t, y) = sup
π∈Π

EP[U(Xπ(T ))|Xπ(t) = y
]
.

Under Assumption 2.1.1 and assuming V ∈ C1,2 and V < ∞ the optimal
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value function V satisfies the HJB equations given by

U(y) =V (T, y), (3.20)

0 =Vt(t, y) + r(t)yVy(t, y)

+ max
π∈Π

{
π(t)′

(
µ(t)− r(t)I

)
Vy(t, y) +

1

2
π(t)′σ(t)σ(t)′π(t)Vyy(t, y)

}
,

where we introduced the notation Vy(t, y) = ∂
∂yV (t, y), Vt(t, y) = ∂

∂tV (t, y)

and Vyy(t, y) = ∂2

∂y2
V (t, y).

Proof. Let π̂ be the optimal portfolio process and fix any admissible strategy
π. For h ∈ R such that t+ h < T , define

π∗(s) =

{
π̂(s), if s ∈ [t+ h, T ],

π(s), if s ∈ [t, t+ h).

It is clear by definition, that the value function of the strategy π∗ is bounded
from below by the optimal value function. If π∗ takes the value Xπ(t) at
time t to Xπ(t+ h), the expected utility at maturity T is then

EP
[
U
(
Xπ∗(T )

)∣∣∣X π̂(t+ h) = Xπ(t+ h)
]

= V
(
t+ h,Xπ(t+ h)

)
,

and therefore the value function of π∗ satisfies

EP
[
V (t+ h,Xπ(t+ h))

∣∣∣Xπ(t) = y
]
≤ V (t, y). (3.21)

Using Itô’s formula and taking the conditional expectation we obtain

EP[V (t+ h,Xπ(t+ h))|Xπ(t) = y
]

= V (t, y) + EP
[ ∫ t+h

t

(
Vt(s,X

π(s)) + r(s)Xπ(s)Vy(s,X
π(s))

+ π(s)′(µ(s)− r(s)I))Vy(s,Xπ(s))

+
1

2
π(s)′σ(s)σ(s)′π(s)Vyy(s,X

π(s))
)
ds
∣∣∣Xπ(t) = y

]
.

Now we divide by h and take the limit as h→ 0. By our assumptions on the
coefficients and the regularity of V we can interchange limit and expectation.
Hence by (3.21) we get

0 ≥ Vt(t, y)+
(
r(t)y+π(t)′

(
µ(t)−r(t)I

))
Vy(t, y)+

1

2
π(t)′σ(t)σ(t)′π(t)Vyy(t, y).

This inequality holds for all admissible strategies and equality holds if and
only if π = π̂.
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Remark. For a more general, Rm-valued stochastic process, given by

dXπ(t) = µ(t,Xπ(t), π(t))dt+ σ(t,Xπ(t), π(t))dW (t),

X(t) = x,

one can generalize Theorem 3.4.2, so that under the same assumptions V
satisfies the HJB equation

U(y) = V (T, y), (3.22)

0 = Vt(t, x) + max
π∈Π

HπV (t, x), for all (t, x) ∈ [0, T ]× Rm.

Here, for any π ∈ Π, Hπ is the partial differential operator defined by

Hπ =
m∑
i=1

µ(t, x, π)
∂

∂xi
+

1

2

m∑
i,j=1

σ(t,Xπ(t), π(t))σ(t,Xπ(t), π(t))′
∂2

∂xi∂xj
.

(3.23)
Note that we will use the partial differential operator (3.23) in Section 9.2,
as the presence of an additional stochastic factor in the wealth equation
makes the HJB equation given by (3.20) unusable.

For more information on the Hamilton-Jacobi-Bellman equation and the
derivation of the more general equation (3.22), we refer to [Björk, 2007],
[Fleming and Soner, 2006] and [Yong and Zhou, 1999].

By Theorem 3.4.2, the optimal portfolio process π̂ needs to satisfy the
first order conditions

0 = (µ(t)− r(t)I)Vy(t, y) + σ(t)σ(t)′π̂(t)Vyy(t, y),

0 > σ(t)σ(t)′Vyy(t, y),

and is of the form

π̂(t) = −
(
σ(t)σ(t)′

)−1(
µ(t)− r(t)I

) Vy(t, y)

Vyy(t, y)
(3.24)

Recall the notation for the risk premium process θ(t) = σ(t)−1
(
µ(t)−r(t)I

)
.

Inserting (3.24) into the HJB equation (3.20), we have

0 = Vt(t, y) + r(t)yVy(t, y)− 1

2
‖θ(t)‖2Vy(t, y)2

Vyy(t, y)
. (3.25)

Theorem 3.4.3. In the financial market (2.2) and under Assumptions 2.1.1
and 3.4.1, the optimal portfolio process for Problem 3.1.2 is given by

π̂(t) = −
(
σ(t)σ(t)′

)−1(
µ(t)− r(t)I

)(
X̂ π̂(t) + h(t)

)
, (3.26)

where h(t) = −C β(T )
β(t) .
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To prove this theorem we need to first find a solution V (t, y) to the HJB
equation (3.25). This will be given in the following lemma.

Lemma 3.4.4. The optimal value function

V (t, y) = e−
∫ T
t

(
‖θ(s)‖2

)
ds
(
− 1

2

(
y
β(t)

β(T )

)2
+ Cy

β(t)

β(T )
− 1

2
C2
)
, (3.27)

is a solution to the HJB equation (3.25).

Proof. Assume the optimal value function to be of quadratic form, i.e.
V (t, y) = a(t)y2 + b(t)y + c(t) for some functions a(t), b(t) and c(t) with
initial values a(T ) = −1

2 , b(T ) = C and c(T ) = −1
2C

2. Then

Vy(t, y) = 2a(t)y + b(t),

Vyy(t, y) = 2a(t),

Vt(t, y) = at(t)y
2 + bt(t)y + ct(t).

The HJB equation then becomes

0 =at(t)y
2 + bt(t)y + ct(t)

+ 2r(t)a(t)y2 + r(t)b(t)y − 1

2
‖θ(t)‖2

(
2a(t)y2 + 2b(t)y +

b(t)2

2a(t)

)
.

For this to be equal zero, we need to eliminate the dependencies on y. Hence
we obtain three differential equations

at(t) + 2r(t)a(t)− ‖θ(t)‖2a(t) = 0,

a(T ) = −1

2
,

bt(t) + r(t)b(t)− ‖θ(t)‖2b(t) = 0,

b(T ) = C,

ct(t)−
1

2
‖θ(t)‖2 b(t)

2

2a(t)
= 0,

c(T ) = −1

2
C2.
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Either solving these differential equations or inserting

a(t) = −1

2
e
∫ T
t

(
2r(s)−‖θ(s)‖2

)
ds,

b(t) = Ce
∫ T
t

(
r(s)−‖θ(s)‖2

)
ds,

c(t) = −1

2
C2e−

∫ T
t

(
‖θ(s)‖2

)
ds,

directly into the HJB equation solves the lemma.

In order to prove Theorem 3.4.3, we return to the notation of (2.3) by
replacing the starting point y of the optimal wealth process (3.19) by its
value X̂ π̂(t).

Proof of Theorem 3.4.3. Recall that

π̂(t) = −
(
σ(t)σ(t)′

)−1(
µ(t)− r(t)I

) Vy(t, X̂ π̂(t))

Vyy(t, X̂ π̂(t))

and with the help of Lemma 3.4.4, this is

π̂(t) = −
(
σ(t)σ(t)′

)−1(
µ(t)− r(t)I

)(
X̂ π̂(t) +

b(t)

2a(t)

)
.

Define h(t) = b(t)
2a(t) , with initial value h(T ) = −C. Then ht(t)− r(t)h(t) = 0

and

h(t) =
b(t)

2a(t)
= −Cβ(T )

β(t)
.

Theorem 3.4.5. Under the same assumptions as Theorem 3.4.3 and for
x < Cβ(T ), the optimal wealth process to the unconstrained optimization
problem is given by

X̂ π̂(t) =
(
x− Cβ(T )

)
e
∫ t
0

(
r(s)− 3

2
‖θ(s)‖2

)
ds−

∫ t
0 θ(s)

′dW (s) + C
β(T )

β(t)
. (3.28)

for all t ∈ [0, T ].

Proof. To derive an explicit form for the wealth process X̂ π̂, we insert the
optimal portfolio process from (3.26), into (2.3), which becomes

dX̂ π̂(t) =
(
r(t)X̂ π̂(t)− ‖θ(t)‖2 Vy(t, X̂

π̂(t))

Vyy(t, X̂ π̂(t))

)
dt− θ(t)′ Vy(t, X̂

π̂(t))

Vyy(t, X̂ π̂(t))
dW (t)

=
(
r(t)X̂ π̂(t)− ‖θ(t)‖2Z(t)

)
dt− θ(t)′Z(t)dW (t),

30



3.4. THE OPTIMAL PORTFOLIO PROCESS

where we define the auxiliary process Z(t) = X̂ π̂(t) + h(t) with initial value

Z(0) = x− Ce−
∫ T
0 r(s)ds. By Itô’s lemma we obtain

dZ(t) =
(
Z(t)

(
r(t)− ‖θ(t)‖2

))
dt− θ(t)′Z(t)dW (t),

which is the expression for a geometric Brownian motion, with solution

Z(t) = Z(0)e
∫ t
0

(
r(s)− 3

2
‖θ(s)‖2

)
ds−

∫ t
0 θ(s)

′dW (s).

Hence, we can write the optimal wealth process corresponding to the port-
folio process π̂ of (3.26) as

X̂ π̂(t) =
(
x− Cβ(T )

)
e
∫ t
0

(
r(s)− 3

2
‖θ(s)‖2

)
ds−

∫ t
0 θ(s)

′dW (s) + C
β(T )

β(t)
.

Recall the expression for the state price deflator

ξ(t) = exp
(
−
∫ t

0
θ′(s)dW (s)−

∫ t

0
(r(s) +

1

2
‖θ(s)‖2)ds

)
.

Now, for t = T we obtain

X̂ π̂(T ) =
ξ(T )e−

∫ T
0 ‖θ(t)‖

2dt

β(T )2

(
x− Cβ(T )

)
+ C

= C − Ŷ(x)ξ(T ), (3.29)

for

Ŷ(x) =
( C

β(T )
− x

β(T )2

)
e−

∫ T
0 ‖θ(t)‖

2dt =
CE[ξ(T )]− x

E[ξ(T )2]
,

which is exactly the expression (3.16).

Remark. Note that this is the same inverse function Ŷ as in [Schweizer, 1997],
which discusses much more general L2-approximation of random variables.
Even though Schweizer’s approach cannot guarantee non-negativity, it ap-
plies to much broader settings than the ones treated in this thesis, as noted
in [Korn, 1997].
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3.4.2 With Bankruptcy Prohibition

To find the optimizing portfolio in (3.14) for the case of x < Cβ(T ), it
suffices to find a portfolio process π̂ with a corresponding wealth process
X π̂ satisfying

dX π̂(t) =
(
X π̂(t)r(t) + π(t)′

(
µ(t)− r(t)I

))
dt+ π(t)′σ(t)dW (t),

X π̂(T ) = (C − Y(x)ξ(T ))+.

In general, one is not able to express X π̂ and π̂ in closed form. However,
adapting the approach of [Bielecki et al., 2005] to the case of a quadratic
utility function, we will show the existence of an explicit solution if the mar-
ket coefficients are deterministic, albeit possibly time-varying. The approach
taken is henceforth called the martingale approach.

Theorem 3.4.6 (Law of One Price). Two wealth processes with the same
value, P-a.s., at some point in the future must have the same value today.

Proof. This immediately follows from (3.1), since if two wealth processes(
Y (t)

)
t∈[0,T ]

and
(
X(t)

)
t∈[0,T ]

have the same terminal value X(T ) = Y (T ) =

Ψ, P-a.s., we also have

X(t) = Y (t) = ξ(t)−1EP[ξ(T )Ψ
∣∣Ft].

Therefore we reduce the problem to finding a replicating portfolio process
π, which yields the same terminal value as the optimal portfolio process π̂.
By the Law of One Price, the wealth processes of the two portfolio processes
will then have the same value for each t ∈ [0, T ].

Proposition 3.4.7. The unique optimizing portfolio π̂ for Problem 3.1.2
corresponding to the case x < Cβ(T ) is a replicating portfolio for a European
put option written on the asset Y(x)ξ(t) with strike price C and time to
maturity T .

Proof. This follows immediately from the First Fundamental Theorem of
Asset Pricing, the Law of One Price and Proposition 3.3.1.

Theorem 3.4.8. Under Assumptions 2.1.1, 3.1.7 and 3.4.1, the optimal
wealth process to Problem 3.1.2 is given by

X π̂(t) = CΦ(−d−(t, y(t)))
β(T )

β(t)
− Φ(−d+(t, y(t)))y(t), (3.30)
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for all t ∈ [0, T ], where Φ(x) = 1√
2π

∫ x
−∞ e

− v
2

2 dv is the cumulative distribu-

tion function of the standard normal distribution and

d+(t, y) =
log( yC ) +

∫ T
t (r(s) + 1

2‖θ(s)‖
2)ds√∫ T

t ‖θ(s)‖2ds
,

d−(t, y) = d+(t, y)−

√∫ T

t
‖θ(s)‖2ds.

Furthermore, the process y is given by

y(t) = Y(x) exp
(
−
∫ T

0
(2r(s)− ‖θ(s)‖2)ds

)
exp

(∫ t

0
(r(s)− 3

2
‖θ(s)‖2)ds−

∫ t

0
θ(s)′dW (s)

)
. (3.31)

Proof. Consider y as given above. By applying Itô’s formula, y satisfies

dy(t) = y(t)
((
r(t)− ‖θ(t)‖2

)
dt− θ(t)′dW (t)

)
,

y(0) = Y(x) exp
(
−
∫ T

0

(
2r(s)− ‖θ(s)‖2

)
ds
)
, y(T ) = Y(x)ξ(T ).

Then, by Proposition 3.4.7 and again by the Law of One Price, the opti-
mizing portfolio corresponding to x < Cβ(T ) is a replicating portfolio for a
European put option written on y with strike C and time to maturity T .

Now let X π̂(t) = f(t, y(t)) for some function f ∈ C1,2. Applying Itô’s
formula to f(t, y(t)) we obtain

df(t, y) =
(
yfy(t, y)

(
r(t)− ‖θ(t)‖2

)
+ ft(t, y) +

1

2
y2fyy(t, y)‖θ(t)‖2

)
dt

+ yfy(t, y)θ(t)′dW (t),

and comparing the drift and diffusion terms to (2.3) we have

π̂(t) = −
(
σ(t)σ(t)′

)−1
(µ(t)− r(t)I)

(
fy(t, y(t)))y(t)

)
, (3.32)

and

ft(t, y) + r(t)yfy(t, y) +
1

2
‖θ(t)‖2y2fyy(t, y)− r(t)f(t, y) = 0,

f(T, y) =
(
C − y

)+
. (3.33)
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But (3.33) is exactly the Black Scholes equation for a European put option
and hence allows for the explicit solution

f(t, y) = CΦ(−d−(t, y))
β(T )

β(t)
− Φ(−d+(t, y))y. (3.34)

Corollary 3.4.9. Under the same notations and assumptions as in Theorem
3.4.8, the optimal portfolio process to Problem 3.1.2 is given by

π̂(t) = Φ(−d+(t, y(t)))(σ(t)σ(t)′)−1(µ(t)− r(t)I)y(t) (3.35)

= −(σ(t)σ(t)′)−1(µ(t)− r(t)I)
(
X π̂(t)− Cβ(T )

β(t)
Φ(−d−(t, y(t)))

)
.

(3.36)

Proof. For notational purposes we define the process a(t) =
√∫ T

t ‖θ(s)‖2ds.
Note, that (3.36) follows immediately from (3.35) by using X π̂(t) = f(t, y(t))
in (3.34). To prove (3.35) we start from (3.32) and only need to show that
fy(t, y) = −Φ(−d+(t, y)). We have

∂d+(t, y)

∂y
=

1

ya(t)
=
∂d−(t, y)

∂y
,

and, defining φ(x) = 1√
2π
e−

x2

2 for all x ∈ R,

fy(t, y) =
1

ya(t)

(
yφ(−d+(t, y))− Cβ(T )

β(t)
φ(−d−(t, y)

)
− Φ(−d+(t, y)).

Now

C
β(T )

β(t)
φ(−d−(t, y)) = C

β(T )

β(t)
φ(−d+(t, y) + a(t))

= C
β(T )

β(t)

1√
2π
e−

d+(t,y)2

2 ed+(t,y)a(t)− 1
2
a(t)2

= Cφ(d+(t, y))elog( y
C

)

= yφ(d+(t, y).

And hence by symmetry of φ we have shown that

fy(t, y) = −Φ(−d+(t, y)).
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Remark. Note that if there is only one stock available in the market, and
if x < Cβ(T ), both the constrained optimal portfolio (3.36) and the uncon-
strained optimal portfolio (3.26) include a positive investment in the stock,
as long as µ(t) > r(t). Therefore, no shorting of the stock occurs. On the
other hand, it is possible that π̂(t) > 1, i.e. money is borrowed from the
bank account in order to finance the investment in the stock.

If a second stock is introduced to the market, both the constrained and
the unconstrained optimal portfolio may require going short in one of the
stocks. As this might not be possible in reality, due to regulatory restric-
tions, an additional no-shorting constraint could be added to the Problem
3.1.2. This new portfolio problem has been analyzed in [Heunis, 2014] and
[Liang and Sheng, 2015].

Example 3.4.10. To gain a general impression of the behavior of the port-
folio processes and the correlation between the underlying stock price and
the amount of wealth invested, we calibrate the optimal portfolio processes
for a specific market scenario. We assume the only stock to be traded in the
market to be the FTSE-Actuaries All Share Index and calculate the optimal
portfolio strategies for a investment horizon of ten years.

1998 2000 2002 2004 2006 2008

Years
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FTSE-Actuaries All Share Index

Figure 3.2: Monthly historical time series of the FTSE-Actuaries All Share
Index between January 1998 and December 2007.

The period between 1998 and 2008 was chosen to capture the dot-com
bubble and the subsequent effects of the September 11 attacks in 2001,
which led to a drop of the FTSE-Actuaries All Share Index of over 40%. We
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Figure 3.3: In the upper graph, the amount invested in the stock can be
seen for both the constrained and the unconstrained optimal portfolio. The
resulting wealth process is plotted below.

assume the underlying parameters of the stock process to be constants and
calculate them empirically. We obtain r = 5%, µ = 8% and σ = 0.15. The
investor starts with x = 1000 and the target wealth is set to C = 5000.

It can be observed in Figure 3.3, that there is some negative correlation
between the stock process and the unconstrained portfolio process. During
the bear market of 2000 to 2002, the amount invested in the stock rises
quickly. By looking at the equation (3.26) for the portfolio process, we see
that this correlation is in fact between the current and the target wealth.
During periods where the stock price falls, the wealth falls as well and in
turn, the distance to the target wealth increases. This leads to more will-
ingness to take on risk and higher investment in the stock.

This negative correlation also exists for the constrained portfolio prob-
lem. However, the amount invested depends not directly on the discounted
target wealth, but rather on C β(T )

β(t) Φ(−d−(t, y(t))), as seen in (3.36). The
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additional factor Φ(−d−(t, y(t))) acts as a ”cap” to the amount invested and
guarantees the non-negativity of the wealth process.

We also observe that while the constrained wealth process comes close to
zero in 2002, the unconstrained wealth process actually becomes negative.
Due to the recovery of the market and heavy borrowing, the unrestricted
portfolio process still manages to outperform the restricted process in the
end. In practice, the investor might not have been able to continue investing
after bankruptcy.

We have represented both the portfolio process and the corresponding
wealth process explicitly in terms of the function Y(x). Unlike the case where
we do not exclude bankruptcy, this function can only be found numerically.

Proposition 3.4.11. If x < Cβ(T ) and if the Assumptions 2.1.1, 3.1.7 and
3.4.1 are satisfied, Y(x) is the unique solution to the equation

xe
∫ T
0 r(t)dt = CΦ

( log( C
Y(x)) +

∫ T
0

(
r(t)− 1

2‖θ(t)‖
2
)
dt√∫ T

0 ‖θ(t)‖2dt

)

− Y(x)e−
∫ T
0

(
r(t)−‖θ(t)‖2

)
dtΦ
( log( C

Y(x)) +
∫ T

0

(
r(t)− 3

2‖θ(t)‖
2
)
dt√∫ T

0 ‖θ(t)‖2dt

)
.

(3.37)

Proof. In the proof of Theorem 3.4.8 we saw, that the optimal wealth process
satisfies, x = X π̂(0) = f(0, y(0)), for y and f given in (3.31) and (3.34)
respectively. Hence

x = CΦ
(
− d−(0, y(0))

)
β(T )− Φ

(
− d+(0, y(0))

)
y(0).

As y(0) is given by y(0) = Y(x) exp
(
−
∫ T

0

(
2r(s)−‖θ(s)‖2

)
ds
)
, calculating

d−(0, y(0)) and d+(0, y(0)) explicitly, yields the claim.
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Chapter 4

The Constrained Optimal
Strategy: Lower Bound

As a next step we introduce a lower constraint to limit the terminal wealth
from below. We will see that this problem is again closely related to the
optimization problem of maximizing expected utility from terminal wealth
when terminal wealth is bounded from below. We retain all notation from
Chapter 3.

4.1 Problem Formulation

Problem 4.1.1. Given a constant C and a positive real number K, we
consider the problem of finding a portfolio process π̂l ∈ A(x) such that

EP[(C −X π̂l(T ))2
]

= inf
π∈A(x)

EP[(C −Xπ(T ))2
]
,

subject to X π̂l(T ) ≥ K, a.s., (4.1)

and the pair
(
X π̂l(t), π̂l(t)

)
satisfies the stochastic differential equation (2.3).

Remark. • Note that under the restriction that X π̂l(T ) ≥ K a.s., the
non-negativity constraint is non-binding, due to Proposition 3.1.1.

• By Lemma 3.1.3 we know that the process β(t)Xπ(t) is a supermartin-
gale under Q and needs to satisfy

EQ[β(T )Xπ(T )
]
≤ x.
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This budget constraint implies, that the class of optimal portfolio pro-
cesses for Problem 4.1.1 is empty unless we have β(T )K ≤ x. The
case of β(T )K = x is also trivial, as then the only optimal portfolio
process is π̂l ≡ 0, i.e. everything is invested into the bank account. For
the rest of this chapter, we will hence assume that

β(T )K < x. (4.2)

• Define the stopping time

τ(π) = inf
0≤t≤T

{β(t)Xπ(t) = β(T )K}.

As soon as the wealth process Xπ(t) hits the boundary Ke−
∫ T
t r(s)ds,

the only viable process is to invest everything in the bank account, i.e.

π(s) = 0, s ∈ [τ, T ], a.s.,

Xπ(s) = K
β(T )

β(s)
, s ∈ [τ, T ], a.s.

4.2 Solution of the Constrained Problem

To find the optimal wealth process for the constraint problem, we adapt
[Grossman and Zhou, 1996, Lemma 2] for a quadratic utility function. We
will see that the optimal terminal wealth consists of an unconstrained wealth
process (which is allowed to take on negative values) plus a put option which
is in-the-money if the constrained wealth process dips below K. Finally, the
purchase of this put option is financed by using a lower initial wealth for the
constrained wealth process.

We first proof the general case of finding a solution to Problem 3.2.3
under an additional lower constraint for the terminal wealth. Note that
the admissibility constraint (3.3) still needs to hold for the optimal wealth
process X π̂(t).

Proposition 4.2.1. The solution to

sup
π∈A(x)

EP[U(Xπ(t))
]

subject to, Xπ(T ) ≥ K, a.s. (4.3)

is given by the following expression for the optimal terminal wealth

X π̂(T ) = max
(
K, I(yξ(T ))

)
, (4.4)

where y is chosen in such a way that the terminal wealth given by (4.4)
satisfies the admissibility constraint EP[ξ(T )X π̂(T )] = x.
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Proof. Thanks to the assumption in (4.2) there is at least one attainable
terminal wealth Xπ(T ) with an admissible portfolio process π such that
Xπ(T ) ≥ K and EP[ξ(T )Xπ(T )] = x. Using that for the concave function
U we have for any a and b, U(a)− U(b) ≤ U ′(b)(b− a), we obtain

EP[U(Xπ(T ))]− EP[U(X π̂(T )]

≤EP[U ′(X π̂(T ))
(
Xπ(T )−X π̂(T )

)
]

=EP[U ′(X π̂(T ))
(
Xπ(T )−X π̂(T )

)
|X π̂(T ) > K]P[X π̂(T ) > K]

+EP[U ′(X π̂(T ))
(
Xπ(T )−X π̂(T )

)
|X π̂(T ) ≤ K]P[X π̂(T ) ≤ K].

Now, in the event X π̂(T ) > K, we have that U ′(X π̂(T )) = yξ(T ), whereas
in the event X π̂(T ) ≤ K, we have that Xπ(T ) − X π̂(T ) ≥ 0 and that
U ′(X π̂(T )) ≤ yξ(T ) as U ′ is a decreasing function. Therefore

EP[U(Xπ(T ))]− EP[U(X π̂(T )] ≤ yEP[ξ(T )
(
Xπ(T )−X π̂(T )

)
] = 0.

So, EP[U(Xπ(T ))] ≤ EP[U(X π̂(T ))] for all admissible strategies π.

Corollary 4.2.2. For Problem 4.1.1, the optimal terminal wealth is of the
form

X π̂l(T ) = X̂ π̂(T ) +
(
K − X̂ π̂(T )

)+
, (4.5)

where X̂ π̂(t) is the optimal wealth process from (3.28) with

x̂0 = CEP[ξ(T )]− yEP[ξ(T )2],

where y is chosen in such a way that the terminal wealth given by (4.5)

satisfies the admissibility constraint EP[X π̂l(T )ξ(T )] = x.

Proof. Let Î(y) = C− y be the inverse of U ′(x). Then by Proposition 4.2.1,

X π̂l(T ) = Î(yξ(T )) + max{K − Î(yξ(T )), 0}.

Hence, determine x̂0 such that Î(yξ(T )) = X̂ π̂(T ), which is the case if

Î(yξ(T )) = C − yξ(T ) = C − CEP[ξ(T )]− x̂0

EP[ξ(T )2]
ξ(T )

⇐⇒ yEP[ξ(T )2] = CEP[ξ(T )]− x̂0

and finally y is chosen such that the budget constraint EP[X π̂l(T )ξ(T )] = x
is fulfilled.
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4.3 The Optimal Portfolio Process

Using (4.5) we see that the optimal portfolio process corresponding to Prob-
lem 4.1 can be solved quickly with the help of the optimal portfolio process
(3.36). Namely, rewriting (4.5) with the help of the findings in Section 3.3,
we have

X π̂l(T ) =

{
C if x ≥ Cβ(T ),

max
(
C − yξ(T ),K

)
else .

(4.6)

where y is chosen such that

EP[ξ(T )
(
(C −K)− yξ(T )

)+
] = x−KEP[ξ(T )].

Hence, we state the optimal wealth process as well as the optimal port-
folio process in terms of the optimal processes under the non-negativity
constraint. Define

x̂ = x−Kβ(T ),

Ĉ = C −K.

Theorem 4.3.1. Denote by X̂ π̂(t; x̂, Ĉ) the optimal wealth process (3.30) at
time t with initial wealth x̂ and fixed claim Ĉ. Then under the Assumptions
2.1.1, 3.1.7 and 3.4.1 the optimal wealth process to Problem 4.1 is given by

X π̂l(t) = X̂ π̂(t; x̂, Ĉ) +K
β(T )

β(t)
. (4.7)

Similarly, denoting by π̂(t; x̂, Ĉ) the optimal portfolio process (3.36) at
time t with initial wealth x̂ and fixed claim Ĉ, the optimal portfolio process
to Problem 4.1 is given by

π̂l(t) = π̂(t; x̂, Ĉ) +Ke−
∫ T
t r(s)ds. (4.8)

Proof. Looking at (4.6) we see that the lower constraint is fulfilled by invest-
ing just enough money in the bank account to reach K a.s. The rest of the
money is then invested in order to reach (C−K) with maximum probability.
As this is done in the same way as in (3.36), non-negativity is guaranteed,

and the whole wealth process never falls below Ke−
∫ T
t r(s)ds. Finally the

Law of one Price of Theorem 3.4.6 guarantees that the replicating portfolio
and the optimal portfolio are identical.
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Figure 4.1: In the upper graph, the amount invested in the stock can be seen
for the constrained portfolio, the unconstrained portfolio and the portfolio
process with a lower constraint of K = 500. The resulting wealth process is
plotted below.

Example 4.3.2. We repeat the analysis of Example 3.4.10, including the
portfolio and wealth process of the optimal strategy with a positive con-
straint. In Figure 4.1 we plot the optimal portfolio strategy with a lower
bound of K = 500 in addition to the constrained and the unconstrained
optimal portfolio processes. We observe that during the bear market of
2000 to 2002, the amount invested in the stock for the portfolio including
the lower bound is even lower than the amount invested for the constrained
strategy. Although this ensures the wealth to stay above the lower bound,
this guarantee comes at a price. The minimal wealth attained during the
investment period is the highest for the portfolio process which includes a
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Unconstrained Constrained Lower Bound

Terminal Wealth 2’500 1’860 1’660

Rate of Return 9.2% 6.2% 5.1%

Minimal Wealth -283 252 467

Table 4.1: Properties of the different portfolio processes calculated for the
period 1998-2008 with the FTSE-Actuaries All Share Index as the sole un-
derlying stock.

lower bound, but this is paid for by the rate of return and in turn, by lower
terminal wealth, as observed in Table 4.1. Note that the minimal wealth
attained by the strategy with a constraint of K = 500 is below that lower
bound. This is due to the discretization used in the calculation, which does
not allow to change the investment quick enough to prevent this.

Notably, after the market had recovered in 2003, the amount invested in
the stock for the two constrained portfolio processes only gradually becomes
larger than the amount invested for the unconstrained strategy, even though
the distance to the target wealth is higher. This might be one weakness of
the constrained portfolio processes, as much less risk can be taken during
periods of low wealth to assure to stay above the lower bound. This in turn
makes it harder to recover, compared to the unconstrained portfolio process.
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Part II

Introducing Inflation
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Chapter 5

The Financial Market Model

In Part I, we analyzed the problem of finding an optimal investment strat-
egy in order to obtain the terminal wealth as close to a predetermined value
as possible. Setting terminal wealth constraints, we were able to find ex-
plicit solutions for both the investment strategy as well as the corresponding
wealth process.

A possible application of the quadratic optimization scheme is a pension
plan, in which the plan member determines an optimal wealth at retirement,
which will then be the objective to be reached by the investment strategy.
However, such pension plans usually have a long duration and hence the
plan members bear considerable risk due to inflation. In order to analyze
how to best invest in the presence of inflation we will therefore introduce an
additional market element, a so called inflation-linked bond, which allows us
to hedge the risk of inflation. On the real financial market, Treasury Inflation
Protected Securities (TIPS) or UK inflation-linked, gilt-edged securities are
possible available derivatives.

The optimal investment strategy in the accumulation phase of such a
pension plan under the presence of inflation has been studied in [Nkeki, 2012],
[Liang and Sheng, 2015], [Pan and Xiao, 2017] and [Xu and Wu, 2014],
which study the mean-variance framework. While most research concludes
that the addition of an inflation-linked bond to the market is beneficial
in practice, [Zhang, 2012] states that for the expectation maximization of
some utility functions, the optimal terminal wealth is the same in real and
in nominal terms. We show that for the target-based approach, including
an inflation-linked bond actually transforms the optimal portfolio strategy
and that the additional market element cannot be modeled as another risky
stock. Most additional literature on the topic of optimal portfolio man-
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agement under inflation additionally includes some constant, time-varying
or random contribution process from the plan members during the accu-
mulation phase. The optimization problem including contributions with or
without inflation will be the subject of Part III.

We use the same approach as in Part I to solve the problem of quadratic
optimization with non-negativity of the terminal wealth under the presence
of inflation. Transforming the constraint of the wealth process to the con-
straint on terminal wealth, we restate the optimization problem. As the
terminal inflation is now included in the expectation, we consider an equiv-
alent optimization problem, applying the martingale approach of Part I in
order to find a solution.

5.1 Introduction to Inflation and Inflation-Linked
Bonds

5.1.1 Inflation

Inflation is defined as the increase in the general price level over a period of
time and is usually measured by a certain price index I(t). The percentage
change of the index between times t and ∆t is then the inflation over this
time period, i.e.

is(t, t+ ∆t) =
I(t+ ∆t)− I(t)

I(t)
,

where
(
is(t, t

′)
)
t<t′∈[0,T ]

denotes the simple inflation rate. We note the sim-

ilarities between inflation rate and interest rate theory and define the con-
tinuously compounded inflation rate

(
ic(t, t

′)
)
t<t′∈[0,T ]

, by the solution to

eic(t+∆t,t)∆t =
I(t+ ∆t)

I(t)
.

The instantaneous inflation rate
(
i(t)
)
t∈[0,T ]

is then defined similarly to

the way instantaneous short rate is defined in interest rate theory, see e.g.
[Brigo and Mercurio, 2001][Chapter 1], by

i(t) = lim
∆→0

ic(t+ ∆t, t) =
d log(I(t))

dt
,

where we assume that the limit exists for all t ≥ 0 and is well defined. In
the following discussion, only the instantaneous rate of inflation will be used
and is henceforth called the inflation rate.
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A well-known result from microeconomics in the area of inflation is the
Fisher effect, first introduced by [Fisher, 1930]. It states the effect of mon-
etary policy on the nominal interest rate more directly, by defining the
nominal interest rate as the sum of the expected real interest rate and the
expected inflation. Denote by Ft− = σ(Fs, s < t) the sigma algebra of
events which are observable before time t. Then the Fisher effect states

rN (t) = EP̃[r̃R(t)|Ft−] + EP̃[i(t)|Ft−],

where rN (t) is the nominal interest rate, r̃R(t) is the real interest rate and
P̃ is some risk neutral measure.

Note that contrary to the nominal interest rate rN , both the real in-
terest rate and the inflation rate are not progressively measurable. This is
a consequence of the nominal interest rate being set in advance, while the
real interest rate and the inflation rate are not set, but simply observed a
posteriori. For the rest of this paper, we therefore define the expected real
interest rate process

(
rR(t)

)
t∈[0,T ]

as the predictable projection of the real

interest rate, i.e.

rR(t) = EP̃[r̃R(t)|Ft−], for all t ∈ [0, T ].

The calculation of indices that measure the average level of prices is very
involved. As the theory behind this calculation does not offer any particular
insight into the problems at hand, we assume to be given an inflation index(
I(t)

)
t∈[0,T ]

, which follows the dynamics

dI(t) = I(t)
((
rN (t)− rR(t) + σI(t)θI(t)

)
dt+ σI(t)dWI(t)

)
,

I(0) = 1, (5.1)

where
(
WI(t)

)
t∈[0,T ]

is a P-Brownian motion and σI(t) denotes the volatil-

ity of the inflation index and is assumed to be a progressively measurable
process, satisfying

∫ T
0 σ2

I (t)dt < ∞, P-a.s. Furthermore, θI(t) denotes the
market price of inflation risk and is also assumed to be progressively mea-
surable.

Similarly to Section 2.1, by including a bank account to the market
model, we may assume that the nominal interest rate process rN (t) is Ft-
progressively measurable for all t ∈ [0, T ]. By including an additional market
element, a so-called inflation-linked bond, and by the above discussion, we
will see that we can also assume that the real interest rate process rR(t) is
Ft-progressively measurable for all t ∈ [0, T ].
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5.1.2 Inflation-Linked Bonds

In order to be able to perform inflation hedging, we introduce an inflation-
linked zero coupon bond, denoted by (B*(t, I(t)))t∈[0,T ], to the market. This
bond pays real notional F at maturity T , i.e. the nominal payment consists
of FI(T ). Henceforth, we set F = 1, so B*(t, I(t)) denotes the unit value
of the inflation-linked zero coupon bond at time t.

In order to price this inflation-linked bond, recall the state price deflator
ξ(t), defined as

ξ(t) = exp
(
−
∫ t

0
θ(s)′dW (s)−

∫ t

0

(
rN (s) +

1

2
‖θ(s)‖2

)
ds
)
,

where θ(t) denotes the market price of risk. Contraty to Part I, by adding
the inflation-linked bond to the market, θ(t) includes the market price of
inflation risk θI(t) and W (t) =

(
W1(t), . . . ,Wn(t),WI(t)

)
, t ∈ [0, T ].

Lemma 5.1.1. Assuming that the real-interest rate process rR(t) is uni-
formly bounded, an inflation-linked zero-coupon bond satisfies

dB*(t, I(t)) = B*(t, I(t))
(
rR(t)dt+

dI(t)

I(t)

)
. (5.2)

Therefore, the inflation-linked bond can perfectly replicate the inflation in-
dex.

Proof. Since the payout of an inflation-linked zero-coupon bond is I(T ), by
the same no-arbitrage arguments as in (3.1), its price needs to satisfy

B*(t, I(t)) = ξ(t)−1EP[ξ(T )I(T )
∣∣Ft], for all t ∈ [0, T ].

Inserting the definition of ξ(T ) and I(T ) we obtain

ξ(T )I(T ) = exp
(
−
∫ T

0
(rR(s) +

1

2
‖θ(s)‖2 − σI(s)θI(s) +

1

2
σ2
I (s))ds

−
∫ T

0
θ(s)′dW (s) +

∫ T

0
σI(s)dWI(s)

)
.

Let BR(t, T ) denote the time t expected real value of one unit paid at ma-
turity, i.e.

BR(t, T ) = EP[e− ∫ T
t rR(s)ds

∣∣Ft].
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Then, the price of an inflation-linked zero-coupon bond is given by

B*(t, I(t)) =ξ(t)−1EP[ξ(T )I(T )
∣∣Ft]

= exp
( ∫ t

0
(rN (s)− rR(s) + σI(s)θI(s)−

1

2
σ2
I (s))ds

+

∫ t

0
σI(s)dWI(s)

)
EP[ exp

(
−
∫ T

t
rR(s)ds

)∣∣Ft]
= I(t)BR(t, T ). (5.3)

Since the real interest rate is assumed to be uniformly bounded, we can
apply the dominated convergence theorem together with Itô’s formula on
f(x, y) = xy to obtain

dB*(t, I(t)) = I(t)dBR(t, T ) +BR(t, T )dI(t)

= I(t)rR(t)BR(t, T )dt+BR(t, T )I(t)
dI(t)

I(t)

= B*(t, I(t))
(
rR(t)dt+

dI(t)

I(t)

)
.

In practice, inflation-linked bonds usually pay coupons as well as the
notional. Similarly to the case of nominal bonds, the coupon inflation bond
can be replicated as the sum of zero coupon bonds. Denoting by ILB the
coupon inflation bond, which pays the real coupons ci, at predetermined
times t1, . . . , tn, we have

ILB(t) =
( n∑
i=1

ciI(t)e
−

∫ t
ti
rR(s)ds

+ I(t)e−
∫ T
t rR(s)ds

)
= I(t)

( n∑
i=1

ciBR(t, ti) +BR(t, T )
)
,

such that t < t1 ≤ tn < T .

Remark. Note that Treasury Inflation Protected Securities (TIPS) are pro-
tected against deflation, unlike UK inflation-linked, gilt-edged securities.
The particular bond added to the market model (2.2) is an inflation-linked
zero-coupon bond whose principal is not protected against deflation.
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5.2 The Market Model

Choose a complete probability space (Ω,F ,P) on which we have an n + 1-
dimensional Brownian motion W (t) =

(
W1(t), . . . ,Wn(t),WI(t)

)
, t ∈ [0, T ],

for a given, finite time horizon T . Suppose the financial market contains
n+ 2 tradable assets. One of the assets is a risk-free bond (B(t))t∈[0,T ] and
n are stocks (Si(t))t∈[0,T ]. Moreover, an inflation-linked zero-coupon bond
denoted by (B*(t, I(t)))t∈[0,T ] is used to hedge the risk of inflation. The
price dynamics are given by

dB(t) = rN (t)B(t)dt, (5.4)

dSi(t) = Si(t)
[
µi(t)dt+

n∑
j=1

σi,j(t)dWj(t) + σi,I(t)dWI(t)
]
, (5.5)

dB*(t, I(t)) = B*(t, I(t))
[(
rN (t) + σI(t)θI(t)

)
dt+ σI(t)dWI(t)

]
, (5.6)

where B(0) = 1 and B*(0, I(0)) = EP[e− ∫ T
0 rR(t)dt

]
, P-a.s. Denote the

dispersion matrix of the market by

σ(t) =


σ1,1(t) · · · σ1,n(t) σ1,I(t)

...
...

...
...

σn,1(t) · · · σn,n(t) σn,I(t)
0 · · · 0 σI(t)

 . (5.7)

Assumption 5.2.1. The real interest rate process rR(t), the nominal in-
terest rate process rN (t), the vector of mean rates of return µ(t) and the
dispersion matrix σ(t) are uniformly bounded and Ft-progressively mea-
surable processes on [0, T ], with rR(t), rN (t) ∈ R, µ(t) ∈ Rn+1 and σ(t) ∈
R(n+1)×(n+1). Furthermore, σ(t)σ(t)′ shall be positive definite for all t ∈
[0, T ].

Consider an investor who starts with a fixed, positive wealth x at time
0, who invests in the various securities and whose actions do not affect the
market prices. The amount that is invested in the i’th stock at time t is
denoted by πi(t), whereas the amount invested in the inflation-linked bond
is denoted by πI(t). At time t ∈ [0, T ] we denote the total wealth of this
investor by X(t). We replace the portfolio process π(t) in Definition 2.1.2
by π(t) =

(
π1(t), . . . , πn(t), πI(t)

)′
and retain the concept of admissibility.

54



5.2. THE MARKET MODEL

Definition 5.2.2. Given a portfolio process π, the solution X = Xπ to

dXπ(t) =
n∑
i=1

πi(t)
dSi(t)

Si(t)
+ πI(t)

dB*(t, I(t))

B*(t, I(t))
+
(
Xπ(t)− π(t)′I

)dB(t)

B(t)
,

Xπ(0) = x, (5.8)

is called the wealth process corresponding to the portfolio process π and the
initial capital x > 0.

Similar to Proposition 2.1.4, such a solution X = Xπ is unique. In order
to find conditions on the portfolio process to guarantee that the correspond-
ing wealth process exists and is non-negative, we proceed in a similar manner
as in Chapter 3.

Under Assumption 5.2.1, the matrix σ(t) is invertible and we can define
the risk premium process

θ(t) =


θ1(t)

...
θn(t)
θI(t)

 = σ(t)−1

(
µ(t)− rN (t)1
σI(t)θI(t)

)
,

which exists and is bounded, measurable and adapted to Ft due to Assump-
tion 5.2.1. Under this notation we have

µi(t)− rN (t) =
n∑
j=1

σi,j(t)θj(t) + σi,I(t)θI(t),

for all i ∈ {1, . . . , n} and all t ∈ [0, T ]. We rewrite the price dynamics of the
stocks (5.5) by

dSi(t)

Si(t)
=
(
rN (t)+σi,I(t)θI(t)

)
dt+

n∑
j=1

σij(t)
(
dWj(t)+θj(t)dt

)
+σi,I(t)dWI(t).

(5.9)
Substituting (5.4), (5.6) and (5.9) in the stochastic differential equation of
the wealth process (5.8), we obtain

dXπ(t) =
(
rN (t)Xπ(t) + π(t)′Γ(t)

)
dt+ π(t)′σ(t)dW (t),

Xπ(0) = x, (5.10)
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where

Γ(t) = σ(t)θ(t) =


∑n

j=1 σ1,j(t)θj(t) + σ1,I(t)θI(t)
...∑n

j=1 σn,j(t)θj(t) + σn,I(t)θI(t)

σI(t)θI(t)

 .

The stochastic differential equation (5.10) strongly resembles the stochas-
tic differential equation for the wealth process in absence of inflation, given
by (2.3) in Part I. However, the optimization problem in the current market
will be different from the Problem 3.1.2 we have analyzed so far and hence
we expect to obtain a different optimal terminal wealth.

5.3 Change of Measure

As we follow along the same lines as in Section 2.2, we only give a summary
of the derivation of the risk neutral measure Q in the financial market of
(5.6). Define

Z(t) = exp
(
−
∫ t

0
θ′(s)dW (s)− 1

2

∫ t

0
‖θ(s)‖2ds

)
.

Then, the measure Q : Ω→ [0, 1], defined by Q[A] = E[Z(T )1A] for all A ∈
F , is an equivalent probability measure to P and Ŵ (t) = W (t)+

∫ t
0 θ(s)ds is

a Q-Brownian motion. With this we can rewrite the stochastic differential
equation (5.10) of the wealth process by

dXπ(t) =
(
rN (t)Xπ(t) + π(t)′Γ(t)

)
dt+ π(t)′σ(t)dW (t)

= rN (t)Xπ(t)dt+ π(t)′σ(t)dŴ (t).

Recalling the bank account numéraire β(t) = exp(−
∫ t

0 rN (s)ds) from (2.7),
we write

Xπ(t)β(t) = x+

∫ t

0
β(s)π(s)′σ(s)dŴ (s),

and the measure Q is an equivalent martingale measure to P. Recall the
notion of the state price deflator

ξ(t) = β(t)Z(t) = exp
(
−
∫ t

0
θ(s)′dW (s)−

∫ t

0
(rN (s)+

1

2
‖θ(s)‖2)ds

)
, (5.11)

for t ∈ [0, T ].
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Remark. Although having similar definitions, the measure Q and the cor-
responding Brownian motion Ŵ (t) differ from their repective partners in
Section 2.2, due to the presence of the inflation-linked bond in the market.
The processes are the same, only if inflation is zero.

In light of the structure of the inflation-linked bond in (5.6), we define an
additional measure QT . Define the inflation adjusted risk premium process

θ̃(t) =
(
θ1(t), . . . , θn(t), θI(t)− σI(t)

)′
,

which exists and is bounded, measurable and adapted to Ft due to Assump-
tion 5.2.1. Hence, we can apply Girsanov’s theorem utilizing the Doléan-
Dade exponential

Z̃(t) = exp
(
− 1

2

∫ t

0
‖θ̃(s)‖2ds−

∫ t

0
θ̃(s)′dW (s)

)
. (5.12)

Now by Itô’s formula, Z̃(t) is a continuous local martingale with E[Z̃(T )] =
1. Hence we can define the measure QT by QT [A] = E[Z̃(T )1A] for all
A ∈ F and by a similar argument to (2.5) P and QT agree on the same null
sets. We will see that QT is in fact also a martingale measure, where the
discount factor is the inflation-linked numéraire

(
β̃(t)

)
t∈[0,T ]

, defined by

β̃(t) =
1

B*(t, I(t))
, (5.13)

for t ∈ [0, T ].

Lemma 5.3.1. The process (W̃ (t))t∈[0,T ] defined by W̃ (t) = W (t)+
∫ t

0 θ̃(s)ds

is an (n+ 1)-dimensional Brownian motion under QT .

Proof. This proof follows the same approach as Lemma 2.2.1. By Itô’s
formula applied to f(t, x) = exp(−x− 1

2

∫ t
0 ‖θ̃(s)‖

2ds), we have

dZ̃(t) = −Z̃(t)θ̃(t)′dW (t). (5.14)

Using the product rule, we obtain

d
(
Z̃(t), W̃ (t)

)
= Z̃(t)dW̃ (t) + W̃ (t)dZ̃(t) + d[Z̃, W̃ ](t)

= Z̃(t)dW (t)− W̃ (t)Z̃(t)θ̃(t)′dW (t),

and (W̃ (t))t∈[0,T ] is a continuous martingale under QT . By Lévy’s charac-

terization theorem of Brownian motion, (W̃ (t))t∈[0,T ] is also a QT -Brownian
motion.
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Chapter 6

The Constrained Optimal
Strategy

6.1 Problem Formulation

6.1.1 The Constrained Portfolio Problem

Before formally stating the optimization problem, we note that once again
we may focus on the non-negativity of the terminal wealth, instead of the
non-negativity of the full price process. This follows by Proposition 3.1.1.

Problem 6.1.1. Let the family of all admissible portfolio processes that
lead to non-negative terminal wealth be denoted by

A(x) =
{
π ∈ Π | Xπ(0) ≤ x and Xπ(T ) ≥ 0, P-a.s.

}
.

Given a constant C, we consider the problem of finding a portfolio process
π̃ ∈ A(x) such that

EP
[(
C − X π̃(T )

I(T )

)2]
= inf

π∈A(x)
EP
[(
C − Xπ(T )

I(T )

)2]
, (6.1)

and the pair
(
X π̃(t), π̃(t)

)
satisfies the stochastic differential equation (5.10),

We are unable to use the results of Section 3.2 as the admissibility con-
dition of (3.3) does not include the correction for inflation I(T ). Hence, we
first reduce (5.10) to a problem more similar to Problem 3.1.2 by defining
a new stochastic process Y π(t) = Xπ(t)β̃(t) for all t ∈ [0, T ] and note that
the numéraire β̃(t) does not affect the optimal portfolio.
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Remark. As the investor cares about the utility of the real wealth level, since
the purchasing power of nominal wealth decreases with inflation, we write
Problem 6.1.1 in terms of the real wealth process

(
Y π(t)

)
t∈[0,T ]

. Instead we

could inflate the constant C, and study the problem

inf
π∈A(x)

EP
[(
CI(T )−Xπ(T )

)2]
.

By [Korn, 1997], after slight adjustments, the results for Part I are still valid
when replacing the constant C by the random function C̃ = CI(T ). Note,
that then the expected inflation over the period of investment needs to be
estimated at the beginning. We study the mathematically more interest-
ing problem proposed in (6.1) instead, for which the terminal value of the
inflation index does not need to be estimated.

Proposition 6.1.2. The real wealth process Y π(t) = Xπ(t)β̃(t) satisfies the
stochastic differential equation

dY π(t) =Y π(t)
(
σ2
I (t)− σI(t)θI(t)

)
dt− Y π(t)σI(t)dWI(t)

+ β̃(t)π(t)′
(
Γ(t)− σn+1(t)σI(t)

)
dt+ β̃(t)π(t)′σ(t)dW (t),

Y π(0) =β̃(0)x, (6.2)

where σn+1(t) denotes the (n+ 1)th column of σ(t).

Proof. Due to the initial nominal wealth Xπ(0) = x, the initial wealth of
the real wealth process follows immediately. Now let f(x, y) = x

y . Then, by
Itô’s formula, we have

df(x, y) =
1

y
dx− x

y2
dy − 1

y2
d[x, y](t) +

x

y3
d[y, y](t).

Using the definition of the inflation-numéraire (5.13) and the stochastic dif-
ferential equations (5.6) and (5.10), we plug in f

(
Xπ(t), B*(t, I(t))

)
and
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6.1. PROBLEM FORMULATION

obtain

dY π(t) = β̃(t)

(
dXπ(t)−Xπ(t)

dB*(t, I(t))

B*(t, I(t))
− π(t)′σI(t)σn+1(t)dt

+Xπ(t)σ2
I (t)dt

)
= β̃(t)

(
rN (t)Xπ(t)dt+ π(t)′Γ(t)dt+ π(t)′σ(t)dW (t)− rN (t)Xπ(t)dt

−Xπ(t)σI(t)θI(t)dt−Xπ(t)σI(t)dWI(t) +Xπ(t)σ2
I (t)dt

− π(t)′σI(t)σn+1(t)dt

)
= β̃(t)

((
π(t)′Γ(t) +Xπ(t)(σ2

I (t)− σI(t)θI(t))− π(t)′σI(t)σn+1(t)
)
dt

+ π(t)′σ(t)dW (t)−Xπ(t)σI(t)dWI(t)

)
= Y π(t)

((
σ2
I (t)− σI(t)θI(t)

)
− σI(t)dWI(t)

)
+ β̃(t)π(t)′

((
Γ(t)− σI(t)σn+1(t)

)
dt+ σ(t)dW (t)

)
.

Note that by non-negativity of the inflation index, we have

Xπ(t) ≥ 0 ⇐⇒ Y π(t) ≥ 0, P-a.s.,

for all t ∈ [0, T ], and in order to obtain a non-negative nominal wealth
process, we may focus on the non-negativity of the terminal wealth of
the real wealth process instead. Furthermore, by Lemma 5.1.1 we have
B*(T, I(T )) = I(T ), which allows us to restate Problem 6.1.1.

Problem 6.1.3. Given a fixed claim C, we consider the problem of finding
a portfolio process π̃ ∈ A(x) such that

EP[(C − Y π̃(T )
)2]

= inf
π∈A(x)

EP[(C − Y π(T )
)2]

. (6.3)

and the pair
(
Y π̃(t), π̃(t)

)
satisfies the stochastic differential equation (6.2).

Now similarly to the approach in Sections 3.2 and 3.4 we can use the
martingale approach and separate Problem 6.1.1 into two sub problems.
First we find the terminal wealth that optimizes the quadratic utility, before
solving the corresponding backward stochastic differential equation.
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6.1. PROBLEM FORMULATION

6.1.2 Conditions on Admissibility

In order to solve Problem 6.1.3, we express the condition π ∈ A(x) by an
inequality, which then allows us to use Lagrangian techniques to find the
optimal terminal wealth. Due to the presence of inflation, we do not use
the bank-account numéraire β(t) to discount the wealth process, but rather
use the inflation-linked numéraire β̃(t) and the measure QT , introduced in
Section 5.3.

Lemma 6.1.4. The process (Y π(t))t∈[0,T ] is a continuous local martingale

under the measure QT .

Proof. Inserting the Brownian motion W̃ (t) from Lemma 5.3.1 into (6.2),
we obtain

dY π(t) =Y π(t)
(
σ2
I (t)− σI(t)θI(t)

)
dt− Y π(t)σI(t)dWI(t)

+ β̃(t)π(t)′
(
Γ(t)− σn+1(t)σI(t)

)
dt+ β̃(t)π(t)′σ(t)dW (t)

=− Y π(t)σI(t)dW̃I(t) + β̃(t)π(t)′σ(t)dW̃ (t). (6.4)

From this it is apparent that the process (M̃(t))t∈[0,T ] defined by M̃(t) =

β̃(t)Xπ(t) is a continuous local martingale with respect to the measure QT .

Now as Y π(t) ≥ 0, a.s., the continuous local martingale (Y π(t))t∈[0,T ] is

a supermartingale under QT by Lemma 3.1.3. Therefore, we must have

EQT [Y π(T )] ≤ Y π(0) = β̃(0)x. (6.5)

We want to rewrite the admissibility constraint (3.3) in terms of the real
wealth process Y π(t). In order to do this, define the process

(
ξ̃(t)

)
t∈[0,T ]

by

ξ̃(t) =
ξ(t)

β̃(t)
. (6.6)

Remark. Note that ξ̃(t) is not the state price deflator under the measure QT

as it is neither normalized, nor serves as the discount factor under QT .

Lemma 6.1.5. The admissibility constraint (6.5) is equivalent to the ad-

missibility condition EP
[
ξ(T )Xπ(T )

]
≤ x, given by (3.3).
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Proof. By applying Bayes’ rule, we obtain from (6.5) that

EP[Z̃(T )β̃(T )Xπ(T )] ≤ β̃(0)x,

which is equivalent to
EP[ξ̃(T )Y π(T )] ≤ x.

Moreover, by inserting the definition of ξ̃(t), it immediately follows that this
is equivalent to

EP
[
ξ(T )Xπ(T )

]
≤ x.

Lemma 6.1.6. For every non-negative, FT -measurable Ψ which satisfies
EQT [Ψ] = β̃(0)x, there exists a unique π ∈ A(x) such that the corresponding
real wealth process satisfies Y π(T ) = Ψ, a.s.

Proof. Similarly to Theorem 3.1.4, by [El Karoui et al., 1997, Theorem 2.1],
the linear backward stochastic differential equation

dY (t) = −Y (t)σI(t)dW̃I(t) + β̃(t)P (t)′dW̃ (t),

Y (T ) = Ψ,

admits a unique, square integrable, Ft-adapted solution (Y, P ). Define

π(t) = (σ(t)′)−1P (t),

which is square integrable due to the uniform boundedness of (σ(t)′)−1 and
since P (t) is square integrable. Moreover, by Assumption 5.2.1, the QT -local
martingale Y (t) is uniformly integrable and therefore

Y (0) = EQT [Y (T )] = xβ̃(0).

Hence, π ∈ A(x) and
(
Y (t), π(t)

)
satisfies the dynamics of (6.2).

6.1.3 Feasibility

Similar to Section 3.1.3, we determine the conditions under which a solution
to Problem 6.1.3 exists ans is unique. Due to the discussion in Section 6.1.2,
we may study the feasibility of the following problem instead.

Minimize E
[
(C −Ψ)2

]
,

subject to E
[
ξ̃(T )Ψ

]
= x and Ψ ≥ 0, P-a.s., (6.7)

over all FT -measurable processes Ψ.
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6.2. OPTIMIZATION OF TERMINAL WEALTH

Proposition 6.1.7. Define

ã = inf
Ψ≥0,P-a.s.

E
[
ξ̃(T )Ψ

]
,

b̃ = sup
Ψ≥0,P-a.s.

E
[
ξ̃(T )Ψ

]
. (6.8)

If ã < x < b̃, then there must be a feasible solution to Problem (6.7) and
hence to Problem 6.1.1.

Proof. The proof is identical to the proof of Proposition 3.1.6 and therefore
omitted.

To make sure of the existence of a solution to Problem 6.1.1, we once
again assume the risk premium process to be deterministic. In addition,
similar to Assumption 3.4.1, in order to be able to determine the portfolio
process explicitly, we also assume the real interest rate to be deterministic.

Assumption 6.1.8. The real interest rate process rR(t) and the inflation
adjusted risk premium process θ̃(t) are deterministic and satisfy∫ T

0
‖θ̃(s)‖2ds 6= 0.

Remark. Note that in the case of deterministic interest rates, the process

BR(t, T ) is given by BR(t, T ) = e−
∫ T
t rR(s)ds and that by (5.3), we have

ξ̃(t) =ξ(t)BR(t, T )I(t)

= exp
(
−
∫ t

0
θ̃(s)′dW (s)− 1

2

∫ t

0
‖θ̃(s)‖2ds

)
exp

(
−
∫ T

0
rR(s)ds

)
=
Z̃(t)

β̃(0)
.

6.2 Optimization of Terminal Wealth

We give a summary of the derivations in Section 3.2 and 3.3 in order to
obtain the Lagrange multiplier corresponding to the optimization Problem
6.1.3. After obtaining a solution for the optimal terminal wealth we provide
a more explicit form for the Lagrange multiplier.

Recall the notation of a generalized utility function from Definition 3.2.1
and denote by z̃ the solution to U ′(z) = 0. Define H̃(y) = EP[ξ̃(T )I(yξ̃(T ))

]
for all y ∈ (0,∞), where I denotes the truncated inverse function of U ′, given
by (3.6).
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Lemma 6.2.1. Assume H̃(y) <∞ for all y ∈ (0,∞). Under Assumptions
5.2.1 and 6.1.8, H̃ is continuous and strictly decreasing. Furthermore,

H̃(∞) = lim
y→∞

H̃(y) = 0,

H̃(0) = lim
y→0
H̃(y) =

{
∞ if limz→∞ U

′(z) = 0,
z̃

β̃(0)
else.

Proof. The proof follows in the same way as the proof of Lemma 3.2.4 and
is therefore omitted.

Theorem 6.2.2. Under Assumptions 5.2.1 and 6.1.8, there exists a portfo-
lio process π ∈ A(x), such that the corresponding real wealth process attains
the optimal terminal wealth, given by

Y π(T ) =

{
C if xβ̃(0) ≥ C,(
C − Ỹ(x)ξ̃(T )

)+
else,

(6.9)

where Ỹ : (0, H̃(0))→ (0,∞) denotes the inverse of H̃.

Proof. By using the generalized utility function U(x) = −1
2

(
C − x

)2
, the

claim follows once we have shown that the optimal terminal wealth is given
by

Ψ =

{
z̃ if x ≥ H̃(0),

I(Ỹ(x)ξ̃(T )) else .
(6.10)

By Lemma 6.1.6, there exists a portfolio process π ∈ A(x) such that Y π(T ) =
Ψ. Using the same methods as in the proof of Theorem 3.2.5, (6.10) is ob-
tained immediately.

In order to obtain a more explicit solution for Ỹ(x), we analyze the
admissibility condition (6.5). Inserting the solution for the optimal terminal
wealth, yields

EQT
[(
C − Ỹ(x)ξ̃(T )

)+]
= β̃(0)x. (6.11)

Define V (T ) = log ξ̃(T ) and recall the notation θ̃(t) =
(
θ1(t), . . . , θn(t), θI(t)−

σI(t)
)′

.

Proposition 6.2.3. V (T ) is normally distributed under P with V (T ) ∼
N (a, b2) and normally distributed under QT with V (T ) ∼ N (ã, b2). Here,
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a, ã and b are given by

a = − log(β̃(0))− 1

2
b2,

ã = − log(β̃(0)) +
1

2
b2,

b2 =

∫ T

0
‖θ̃(t)‖2dt. (6.12)

Proof. We will show that the moment generating functions of V (T ) under
P and QT take the form of moment generating functions of normal distri-
butions with the corresponding mean and variance. Recall that under the

assumption of deterministic real interest rates we have ξ̃(t) = Z̃(t)

β̃(0)
and hence

MP
V (t) = EP[ exp(tV (T ))

]
= EP[ exp(t log ξ̃(T ))

]
= EP

[
exp

(
t
( ∫ T

0

(
rR(t)− 1

2
‖θ̃(t)‖2

)
dt−

∫ T

0
θ̃(t)′dW (t)

))]
= exp

(
t
( ∫ T

0

(
rR(t)− 1

2
‖θ̃(t)‖2

)
dt
))

EP
[

exp
(
− t
∫ T

0
θ̃(t)′dW (t)

)]
= exp

(
ta+

1

2
t2b2

)
,

since W (t) ∼ N (0, t). Similarly,

MQT
V (t) = EQT [ exp(tV (T ))

]
= EP[ Z̃(T )t+1

β̃(0)t

]
= exp

( ∫ T

0

(
trR(t)− (t+ 1)

2
‖θ̃(t)‖2

)
dt+

(t+ 1)2

2

∫ T

0
‖θ̃(t)‖2dt

)
= exp

(
tã+

1

2
t2b2

)
.

Similarly to the mean-variance optimization problem under inflation,
outlined in [Liang and Sheng, 2015], we cannot give a general explicit so-
lution for Ỹ(x). Therefore, in a similar fashion as for the function Y(x),
defined in (3.2.5), Ỹ(x) needs to be determined numerically.
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Proposition 6.2.4. Assume b > 0 and C > β̃(0)x. Then Ỹ(x) satisfies

Ỹ(x)e
∫ T
0 ‖θ̃(t)‖

2dtΦ
( log( C

Ỹ(x)
)− ã− b2

b

)
= β̃(0)CΦ

( log( C
Ỹ(x)

)− ã

b

)
− xβ̃(0)2, (6.13)

for a, ã and b given by (6.12).

Proof. For ease of notation, denote y = Ỹ(x). Then the admissibility con-
dition reads

EQT [(C
y
− eV

)+]
= x

β̃(0)

y
,

and by classical methods of European option pricing, we compute

EQT [(C
y
− eV (T )

)+]
=
C

y
QT
[C
y
> eV (T )

]
− EQT [eV (T )

1{C
y
> eV (T )}

]
=
C

y
Φ
( log(Cy )− ã

b

)
− 1

β̃(0)
EQT [Z̃(T )1{C

y
> eV (T )}

]
=
C

y
Φ
( log(Cy )− ã

b

)
− 1

β̃(0)
e−

1
2

∫ T
0 ‖θ̃(t)‖

2dtEQT
[
e−

∫ T
0 θ̃(t)′dW (t)

1{C
y
> eV (T )}

]
=
C

y
Φ
( log(Cy )− ã

b

)
− e

∫ T
0 ‖θ̃(t)‖

2dt

β̃(0)
Φ
( log(Cy )− b2 − ã

b

)
.

To obtain the last equality, we need to define an additional measure, Q2. In
order to do this, define the Doléan-Dade exponential

Z̃2(T ) = exp
(
− 1

2

∫ T

0
‖θ̃(t)‖2dt−

∫ T

0
θ̃(t)′dW̃ (t)

)
.

Due to similar arguments as in Lemma 2.2.1 and Lemma 5.3.1, the process
W̃2(t) = W̃ (t) +

∫ t
0 θ̃(s)ds, is a Q2-Brownian motion and hence

ξ̃(t)β̃(0) = exp
(3

2

∫ t

0
‖θ̃(s)‖2ds−

∫ t

0
θ̃(s)′dW̃2(s)

)
.

Therefore, we have

EQT
[
e−

∫ T
0 θ̃(t)′dW (t)

1{C
y
> eV (T )}

]
= e

3
2

∫ T
0 ‖θ̃(t)‖

2dtEQ2

[
1{C

y
> ξ̃(T )}

]
.
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By the arguments of Proposition 6.2.3, we see that log ξ̃(T ) is normally
distributed under Q2 with mean ã+ b2 and variance b2.

Recall the notion of the ruin probability in Definition 3.3.2 and note
that the ruin probability for the nominal and for the real terminal wealth
are the same, as the inflation index is always positive. In order to reflect
the presence of inflation in the market, we define the probability of success
under inflation.

Definition 6.2.5. The probability of success under inflation is defined by

P[Xπ(T ) > xI(T )],

or, equivalently, by
P[Y π(T ) > x].

Example 6.2.6. Similarly to Example 3.3.3, we plot the empirical distri-
bution of the optimal terminal wealth for both the restricted process (6.9)
as well as the unrestricted process, where the non-negativity constraint is
dropped.

Figure 6.1: Histograms of the real terminal wealth distribution for the con-
strained and unconstrained portfolio problem.

For this example we suppose that all parameters are constant over time and
that there is only one stock in the market. We set the market parameters as
rN = 0.05, µ = 0.08 and σS = 0.15. The investor starts with an initial wealth
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Figure 6.2: Histograms of the nominal terminal wealth distribution for the
constrained and unconstrained portfolio problem.

x = 1000 and tries to reach C = 5000 over a time horizon of T = 10 years.
The inflation parameters are given by rR = 0.04, σI = 0.05, θI = 0.12 and
the volatility of the stock with respect to the inflation is given by σIS = 0.04.

In Figures 6.1 and 6.2, we plot the empirical terminal wealth distri-
butions for 10’000 realizations. Note that the unconstrained distribution
is cut-off at -5’000, in order to increase readability of the plot. For both
strategies, the target C acts as an upper bound of the terminal real wealth.
This follows directly from (6.9), as both ξ̃(T ) and Ỹ(x), are strictly positive
functions. In contrast to the findings of Example 3.3.3, the nominal terminal
wealth can in fact be higher than the target for the real wealth C.

In order to study the advantages and disadvantages more thoroughly, we
report some statistics of the final wealth out of 10’000 realizations in Table
6.1. On average, the constrained strategy leads to a lower terminal wealth,
as expected. Comparing the properties in Table 6.1 to the properties of
the terminal wealth in the market without inflation, in Table 3.1, we note
that the presence of inflation has considerably broadened the distribution
of the terminal nominal wealth. This comes as no surprise, as the terminal
inflation I(T ) is usually bigger than one and acts as a factor on the terminal
real wealth.

We note that including an inflation-linked bond as an additional market
instrument has increased both the L2-distance and the ruin probability of
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Unconstrained Constrained

2.5% Quantile -1’770 0

Mean 2’970 2’660

97.5% Quantile 6’160 5’910
√

L2-Distance 3’020 3’100

Median Rate of Return 11.7% 10.1%

Ruin Probability 6.9% 0.0%

Success Probability 86.2% 78.3%

Table 6.1: Properties of the empirical terminal nominal wealth distribution
for the constrained and unconstrained portfolio problem.

the unconstrained optimal portfolio. On the other hand, the median rate
of return and the success probability for both optimal portfolios are higher
than the corresponding probabilities in Example 3.3.3. Hence, it is not
immediately apparent, if including an additional market element with the
index-linked bond leads to a better performance of the portfolio. We extend
this discussion in Chapter 16.

6.3 The Optimal Portfolio Process

Similarly to Section 3.4, we explicitly derive the optimal portfolio process
and the corresponding wealth process with and without the non-negativity
requirement. Without the additional requirement, we solve the stochastic
differential equation (6.2) directly by the dynamic programming approach.
On the other hand, the optimal portfolio process leading to the non-negative
payoff (6.9) can be seen as a put option on a certain type of underlying,
which enables us to use the martingale approach to find an explicit solution.

At the end of this Section, we briefly compare the optimal portfolio
processes for the optimization Problem 6.1.1 to those obtained in Section
3.4, in the market without inflation. The proper analysis of the different
portfolio processes follows in Chapter 11.
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6.3.1 Without Bankruptcy Prohibition

For notational purposes, define

A(t) = σ2
I (t)− σI(t)θI(t),

M(t) = β̃(t)
(
Γ(t)− σn+1(t)σI(t)

)
,

σ̄I(t) =
(
0, . . . , 0, σI(t)

)′
,

D(t) = β̃(t)σ(t). (6.14)

With this notation, the stochastic differential equation (6.2) of the real
wealth process becomes

dY π(t) = Y π(t)A(t)dt+ π(t)′M(t)dt+
(
π(t)′D(t)− σ̄I(t)′Y π(t)

)
dW (t),

Y π(0) = xβ̃(0). (6.15)

Theorem 6.3.1. Define

ϕ(t) =
(
D(t)D(t)′

)−1(
M(t)−D(t)σ̄I(t)

)
, (6.16)

and let
(
a(t))t∈[0,T ] and

(
b(t)
)
t∈[0,T ]

satisfy the Riccati equations given by

0 = at(t) +
[
2A(t) + σ̄I(t)

′σ̄I(t)− ϕ(t)′
(
D(t)D(t)′

)
ϕ(t)

]
a(t),

a(T ) = −1

2
, (6.17)

0 = bt(t) +
[
A(t)− 1

2
M(t)′ϕ(t)− 1

2
ϕ(t)M(t)

]
b(t),

b(T ) = C, (6.18)

for all t ∈ [0, T ], where we use the notation at(t) = ∂
∂ta(t) and bt(t) = ∂

∂tb(t).
Then, under Assumptions 5.2.1 and 6.1.8, the optimal portfolio process to
the unconstrained optimization problem is given by

π̂(t) =
(
D(t)D(t)′

)−1
((
D(t)σ̄I(t)−M(t)

)
Y π̂(t)−M(t)h(t)

)
, (6.19)

for all t ∈ [0, T ], where h(t) = b(t)
2a(t) .

Proof. See Appendix II.A.

In order to obtain the corresponding optimal wealth process to the un-
constrained optimization problem, we first find an explicit solution for h(t)
in (6.19). Inserting the optimal portfolio process in the stochastic differen-
tial equation (6.2) then yields the optimal real wealth process. Finally, using
the definition Y π(t) = Xπ(t)β̃(t), we obtain the optimal wealth process.
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Corollary 6.3.2. Under the same assumptions and notation as Theorem
6.3.1, we have

h(t) = −C, for all t ∈ [0, T ]. (6.20)

Proof. Inserting the explicit solutions for a(t) and b(t) from (7.11) and
(7.12), we obtain

h(t) = −C exp
(
−
∫ T

t

(
A(s) +

1

2
M(s)′ϕ(s) +

1

2
ϕ(s)′M(s)

+ σI(s)
′σI(s)− ϕ(s)′

(
D(s)D(s)′

)
ϕ(s)

)
ds
)

= −C exp
(
−
∫ T

t

(
A(s) +

1

2
M(s)′

(
D(s)D(s)′

)−1
D(s)σ̄I(s)

+
1

2
σ̄I(s)

′D(s)′
(
D(s)D(s)′

)1
M(s)

)
ds
)

= −C exp
(
−
∫ T

t

(
A(s) + σ̄I(s)

′(D(s))−1M(s)
)
ds
)
,

where the last step follows from Lemma II.A.1 and because σ̄I(s) only has a
single non-zero entry. Now, we insert the definitions of D(t) and M(t) from
(6.14) and see that

D(t)−1M(t) = σ(t)−1
(
Γ(t)− σn+1(t)σI(t)

)
= σ(t)−1

(
σ(t)θ(t)− σ(t)σ̄I(t)

)
= θ̃(t). (6.21)

Similarly, using the definition of A(t) from (6.14),

A(t) + σ̄I(t)
′D(t)−1M(t) = σ2

I (t)− σI(t)θI(t) + σ̄I(t)
′θ̃(t)

= σ2
I (t)− σI(t)θI(t) + σI(t)θI(t)− σ2

I (t) = 0.
(6.22)

Therefore, we have that for all t ∈ [0, T ],

h(t) = −C.

By (6.21) and (6.22), the portfolio process (6.19) can also be written as

π̂(t) =
1

β̃(t)

(
σ(t)′

)−1(
σ̄I(t)Y

π̂(t)−
(
Y π̂(t)− C

)
θ̃(t)

)
,

for all t ∈ [0, T ].
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Theorem 6.3.3. Under the same assumptions as Theorem 6.3.1 and for
xβ̃(0) ≤ C, the optimal real wealth process to the unconstrained optimization
problem is given by

Y π̂(t) =
(
xβ̃(0)− C

)
e−

∫ t
0

3
2
‖θ̃(s)‖2ds−

∫ t
0 θ̃(s)

′dW (s) + C, (6.23)

for all t ∈ [0, T ].

Proof. Inserting the optimal portfolio process (6.19) into the stochastic dif-
ferential equation (6.2), we obtain

dY π̂(t) =
(
Y π̂(t)A(t) + π̂(t)′M(t)

)
dt+

(
π̂(t)′D(t)− Y π̂(t)σ̄I(t)

)
dW (t)

=
(
σ̄I(t)D(t)′

(
D(t)D(t)′

)−1
M(t)Y π̂(t)

−M(t)′
(
D(t)D(t)′

)−1
M(t)

(
Y π̂(t) + h(t)

)
+ Y π̂(t)A(t)

)
dt

+
(
σ̄I(t)

′D(t)′
(
D(t)D(t)′)−1D(t)Y π̂(t)

−M(t)′(D(t)′)−1
(
Y π̂(t) + h(t)

)
− Y π̂(t)σ̄I(t)

)
dW (t)

=
(
Y π̂(t)

(
A(t) + σ̄I(t)

′D(t)−1M(t)
)

−M(t)′
(
D(t)D(t)′

)−1
M(t)

(
Y π̂(t) + h(t)

))
dt

−M(t)′(D(t)′)−1
(
Y π̂(t) + h(t)

)
dW (t).

Now, by Corollary 6.3.2 and by (6.21) and (6.22), we can express the optimal
real wealth process for the unconstrained portfolio problem by

dY π̂(t) = −‖θ̃(t)‖2
(
Y π̂(t)− C

)
dt− θ̃(t)′

(
Y π̂(t)− C

)
dW (t).

Introducing the auxiliary process Z(t) = Y π̂(t) − C with initial value
Z(0) = xβ̃(0)− C, we obtain by Itô’s lemma

dZ(t) = −‖θ̃(t)‖2Z(t)dt− θ̃(t)′Z(t)dW (t),

which is the expression for a geometric Brownian motion, with solution

Z(t) = Z(0)e−
3
2

∫ t
0 ‖θ̃(s)‖

2ds−
∫ t
0 θ̃(s)

′dW (s).

Hence, we can write the optimal wealth process corresponding to the port-
folio process π̂ of (6.19) as

Y π̂(t) =
(
xβ̃(0)− C

)
e−

3
2

∫ t
0 ‖θ̃(s)‖

2ds−
∫ t
0 θ̃(s)

′dW (s) + C. (6.24)
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Corollary 6.3.4. Under the same assumptions as in Theorem 6.3.1 and for
xβ̃(0) ≤ C, the unconstrained optimization problem has an optimal solution
pair

(
X π̂(t), π̂(t)

)
, given by

X π̂(t) =
1

β̃(t)

(
xβ̃(0)− C

)
e−

3
2

∫ t
0 ‖θ̃(s)‖

2ds−
∫ t
0 θ̃(s)

′dW (s) +
C

β̃(t)
, (6.25)

π̂(t) =
(
σ(t)′

)−1
ν(t), (6.26)

where

νi(t) = −
(
X π̂(t)− C

β̃(t)

)
θi(t), for i = 1, . . . , n,

νI(t) = X π̂(t)σI(t)−
(
X π̂(t)− C

β̃(t)

)
(θI(t)− σI(t)),

for all t ∈ [0, T ].

Proof. Noting that Xπ(t)β̃(t) = Y π(t), the optimal wealth process is di-
rectly obtained from the previous discussion. The expression of the optimal
portfolio process follows from Theorem 6.3.1, by (6.21) and (6.22).

6.3.2 With Bankruptcy Prohibition

In order to find an explicit solution for the optimal portfolio process and the
corresponding wealth process, we proceed in a similar manner as in Section
3.4.2, by using the martingale approach. We first find an explicit solution
to the BSDE

dY π(t) = −Y π(t)σI(t)dW̃I(t) + β̃(t)π(t)′σ(t)dW̃ (t),

Y π(T ) =
(
C − Ỹ(x)ξ̃(T )

)+
,

which the optimal wealth process must satisfy, due to Theorem 6.2.2. The
optimal portfolio process is then obtained immediately by applying Itô’s
lemma to Y π(t).

Lemma 6.3.5. Define y(t) = Ỹ(x)EQT [ξ̃(T )|Ft
]
. Then y(t) satisfies the

stochastic differential equation

dy(t) = y(t)
(
− ‖θ̃(t)‖2dt− θ̃(t)′dW (t)

)
,

y(0)β̃(0) = Ỹ(x) exp
( ∫ T

0
‖θ̃(s)‖2ds

)
, y(T ) = Ỹ(x)ξ̃(T ).
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Proof. By applying Bayes’ rule, we have

EQT [ξ̃(T )|Ft] =
1

Z̃(t)
EP[Z̃(T )ξ̃(T )|Ft

]
=

1

Z̃(t)β̃(0)
e−

∫ T
0 ‖θ̃(s)‖

2dsEP[e−2
∫ T
0 θ̃(s)′dW (s)|Ft

]
.

Now for the term inside the conditional expectation, we use that the integral
up to time t is Ft-measurable and that Brownian motion has independent
increments to write

EP
[
e−2

∫ T
0 θ̃(s)′dW (s)|Ft

]
= e−2

∫ t
0 θ̃(s)

′dW (s)EP
[
e−2

∫ T
t θ̃(s)′dW (s)|Ft

]
= e−2

∫ t
0 θ̃(s)

′dW (s)e2
∫ T
t ‖θ̃(s)‖

2ds.

Crossing out and reworking the terms then yields

EQT [ξ̃(T )|Ft] = e−
∫ T
0

(
rR(s)−‖θ̃(s)‖2

)
ds− 3

2

∫ t
0 ‖θ̃(s)‖

2ds−
∫ t
0 θ̃(s)dW (s).

Applying Itô’s lemma finishes the proof.

Similarly to the proof ot Theorem 3.4.8, the process (y(t))t∈[0,T ] takes
on the role of the underlying on which a European put option is written.
Instead of relying on the Black Scholes equation for European put options,
we solve the problem explicitly.

Lemma 6.3.6. ξ̃(T ) is conditional on Ft log-normally distributed and we
have

EQT [
1{C > Ỹ(x)ξ̃(T )}

∣∣Ft] = Φ

( log C
Ỹ(x)
−
(

log ξ̃(t) + 1
2

∫ T
t ‖θ̃(s)‖

2ds
)√∫ T

t ‖θ̃(s)‖2ds

)
,

(6.27)

for all t ∈ [0, T ], where Φ(x) = 1√
2π

∫ x
−∞ e

− v
2

2 dv is the cumulative distribu-

tion function of the standard normal distribution.

Proof. Note that using the QT -Brownian motion W̃ from Lemma 5.3.1, we
have

β̃(0)ξ̃(t) = exp
(1

2

∫ t

0
‖θ̃(s)‖2ds−

∫ t

0
θ̃(s)′dW̃ (s)

)
.

As the marginal distributions of Brownian motion are normal and its in-
crements are independent, a Brownian motion W (s) is also, conditional on
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Ft, normally distributed for s > t. Therefore, we need only prove that the
conditional mean and variance of log ξ̃(T ) have the correct values.

EQT [log ξ̃(T )
∣∣Ft] = EQT [ log ξ̃(T )− log ξ̃(t)

∣∣Ft]+ log ξ̃(T )

= EQT [1
2

∫ T

t
‖θ̃(s)‖2ds−

∫ T

t
θ̃(s)′dW̃ (s)

∣∣Ft]+ log ξ̃(t)

=
1

2

∫ T

t
‖θ̃(s)‖2ds+ log ξ̃(t). (6.28)

Similarly, the conditional variance is given by

VQT [ log ξ̃(T )
∣∣Ft] = VQT [ log ξ̃(T )− log ξ̃(t)

∣∣Ft]
= VQT [− ∫ T

t
θ̃(s)′dW̃ (s)

∣∣Ft]
=

∫ T

t
‖θ̃(s)‖2ds. (6.29)

Therefore, we have

EQT [
1{C > Ỹ(x)ξ̃(T )}

∣∣Ft] = QT
[
C > Ỹ(x)ξ̃(T )

∣∣Ft]
= QT

[
log ξ̃(T ) < log

C

Ỹ(x)

∣∣Ft].
Using that log ξ(T ) is normally distributed with mean and variance given
by (6.28) and (6.29), the claim follows.

Lemma 6.3.7. Using the same notation as in Lemma 6.3.6, we have

EQT [ξ̃(T )1{C > Ỹ(x)ξ̃(T )}
∣∣Ft]

= y(t)Φ

( log C
Ỹ(x)
−
(

log ξ̃(t) + 3
2

∫ T
t ‖θ̃(s)‖

2ds
)√∫ T

t ‖θ̃(s)‖2ds

)
.

(6.30)

Proof. Define a new measure Q2 by Q2[A] = EQT [Z̃2(T )1{A}] for all A ∈ F ,
with

Z̃2(t) = exp
(
− 1

2

∫ t

0
‖θ̃(s)‖2ds−

∫ t

0
θ̃(s)′dW̃ (s)

)
,

for all t ∈ [0, T ]. Due to similar arguments as in Lemma 2.2.1 and Lemma
5.3.1, the process

(
W̃2(t)

)
t∈[0,T ]

defined by W̃2(t) = W̃ (t) +
∫ t

0 θ̃(s)ds is a
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Q2-Brownian motion. We have

EQT [ξ̃(T )1{C > Ỹ(x)ξ̃(T )}
∣∣Ft] = y(t)EQT [y(T )

y(t)
1{C > Ỹ(x)ξ̃(T )}

∣∣Ft]
= y(t)EQT [ Z̃2(T )

Z̃2(t)
1{C > Ỹ(x)ξ̃(T )}

∣∣Ft]
= y(t)Q2

[
C > Ỹ(x)ξ̃(T )

∣∣Ft],
by Bayes’ rule. Under Q2,

ξ̃(t) = exp
(3

2

∫ t

0
‖θ̃(s)‖2ds−

∫ t

0
θ̃(s)′dW̃2(s)

)
,

and hence

EQ2
[

log ξ̃(T )
∣∣Ft] = EQ2

[
log ξ̃(T )− log ξ̃(t)

∣∣Ft]+ log ξ̃(t)

= EQ2
[3
2

∫ T

t
‖θ̃(s)‖2ds−

∫ T

t
θ̃(s)′dW̃2(s)

∣∣Ft]+ log ξ̃(t)

= log ξ̃(t) +
3

2

∫ T

t
‖θ̃(s)‖2ds.

Similarly, we obtain VQ2
[

log ξ̃(T )
∣∣Ft] =

∫ T
t ‖θ̃(s)‖

2ds. Therefore, log ξ̃(T )
is conditionally normal distributed under Q2 and the claim follows.

We are now able to prove the equivalent of Theorem 3.4.8 in the market
model (5.6) under the presence of inflation.

Theorem 6.3.8. Under Assumptions 5.2.1 and 6.1.8 and for xβ̃(0) ≤ C,
the optimal real wealth process is given by

Y π̂(t) = CΦ
(
− d−(t, y(t))

)
− y(t)Φ

(
− d+(t, y(t))

)
, (6.31)

for all t ∈ [0, T ], where Φ(x) = 1√
2π

∫ x
−∞ e

− v
2

2 dv is the cumulative distribu-

tion function of the standard normal distribution and

d+(t, y) =
log( yC ) + 1

2

∫ T
t ‖θ̃(s)‖

2ds√∫ T
t ‖θ̃(s)‖sds

,

d−(t, y) = d+(t, y)−

√∫ T

t
‖θ̃(s)‖2ds.
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Furthermore, the process y is given by

y(t) = Ỹ(x) exp
(
−
∫ T

0
(rR(s)− ‖θ̃(s)‖2)ds

)
exp

(
− 3

2

∫ t

0
‖θ̃(s)‖2)ds−

∫ t

0
θ̃(s)′dW (s)

)
. (6.32)

Proof. We know that the QT -local martingale Y π̂(t) is uniformly integrable
and therefore satisfies

Y π̂(t) =EQT [(C − Ỹ(x)ξ̃(T )
)+∣∣Ft]

=EQT [(C − Ỹ(x)ξ̃(T )
)
1
{
C > Ỹ(x)ξ̃(T )

}∣∣Ft]
=CEQT [

1
{
C > Ỹ(x)ξ̃(T )

}∣∣Ft]
− Ỹ(x)EQT [ξ̃(T )1

{
C > Ỹ(x)ξ̃(T )

}∣∣Ft],
where the two terms are given by Lemma 6.3.6 and Lemma 6.3.7. Note that
we have

− log ξ̃(t)− 1

2

∫ T

t
‖θ̃(s)‖2ds

=

∫ T

0

(
rR(s)− 1

2
‖θ̃(s)‖2

)
ds+

∫ t

0
‖θ̃(s)‖2ds+

∫ t

0
θ̃(s)′dW (s)

=−
(
−
∫ T

0

(
rR(s)− ‖θ̃(s)‖2

)
ds−

∫ t

0
θ̃(s)′dW (s)− 3

2

∫ t

0
‖θ̃(s)‖2ds

)
+

1

2

∫ T

t
‖θ̃(s)‖2ds,

and therefore

log
C

Ỹ(x)
− log ξ̃(t)− 1

2

∫ T

t
‖θ̃(s)‖2ds = log

C

y(t)
+

1

2

∫ T

t
‖θ̃(s)‖2ds.

We have shown that

−d−(t, y(t)) = log
C

Ỹ(x)
−
(

log ξ̃(t) +
1

2

∫ T

t
‖θ̃(s)‖2ds

)
.

Similar calculations for −d+(t, y(t)) finish the proof.
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Corollary 6.3.9. Under the same notations and assumptions as in Theorem
6.3.8, the optimal portfolio process to Problem 6.1.1 is given by

π̂(t) =
1

β̃(t)
(σ(t)′)−1ν(t), (6.33)

where

νi(t) = y(t)Φ
(
− d+(t, y(t))

)
θi(t), for i = 1, . . . , n

νI(t) = Y π̂(t)σI(t) + y(t)Φ
(
− d+(t, y(t))

)
(θI(t)− σI(t)).

Proof. Let f(t, y(t)) = Y π̂(t) and assume that f ∈ C1,2. Then by Itô’s
lemma,

df(t, y) = yfy(t, y)
(
− θ̃(t)′dW̃ (t)

)
+ ft(t, y)dt+

1

2
fyy(t, y)y2‖θ̃(t)‖2dt.

Comparing the volatility terms with those in (6.4) yields

π̂(t) =
1

β̃(t)

(
σ(t)′

)−1(
Y π̂(t)σ̄I(t)− y(t)fy(t, y(t))θ̃(t)

)
.

Comparing the drift terms, we have

ft(t, y) +
1

2
‖θ̃(t)‖2y2fyy(t, y) = 0, f(T, y) =

(
C − y

)+
. (6.34)

But (6.34) is exactly the Black Scholes equation for a European put option
and hence allows for the explicit solution

f(t, y) = CΦ(−d−(t, y))− Φ(−d+(t, y))y.

Similarly as in Corollary 3.4.9 we can show that

fy(t, y) = −Φ(−d+(t, y)),

and the claim follows.

Note that since we have

y(t)Φ
(
− d+(t, y(t))

)
= −

(
Y π̂(t)− CΦ

(
− d−(t, y(t))

))
,

by Theorem 6.3.8, we can also write

νi(t) = −
(
Y π̂(t)− CΦ

(
− d−(t, y(t))

))
θi(t), for i = 1, . . . , n,

νI(t) = Y π̂(t)σI(t)−
(
Y π̂(t)− CΦ

(
− d−(t, y(t))

))
(θI(t)− σI(t)).
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Remark. If C = β̃(0)x, the corresponding optimal portfolio process is risk-
free. By Theorem 6.2.2 we have Y π̂(t) = C for all t ∈ [0, T ] and hence
dY π̂(t) = 0, which indicates that the corresponding portfolio is

π̂(t) =
1

β̃(t)
(σ(t)′)−1ψ,

where ψ = (0, . . . , 0, CσI).

Corollary 6.3.10. Under Assumptions 5.2.1 and 6.1.8, for b > 0 and
xβ̃(0) ≤ C, the optimization Problem 6.1.1 has an optimal solution pair(
X π̂(t), π̂(t)

)
, given by

X π̂(t) =
1

β̃(t)

(
CΦ(−d−(t, y(t)))− y(t)Φ(−d+(t, y(t)))

)
, (6.35)

π̂(t) = (σ(t)′)−1ν(t), (6.36)

where y(t) is defined in Lemma 6.3.5, Ỹ(x) is given by (6.13) and where

νi(t) = −
(
X π̂(t)− C

β̃(t)
Φ
(
− d−(t, y(t))

))
θi(t), for i = 1, . . . , n,

νI(t) = X π̂(t)σI(t)−
(
X π̂(t)− C

β̃(t)
Φ
(
− d−(t, y(t))

))
(θI(t)− σI(t)),

for all t ∈ [0, T ].

Proof. Noting that X π̂(t)β̃(t) = Y π̂(t), the conclusion is directly obtained
from the previous discussion.

Example 6.3.11. To gain a general impression of the behavior of the port-
folio processes, we repeat the analysis of Example 3.4.10, adding an inflation-
linked bond to the market. We use the same underlying parameters of the
stock process as in Example 3.4.10, i.e. rN = 5%, µ = 8% and σS = 0.15.
The parameters for the inflation-linked bond are calculated empirically and
we obtain rR = 4%, σI = 0.05, θI = 0.12 and the volatility of the stock with
respect to the inflation is σIS = 0.04. The investor starts with x = 1000
and the target wealth is set to C = 5000.

Comparing Figure 6.4 to Figure 3.3 in Example 3.4.10, we note that
the wealth processes follow very similar paths, ending slightly higher for
both strategies. The additional wealth spent on the inflation-linked bond
is mainly borrowed from the bank account and only reduces the amount
invested in the stock slightly. The biggest difference can be seen during the
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Figure 6.3: Normalized monthly historical time series of the UK Index
Linked Gilts Total Returns Index between January 1998 and December 2007.

bear market of 2000 to 2002, where less money is invested in the stock and
both wealth processes stay positive with the inclusion of the inflation-linked
bond.

Remark. It is quickly apparent that if there is no inflation in the market, i.e.
I(t) ≡ 1 for all t ∈ [0, T ], both the unconstrained optimal portfolio (6.26) and
the corresponding wealth process (6.25), as well as the constrained optimal
portfolio process (6.33) and the corresponding wealth process (6.35) reduce
to their respective counterparts in Section 3.4. Note that even though the
porftolio process for the stocks seems to be the same even under the presence
of inflation, it is dependent on the market price of risk for the market model
in Section 5.2, which is different to the market price of risk for the market
model in Section 2.1. For a complete analysis of the different portfolios, we
refer to Chapter 11.
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Figure 6.4: In the upper graph, the amount invested in the stock and the
index-linked bond can be seen for both the constrained and the uncon-
strained optimal portfolio. The resulting wealth process is plotted below.
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Chapter 7

The Constrained Optimal
Strategy: Lower Bound

As a next step we introduce a lower constraint to limit the terminal wealth
from below. We give a summary of Chapter 4 and utilize the same techniques
to find the optimal terminal wealth and the corresponding portfolio process.
We retain all notation from Chapter 6.

7.1 Problem Formulation

Problem 7.1.1. Given a constant C and a real number K > 0, we consider
the problem of finding a portfolio process π̂l ∈ A(x) such that

EP
[(
C − X π̂l(T )

I(T )

)2]
= inf

π∈A(x)
EP
[(
C − Xπ(T )

I(T )

)2]
,

subject to
X π̂l(T )

I(T )
≥ K, a.s. , (7.1)

and the pair
(
X π̂l(t), π̂l(t)

)
satisfies the stochastic differential equation (5.8).

Note that we could instead set the lower constraint on the nominal wealth
directly, without the inflation adjustment. We will see in the following
discussion, that in this case, the approach of Chapter 4 does not produce a
usable portfolio strategy.

Recall the numéraires corresponding to the bank account and the infla-
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tion linked bond as well as the auxiliary process ξ̃(t), given by

β(t) =
1

B(t)
= exp(−

∫ t

0
rN (s)ds),

β̃(t) =
1

B*(t, I(t))
=

1

BR(t, T )I(t)
,

ξ̃(t) =
ξ(t)

β̃(t)
=
Z̃(t)

β̃(0)
,

and the real wealth process Y π(t) = β̃(t)Xπ(t). Similar to Section 4.1 we
also note that the non-negativity constraint is non-binding if K > 0 and
that the set of optimal portfolio processes for Problem 7.1.1 is empty unless
we have K ≤ xβ̃(T ). For the rest of this chapter, we will hence assume that

K < β̃(T )x.

7.2 Solution of the Constrained Problem

In order to obtain a similar result to Corollary 4.2.2 we utilize Proposition
4.2.1 with the current utility function. The optimal terminal wealth then
consists of an unconstrained wealth process plus a put option. Using the
explicit solution for the optimal wealth process for the unconstrained opti-
mization problem (6.23) at maturity, we find the initial wealth used for the
unconstrained wealth process.

Corollary 7.2.1. Under Assumptions 5.2.1 and 6.1.8, the optimal terminal
real wealth for Problem 7.1.1 is of the form

Y π̂l(T ) = Ŷ π̂(T ) +
(
K − Ŷ π̂(T )

)+
, (7.2)

where Ŷ π̂(t) is the optimal wealth process from (6.23) with

x̂0 = CEP[ξ̃(T )]− yEP[ξ̃(T )2],

where y is chosen in such a way that the terminal wealth given by (7.2)

satisfies the admissibility constraint EP[ξ̃(T )Y π̂l(T )] = x.

Proof. By Proposition 4.2.1, we know that the optimal terminal wealth is
given by

Y π̂l(T ) = max(K, I(yξ̃(T ))).
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Now for Problem 7.1.1, we have U(x) = −1
2

(
C − x

)2
and hence

Î(yξ̃(T )) = C − yξ̃(T ).

By (6.23), for t = T , we have

Ŷ π̂(T ) = (x̂0 −
C

β̃(0)
)β̃(0)2ξ̃(T )e−

∫ T
0 ‖θ̃(t)‖

2dt + C.

In order for the terminal wealth to be of the form (7.2), we determine x̂0

such that Î(yξ̃(T )) = Ŷ π̂(T ), which is the case if and only if

C − yξ(T ) = (x̂0 −
C

β̃(0)
)β̃(0)2ξ(T )e−

∫ T
0 ‖θ̃(t)‖

2dt + C,

which in turn is equivalent to

x̂0 =
C

β̃(0)
− y

β̃(0)2
e
∫ T
0 ‖θ̃(t)‖

2dt = CEP[ξ̃(T )]− yEP[ξ̃(T )2].

Due to the previous corollary, we can state the equation for the nominal
wealth, which is of the form

X π̂l(T ) = X̂ π̂(T ) +
(
KI(T )− X̂ π̂(T )

)+
,

where Ŷ π̂(t) is the optimal wealth process from (6.25) and x̂0 is chosen as
in Corollary 7.2.1.

Remark. If the lower constraint in the Problem 7.1.1 was instead of the form
K ≥ X π̂(T ), then the optimal nominal terminal wealth would be

X π̂l(T ) = X̂ π̂(T ) +
(
K − X̂ π̂(T )

)+
.

7.3 The Optimal Portfolio Process

We again use (7.2), in order to obtain the optimal portfolio process in terms
of the constrained optimal portfolio process (6.33). Namely, rewriting (7.2),
we have

Y π̂l(T ) =

{
C if xβ̃(0) ≥ C,
max

(
C − yξ̃(T ),K

)
else,

(7.3)
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where y is chosen such that

EP[ξ̃(T )
(
(C −K)− yξ̃(T )

)+
] = x−KEP[ξ̃(T )].

Hence we state the optimal wealth process as well as the optimal portfolio
process in terms of the optimal processes under the non-negativity con-
straint. Define

x̂ = x−Ke−
∫ T
0 rR(s)ds,

Ĉ = C −K.

Theorem 7.3.1. Denote by Ŷ π̂(t; x̂, Ĉ) the optimal wealth process (6.31)
at time t with initial wealth x̂β̃(0) and fixed claim Ĉ. Under Assumptions
5.2.1, 6.1.8 and for xβ̃(0) ≤ C the optimal wealth process to Problem 7.1.1
is given by

Y π̂l(t) = Ŷ π̂(t; x̂, Ĉ) +K. (7.4)

Similarly, denoting by π̂(t; x̂, Ĉ) the optimal portfolio process (6.33) at
time t, the optimal portfolio process to Problem 7.1.1 is given by

π̂l(t) = π̂
(
t; x̂, Ĉ

)
+K. (7.5)

The proof follows in the same way as the proof of Theorem 4.3.1 and is
therefore omitted.

The nominal wealth process can therefore be expressed as

X π̂l(t) = X̂ π̂(t; x̂, Ĉ) +
K

β̃(t)
,

with the same notation as in Theorem 7.3.1.

Remark. If the lower constraint in the Problem 7.1.1 was instead of the form
K ≥ X π̂(T ), then the auxillary processes x̂ and Ĉ would instead be of the
form

x̂ = x−Kβ(T ),

Ĉ = C −Kβ̃(T ).

It is clear, that Ĉ, and therefore also π̂l(t), is then not Ft-measurable for
any t < T .
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Figure 7.1: In the upper graph, the amount invested in the stock and the
inflation-linked bond can be seen for the constrained portfolio, the un-
constrained portfolio and the portfolio process with a lower constraint of
K = 500. The resulting wealth process is plotted below.

Example 7.3.2. We continue the analysis of Example 6.3.11, including
the portfolio and wealth process of the optimal strategy with a positive
constraint. In Figure 7.1 we plot the optimal portfolio strategy with a lower
bound of K = 500 in addition to the constrained and the unconstrained
optimal portfolio processes. We observe that even though the addition of
the inflation-linked bond does only slightly affect the paths of the wealth
processes, the amount invested in the stock differs less between the different
strategies than in Example 4.3.2 and consequently the investment looks to
be much less affected by the movements in the underlying stock market.

We see in Table 7.1 that all strategies profit from the additional market
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Unconstrained Constrained Lower Bound

Terminal Wealth 3’000 2’620 2’470

Rate of Return 11.0% 9.6% 9.1%

Minimal Wealth 54 261 460

Table 7.1: Properties of the different portfolio processes calculated for the
period 1998-2008 with the FTSE-Actuaries All Share Index as the under-
lying stock and the UK Index Linked Gilts Index as the inflation-linked
bond.

element and show a significantly higher rate of return. We see that the lower
bound ofK = 500 only has a slight effect on the investment behavior, leading
to less money invested in the risky assets at the start of the investment
period. By looking at the structure of the optimal terminal wealth (7.2) it
becomes apparent, that for higher K, less money is available to be invested
in the risky assets.
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Appendix

II.A Proof of Theorem 6.3.1

First, some preliminary results from Linear Algebra follow, which will be
utilized frequently in the coming proofs.

Lemma II.A.1. Let A ∈ Rn×m and B ∈ Rm×n be invertible matrices. Then

i) (AB)′ = B′A′;

ii) B−1A−1 is the inverse of AB;

iii) (A−1)′ = (A′)−1.

Proof. i) Let A = (aij) and B = (bjk) for i, k = 1, . . . , n and j =
1, . . . ,m. Then

(AB)′ik =

n∑
j=1

aijbjk =

n∑
j=1

bjkaij = (B′A′)ik.

ii) As matrix multiplication is associative, we have

(B−1A−1)(AB) = B−1(A−1A)B = B−1B = 1,

(AB)(B−1A−1) = A(BB−1)A−1 = AA−1 = 1,

where 1 denotes the identity matrix in Rm×m.

iii) Similarly,

A′(A−1)′ = (A−1A)′ = 1
′ = 1,

(A−1)′A′ = (AA−1)′ = 1
′ = 1,

where we have used i). Therefore, (A−1)′ is the inverse of A′.
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The previous lemma allows us to solve the HJB equation corresponding
to the unconstrained portfolio problem corresponding to the real wealth
process (6.15). Problem 6.1.3 is equivalent to maximizing

J(x, π) = EP[− 1

2

(
Y π(T )− C

)2]
,

over all admissible strategies π ∈ Π, such that the pair
(
Y (t), π(t)

)
satisfies

the stochastic differential equation (6.2). Denote by

V (t, y) = sup
π∈Π

EP[− 1

2

(
Y π(T )− C

)2∣∣Y π(t) = y
]
.

Then, by Theorem 3.4.2, the optimal value function satisfies the HJB equa-
tions, given by

−1

2

(
y − C

)2
=V (T, y),

0 =Vt(t, y) +A(t)yVy(t, y)

+ min
π∈Π

{
π(t)′M(t)Vy(t, y)

+
1

2

(
π(t)′D(t)D(t)′π(t)− 2π(t)′D(t)σ̄I(t)y

+ σ̄I(t)
′σ̄I(t)y

2
)
Vyy(t, y)

}
. (7.6)

Therefore, the optimal portfolio process π̂ is of the form

π̂(t) =
(
D(t)D(t)′

)−1
(
D(t)σ̄I(t)Y

π(t)−M(t)
Vy(t, Y

π(t))

Vyy(t, Y π(t))

)
. (7.7)

To prove Theorem 6.3.1, we proceed similarly to our approach in Section
3.4.1, by assuming that the optimal value function is of a certain quadratic
form. With the help of the HJB equations (7.6) and by eliminating the
dependencies on y we obtain the differential equations (6.17) and (6.18).

Lemma II.A.2. Assume that the optimal value function is of the form

V (t, y) = a(t)y2 + b(t)y + c(t). (7.8)

Then a(t) satisfies the Riccati equation (6.17) and b(t) satisfies the Riccati
equation (6.18).
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Proof. Note that due to the initial condition for the HJB equation (7.6),
we obtain a(T ) = −1

2 and b(T ) = C immediately. Inserting the optimal
portfolio process π̂(t), given by (6.19), into the HJB equation yields

0 = Vt(t, y) +A(t)yVy(t, y) +
1

2
σ̄I(t)

′σ̄I(t)y
2Vyy(t, y)

+ σ̄I(t)
′D(t)′

(
D(t)D(t)′

)−1
M(t)Vy(t, y)y

−M(t)′
(
D(t)D(t)′

)−1
M(t)

Vy(t, y)2

Vyy(t, y)
(7.9)

+
1

2
σ̄I(t)

′D(t)′
(
D(t)D(t)′

)−1
D(t)σ̄I(t)Vyy(t, y)y2

+
1

2
M(t)′

(
D(t)D(t)′

)−1
M(t)

Vy(t, y)2

Vyy(t, y)

− 1

2
σ̄I(t)

′D(t)′
(
D(t)D(t)′

)−1
M(t)Vy(t, y)y

− 1

2
M(t)′

(
D(t)D(t)′

)−1
D(t)σ̄I(t)Vy(t, y)y

− σ̄I(t)′D(t)′
(
D(t)D(t)′

)−1
D(t)σ̄I(t)Vyy(t, y)y2

+M(t)′
(
D(t)D(t)′

)−1
D(t)σ̄I(t)Vy(t, y)y

= Vt(t, y) +A(t)yVy(t, y) +
1

2
σ̄I(t)

′σ̄I(t)y
2Vyy(t, y)

− 1

2

(
M(t)

Vy(t, y)

Vyy(t, y)
−D(t)σ̄I(t)y

)′(
D(t)D(t)′)−1

×
(
M(t)

Vy(t, y)

Vyy(t, y)
−D(t)σ̄I(t)y

)
Vyy(t, y). (7.10)

Note that for the value function given by (7.8), we have

Vt(t, y) = at(t)y
2 + bt(t)y + ct(t), Vy(t, y) = 2a(t)y + b(t),

Vyy(t, y) = 2a(t),
Vy(t, y)2

Vyy(t, y)
= 2a(t)y2 + 2b(t)y +

b(t)2

2a(t)
.

Inserting these into the above equation and grouping the terms depending
on y2, we obtain

0 = at(t) +
[
2A(t) + σ̄I(t)

′σ̄I(t)− ϕ(t)′
(
D(t)D(t)′)ϕ(t)

]
a(t),

which is exactly the Riccati equation, given by (6.17). Similarly, when
grouping all terms depending on y, we obtain

0 = bt(T ) +
[
A(t)− 1

2
M(t)′ϕ(t)− 1

2
ϕ(t)M(t)

]
b(t).
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Lemma II.A.3. The functions a(t), b(t) and c(t) in (7.8) are given by

a(t) = −1

2
exp

(∫ T

t

(
2A(s) + σ̄I(s)

′σ̄I(s)− ϕ(s)′
(
D(s)D(s)′

)
ϕ(s)

)
ds
)
,

(7.11)

b(t) = C exp
(∫ T

t

(
A(s)− 1

2
M(s)′ϕ(s)− 1

2
ϕ(s)′M(s)

)
ds
)
, (7.12)

c(t) = −1

2
C2 exp

(∫ T

t
−M(s)′

(
D(s)D(s)′)−1M(s)ds

)
. (7.13)

Proof. The explicit solutions to a(t) and b(t) follow immediately from the
Riccati equations (6.17) and (6.18). To obtain an explicit solution for c(t),
we group the constant terms in (7.10) and see that c(t) must satisfy

0 = ct(t)−
1

2
M(t)′

(
D(t)D(t)′

)−1
M(t)

b(t)2

2a(t)
,

c(T ) = −1

2
C2. (7.14)

Inserting a(t) and b(t) yields

b(t)2

2a(t)
= −C2 exp

(∫ T

t

(
− σ̄I(s)′σ̄I(s)−M(s)′

(
D(s)D(s)′

)−1
M(s)

+ σ̄I(s)
′D(s)′

(
D(s)D(s)′

)−1
D(s)σ̄I(s)

)
ds
)

= −C2 exp
(∫ T

t
−M(s)′

(
D(s)D(s)′

)−1
M(s)ds

)
,

where the last step follows from Lemma II.A.1. Inserting this into (7.14)
yields the claim.

The proof of Theorem 6.3.1 now follows by inserting the explicit values
into (7.7). Namely

π̂(t) =
(
D(t)D(t)′

)−1
(
D(t)σ̄I(t)Y

π(t)−M(t)
Vy(t, Y

π(t))

Vyy(t, Y π(t))

)
=
(
D(t)D(t)′

)−1
((
D(t)σ̄I(t)−M(t)

)
Y π(t)−M(t)

b(t)

2a(t)

)
.
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Part III

Introducing Contributions
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Chapter 8

The Financial Market Model

In Parts I and II we analyzed the optimal portfolio problem for the quadratic
utility function in markets including inflation-linked bonds, as well as in
markets without such bonds. An investor was considered, who started at a
fixed, given wealth x > 0, and who followed a self-financing strategy. This
means that until maturity, no money would flow in or out of the portfolio.

Now, we view the investor as part of a pension scheme. Pension funds
may be categorized either as defined benefit (DB) or defined contribution
(DC), depending on who carries more of the risk. In a DB pension scheme,
benefits are fixed in advance by the sponsor and contributions are adjusted
throughout the duration of the accumulation phase, so that benefits can be
paid in full. Therefore, the risk is generally borne by the sponsor in DB pen-
sion schemes. On the other hand, in DC pension schemes, the contributions
are fixed and the benefits are the accumulated value of the contributions at
the retirement date. The risk of failing to get the expected benefits is con-
sequently borne by the contributors in a DC scheme. For most of the 20th
century, the majority of pension schemes were DB schemes, but due to the
increase in life expectancy in most countries, this has changed. Nowadays,
most private pension schemes are based on DC.

In order to be able to compare the target-based approach to the port-
folio strategies currently in use, as well as to other strategies proposed in
literature, we introduce contributions to the market model.

8.1 The Market Model

The market model consists of the same tradable objects as the one of Section
5.2. Recall that we work on a complete probability space (Ω,F ,P) on which
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we have, for a given, finite time horizon T , an n + 1-dimensional Brown-
ian motion W (t) =

(
W1(t), . . . ,Wn(t),WI(t)

)
, t ∈ [0, T ]. A risk-free bond

(B(t))t∈[0,T ], n stocks (Si(t))t∈[0,T ] and an inflation-linked zero-coupon bond
(B*(t, I(t)))t∈[0,T ], are tradable and their price dynamics are given by

dB(t) = rN (t)B(t)dt, (8.1)

dSi(t) = Si(t)
[
µi(t)dt+

n∑
j=1

σi,j(t)dWj(t) + σi,I(t)dWI(t)
]
, (8.2)

dB*(t, I(t)) = B*(t, I(t))
[(
rN (t) + σI(t)θI(t)

)
dt+ σI(t)dWI(t)

]
, (8.3)

where B(0) = 1 and B*(0, I(0)) = EP[e− ∫ T
0 rR(t)dt

]
, P-a.s.

In most DC schemes, contributions are determined as a fixed percentage
δ of the salary of the pension member. We give an overview of possible
dynamics of the salary process

(
L(t)

)
t∈[0,T ]

which have been considered in

literature, before deciding which structure will be most beneficial for the
current analysis.

• The simplest construction is that of a constant salary,

L(t) = l,

which has been used in [Korn and Krekel, 2003], [Vigna, 2014],
[Di Giacinto et al., 2011] and [Gerrard et al., 2014]. Contributions can
either be modeled discretely or continuously. Assuming the salary of
the plan members stays the same over the very long time period of
pension schemes is not very realistic. Yearly salary increases vary be-
tween work fields and countries, but have averaged over 7% during
the last 40 years in the UK, as reported by the Office for National
Statistics 1. Moreover, as we consider inflation as part of the financial
market, real salaries could even fall over the life time of the pension
plan.

• A time-varying salary process, given by

d logL(t) =
dL(t)

L(t)
= cdt,

has been proposed by [Nkeki, 2013] and [Milazzo and Vigna, 2018].
Being able to convey the trend in salary increase over the life time of

1https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork
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the pension plan is an improvement to the model of a constant salary
process. However, salaries are rarely deterministic and are often cor-
related to inflation. As we consider inflation in our market model, it
seems reasonable to include some randomness in the salary process.

• Introducing randomness due to inflation to the salary process yields

dL(t) = I(t)d(t)dt,

where d(t) is some deterministic function of time. This has been pro-
posed in [Yao et al., 2013]. Note that δdL(t) denotes the distribution
of the contributions, which now changes according to the price index
I(t). In reality, salary increases are not only correlated to inflation,
but also to the general state of the market. An additional factor for
randomness is needed to portray this effect.

• Recall the notation of the inflation index (5.1) and denote by µI(t) =
rN (t) − rR(t) + σI(t)θI(t) the instantaneous mean of inflation. Now
adding both randomness due to inflation as well as randomness due to
the stock market to the salary process yields

dL(t)

L(t)
= µL(t)dt+

n∑
i=1

σL,i(t)dWi(t) + σL,I(t)dWI(t). (8.4)

A salary process of this form has been studied in [Zhang et al., 2007],
[Zhang and Ewald, 2009], [Wu et al., 2015], [Okoro and Nkeki, 2013]
and [Xue and Basimanebotlhe, 2015]. Here, µL(t) = µI(t) + κ(t), de-
notes the instantaneous mean of the salary. It consists of two compo-
nents, where the first part µI(t) is caused by expected inflation and
the second part κ(t) results from factors such as economic growth or
increased welfare. The volatility factors σL,i(t), for i = 1, . . . , n, as well
as σL,I(t) measure how the stocks and the inflation affect the salary.
It is apparent that the previous cases can be obtained by setting some
of the parameters to zero.

Remark. In both [Battocchio and Menoncin, 2004] and [Cairns et al., 2006]
an additional factor for randomness was introduced, i.e.

dL(t)

L(t)
= µL(t)dt+

n∑
i=1

σL,i(t)dWi(t) + σL,I(t)dWI(t) + σL(t)dWL(t),
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where WL(t) is a Brownian motion independent of W (t). Note that in
this case, the market becomes incomplete, as the risk from WL(t) is non-
hedgeable. However, the additional factor allows to model certain risks
which are not captured by (8.4). For example, it may be considered as a
risk premium, compensating for the risk of redundancy, or even allowing to
model the probability of working part-time, at a certain stage in life. As
the incompleteness of the market introduces many problems, this is beyond
the scope of this thesis and we consider the salary process given by (8.4),
instead.

Assumption 8.1.1. We retain the assumptions on the market coefficients
from Assumption 5.2.1 and additionally assume that the instantaneous mean
of the salary µL(t) and the volatility process of the salary σL(t), given
by σL(t) =

(
σL,1(t), . . . , σL,n(t), σL,I(t)

)
are uniformly bounded and Ft-

progressively measurable on [0, T ].

Consider an investor who starts with a fixed, non-negative wealth x
at time 0, who invests in the various securities and whose actions do not
affect the market prices. Suppose the investor invests an additional fixed
proportion δ of his or her income at each time t ∈ [0, T ]. The amount
that is invested in the i’th stock at time t is denoted by πi(t), whereas the
amount invested in the inflation-linked bond is denoted by πI(t). Recall that
a portfolio process is called admissible, if it is progressively measurable and
satisfies

∫ T
0 ‖π(t)‖2dt <∞, P-a.s. and that the family of admissible portfolio

process is denoted by Π. At time t ∈ [0, T ] we denote the total wealth of
this investor by X(t).

Recall the notion of the risk premium process, given by

θ(t) =


θ1(t)

...
θn(t)
θI(t)

 = σ(t)−1

(
µ(t)− rN (t)1
σI(t)θI(t)

)
,

where σ(t) denotes the dispersion matrix, given by (5.7). The risk premium
process is bounded, measurable and adapted to Ft due to Assumption 8.1.1.

Definition 8.1.2. Given a portfolio process π and a contribution rate δ,
the solution X = Xπ to

dXπ(t) =
(
rN (t)Xπ(t) + π(t)′σ(t)θ(t) + δL(t)

)
dt+ π(t)′σ(t)dW (t),

Xπ(0) = x, (8.5)
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is called the wealth process corresponding to the portfolio process π, the
initial capital x and the contribution rate δ.
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Chapter 9

The Constrained Optimal
Strategy

9.1 Problem Formulation

9.1.1 The Expected Future Contributions

Unlike in the self-financing case, we cannot say that the whole wealth process
is non-negative a.s. if and only if the terminal wealth is non-negative a.s.
This is best seen in the example of a constant, positive salary. As long as
the discounted future contributions outweigh the current wealth deficit, by
only trading in the bank account, the terminal wealth process will still be
positive.

Define the same measure change as in Section 2.2, by

Q[A] = EP[Z(T )1A], for all A ∈ F ,

where Z(t) = exp
(
−
∫ t

0 θ
′(s)dW (s)− 1

2

∫ t
0 ‖θ(s)‖

2ds
)
. In order to reformulate

the conditions on admissibility, we follow [Zhang et al., 2007] and define the
discounted value of future contributions.

Definition 9.1.1. The discounted expected future contribution process is
defined as

D(t) = EP
[ ∫ T

t

ξ(s)

ξ(t)
δL(s)ds|Ft

]
, (9.1)

where ξ(t) = Z(t)β(t) is the state price deflator for the bank account
numéraire β(t) = exp(−

∫ t
0 rN (s)ds), defined in (2.9) and δ denotes the

contribution rate. We write d = D(0) to denote the present value of all
future contributions.
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9.1. PROBLEM FORMULATION

In order to state the admissibility conditions in Sections 3.1.2 and 6.1.2,
we used that the discounted price process ξ(t)Xπ(t) was a martingale for
the wealth process (5.8). Due to the presence of the contributions, this is no
longer the case. The following proposition shows, that after including the
future contributions and using the Martingale Representation Theorem, see
e.g. [Karatzas and Shreve, 1998][Proposition 4.19], we obtain a new martin-
gale.

Proposition 9.1.2. The discounted process
(
ξ(t)(Xπ(t) +D(t))

)
t∈[0,T ]

is a

continuous local martingale under P.

Proof. Using Itô’s formula for f(x, y) = xy, we obtain

d(ξ(t)Xπ(t)) =ξ(t)
(
rN (t)Xπ(t) + π(t)′σ(t)θ(t)

)
dt+ ξ(t)π(t)′σ(t)dW (t)

−Xπ(t)ξ(t)
(
rN (t)dt+ θ(t)′dW (t)

)
− ξ(t)π(t)′σ(t)θ(t)dt

+ ξ(t)δL(t)dt

=ξ(t)
(
π(t)′σ(t)−Xπ(t)θ(t)′

)
dW (t) + ξ(t)δL(t)dt. (9.2)

Then, the conditional expectation of the discounted contributions is the sum
of the contributions in the past, plus the expected future contributions, i.e.

EP[ ∫ T

0
ξ(s)δL(s)|Ft

]
= ξ(t)D(t) +

∫ t

0
ξ(s)δL(s)ds,

which is a martingale under P. By the Martingale Representation Theorem,
there exists a square integrable process

(
ψ(t)

)
t∈[0,T ]

, such that

d(ξ(t)D(t)) = ψ(t)′dW (t)− ξ(t)δL(t)dt, P-a.s. (9.3)

Adding (9.2) and (9.3) we obtain

d
(
ξ(t)(Xπ(t) +D(t))

)
=
(
ψ(t)′ + ξ(t)

(
π(t)′σ(t)−Xπ(t)θ(t)′

))
dW (t),

which proves the claim.

Now due to the uniform boundedness in Assumption 8.1.1, the local
martingale ξ(t)(Xπ(t)+D(t)) is uniformly integrable and therefore equal to
the conditional expectation of its terminal value, i.e.

Xπ(t) +D(t) = ξ(t)−1EP[ξ(T )Xπ(T )
∣∣Ft], for all t ∈ [0, T ].

Inserting t = 0, we obtain the admissibility condition

x+ d = EP[ξ(T )Xπ(T )
]
. (9.4)
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Hence we note that the terminal wealth is P-a.s. non-negative if and only
if the sum of the wealth process and the discounted future contributions is
P-a.s. non-negative, i.e.

Xπ(T ) ≥ 0,P-a.s. ⇐⇒ Xπ(t) +D(t) ≥ 0, for all t ∈ [0, T ],P-a.s.

In the following discussion we drop the requirement that the whole wealth
process must be positive and instead only constrain the terminal wealth.
This allows borrowing against future contributions. As this is not always
possible in practice, we will introduce an alternative portfolio process in
Chapter 11, where a no-shorting constraint is imposed.

For the current discussion, we define the family of all admissible portfolio
processes that lead to non-negative terminal wealth by

A(x) =
{
π ∈ Π | Xπ(0) ≤ x and Xπ(t) +D(t) ≥ 0, P-a.s.

}
.

Proposition 9.1.3. The expected future contributions process D(t) is given
by

D(t) = δL(t)

∫ T

t
exp

(∫ s

t

(
µL(u)− rN (u)− σL(u)′θ(u)

)
du
)
ds, (9.5)

where L(t) denotes the salary at time t and δ denotes the fixed percentage
of the salary that is invested.

Proof. By definition, we have that

D(t) = EP
[ ∫ T

t

ξ(s)

ξ(t)
δL(s)ds

∣∣Ft]
= δL(t)EP

[ ∫ T

t

ξ(s)

ξ(t)

L(s)

L(t)
ds
∣∣Ft]

= δL(t)EP
[ ∫ T

t

ξ(s)

ξ(t)

L(s)

L(t)
ds
]
,

where the last step follows because both the state price deflator and the
salary process are geometric Brownian motion and hence ξ(s)

ξ(t)
L(s)
L(t) is inde-

pendent of Ft. Furthermore, inserting the Definitions (2.9) and (8.4) for
ξ(t), resp. for L(t), we obtain

ξ(s)

ξ(t)

L(s)

L(t)
= exp

(∫ s

t

(
µL(u)− rN (u)− 1

2
‖σL(u)− θ(u)‖2

− σL(u)′θ(u)
)
du+

∫ s

t

(
σL(u)− θ(u)

)′
dW (u)

)
.
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Lastly, using Fubini’s theorem to switch the integral and the expectation,
we have

EP
[ ∫ T

t

ξ(s)

ξ(t)

L(s)

L(t)
dt
]

=

∫ T

t
exp

(∫ s

t

(
µL(u)− rN (u)

− σL(u)′θ(u)
)
du
)
ds,

and the claim follows.

9.1.2 The Constrained Portfolio Problem

Recall the second measure change introduced in Section 5.3, where

QT [A] = E[Z̃(T )1{A}].

Here, Z̃(t) is given by Z̃(t) = exp
(
− 1

2

∫ t
0 ‖θ̃(s)‖

2ds −
∫ t

0 θ̃(s)
′dW (s)

)
, for

θ̃(t) =
(
θ1(t), . . . , θn(t), θI(t)−σI(t)

)′
. Recall the inflation-linked numéraire

and the auxiliary process ξ̃(t), given by

β̃(t) =
1

B*(t, I(t))
and ξ̃(t) =

ξ(t)

β̃(t)
.

Proposition 9.1.4. The real wealth process Y π(t) = Xπ(t)β̃(t) satisfies the
stochastic differential equation

dY π(t) =Y π(t)
(
σ2
I (t)− σI(t)θI(t)

)
dt+ δL̄(t)dt− Y π(t)σI(t)dWI(t)

+ β̃(t)π(t)′
(
σ(t)θ(t)− σn+1(t)σI(t)

)
dt+ β̃(t)π(t)′σ(t)dW (t),

Y π(0) =β̃(0)x, (9.6)

where σn+1(t) denotes the (n + 1)th column of σ(t). Here, L̄(t) = L(t)β̃(t)
is the real salary level and satisfies

dL̄(t) =L̄(t)
(
µL(t)− (rN (t) + σI(t)θI(t)

)
− σL,I(t)σI(t) + σ2

I (t)
)
dt

+ L̄(t)
(
σL(t)′dW (t)− σI(t)dWI(t)

)
,

L(0) =lβ̃(0). (9.7)

Proof. The derivation of the SDE (9.6) follows similarly as in Proposition
6.1.2 and is omitted here. In order to obtain the SDE for the real salary
level, apply Itô’s formula to f(x, y) = xy.
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Problem 9.1.5. Given a constant C, we consider the problem of finding a
portfolio process π̃ ∈ A(x) such that

EP
[(
C − Y π̃(T )

)2]
= inf

π∈A(x)
EP
[(
C − Y π(T )

)2]
. (9.8)

and the pair
(
Y π̃(t), π̃(t)

)
satisfies the stochastic differential equation (9.6).

Simlar to Section 6.1.2, we can restate the admissibility condition (9.4)
and Proposition 9.1.2 in terms of the real wealth process Y π(t) under the
martingale measure QT .

Proposition 9.1.6. The optimal real wealth process Y π(t) satisfies the ad-
missibility condition

EQT [Y π(T )] = β̃(0)(x+ d), (9.9)

or equivalently

EP[ξ̃(T )Y π(T )] = x+ d. (9.10)

Furthermore, the discounted process
(
(Y π(t) + β̃(t)D(t))

)
t∈[0,T ]

is a contin-

uous local martingale under QT .

Proof. Note that the admissibility constraint (9.10) follows immediately
from the admissibility condition (9.4) of the nominal wealth process by in-
serting the definitions of ξ̃(t) and of the real wealth process Y π(t). Moreover,
the admissibility constraint (9.9) follows once the second part of the propo-
sition is proved.

We continue as in Proposition 9.1.2. By Lemma 6.1.4 we know that the
real wealth process satisfies

dY π(t) =Y π(t)
(
σ2
I (t)− σI(t)θI(t)

)
dt+ δL̄(t)dt− Y π(t)σI(t)dWI(t)

+ β̃(t)π(t)′
(
σ(t)θ(t)− σn+1(t)σI(t)

)
dt+ β̃(t)π(t)′σ(t)dW (t)

=− Y π(t)σI(t)dW̃I(t) + β̃(t)π(t)′σ(t)dW̃ (t) + δL̄(t)dt. (9.11)

Then, we note that the conditional expectation under the new measure
QT of the discounted contributions is still the sum of the contributions in
the past, plus the expected future contributions, now with the numéraire
β̃(t), i.e.

EQT [ ∫ T

0
β̃(s)δL(s)|Ft

]
= β̃(t)D(t) +

∫ t

0
β̃(s)δL(s)ds,
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which is a martingale under QT . By the Martingale Representation Theo-
rem, there exists a square integrable process

(
ψ2(t)

)
t∈[0,T ]

, such that

d(β̃(t)D(t)) = ψ2(t)′dW̃ (t)− δL̄(t)dt, QT -a.s. (9.12)

Adding (9.11) and (9.12) we obtain

d
(
(Y π(t) + β̃(t)D(t))

)
=
(
ψ2(t)′ + β̃(t)π(t)′σ(t)

)
dW̃ (t)− Y π(t)σI(t)dW̃I(t),

which proves the claim.

9.1.3 Optimization of Terminal Wealth

Due to Proposition 9.1.6, we can simply replace the initial wealth x by x+d
in Section 6.2, in order to find the optimal terminal real wealth under the
presence of contributions and inflation. In order to guarantee the feasibility
of Problem 9.1.5 and to calibrate the portfolio process explicitly, we again
make the assumption of deterministic parameters.

Assumption 9.1.7. The risk premium process θ̃(t) is deterministic and
satisfies ∫ T

0
‖θ̃(s)‖2ds 6= 0.

Furthermore, the real interest rate process rR(t) is deterministic.

Theorem 9.1.8. Unter Assumptions 8.1.1 and 9.1.7, there exists a portfolio
process π ∈ A(x), such that the corresponding real wealth process attains the
optimal terminal wealth, given by

Y π(T ) =

{
C if (x+ d)β̃(0) ≥ C,(
C − Ỹ(x+ d)ξ̃(T )

)+
else,

(9.13)

where Ỹ : (0, H̃(0)) → (0,∞) denotes the inverse of H̃(y) = EP[ξ̃(T )(C −
yξ̃(T ))+

]
for all y ∈ (0,∞) and is given by (6.13).

Proof. The proof follows directly from Theorem 6.2.2, by replacing x by
x+ d.

We see that in allowing the wealth process to become negative on its
path, the expected contributions are simply seen as additional initial wealth.
Hence, under the restriction of non-negative terminal wealth, the investor
borrows against his future contributions.

Recall the definition of the ruin probability in Definition 9.1.9. Under
the presence of contributions we are now interested in receiving more money
than was invested through the initial investment x and the contributions.
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Definition 9.1.9. The probability of success under contributions is defined
by

P[Y π(T ) > x+ d],

where d denotes the present value of all future cashflows.

Example 9.1.10. Similarly to the Examples 3.3.3 and 6.2.6, we plot the
empirical distribution of the optimal terminal wealth for both the restricted
process (9.13) as well as the unrestricted process, where the non-negativity
constraint is dropped.

Figure 9.1: Histograms of the real terminal wealth distribution for the con-
strained and unconstrained portfolio problem.

For this example we suppose that all parameters are constant over time and
that there is only one stock in the market. We set the market parameters
as rN = 5%, µ = 8% and σS = 0.15. The investor starts with an initial
wealth x = 1000 and tries to reach C = 50′000 over a time horizon of T = 10
years. In addition to the initial investment x, an additional δ = 10% of the
stochastic salary of the plan member is invested monthly. The parameters
of the stochastic salary are given by l = 20000, κ = 0.015, σLS = 0.004 and
σLI = 0.006. Furthermore, the inflation parameters are given by rR = 4%,
σI = 0.05, θI = 0.12 and the volatility of the stock with respect to the
inflation is given by σIS = 0.04.

In Figures 9.1 and 9.2, we plot the empirical terminal wealth distribu-
tions for 10’000 realizations. Note that the unconstrained distribution is
cut-off at -25’000, in order to increase readability of the plot.
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Figure 9.2: Histograms of the nominal terminal wealth distribution for the
constrained and unconstrained portfolio problem.

In order to study the advantages and disadvantages more thoroughly, we
report some statistics of the final wealth out of 10’000 realizations in Table
9.1. Comparing these statistics to those in Example 6.2.6, we see that the
continuous investment through contributions reduces the ruin probability
close to zero. This in turn reduces the difference between the unconstrained
and the constrained portfolio process. We also note that contrary to the
previous examples, the 2.5% quantile is lower for the constrained strategy
for this set of parameters.

Unconstrained Constrained

2.5% Quantile 8’650 7’360

Mean 40’900 40’500

97.5% Quantile 67’300 67’100
√

L2-Distance 18’500 18’600

Median Rate of Return 9.8% 9.6%

Ruin Probability 1.0% 0.0%

Success Probability 93.2% 92.5%

Table 9.1: Properties of the empirical terminal nominal wealth distribution
for the constrained and unconstrained portfolio problem.
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It is apparent from (9.13) that the higher the expected future contri-
butions and the initial wealth x are, the lower the probability of reaching
negative terminal wealth and the smaller the difference between the uncon-
strained and the constrained portfolio process become. We will see in Chap-
ter 15, that the difference between the constrained and the unconstrained
terminal wealth is very little for most sets of parameters. Nonetheless, nega-
tive wealth during some part of the process may happen for both strategies,
due to borrowing against future contributions. For that reason we add a
no-shorting constraint to the optimal portfolio in Chapter 11.

9.2 The Optimal Portfolio Process

Once more, we explicitly derive the optimal portfolio process and the corre-
sponding wealth process with and without the non-negativity constraint.
Without the additional requirement, we solve the stochastic differential
equation (9.6) directly with the help of the more general Hamilton-Jacobi-
Bellman equation, stated in (3.22).

9.2.1 Without Bankruptcy Prohibition

Recall the drift of the salary process, given by

µL(t) = κ(t) + µI(t) = κ(t) + rN (t)− rR(t) + σI(t)θI(t).

Theorem 9.2.1. Let
(
a(t))t∈[0,T ] be given by

a(t) = −1

2
e−

∫ T
t ‖θ̃(s)‖

2ds (9.14)

for all t ∈ [0, T ] and let
(
f(t))t∈[0,T ] satisfy the non-homogeneous partial

differential equation

0 = ft(t) + 2δa(t)

+
[
µL(t)− (rN (t) + σI(t)θI(t))− σLI(t)σI(t) + σ2

I (t)− ‖θ̃(t)‖2
]
f(t),

f(T ) = 0, (9.15)

for all t ∈ [0, T ]. Then, under Assumptions 8.1.1 and 9.1.7, the optimal
portfolio process to the unconstrained optimization problem is given by

π̂(t) =
1

β̃(t)

(
σ(t)′

)−1
(
σ̄I(t)Y

π(t)− θ̃(t)
(
Y π(t)− C

)
− L̄(t)

f(t)

2a(t)

(
θ̃(t) + σL(t)− σ̄I(t)

))
, (9.16)
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for all t ∈ [0, T ], where σ̄I(t) =
(
0, . . . , 0, σI(t)

)′
.

Proof. See Appendix III.A.

Before we can use Theorem 9.2.1 to solve for the optimal wealth process,
we need to simplify equation (9.16).

Corollary 9.2.2. For f(t) satisfying the non-homogeneous partial differen-
tial equation (9.15), we have

f(t)

2a(t)
L(t) = D(t), (9.17)

where D(t) is the expected value of future contributions, given by (9.1).

Proof. The solution to (9.15) is given by

f(t) = −δ
∫ T

t
e−

∫ T
t ‖θ̃(s)‖

2ds+
∫ s
t

(
µL(u)−rN (u)−σL(u)′θ(u)

)
duds, (9.18)

(see Proposition III.A.2 in Appendix III.A). Therefore, inserting the solu-
tion to a(t) from (9.14), we have

f(t)

2a(t)
= δ

∫ T

t
exp

(∫ s

t

(
µL(u)− rN (u)− σL(u)′θ(u)

)
du
)
ds,

and comparing this to (9.5), the claim follows.

Proposition 9.2.3. Define Z(t) = Y π̂(t)− C +D(t)β̂(t). Then

dZ(t) = −‖θ̃(t)‖2Z(t)dt− θ̃(t)′Z(t)dW (t).

Proof. By Corollary 9.2.2, the optimal portfolio process is given by

π̂(t) =
1

β̂(t)

(
σ(t)′

)−1
(
σI(t)Y

π̂(t)− θ̃(t)
(
Y π̂(t)− C

)
− β̃(t)D(t)

(
θ̃(t) + σL(t)− σ̄I(t)

))
.
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Inserting this process into the stochastic differential equation (9.6), we ob-
tain

dY π̂(t) =− ‖θ̃(t)‖2
(
Y π̂(t)− C

)
dt− θ̃(t)′

(
Y π̂(t)− C

)
dW (t)

− β̃(t)D(t)
(
θ̃(t) + σL(t)− σ̄I(t)

)′
θ̃(t)dt+ δβ̃(t)L(t)dt

− β̃(t)D(t)
(
θ̃(t) + σL(t)− σ̄I(t)

)′
dW (t)

=− ‖θ̃(t)‖2
(
Y π̂(t)− C

)
dt− θ̃(t)′

(
Y π̂(t)− C

)
dW (t)

+ β̃(t)
(
− ‖θ̃(t)‖2D(t)dt− θ̃(t)′D(t)dW (t) + δL(t)dt

−D(t)
(
(σL(t)− σ̄I(t)

)′
θ̃(t)dt−D(t)

(
(σL(t)− σ̄I(t)

)′
dW (t)

)
.

Next, using Proposition 9.1.3, we can calculate dD(t) directly by Leibniz’
rule. Namely, denote by

F (t) =

∫ T

t
exp

(∫ s

t

(
µL(u)− rN (u)− σL(t)′θ(u)

)
du
)
ds.

Then, dF (t) = −dt−
(
µL(t)− rN (t)− σL(t)′θ(t)

)
F (t)dt, and hence

dD(t) =δF (t)dL(t) + δL(t)dF (t)

=D(t)
(
µL(t)dt+ σL(t)dW (t)

)
− δL(t)dt

−
(
µL(t)− rN (t)− σL(t)′θ(t)

)
D(t)dt.

Furthermore, by Itô’s formula, we calculate dβ̃(t) explicitly, as

dβ̃(t) = −β̃(t)
((
rN (t) + σI(t)θI(t)− σ2

I (t)
)
dt+ σI(t)dWI(t)

)
.

Putting everything together, we have

dZ(t) =dY π̂(t) + d
(
β̃(t)D(t)

)
=dY π̂(t) +D(t)dβ̃(t) + β̃(t)dD(t) + d[β̃,D](t)

=− ‖θ̃(t)‖2
(
Y π̂(t) + β̃D(t)− C

)
dt− θ̃(t)′

(
Y π̂(t) + β̃D(t)− C

)
dW (t)

+ δβ̃(t)L(T )dt− β̃(t)D(t)
(
(σL(t)− σ̄I(t))′θ̃(t)

)
dt

− β̃(t)D(t)(σL(t)− σ̄I(t))′dW (t) + β̃(t)D(t)
(
(σL(t)− σ̄I(t))′θ̃(t)

)
dt

+ β̃(t)D(t)(σL(t)− σ̄I(t))′dW (t)− δβ̃(t)L(T )dt

=− ‖θ̃(t)‖2
(
Y π̂(t) + β̃D(t)− C

)
dt− θ̃(t)′

(
Y π̂(t) + β̃D(t)− C

)
dW (t)

=− ‖θ̃(t)‖2Z(t)dt− θ̃(t)′Z(t)dW (t).
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Theorem 9.2.4. Under the same assumptions as in Theorem 9.2.1 and
for (x + d)β̃(0) ≤ C, the optimal real wealth process to the unconstrained
optimization problem is given by

Y π̂(t) =
(
(x+d)β̃(0)−C

)
e−

∫ t
0

3
2
‖θ̃(s)‖2ds−

∫ t
0 θ̃(s)

′dW (s) +C− β̃(t)D(t), (9.19)

for all t ∈ [0, T ].

Proof. Define the auxiliary process Z(t) = Y π̂(t)−C+D(t)β̂(t) with initial
value Z(0) = (x+ d)β̃(0)− C. Then by Proposition 9.2.3

dZ(t) = −‖θ̃(t)‖2Z(t)dt− θ̃(t)′Z(t)dW (t),

which is the expression for a geometric Brownian motion, with solution

Z(t) = Z(0)e−
3
2

∫ t
0 ‖θ̃(s)‖

2ds−
∫ t
0 θ̃(s)

′dW (s).

Hence, we can write the optimal wealth process corresponding to the port-
folio process π̂ of (9.16) as

Y π̂(t) =
(
(x+d)β̃(0)−C

)
e−

3
2

∫ t
0 ‖θ̃(s)‖

2ds−
∫ t
0 θ̃(s)

′dW (s) +C− β̃(t)D(t). (9.20)

Corollary 9.2.5. Under the same assumptions as in Theorem 9.2.1 and
for (x+d)β̃(0) ≤ C, the unconstrained optimization problem has an optimal
solution pair

(
X π̂(t), π̂(t)

)
, given by

X π̂(t) =
1

β̃(t)

(
(x+ d)β̃(0)− C

)
e−

3
2

∫ t
0 ‖θ̃(s)‖

2ds−
∫ t
0 θ̃(s)

′dW (s) +
C

β̃(t)
−D(t),

(9.21)

π̂(t) =
(
σ(t)′

)−1
ν(t), (9.22)

where

νi(t) =−
(
X π̂(t) +D(t)− C

β̃(t)

)
θi(t)−D(t)σL,i(t), for i = 1, . . . , n,

νI(t) =−
(
X π̂(t) +D(t)− C

β̃(t)

)
(θI(t)− σI(t))−D(t)σL,I(t)

+
(
X π̂(t) +D(t)

)
σI(t).

Proof. Noting that Xπ(t)β̃(t) = Y π(t), the optimal wealth process is di-
rectly obtained from the previous discussion. The expression of the optimal
portfolio process follows from Theorem 9.2.1.
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9.2.2 With Bankruptcy Prohibition

In order to determine the optimal wealth process, we only need to adapt
Section 6.3.2 slightly in order to use the martingale approach. Namely, we
first find an explicit solution to the BSDE

dY π(t) = −Y π(t)σI(t)dW̃I(t) + β̃(t)π(t)′σ(t)dW̃ (t) + δβ̃(t)L(t),

Y π(T ) =
(
C − Ỹ(x+ d)ξ̃(T )

)+
,

where W̃ (t) = W (t) +
∫ t

0 θ̃(s)ds is the QT -Brownian motion defined in
Lemma 5.3.1.

Theorem 9.2.6. Under Assumptions 8.1.1 and 9.1.7 and for (x+d)β̃(0) ≤
C, the optimal real wealth process is given by

Y π̂(t) = CΦ
(
− d−(t, y(t))

)
− y(t)Φ

(
− d+(t, y(t))

)
− β̃(t)D(t), (9.23)

for all t ∈ [0, T ], where Φ(x) = 1√
2π

∫ x
−∞ e

− v
2

2 dv is the cumulative distribu-

tion function of the standard normal distribution and

d+(t, y) =
log( yC ) + 1

2

∫ T
t ‖θ̃(s)‖

2ds√∫ T
t ‖θ̃(s)‖sds

,

d−(t, y) = d+(t, y)−

√∫ T

t
‖θ̃(s)‖2ds.

Furthermore, the process y is given by

y(t) = Ỹ(x+ d) exp
(
−
∫ T

0
(rR(s)− ‖θ̃(s)‖2)ds

)
exp

(
− 3

2

∫ t

0
‖θ̃(s)‖2)ds−

∫ t

0
θ̃(s)′dW (s)

)
. (9.24)

Proof. By Proposition 9.1.6, we know that the discounted process
(
(Y π(t)+

β̃(t)D(t))
)
t∈[0,T ]

is a continuous local martingale under QT . Therefore, we

have

Y π̂(t) = EQT [Y π̂(T )|Ft
]
− β̃(t)D(t). (9.25)

By Theorem 9.1.8, the optimal terminal wealth satisfies

Y π̂(T ) =
(
C − Ỹ(x+ d)ξ̃(T )

)+
,
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for (x+d)β̃(0) ≤ C and by replacing Ỹ(x) by Ỹ(x+d), Theorem 6.3.8 yields

EQT [Y π̂(T )|Ft
]

= CΦ
(
− d−(t, y(t))

)
− y(t)Φ

(
− d+(t, y(t))

)
. (9.26)

Inserting (9.26) in (9.25) gives the claim.

Corollary 9.2.7. Under the same notations and assumptions as in Theorem
9.2.6 the optimal portfolio process to Problem 9.1.5 is given by

π̂(t) =
1

β̃(t)
(σ(t)′)−1ν(t), (9.27)

where

νi(t) =y(t)Φ
(
− d+(t, y(t))

)
θi(t)− β̃(t)D(t)σL,i(t), for i = 1, . . . , n,

νI(t) =Y π̂(t)σI(t) + y(t)Φ
(
− d+(t, y(t))

)
(θI(t)− σI(t))

− β̃(t)D(t)
(
σL,I(t)− σI(t)

)
.

Proof. Denote by f(t, y) = CΦ(−d−(t, y))− yΦ(−d+(t, y)). Then, by The-
orem 9.2.6, we know that

Y π̂(t) + β̃(t)D(t) = f(t, y(t)). (9.28)

Similar to the proof of Corollary 3.4.9, we will group the volatility terms of
(9.28). In order to obtain the volatility terms of f(t, y), we have by Itô’s
forumla

df(t, y) = −yθ̃(t)′fy(t, y)dW̃ (t) +
(
ft(t, y) +

1

2
y2‖θ̃‖2fyy(t, y)

)
dt,

and fy(t, y) is given by

fy(t, y) =
1

y
√∫ T

t ‖θ̃(s)‖2ds

(
yφ(−d+(t, y))− Cφ(−d−(t, y)

)
− Φ(−d+(t, y))

= −Φ(−d+(t, y)).

Now by (9.28), we know that dY π̂(t) − d
(
β̃(t)D(t)

)
= df(t, y(t)), and the

volatility terms satisfy

Y π̂(t)σ̄I(t) = β̃(t)
(
π̂(t)′σ(t)−D(t)(σL(t)− σ̄I(t))′

)
− yΦ(−d+(t, y(t)))θ̃(t)′.

Solving for π̂(t) yields

π̂(t) =
1

β̃(t)

(
σ(t)′

)−1
(
Y π̂(t)σ̄I(t) + yΦ(−d+(t, y(t)))θ̃(t)

− β̃(t)D(t)
(
σL(t)− σ̄I(t)

))
.
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9.2. THE OPTIMAL PORTFOLIO PROCESS

Remark. Note that since we have

y(t)Φ
(
− d+(t, y(t))

)
= −Y π̂(t)− β̃(t)D(t) + CΦ

(
− d−(t, y(t))

)
,

by Theorem 9.2.6, we can also write for i = 1, . . . , n,

νi(t) =−
(
Y π̂(t) + β̃(t)D(t)− CΦ

(
− d−(t, y(t))

))
θi(t)− β̃(t)D(t)σL,i(t),

νI(t) =−
(
Y π̂(t) + β̃(t)D(t)− CΦ

(
− d−(t, y(t))

))
(θI(t)− σI(t))

− β̃(t)D(t)
(
σL,I(t)− σI(t)

)
+ Y π̂(t)σI(t).

Corollary 9.2.8. Under Assumptions 8.1.1 and 9.1.7 and for (x+d)β̃(0) ≤
C, the optimization Problem 9.1.5 has an optimal solution pair

(
X π̂(t), π̂(t)

)
,

given by

X π̂(t) =
1

β̃(t)

(
CΦ
(
− d−(t, y(t))

)
− y(t)Φ

(
− d+(t, y(t))

))
−D(t), (9.29)

π̂(t) = (σ(t)′)−1ν(t), (9.30)

where y(t) is defined in Lemma 6.3.5, Ỹ(x) is given by (6.13) and where

νi(t) =−
(
X π̂(t) +D(t)− C

β̃(t)
Φ
(
− d−(t, y(t))

))
θi(t)−D(t)σL,i(t),

νI(t) =−
(
X π̂(t) +D(t)− C

β̃(t)
Φ
(
− d−(t, y(t))

))
(θI(t)− σI(t))

−D(t)σL,I(t) +
(
X π̂(t) +D(t)

)
σI(t),

for i = 1, . . . , n.

Proof. Noting that Xπ(t)β̃(t) = Y π(t), the conclusion is directly obtained
from the previous discussion.

Example 9.2.9. Similar to Examples 3.4.10 and 6.3.11, we study the in-
vestment character of the two strategies, adding contributions. We use the
same underlying parameters of the stock process as in Example 6.3.11, i.e.
rN = 5%, µ = 8% and σS = 0.15 for the stock index and rR = 4%, σI = 0.05,
θI = 0.12 and σIS = 0.04 for the inflation-linked bond. The parameters
for the salary process are computed empirically and we obtain κ = 0.015,
σLS = 0.006 and σLI = 0.004. The investor starts with x = 1000, an initial
salary l = 20′000, a contribution rate δ = 10% and the target wealth is set
to C = 50′000.
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Figure 9.3: In the upper graph, the amount invested in the stock and the
index-linked bond can be seen for both the constrained and the uncon-
strained optimal portfolio. The resulting wealth process is plotted below.

The main difference of the wealth process in Figure 9.3 to the one in the
Example 6.3.11 is, that the two strategies only differ very slightly. We also
see clearly, that in order to finance the heavy investment in the risky assets,
a lot of money is borrowed from the bank account from the beginning of the
investment period.
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Chapter 10

The Constrained Optimal
Strategy: Lower Bound

During the last chapter and especially in Example 9.2.9 we saw that the zero
bound on the terminal wealth does not have a great impact on the portfolio
strategy. This comes as no surprise, as ending with zero wealth means
that not only the initial investment, but also all contributions which were
invested over the duration of the pension plan have been lost. Therefore, a
pension plan member may not be satisfied with a non-negativity constraint
and would rather prefer a positive lower bound, similar to the ones studied
in Chapters 4 and 7.

10.1 Problem Formulation

Problem 10.1.1. Given a constant C and a real number K, we consider
the problem of finding a portfolio process π̂l ∈ A(x) such that

EP
[(
C − X π̂l(T )

I(T )

)2]
= inf

π∈A(x)
EP
[(
C − Xπ(T )

I(T )

)2]
,

subject to
X π̂l(T )

I(T )
≥ K, a.s. , (10.1)

and the pair
(
X π̂l(t), π̂l(t)

)
satisfies the stochastic differential equation (8.5).

Recall the present value of all future cashflows, the numéraires corre-
sponding to the bank account and the inflation linked bond as well as the
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auxiliary process ξ̃(t), given by

d = EP[ ∫ T

0

ξ(s)

ξ(t)
δL(s)ds

]
,

β(t) =
1

B(t)
= exp(−

∫ t

0
rN (s)ds),

β̃(t) =
1

B*(t, I(t))
=

1

BR(t, T )I(t)
,

ξ̃(t) =
ξ(t)

β̃(t)
=
Z̃(t)

β̃(0)
,

and the real wealth process Y π(t) = β̃(t)Xπ(t). Similar to the discussion in
Sections 9.1.3 and 9.1.2 we note that the solution to Problem 10.1.1 follows
by replacing x by x+ d in Chapter 7. Furthermore, the non-negativity con-
straint is non-binding if K > 0 and the class of optimal portfolio processes
for Problem 10.1.1 is empty unless we have K ≤ (x + d)β̃(T ). For the rest
of this chapter, we will hence assume that

K < β̃(T )(x+ d).

10.2 Solution to the Constrained Problem

By replacing x by x + d, we immediately obtain the optimal terminal real
wealth and the corresponding optimal portfolio process from Corollary 7.2.1
and Theorem 7.3.1. Hence, define

x̂ = x−Ke−
∫ T
0 rR(s)ds,

Ĉ = C −K.

Theorem 10.2.1. Denote by Ŷ π̂(t; x̂, Ĉ) the optimal wealth process (9.23)
at time t with initial wealth x̂β̃(0) and fixed claim Ĉ. Under Assumptions
8.1.1, 9.1.7 and for (x+ d)β̃(0) ≤ C the optimal wealth process to Problem
10.1.1 is given by

Y π̂l(t) = Ŷ π̂(t; x̂, Ĉ) +K. (10.2)

Similarly, denoting by π̂(t; x̂, Ĉ) the optimal portfolio process (6.33) at
time t, the optimal portfolio process to Problem 10.1.1 is given by

π̂l(t) = π̂
(
t; x̂, Ĉ

)
+K. (10.3)
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Note that the optimal terminal real wealth for Problem 10.1.1 is then
given by

Y π̂l(T ) = Ŷ π̂(T ) +
(
K − Ŷ π̂(T )

)+
, (10.4)

where Ŷ π̂(t) is the optimal wealth process from (9.19) with

x̂0 = CEP[ξ̃(T )]− yEP[ξ̃(T )2],

where y is chosen in such a way that the terminal wealth given by (10.4)

satisfies the admissibility constraint EP[ξ̃(T )Y π̂l(T )] = x+ d.

Example 10.2.2. In order to understand the behavior of the portfolio pro-
cess with a general lower bound, we continue the analysis of Example 9.2.9,
including the portfolio and wealth process of the optimal strategy with a
positive constraint of K = 25′000.

Unconstrained Constrained Lower Bound

Terminal Wealth 45’500 45’000 40’600

Rate of Return 10.3% 10.1% 8.4%

Minimal Wealth 1’000 1’000 1’000

Table 10.1: Properties of the different portfolio processes calculated for the
period 1998-2008 on historical data.

We see in Figure 10.1 that the investment behavior of the optimal port-
folio process with a lower bound is very different from the other two optimal
strategies, even though the terminal wealth is comparable. The guarantee
is financed from the beginning, by borrowing less money from the bank ac-
count and reduced investment in the risky assets. This leads to a lower rate
of return during years of good market performance, while losing less money
during bear markets, see e.g. the period of 2002 to 2004.

The costs associated with the guarantee can be seen in Table 10.1. For
this set of parameters, the present value of all future cashflows is d = 20′000
and hence more than half of the investment is guaranteed after correcting
for inflation. This reduces the rate of return by almost 2%.

Remark. From a practical point of view, a fixed lower guarantee is sub opti-
mal for a pension plan. As noted in Section 8.1, the model for the stochastic
salary used in this thesis is not able to capture the risk of redundancy. A
more practical lower bound could be set as a percentage of the contributions,
hence adapting in the case of a jump in the salary. Such a guarantee would
clearly not be measurable at the beginning and change over the duration of
the pension plan.
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Figure 10.1: In the upper graph, the amount invested in the stock and
the inflation-linked bond can be seen for the constrained portfolio, the un-
constrained portfolio and the portfolio process with a lower constraint of
K = 25′000. The investment in the bank account is shown in the middle,
while the resulting wealth process is plotted below.
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Chapter 11

Analysis of the Portfolio
Processes

At this point, we are able to compare the solutions to the optimization
problems of Parts I, II and III, namely

inf
π∈A(x)

EP
[(
C −Xπ(T )

)2]
, (11.1)

for Part I and

inf
π∈A(x)

EP
[(
C − Xπ(T )

I(T )

)2]
, (11.2)

for Parts II and III. For the following discussion, A(x) will either be chosen
to be the set of admissible processes that lead to non-negative terminal
wealth, i.e.

A(x) =
{
π ∈ Π | Xπ(0) ≤ x and Xπ(T ) ≥ 0, P-a.s.

}
,

when we discuss the constrained portfolio problem, or dropping the con-
straint of non-negative terminal wealth when we discuss the unconstrained
portfolio problem. Furthermore, we assume all coefficients to be determin-
istic functions and uniformly bounded on [0, T ]× Ω.

11.1 Unconstrained Portfolio Processes

We begin by examining the unconstrained optimal portfolio problem, i.e.
where A(x) is the family of admissible portfolio processes with initial wealth
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x. Denote by π̂1(t) the optimal portfolio process for the unconstrained opti-
mization problem 11.1 of the classical market model (2.2) and by π̂2(t) and
π̂3(t) the optimal portfolio process for the unconstrained optimization prob-
lem 11.2 of the market model (5.6) excluding and including contributions,
respectively. Then

π̂1(t) =
(
σ(t)′

)−1
(
−
(
X π̂1(t)− Cβ(T )

β(t)

)
θ(t)

)
, (11.3)

π̂2(t) =
(
σ(t)′

)−1
(
−
(
X π̂2(t)− C

β̃(t)

)
θ̃(t) +X π̂2(t)σ̄I(t)

)
, (11.4)

π̂3(t) =
(
σ(t)′

)−1
(
−
(
X π̂3(t) +D(t)− C

β̃(t)

)
θ̃(t)

+
(
X π̂3(t) +D(t)

)
σ̄I(t)−D(t)σL(t)

)
, (11.5)

for all t ∈ [0, T ], where β(t) is the bank account numéraire (2.7), β̃(t) is
the inflation-linked numéraire (5.13), θ̃(t) = θ(t) − σ̄I(t) is the adjusted
market price of risk and D(t) is the value of future contributions, given by
Proposition 9.1.3. Moreover, the corresponding optimal wealth processes
are given by

X π̂1(t) =
1

β(t)

((
x− Cβ(T )

)
e−

∫ t
0 ‖θ(s)‖

2dsZ(t) + Cβ(T )
)
, (11.6)

X π̂2(t) =
1

β̃(t)

((
xβ̃(0)− C

)
e−

∫ t
0 ‖θ̃(s)‖

2dsZ̃(t) + C
)
, (11.7)

X π̂3(t) =
1

β̃(t)

((
(x+ d)β̃(0)− C

)
e−

∫ t
0 ‖θ̃(s)‖

2dsZ̃(t) + C − β̃(t)D(t)
)
,

(11.8)

for all t ∈ [0, T ], where Z(t) is the Doléan-Dade exponential (2.4), Z̃(t) is
the Doléan-Dade exponential (5.12) and d = D(0) is the present value of
future contributions.

We notice in particular, that the optimal portfolio process (11.5) under
presence of both inflation and contributions has three components.

• A speculative component, proportional to the distance between the
optimal wealth increased by the discounted expected future contribu-
tions and the discounted target. This implies that if everything else
stays the same, the higher the target wealth, the higher the speculative
component.
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• A second component, hedging the optimal wealth increased by the
discounted expected future contributions against inflation.

• A third component, hedging the discounted expected future contri-
butions against the salary risk in order to offset any shock to the
stochastic salary.

In the case of no contributions, it is apparent that both the optimal
wealth process (11.8) as well as the optimal portfolio process (11.5) reduce
to the optimal wealth process X π̂2(t), given by (11.7), and the optimal
portfolio process π̂2(t), given by (11.4), respectively.

Similarly, in the case of no inflation, i.e. rN (t) = rR(t) and σI(t) ≡
σIS(t) ≡ 0 for all t ∈ [0, T ], the inflation-linked numéraire β̃(t) satisfies

β̃(t) = e
∫ T
t rR(s)ds =

β(t)

β(T )
.

Therefore, both the optimal wealth process (11.7) as well as the optimal
portfolio process (11.4) reduce to the optimal wealth process X π̂1(t), given
by (11.6), and the optimal portfolio process π̂1(t), given by (11.3), respec-
tively. This allows us to determine the optimal portfolio process for the
unconstrained optimization problem in the financial market without infla-
tion, but introducing contributions of the form (8.4). Namely, the optimal
portfolio process is then given by

π̂4(t) =
(
σ(t)′

)−1
(
−
(
X π̂4(t) +D(t)− Cβ(T )

β(t)

)
θ(t)−D(t)σL(t)

)
, (11.9)

for all t ∈ [0, T ], where X π̂4(t) is the corresponding optimal wealth process.
Lastly, we notice that if the discounted target cannot be reached in a

risk free manner, i.e. C > (x+ d)β̃(0), then the probability of reaching it in
real terms is zero. This follows, since

X π̂3(t) <
C

β̃(t)
−D(t), P-a.s.,

for all t ∈ [0, T ], and since D(T ) = 0.

11.1.1 Cut-Shares

We note that as soon as a second tradable asset is introduced to the market,
be it an inflation-linked bond or a second stock, all the optimal portfolio pro-
cesses may require to have a negative amount invested in one of the assets.
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Moreover, many cases require the optimal strategy to borrow considerable
amounts of money, so the optimal share invested falls outside the range
[0, 1]. In practice this may not be possible, as there may exist regulatory
limits on the shares, and short-selling might be forbidden. One possibility
to overcome this practical issue, is to add an additional constraint on the
investment strategy itself. This, however, results in a significantly higher
degree of complexity. The optimization Problem 3.1.2 with an additional
no-shorting constraint is analyzed in [Heunis, 2014], using the approach of
convex duality. It may be possible to generalize this approach and to include
inflation and contribution, however this is beyond the scope of this thesis.

An alternative way to deal with the above problem, is to enforce the
no-shorting constraint manually. The so called ”cut-shares” resulting from
this procedure are sub-optimal and lead to some reduction in the efficiency
of the portfolio. Modifications of this type have been used by [Vigna, 2014]
and [Menoncin and Vigna, 2017], who used to following procedure:

• At any time t ∈ [0, T ], if some of the shares do not belong to [0, 1], at
least one position is short, as the shares need to sum up to 1. All the
negative shares are then set to zero, while the remaining shares are
adjusted such that they sum up to one and such that their ratios stay
the same.

We apply the algorithm to the unconstrained portfolio process, as the
non-negativity of the terminal wealth immediately follows from the no-
shorting constraint. In Figure 11.1 we repeat the analysis of Example 3.3.3
and note that with a median rate of return rirr = 7.2%, the cut-share strat-
egy performs much worse than the unconstrained strategy for the same tar-
get wealth. On the other hand, removing any short positions of the portfolio
process significantly reduces the risk. In Chapter 15 we study the possibility
of choosing different target wealths for the portfolio strategies depending on
the underlying risk and compare the resulting performance in more detail.

11.2 Constrained Portfolio Processes

LetA(x) denote the family of admissible porfolio processes with non-negative
terminal wealth, i.e.

A(x) =
{
π ∈ Π | Xπ(0) ≤ x and Xπ(T ) ≥ 0, P-a.s.

}
.

Denote by π̂1(t) the optimal portfolio process for the constrained optimiza-
tion Problem 11.1 of the classical market model (2.2) and by π̂2(t) and

126



11.2. CONSTRAINED PORTFOLIO PROCESSES

Figure 11.1: Histograms of the terminal wealth distribution for the uncon-
strained portfolio problem with and without cut-shares.

π̂3(t) the optimal portfolio process for the constrained optimization Prob-
lem 11.2 of the market model (5.6) excluding and including contributions,
respectively. Then

π̂1(t) =
(
σ(t)′

)−1
(
−
(
X π̂1(t)− Φ

(
− d1
−(t, y1(t))

)
C
β(T )

β(t)

)
θ(t)

)
, (11.10)

π̂2(t) =
(
σ(t)′

)−1
(
−
(
X π̂2(t)− Φ

(
− d2
−(t, y2(t))

) C

β̃(t)

)
θ̃(t)

+X π̂2(t)σ̄I(t)
)
, (11.11)

π̂3(t) =
(
σ(t)′

)−1
(
−
(
X π̂3(t) +D(t)− Φ

(
− d2
−(t, y2(t))

) C

β̃(t)

)
θ̃(t)

+
(
X π̂3(t) +D(t)

)
σ̄I(t)−D(t)σL(t)

)
, (11.12)

for all t ∈ [0, T ], where β(t) is the bank account numéraire (2.7), β̃(t) is
the inflation-linked numéraire (5.13), θ̃(t) = θ(t) − σ̄I(t) is the adjusted
market price of risk and D(t) is the value of future contributions, given by
Proposition 9.1.3. The auxillary processes y1 and d1 are defined in Theo-
rem 3.4.8, whereas y2 and d2 are defined in Theorem 6.3.8. Moreover, the
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11.2. CONSTRAINED PORTFOLIO PROCESSES

corresponding optimal wealth processes are given by

X π̂1(t) = Φ
(
− d1
−(t, y1(t))

)
C
β(T )

β(t)
− Φ

(
− d1

+(t, y1(t))
)
y1(t), (11.13)

X π̂2(t) =
1

β̃(t)

(
Φ
(
− d2
−(t, y2(t))

)
C − Φ

(
− d2

+(t, y2(t))
)
y2(t)

)
, (11.14)

X π̂3(t) =
1

β̃(t)

(
Φ
(
− d2
−(t, y2(t))

)
C − Φ

(
− d2

+(t, y2(t))
)
y2(t)

)
−D(t),

(11.15)

for all t ∈ [0, T ].
Similar to the unconstrained case, the optimal portfolio process (11.10)

consists of three components. While the components used to hedge against
the risk of inflation and the salary risk are the same as for the unconstrained
optimal portfolio process (11.3), the speculative component is slightly dif-
ferent. Due to the equations (11.13)-(11.15) for the wealth processes, we
see that the speculative component is still always positive, but due to the
additional factor of the cumulative distribution function, it will always be
smaller in the constrained case, for the same current wealth.

This explains why the difference between the portfolio processes was
much larger in Example 3.4.10 than in either Example 6.3.11 or Example
9.2.9, as the only difference is the speculative component, which makes up
less of the investment under the inclusion of inflation or contributions.

Due to similar arguments as in Section 11.1, π̂3 reduces to π̂2 in the
case of no contributions, which in turn reduces to π̂1, if there is no inflation
present in the market. The optimal portfolio process for the constrained
optimization problem in the financial market without inflation, but including
contributions can be derived as

π̂4(t) =
(
σ(t)′

)−1
(
−
(
X π̂4(t) +D(t)− Φ

(
− d2
−(t, y2(t))

)
C
β(T )

β(t)

)
θ(t)

−D(t)σL(t)
)
,

for all t ∈ [0, T ], where X π̂4(t) is the corresponding optimal wealth process.
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Appendix

III.A Proof of Theorem 9.2.1

Recall the notation

A(t) = σ2
I (t)− σI(t)θI(t),

M(t) = β̃(t)
(
Γ(t)− σn+1(t)σI(t)

)
,

σ̄I(t) =
(
0, . . . , 0, σI(t)

)′
,

D(t) = β̃(t)σ(t). (11.16)

Furthermore, introduce the process
(
%(t)

)
t∈[0,T ]

, given by

%(t) = µL(t)− (rN (t) + σI(t)θI(t))− σLI(t)σI(t) + σ2
I (t), (11.17)

for all t ∈ [0, T ].

We follow the dynamic programming approach and consider Problem
9.1.5, starting from some time t ∈ [0, T ] with the initial states Y π(t) = y
and L̄(t) = l. That is, the dynamics of Y π(s) and L̄(s) can be written as

dY π(s) =
(
Y π(s)A(s) + π(s)′M(s) + δL̄(s)

)
ds

+
(
π(s)′D(s)− σ̄I(s)′Y π(s)

)
dW (s),

dL̄(s) =L̄(s)%(s)ds+ L̄(s)
(
σL(s)− σ̄I(s)

)′
dW (s),

with boundary conditions Y π(t) = y and L̄(t) = l. Correspondingly, the
value function is defined by

V (t, y, l) = min
π∈Π

EP
[(
C − Y π(T )

)2∣∣Y π(t) = y, L̄(t) = l
]
.

As long as the choice of parameters is clear, we denote by V = V (t, y, l)
in order to increase the readability of the following derivations. Now, by
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the remark after Theorem 3.4.2, the value function satisfies the general HJB
equation (3.22), i.e.

−1

2
(y − C)2 = V (T, y, l)

0 = Vt +
(
A(t)y + δl

)
Vy

+ l%(t)Vl +
1

2
l2
(
σL(t)− σ̄I(t)

)′(
σL(t)− σ̄I(t)

)
Vll

+ min
π∈Π

{
π(t)′M(t)Vy +

1

2

(
π(t)′D(t)D(t)′π(t)

− 2π(t)′D(t)σ̄I(t)y + σ̄I(t)
′σ̄I(t)y

2
)
Vyy

+ l
(
π(t)′D(t)− σ̄I(t)y

)(
σL(t)− σ̄I(t)

)
Vyl

}
. (11.18)

Suppose that Vyy > 0. Then, the first order condition for π(t) reads

0 = M(t)Vy +
(
D(t)D(t)′π̂(t)−D(t)σ̄I(t)y

)
Vyy

+ lD(t)
(
σL(t)− σ̄I(t)

)
Vyl,

and the optimal portfolio strategy is given by

π̂(t) =
(
D(t)D(t)′)−1

(
D(t)σ̄I(t)y −M(t)

Vy
Vyy
− lD(t)

(
σL(t)− σ̄I(t)

) Vyl
Vyy

)
.

(11.19)

Corollary III.A.1. The optimal value function satisfies

0 = Vt +
(
A(t)y + σ̄I(t)

′D(t)−1M(t)y + δl
)
Vy

+ l%(t)Vl +
1

2
l2
(
σL(t)− σ̄I(t)

)′(
σL(t)− σ̄I(t)

)
Vll

− 1

2
l2
(
σL(t)− σ̄I(t)

)′(
σL(t)− σ̄I(t)

) V 2
yl

Vyy

− 1

2
M(t)′

(
D(t)D(t)′

)−1
M(t)

V 2
y

Vyy

−
(
σL(t)− σ̄I(t)

)′
D(t)−1M(t)l

VyVyl
Vyy

. (11.20)

Proof. Inserting the optimal portfolio strategy (11.19) in to the different
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terms of (11.20) yields the following terms

π̂(t)′M(t) =

σ̄I(t)
′D(t)′

(
D(t)D(t)′

)−1
M(t)y

−M(t)′
(
D(t)D(t)′

)−1
M(t)

Vy
Vyy

−
(
σL(t)− σ̄I(t)

)′
D(t)′

(
D(t)D(t)′

)−1
M(t)l

Vyl
Vyy

;

π̂(t)′D(t)D(t)′π̂(t) =

σ̄I(t)
′D(t)′

(
D(t)D(t)′

)−1
D(t)σ̄I(t)y

2

−M(t)′
(
D(t)D(t)′

)−1
D(t)σ̄I(t)y

Vy
Vyy

−
(
σL(t)− σ̄I(t)

)′
D(t)′

(
D(t)D(t)′

)−1
D(t)σ̄I(t)yl

Vyl
Vyy

− σ̄I(t)′D(t)′
(
D(t)D(t)′

)−1
M(t)y

Vy
Vyy

−M(t)′
(
D(t)D(t)′

)−1
M(t)

V 2
y

V 2
yy

−
(
σL(t)− σ̄I(t)

)′
D(t)′

(
D(t)D(t)′

)−1
M(t)l

VyVyl
V 2
yy

− σ̄I(t)′D(t)′
(
D(t)D(t)′

)−1
D(t)

(
σL(t)− σ̄I(t)

)
yl
Vyl
Vyy

−M(t)′
(
D(t)D(t)′

)−1
D(t)

(
σL(t)− σ̄I(t)

)
l
VyVyl
V 2
yy

−
(
σL(t)− σ̄I(t)

)′
D(t)′

(
D(t)D(t)′

)−1
D(t)

(
σL(t)− σ̄I(t)

)
l2
V 2
yl

V 2
yy

;

π̂(t)′D(t)σ̄I(t)y =

σ̄I(t)
′D(t)′

(
D(t)D(t)′

)−1
D(t)σ̄I(t)y

2

−M(t)0
(
D(t)D(t)′

)−1
D(t)σ̄I(t)y

Vy
Vyy

−
(
σL(t)− σ̄I(t)

)′
D(t)′

(
D(t)D(t)′

)−1
D(t)σ̄I(t)ly

Vyl
Vyy

;
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and finally

π̂(t)′D(t)
(
σL(t)− σ̄I(t)

)
=

σ̄I(t)
′D(t)′

(
D(t)D(t)′

)−1
D(t)

(
σL(t)− σ̄I(t)

)
yl

−M(t)′
(
D(t)D(t)′

)−1
D(t)

(
σL(t)− σ̄I(t)

)
l
Vy
Vyy

−
(
σL(t)− σ̄I(t)

)′
D(t)′

(
D(t)D(t)′

)−1
D(t)

(
σL(t)− σ̄I(t)

)
l2
Vyl
Vyy

.

Now grouping the terms with the same derivatives and simplifying yields
the claim.

In order to solve the non-linear PDE (11.20), we assume that the value
function is of quadratic form, i.e.

V (t, y, l) = y2a(t) + yb(t) + c(t) + l2d(t) + le(t) + ylf(t),

where a(t), b(t), c(t), d(t), e(t) and f(t) are deterministic functions and need
to be determined. Calculating the derivatives, we have

Vt = y2at(t) + ybt(t) + ct(t) + l2dt(t) + let(t) + ylft(t),

Vl = 2ld(t) + e(t) + yf(t), Vll = 2d(t),

Vy = 2ya(t) + b(t) + lf(t),
V 2
yl

Vyy
=

f(t)

2a(t)
,

VyVyl
Vyy

= yf(t) +
b(t)f(t)

2a(t)
+ l

f(t)2

2a(t)
.

Inserting the derivatives back into (11.20), we obtain a bivariate polynomial
in terms of y and l. In order for (11.20) to be zero for all possible choices of
y and l, every polynomial term needs to be zero individually. Together with
the boundary conditions of the HJB equation (11.20), we obtain a system
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of six simpler PDE’s.


at(t) + 2a(t)

(
A(t) + σ̄I(t)

′D(t)−1M(t)
)

−a(t)M(t)′
(
D(t)D(t)′

)−1
M(t) = 0,

a(T ) = −1
2 ,

bt(t) + b(t)
(
A(t) + σ̄I(t)

′D(t)−1M(t)
)

−b(t)M(t)
(
D(t)D(t)′

)−1
M(t) = 0,

b(T ) = C,{
ct(t)− 1

2M(t)
(
D(t)D(t)′

)−1
M(t) b

2(t)
2a(t) = 0,

c(T ) = −1
2C

2,
dt(t) + δf(t) + 2d(t)%(t) + ‖σL(t)− σ̄I(t)‖2

(
d(t)− a(t)

f(t)

)
−1

2M(t)
(
D(t)D(t)′

)−1
M(t)f

2(t)
a(t) −

(
σL(t)− σ̄I(t)

)′
D(t)−1M(t)f

2(t)
2a(t) = 0,

d(T ) = 0,
et(t) + δb(t) + e(t)%(t)− 1

2M(t)
(
D(t)D(t)′

)−1
M(t) b(t)f(t)

a(t)

−
(
σL(t)− σ̄I(t)

)′
D(t)−1M(t) b(t)f(t)

2a(t) = 0,

e(T ) = 0,
ft(t) + 2δa(t) + f(t)%(t) + f(t)

(
A(t) + σ̄I(t)

′D(t)−1M(t)
)

−M(t)
(
D(t)D(t)′

)−1
M(t)f(t)−

(
σL(t)− σ̄I(t)

)′
D(t)−1M(t)f(t) = 0,

f(T ) = 0.

(11.21)

In order to determine the optimal portfolio process (11.19) we solve the
equations for a(t), b(t) and f(t) explicitly. Now the PDE’s for a(t) and b(t)
are exactly the Riccati equations in Theorem 6.3.1 and simplifying their
respective solutions (7.11) and (7.12), we obtain

a(t) = −1

2
e−

∫ T
t ‖θ̃(s)‖

2ds, b(t) = Ce−
∫ T
t ‖θ̃(s)‖

2ds. (11.22)

Note that the PDE (11.21) is no longer a homogeneous partial differen-
tial equation due to the presence of the term 2δa(t), hence the analytical
solution cannot be derived using the same method as solving the Riccati
equations. In order to find the analytical solution, we introduce the asso-
ciated homogeneous PDE with parameter τ < T . For all t ≤ τ let v(t, τ)

133



III.A. PROOF OF THEOREM 9.2.1

satisfy

0 = vt(t, τ) + v(t, τ)
(
%(t)− ‖θ̃(t)‖2 −

(
σL(t)− σ̄I(t)

)′
θ̃(t)

)
,

v(τ, τ) = −δ exp
(
−
∫ T

τ
‖θ̃(s)‖2ds

)
. (11.23)

Proposition III.A.2. Let v(t, τ) be the solution of (11.23). Then the so-
lution of (11.21) can be expressed as

f(t) =

∫ T

t
v(t, τ)dτ.

Proof. For f(t) defined as above, we have f(T ) =
∫ T
T v(t, τ)dτ = 0, which

satisfies the boundary condition in (11.21). Let τ = t in the boundary

condition of (11.23). Then v(t, t) = −δ exp
( ∫ T

t ‖θ̃(s)‖
2ds
)
. Differentiating

f with respect to t, we obtain by Leibniz’ rule

ft(t) = −v(t, t) +

∫ T

t
vt(t, τ)dτ

= δ exp
( ∫ T

τ
‖θ̃(s)‖2ds

)
+

∫ T

t
vt(t, τ)dτ,

and therefore

ft(t) + f(t)
(
%(t)− ‖θ̃(t)‖2 −

(
σL(t)− σ̄I(t)

)′
θ̃(t)

)
− δ exp

( ∫ T

τ
‖θ̃(s)‖2ds

)
=

∫ T

t

(
vt(t, τ) + v(t, τ)

(
%(t)− ‖θ̃(t)‖2 −

(
σL(t)− σ̄I(t)

)′
θ̃(t)

))
dτ.

which is zero by the definition of v(t, τ)

By Proposition III.A.2, the solution of (11.21) follows once the solution
to (11.23) is found. In the case of δ ≡ 0, it follows that v(t, τ) = 0, for all
t ∈ [0, τ ] and hence f(t) ≡ 0. In the case where δ 6= 0, we propose that the
form of the solution of (11.23) is

v(t, τ) = Cv(t, τ)eB
v(t,τ),

for two deterministic functions Bv = Bv(t, τ) and Cv = Cv(t, τ). Inserting
this back in the definition of v in (11.23), we obtain the following system of
ordinary partial differential equations

0 = Bv
t +

(
%(t)− ‖θ̃(t)‖2 −

(
σL(t)− σ̄I(t)

)′
θ̃(t)

)
, 0 = Cvt ,

Bv(τ, τ) = −
∫ T

τ
‖θ̃(s)‖2ds, Cv(τ, τ) = −δ.
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Solving these equations, we obtain

Bv(t, τ) = −
∫ T

τ
‖θ̃(s)‖2ds+

∫ τ

t

(
%(s)−

(
σL(s)− σ̄I(s)

)′
θ̃(s)− ‖θ̃(s)‖2

)
ds,

Cv(t, τ) = −δ,

for all t ∈ [0, τ ]. By Proposition III.A.2, the solution to (11.21) is then given
by

f(t) = −δ
∫ T

t
e−

∫ T
t ‖θ̃(s)‖

2ds+
∫ τ
t

(
%(s)−

(
σL(s)−σ̄I(s)

)′
θ̃(s)
)
dsdτ. (11.24)

Proof of Theorem 9.2.1. In order to obtain the optimal portfolio process, we
insert the derivatives of the value function into (11.19). Inserting y = Y π(t)
and l = L̄(t), this yields

π̂(t) =
1

β̃(t)

(
σ(t)σ(t)′

)−1
(
σ(t)σ̄I(t)Y

π(t)− L̄(t)σ(t)
(
σL(t)− σ̄I(t)

) f(t)

2a(t)

)
−
(
σ(t)θ(t)− σ(t)σ̄I(t)

)(
Y π(t)− C + L̄(t)

f(t)

2a(t)

)
.

Reordering the terms yields the claim.
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Chapter 12

Overview

During the current part, we analyze the portfolio processes introduced in
Parts I to III with the focus on four main characteristics.

Constant or Deterministic Parameters

Contrary to most mathematical literature on DC pension plans, the opti-
mal portfolio processes of Parts I to III have been introduced in such a way
that they may utilize non-constant, deterministic time series for the under-
lying parameters. To analyze the difference in performance, we compare
the constrained and the unconstrained portfolio process for constant and for
deterministic parameters.

If the deterministic time series of the parameters is known from the be-
ginning, using time series reflecting the path of the parameters improves the
performance substantially. However, instead of maintaing that the change in
the parameter values happens deterministically, one might introduce a prob-
abilistic model, reflecting different states of the market. This leads to the
theory of regime-switching models which surpasses the scope of this thesis.

In order to compare the model performance, we estimate the parameters
on historical data and predict future values either as constants, through the
maximum likelihood estimator, or as a deterministic time series, through
variations of autoregressive models. The theory behind the parameter esti-
mation is summarized in the Appendices IV.A-IV.C. From a practitioner’s
point of view, we also include the analysis of a portfolio process, where the
parameters are updated annually. Note, that this breaks many of the model
assumptions and does not result in an optimal portfolio.

We find that for both sets of historical data analyzed, the models utilizing
deterministic parameters are a slight upgrade to those only using constant
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parameters, even under model uncertainty. However, as the parameter esti-
mation models used for this thesis only use the time series itself to forecast
the parameters, they are prone to large estimation errors. Hence, for the
remaining numerical analysis, the use of constant parameters suffices.

Constrained or Unconstrained Portfolio Process

During Parts I to III, we have seen the optimal portfolio processes for three
different optimization problems, each in three market models. We compare
the performance of the different portfolio processes in the simple market
model of Part I and in the most general market model of Part III. It is
important to note that the non-negativity constraint for the constrained
portfolio problem is less useful in the full market model (8.3), as only the
non-negativity of the terminal wealth is guaranteed. For that reason, we
include the analysis of the cut-shares, introduced in Section 11.2. The no-
shorting constraint imposed on the cut-shares, guarantees that the whole
wealth process is non-negative.

In order to compare the performance of the different models, we set
the target wealth for each strategy, such that all strategies carry the same
underlying risk. We choose the expected shortfall at the 95% confidence
interval as the risk measure and calculate the internal rate of return as the
measure of performance. We compare the portfolio processes for different
parameters and include the ruin and success probabilities in the analysis.

We find that for the market model of Part I the strategy resulting from
cut-shares shows the best performance on average. The higher target wealth
allows to invest more heavily in the risky assets, while the no shorting con-
straint asures that the underlying risk stays low. For the full market model
of Part III however, the strategy resulting from cut-shares is generally out-
performed by the other two. This comes as no surprise, as the optimal
portfolio strategy borrows against the future contributions, which is not
possible under the no-shorting constraint.

The Importance of the Inflation-Linked Bond

We investigate the advantage of incorporating inflation risk and adding an
inflation-linked bond to the market. During Examples 6.2.6, 6.3.11 and 7.3.2
we touched upon the advantages lightly, but have not studied the investment
behavior in detail. We find that a higher median rate of return and increased
upside potential and conclude that an inflation-linked bond has significant
advantage to hedge inflation risk.
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Various studies have produced different results on the impact of the
inflation-linked bond on wealth optimization problems. While [Zhang, 2012]
claims the equivalence of real and nominal portfolio choices for a power util-
ity maximizing investor, both [Yao et al., 2013] and [Zhang and Guo, 2018]
point to differences in the portfolio strategy. For the target-based approach,
it is apparent from both the structure of Problem 6.1.1 and the resulting
optimal portfolio process (6.26) that including inflation to the market warps
the investment behavior significantly.

Comparison to other Portfolio Processes

During this chapter we will study whether the target-based strategies are
viable alternatives to current strategies used for pension plans.

We compare the performance of the target-based optimal strategies to
popular strategies used in practice. Lifecycle strategies currently make up
most of the pension plan market in the UK and any possible alternative needs
to out-perform the classical lifecycle strategy in most situations. We also
include the optimal strategy for a power utility maximizing investor to the
analysis, as an alternative mathematical strategy. Studying the performance
for three specific stock market scenarios we see that the target-based optimal
portfolio is a viable alternative to either strategy.

Nonetheless, the target-based strategy shows the weakness of heavily
borrowing thorughout the duration of the pension plan which may lead to
bankruptcy. As an alternative we use the target-based optimal portfolio
resulting from cut-shares. Enforcing the no-shorting constraint ensures that
the wealth remains positive and that regulatory restrictions are met. We
find that even though the additional constraint leads to a worse performance
on average, not being able to borrow is an advantage in certain market situ-
ations. Furthermore, the resulting terminal wealth distribution is narrower,
leading to more certainty for the pension plan member.
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Chapter 13

Parameter Estimation

In order to evaluate the performance of the target-based portfolio optimiza-
tion approach, we need market consistent models to estimate the time series
of the different parameters. Note that due to the assumptions of a deter-
ministic set of parameters in Assumptions 3.4.1 and 6.1.8, the estimation
is performed at the start and the parameters are estimated only once for
the whole duration of the process. We are aware that this assumption is a
severe restriction on the usefulness of the model in practice. However, we
believe that already in this model, with suitably chosen estimations of the
parameters, the results will provide good insight in the performance of the
target-based portfolio optimization approach.

Aim and Scope.

We want to model the time series for the parameters of the financial markets
(2.2), (5.1) and (8.3) for future dates t ∈ (0, T ) such that:

• the model is economically reasonable, e.g. stock returns should always
be at least as high as the risk free interest rate;

• the model works with statistical tools and is based on historical data;

• the model allows the prediction of parameters in the very long term,
i.e. up to 40 years in the future.

Due to the multitude of parameter estimation models used in academia
and in practice, we do not claim that the models used in this thesis are
optimal for all possible applications. During the analysis in Chapter 14,
we compare the case of deterministic parameters to the one with constant
parameters and show in what ways the quality of performance is increased.
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The Data

• In order to estimate the nominal interest rate, monthly historical data
of the Bank of England base rate is used. Data is available for the
period of January 1900 to December 2017. This is the rate that the
Bank of England charges other banks and financial institutions for
overnight loans and is set in order to maintain monetary and financial
stability.

• The stock used in the market is the FTSE Actuaries All-Share Index,
currently consisting of 641 companies traded on the London Stock Ex-
change. This index is used by UK actuaries in order to investigate the
question of investment research and is intended to reflect the average
yield and volatility of stocks in the UK. Monthly historical data for the
period of January 1920 to December 2017 is available for the FTSE
Actuaries All Share Index.

• Monthly historical data for the UK inflation index is used to estimate
the parameters for the inflation index (5.1). This index consists of
the Interim Index of Retail Prices between January 1900 and June
1947 and the Retail Prices Index between July 1947 and December
2017. It measures the change in the cost of a representative sample of
goods and services and is published monthly by the Office for National
Statistics.

• In order to estimate the parameters for the inflation-linked bond (5.6),
monthly historical data of the FTSE Actuaries UK Index-Linked Gilts
Index is used. First issued in May 1982, the index is calculated on a to-
tal return basis and measures the performance of the index-linked gilts
market as a whole, as well as the performance of individual maturity
segments of the market.

• All information concerning the wage level is found in [ONS, 2018]. To
estimate the drift and volatility terms of the wage level, the file K54L,
from the Office of National Statistics, is used. It contains information
about the UK Wage Index between January 1930 and December 2017.

We thank Professor David Wilkie for the extensive financial market data on
the bank base rate, the FTSE indices and the retail index.
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13.1. ESTIMATION OF THE NOMINAL INTEREST RATE

13.1 Estimation of the Nominal Interest Rate

As short-term risk-free zero-coupon bonds do not exist, another proxy is
needed in order to estimate and predict the nominal interest rate process
rN (t). We calibrate the model to the Bank of England base rate as an (al-
most) risk-free financial instrument, readily available in the market. The
relevance of the short-term interest rate is both economically and finan-
cially immense. From a macroeconomic point of view, this base rate is set
by the central bank in order to meet inflation forecasts and to maintain
economic stability. From the financial perspective, the short rate is needed
to construct the whole yield curve, as the yields at other maturities are
risk-adjusted averages of the expected future short rate.
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Figure 13.1: Time series of the monthly UK bank base rates for t ∈
{01/1900, . . . , 12/2017}.

In order to satisfy the economical requirements, models should incorpo-
rate macroeconomic variables as predictors, e.g. inflation, the unemployment
rate and GDP. On the other hand, LIBOR and spot rates, as well as the bond
market can be used to construct the interest rate yield curve and hence ap-
proximate the nominal interest rate process. See e.g. [Diebold et al., 2016]
and [Ang and Piazzesi, 2003] for more detail on the prediction of interest
rates using latent variables. As the study of consistent yield curve prediction
is very involved and needs more data, we instead utilize the tools developed
in Section IV.B and view the interest rate as a time series displaying some
degree of autocorrelation.
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13.1. ESTIMATION OF THE NOMINAL INTEREST RATE

13.1.1 Estimation using the ARMA Model

In order to showcase the methodology in utilizing the ARMA model, we
perform the complete analysis outlined in Appendix IV.B on the historical
data between January 1955 and December 2005 with the goal of predicting
the interest rate until December 2025. Similar studies can then be performed
for different sets of historical data. Note that care needs to be taken for the
inter-war period between 1930 and 1950, as well as in more recent times
since 2008. The interest rate in those periods has been close to constant,
which is a clear violation to the stationarity needed to use the ARMA model.

Model Validation.

As the UK base rate has on average only been adjusted twice every year
and has been constant otherwise, we transform the interest rate into a total
return index, initialized on January 1955, and measure the interest rates
semi-annually. As the resulting process is still not stationary, we use the
logarithm as a non-linear transformation and use the model on log-interest
rates.

In Figure 13.2 we see that the autocorrelation function of this time series
decreases, but slowly. Hence it is not apparent from the visual illustration
alone, if the time series is stationary, or not. The econometrics toolbox
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Figure 13.2: The autocorrelation function of the biannual log-interest rates
can be seen on the left-hand side, while the corresponding partial autocor-
relation function is displayed on the right-hand side.
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13.1. ESTIMATION OF THE NOMINAL INTEREST RATE
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Figure 13.3: On a semi-annual grid, ∆ = 1/2, we see the time series of
the historical interest rates for t ∈ {01/1955, . . . , 07/2004} and forecasted
interest rates for t ∈ {01/2005, . . . , 07/2024}, calculated by an ARMA(1, 1)
model. The long term average interest rate has been plotted as a dashed,
blue line.

in Matlab provides an efficient implementation of the augmented Dickey-
Fuller test of Section IV.B.1 and we use it to test for a unit root at the 5%
confidence level.

We find that for the period of January 1955 until December 2005, the
augmented Dickey-Fuller test rejects the null hypothesis of a unit root at the
5% confidence level for lags up to 4. For the fifth lag, the null hypothesis
cannot be rejected. However, as the power of the test decreases quickly
with the number of lags, we choose to view the time series of the semi-
annual interest rates as stationary and continue with estimating the different
parameters for the ARMA model.

Model Calibration.

As the autocorrelation function and the partial autocorrelation function in
Figure 13.2 are hard to interpret, we use the system identification toolbox to
fit an ARMA(p, q) model to the data for p, q ∈ (0, . . . , 5). Using the BIC to
measure goodness-of-fit, the ARMA(1, 1) model produces the best fit, given
by

X(t) = φX(t− 1) +W (t) + θW (t− 1),
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13.2. ESTIMATION OF THE STOCK PARAMETERS

for φ = 0.8835 and θ = 0.1541. With a normalized mean square error of
0.58, the fit of the model is still rather bad, which could be due to some
degree of unstationarity in the data, as well as due to the fact that interest
rates do not depend entirely on their past values, but also on many other
underlying variables.

In Figure 13.3 we see that the prediction power of the model quickly de-
creases and that after ten years, the best prediction is the long-term average
of the nominal interest rate.

13.2 Estimation of the Stock Parameters
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Figure 13.4: Time series of the yearly log returns of the FTSE All Share
Index for t ∈ {01/1920, . . . , 12/2017}.

Without loss of generality, we introduce only one stock in our model,
which takes the role of a stock market index. In addition to simplicity,
this also has the added benefit that a big index is more likely to satisfy
the assumption of no market frictions, which would lead to difficulties in
deciding on the market prices and assessing the model performance. We
calibrate the model to the FTSE All Share Index.

13.2.1 Estimation using the ARMA / GARCH Model

Due to the presence of heteroskedasticity in the data of the stock returns, the
GARCH model outlined in Section IV.C seems viable in order to forecast
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13.2. ESTIMATION OF THE STOCK PARAMETERS

both the volatility parameter σS(t), as well as the drift parameter µS(t).
We use the data between January 1955 and December 2005 to predict both
variables until December 2025. The methodology can then be repeated for
different sets of historical data.

Model Validation.

Due to the exponential structure of the stock returns in the market model
(2.2) we measure the annual log returns monthly in order to obtain a sta-
tionary time series.
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Figure 13.5: The autocorrelation function of the annual log returns can be
seen on the left-hand side, while the autocorrelation function of the squared
annual log returns is displayed on the right-hand side.

In Figure 13.5 we see that both the process itself, as well as the squared
process show correlation. The augmented Dickey-Fuller test rejects the null
hypothesis of a unit root at the 5% confidence interval and therefore we
cannot reject the stationarity of the series. With this and the autocorrelation
functions of Figure 13.5 in mind, we continue with estimating the different
parameters for an ARMA/GARCH model.

Model Calibration.

We use the econometrics toolbox to fit an ARMA(pA, qA) / GARCH(pG, qG)
model to the data for pA, qA, pG, qG ∈ (0, . . . , 3) and note that the standard-
ized residuals have more large values than expected under a standard normal
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13.3. ESTIMATION OF THE ILB PARAMETERS

distribution. This suggests a Student’s t-distribution might be more appro-
priate for the innovation distribution, for which we also fit the model. Once
more, we use the BIC to measure the goodness-of fit of the different mod-
els. The ARMA(2, 3) / GARCH(1, 1) model, with Student’s t-distributed
innovations shows the best fit.

In Figure 13.6 we see that the prediction power for both the log returns,
as well as for the conditional variance, quickly decreases and both rates
converge to their long term average.

Note that so far we have only forecasted the returns, and not the drift
parameter µ(t) itself. Denote the forecasted stock returns by R̂S(t). Then

EP
[

log
( S(t)

S(t− 1)

)]
= µS(t)− 1

2
σ2
S(t),

and therefore

µ̂S(t) = R̂S(t) +
1

2
σ̂2
S(t).

13.3 Estimation of the ILB Parameters

Due to the very high demand of inflation-linked bonds by pension schemes
and private insurers and comparatively low supply, the assumptions of no
market frictions may not portray the market correctly. In [Schroders, 2018]
it was estimated that private sector pension schemes hold over 80% of the to-
tal supply of inflation-linked bonds. As pension funds are not active traders
of bonds, most of these bonds are therefore not traded regularly. Therefore,
prices of the inflation-linked bond carry less information about the underly-
ing value, as the key buyers are driven mainly by risk management, rather
than by speculation.

An alternative to index-linked gilts might be found in overseas inflation-
linked bonds, such as the Treasury Inflation-Protected Security (TIPS) in
the US. However, the underlying inflation rates in the UK and US are cor-
related, but still differ. Together with the denomination of the TIPS in
dollars, this means that TIPS are not a clean substitute to gilts. In Figure
13.7 we see the inflation in the UK since 1982, together with the annual
returns of the FTSE Gilts All Share Index. To circumvent the high inflation
in the 80’s, which breaks the assumption of stationarity, we use the data
between January 1992 and December 2005 to predict the inflation variables
until December 2025. Not using the first ten years of data for the inflation-
linked bond has the added benefit of excluding the period where the supply
of such bonds was at its lowest.
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13.3. ESTIMATION OF THE ILB PARAMETERS
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Figure 13.6: In the upper figure, the time series of the historical log-returns
for t ∈ {01/1955, . . . , 12/2004} of the FTSE index can be seen. Moreover,
the forecasted log returns for t ∈ {01/2005, . . . , 12/2024}, calculated by an
ARMA(3, 2)/GARCH(1, 1) model, are shown. The long term average return
rate has been plotted as a dashed, blue line. In the bottom figure, the time
series for the conditional variance is shown in a similar fashion.
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Figure 13.7: Annual price inflation measured by the retail price index is
shown in the upper figure. The time series of the yearly log returns of the
FTSE Gilts Index for t ∈ {05/1982, . . . , 12/2017} can be seen below.

In order to determine and predict the parameters of the inflation-linked
bond, σI(t) and θI(t), as well as the real interest rate rR(t), we need to
forecast both the inflation index (5.1) and the inflation-linked bond (5.6).

13.3.1 Inflation-Linked Bond Estimation using the ARMA /
GARCH Model

Similar to Section 13.2.1, the GARCH approach seems more viable than
using some form of ARMA model, due to the heteroskedasticity of the data.
By the same procedure as in Section 13.2.1, we find the best fit for this
data period to be obtained by an ARMA(2,1)/GARCH(1,1) with normal
innovations. Recall the stochastic differential equation of the inflation-linked
bond

dB*(t, I(t)) = B*(t, I(t))
((
rN (t) + σI(t)θI(t)

)
dt+ σI(t)dWI(t)

)
. (13.1)

152



13.3. ESTIMATION OF THE ILB PARAMETERS
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Figure 13.8: In the upper figure, the time series of the historical log-returns
for t ∈ {01/1992, . . . , 12/2004} of the FTSE Gilts Index can be seen. More-
over, the forecasted log returns for t ∈ {01/2005, . . . , 12/2024}, calculated
by an ARMA(2, 1)/GARCH(1, 1) model, are shown. The long term average
return rate has been plotted as a dashed, blue line. In the bottom figure,
the time series for the conditional variance is shown in a similar fashion.
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13.3. ESTIMATION OF THE ILB PARAMETERS

The conditional variance of the fitted model provides an estimate for the
volatility parameter σI(t). In order to estimate the market price of inflation
risk θI(t), we first estimate the drift term by

µ̂ILB(t) = r̂N (t) + σ̂I(t)θ̂I(t) = R̂I(t) +
1

2
σ̂2
I (T ),

where R̂I(t) denotes the forecasted return of the inflation-linked bond. Then

θ̂I(t) =
µ̂ILB(t)− r̂N (t)

σ̂I(t)
,

where r̂N (t) denotes the time series of nominal interest rates obtained by the
method outlined in Section 13.1. Note that we have monthly estimates for
the parameters of the inflation-linked bond, but only semi-annual estimates
for the nominal interest rate. In order to obtain time series of the same
lengths, we convert the time series of the interest rate to include monthly
data, by assuming the parameters to stay constant in each semester.

13.3.2 Inflation Index Estimation using the ARMA Model

In order to obtain the real interest rate, the only remaining parameter to
estimate is the trend of the inflation index. Note that in our market model,
the volatility is the same for the inflation index (5.1) and the inflation-
linked bond (5.6). This is not true in practice, which might be due to
the supply and demand problem of the index-linked gilts, or due to the
national bank’s interest inflation-targeting approach, influencing the Retail
Price Index directly. Note that as soon as the real interest rate is known,
we could generate a theoretical inflation index by (5.2), with the same trend
as the retail price index, but with the volatility of the index-linked gilts.

As the volatility of the inflation index has already been estimated in the
previous section, we use an ARMA model to estimate and forecast the trend
of the inflation index. In order to obtain a stationary time series, we use the
square function as a non linear transformation. Using the BIC to measure
goodness-of-fit, the AR(2) model produces the best fit.

13.3.3 Correlation Estimation between Stock and Inflation

In the market model 8.3, the volatility of the stock process is due to the
Brownian motion of the inflation index, as well as another, independent
Brownian motion. Therefore, the correlation between the stock process and
the inflation process needs to be estimated in order to split the forecasted
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13.3. ESTIMATION OF THE ILB PARAMETERS

volatility of Section 13.2.1 into σS and σI . Next to a multitude of models
to estimate and predict correlation between different stocks and market el-
ements, we could also fit a multivariate ARMA/GARCH model to both the
stock and the inflation simultaneously.

For the purpose of this thesis, it is sufficient to estimate the correlation
as a constant, by the Pearson correlation coefficient, defined by

ρS,I =

∑n
k=1

(
RS(kh)− m̂S

)(
RI(kh)− m̂I

)√(
RS(kh)− m̂S

)2∑n
k=1

(
RI(kh)− m̂I

)2 , (13.2)

where RS and RI denote the log-returns of the stock and the inflation-linked
bond, respectively, and m̂S and m̂I denote the MLE of the respective sample
average.
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Figure 13.9: On a monthly grid, ∆ = 1/12, we see the time serie of the his-
torical inflation rates for t ∈ {01/1992, . . . , 12/2004} and forecasted interest
rates for t ∈ {01/2005, . . . , 12/2024}, calculated by an AR(2) model. The
long term average inflation rate has been plotted as a dashed, blue line.

We now have the tools to estimate the real interest rate rR(t) and the
two volatility parameters σS(t) and σIS(t), for all t ∈ [0, T ]. Recall the
stochastic differential equation for the inflation index

dI(t) = I(t)
((
rN (t)− rR(t) + σI(t)θI(t)

)
dt+ σI(t)dWI(t)

)
,

and denote the drift term by µI(t) = rN (t)− rR(t) + σI(t)θI(t). Comparing
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13.4. ESTIMATION OF THE WAGE PARAMETERS

this to (13.1), we obtain the estimate of the real interest rate by

r̂R(t) = µ̂ILB(t)− µ̂I(t).

The real interest rate is then used to normalize the inflation-linked bond,
such that

B*(0, I(0)) = e−
∫ T
0 rR(t)dt.

For the volatility parameters, we define

σ̂S(t) = ρS,I σ̂(t),

σ̂IS(t) =
√

1− ρ2
S,I σ̂(t),

for all t ∈ [0, T ], where σ̂(t) is given by (13.5) and ρS,I is given by (13.2).

13.4 Estimation of the Wage Parameters
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Figure 13.10: Annual wage inflation measured by the UK inflation index for
t ∈ {01/1930, . . . , 12/2017}.

Four parameters need to be estimated for the stochastic contribution
process. The initial wealth l and the contribution rate δ are constants,
while the drift µL(t) and the volatility σL(t) are deterministic functions.
For the contribution rate, we use the average private sector, open DC rate
of δ = 10%, published in [Hutton, 2011]. As the initial salary, we use l =
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13.4. ESTIMATION OF THE WAGE PARAMETERS

20′000, which corresponds closely to the average yearly earning in the UK
by full-time employees under the age of 40, see [ONS, 2018]. For individual
plan members, both constants can be chosen specifically for that person.
Moreover, as the actual contribution rate is not constant, but depends on
the underlying salary, including a salary-dependent contribution factor δ
may be the focus of future work.

For the deterministic parameters, we follow the same procedure as in
the previous section and use the data between January 1955 and December
2005 to predict the salary variables until December 2025.

13.4.1 Estimation using the ARMA / GARCH Model

In Figure 13.10 we see that the assumption of stationary volatility necessary
to use the ARMA model is violated. Hence, utilizing the GARCH outlined in
Section IV.C seems viable in order to forecast both the volatility parameter
σL(t), as well as the drift parameter µL(t). Due to the strong correlation
between inflation and the wage index, we exclude data before 1990, as we
did in Section 13.3. Using the BIC to measure goodness-of-fit, we observe
that the best fit is obtained by the AR(1)/ARCH(1) model with normal
innovations.

We see in Figure 13.11 that the the forecasted returns converge only very
slowly to the long term mean. This is due to the small parameter for pA in
the ARMA structure of the model. The smaller this parameter, the quicker
the correlation to previous data falls off, and hence the high returns at the
start of the 1990’s only gradually increase the forecasted parameters.

The estimate for κ(t), the drift due to economic growth and increased
welfare, is then

κ̂(t) = µ̂L(t)− µ̂I(t).

13.4.2 Correlation Estimation to Stock and Inflation

Similar to Section 13.3.3, we estimate the correlation of the wage index
to the stock and the inflation index by the Pearson correlation coefficient
(13.2).

Note that for the current data set, we obtain ρI,L = 0.879, and ρS,L =
0.009. Therefore, there remains some randomness in the wage index, which
cannot be explained by the inflation index, or the stock index. This is due
to the weakness of the model for the stochastic wage process, on which we
touched in the remark in Section 8.1. In order to circumvent this problem,
we resize the correlations to eliminate the dependence on a third risk factor,

157



13.4. ESTIMATION OF THE WAGE PARAMETERS

1990 1997 2004 2011 2018 2025

Years

 2%

 4%

 6%

 8%

10%

A
nn

ua
l L

og
 R

et
ur

ns
Forecasted Returns

Past Data
Forecasted Data
Long Term Mean

1990 1997 2004 2011 2018 2025

Years

0.011

0.012

0.013

0.014

0.015

0.016

A
nn

ua
l V

ol
at

ili
ty

Forecasted Conditional Variances

Past Data
Forecasted Data
Unconditional Variance

Figure 13.11: In the upper figure, the time serie of the historical log-returns
for t ∈ {01/1990, . . . , 12/2004} of the Wage Index can be seen. Moreover,
the forecasted log returns for t ∈ {01/2005, . . . , 12/2024}, calculated by an
AR(1)/ARCH(1) model, are shown. The long term average return rate has
been plotted as a dashed, blue line. In the bottom figure, the time series for
the conditional variance is shown in a similar fashion.
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and obtain

σ̂2
L,I(t) =

ρI,L

ρS,L
√

1− ρ2
I,L + ρI,L

σ̂2
L(t),

σ̂2
L,S(t) =

ρS,L
√

1− ρ2
I,L

ρS,L
√

1− ρ2
I,L + ρI,L

σ̂2
L(t).

13.4.3 Constant Parameters

Whenever we use constant, instead of deterministic parameters, we utilize
the MLE defined in IV.A.2 as the estimator. There are two different model
structures, and hence two different MLE estimators for the parameters.

In order to estimate the nominal interest rate and the inflation rate as
a constant, we use the long term average. That is, if the constant nominal
interest rate rN is predicted from T years of data, we have

r̂N =
1

T

T∑
t=1

rN (t),

where rN (t) is the annual interest rate in period t.

For the parameters of a geometric Brownian motion
(
S(t)

)
t∈[0,T ]

, we use

the MLE defined in IV.A.2 for the parameters µ and σ. Let

R(kh) = log(S(kh))− log(S((k − 1)h)),

denote the deterministic log-returns, where the interval [0, T ] is partitioned
into n equidistant sub intervals, for h, 2h, . . . , nh. Define m = µ− 1

2σ
2 and

v2 = σ2h. Then S(t) = exp(m − vZ), for Z ∼ N (0, 1). Therefore, the log
returns follow a log-normal distribution and the MLE for m and v are given
by

m̂ =
1

n

n∑
k=1

R(kh), (13.3)

v̂2 =
1

n

n∑
k=1

(
R(kh)− m̂

)2
. (13.4)

Inserting the definitions of m and v, the MLE for the drift and the volatility

159



13.5. ALTERNATIVE MODELS

terms are given by

σ̂2 =
1

nh

n∑
k=1

(
R(kh)− m̂

)2
, (13.5)

µ̂ =
1

h
m̂+

1

2
σ̂2. (13.6)

13.5 Alternative Models

In the previous discussion we saw that autoregressive models do not produce
satisfying results in predicting market parameters in the long term. For
all parameters analyzed, the models lead to some form of mean-reverting
time series, quickly approaching the long-term average. Various alternative
models may be used to increase the quality of the parameter forecast.

An alternative to the autoregression models is the vector autoregression
model (VAR), where instead of fitting a model to a single parameter, a
multitude of parameters is estimated simultaneously. It extends Definition
IV.B.2, by allowing X(t) and W (t) to be n-dimensional random variables.
VAR models focus more on correlation than on structural estimates, which
may lead to better performance if the value of a single parameter is of less
importance than the interaction between the parameters.

Without including additional data to the model, Wilkie’s model, see
e.g. [Wilkie, 1984], may offer a viable alternative. The model links the
realization of inflation with other variables using a cascade type approach.
The inflation is modeled as an autoregressive process, driving the other
economic variables, including interest rates, wages and stock returns.

Better performance may also be attained when the parameter values are
modeled as stochastic process instead. Note that for those models, the port-
folio processes developed in this thesis may not be optimal anymore, as the
uncertainty of the parameters would need to be included in both the dynamic
programming and the martingale approach. In [Xue and Basimanebotlhe, 2015]
the real interest rate is modeled by an Ornstein-Uhlenbeck process, while
the stock returns are assumed to be mean reverting in addition to stochastic
interest rates in [Guan and Liang, 2014].

Finally, using a regime-switching model for the parameters showed po-
tential in [Zhou and Yin, 2003]. An outlook on regime-switching models is
given in Section 14.3.1.
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Chapter 14

Constant vs. Deterministic
Parameters

In order to evaluate the performance of constant and deterministic parame-
ter processes, we use historical data to estimate the parameters as described
in Chapter 13. Using a subsequent period of historical data, we calculate
the wealth process for both the unconstrained, as well as the constrained
optimal portfolio process.

We perform the analysis for two different sets of historical data. For the
period of January 1985 to January 1995, we use data since 1955 to predict
the parameters. As index-linked gilts were only introduced to the British
market in 1982, there is not enough data to estimate the inflation parameters
and similarly, due to high wage inflation in the 1970’s, wage parameters are
hard to predict. Therefore, we only predict the stock and the interest rate
parameters to calculate the optimal portfolio processes of Part I.

For the period of January 2005 to January 2015, we use the predicted
parameters of Sections 13.1 to 13.4 in order to calculate the optimal portfolio
processes for the full model of Part III.

In addition to comparing the performance of constant and deterministic
parameters, we also analyze a more practical approach, where the param-
eters are re-estimated annually. Note that this does not only break the
Assumption 9.1.7 of deterministic coefficients, but also invalidates the mar-
tingale approach of Section 9.2.2. Therefore, the resulting portfolio process
is not optimal and great care needs to be taken in its utilization.
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14.1 Comparison on the Period 1985-1995

This period was chosen, as non of the historical indices analyzed experienced
a major shock. In Table 14.1, we see the predicted parameters compared
to those realized. Note that the we state the realized volatility for the
whole period as the historical value for σ. We observe that the volatility is
overestimated by the ARMA/GARCH model, but all estimated values are
still close to reality. It is also apparent, that the range of annual log-returns
is much larger in reality, than those estimated by a Black-Scholes model.
This is due to the normality assumptions and the inability to model jumps
and is a well-known disadvantage of the Black-Scholes model.

MLE Deterministic Historical

r(t) 0.08 (0.08,0.10) (0.05,0.15)

µ(t) 0.22 (0.19,0.23) (-0.15,0.50)

σ(t) 0.15 (0.15,0.24) 0.14

Table 14.1: Estimated parameters for the period 1985-1995. For the de-
terministic time series and the historical parameters, the range of values is
stated.

In Figure 14.1 and in Table 14.2 the properties of the wealth process
for an initial wealth x = 1000 and target wealth C = 7500 can be seen.
We observe that for both the unconstrained portfolio process, as well as for
the constrained portfolio process, the deterministically estimated parameters
slightly outperform the constant parameters. Surprisingly, for both portfolio
strategies, the strategy where the parameters are updated annually performs
worst. Note that the wealth process is only lower than the other two after
1991, where the updated portfolio goes short in the stock, while the other
portfolios do not. This may be an indication, that the rudimentary approach
of updating the parameters annually may lead to non-stationarity of the time
series, invalidating the models used to forecast the parameters.

We also note that the minimal wealth attained is lower for the non-
constant parameters. As a very crude tool to estimate risk, this might
indicate that the additional estimation uncertainty may increase the risk for
the portfolio processes where the parameters are modeled as a time series.
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Figure 14.1: In the upper graph, the wealth process for the unconstrained
optimal portfolio process (3.26) is featured for 1985-1995. The wealth pro-
cess for the constrained optimal portfolio process (3.36) is seen below.

Unconstrained Constant Deterministic Updated

Terminal Wealth 5’440 5’600 5’260

Rate of Return 16.9% 17.2% 16.6%

Minimal Wealth 930 835 835

Constrained

Terminal Wealth 4’920 5’300 4’300

Rate of Return 15.9% 16.7% 14.6%

Minimal Wealth 977 921 921

Table 14.2: Properties of the portfolio processes calculated for the period
1985-1995.
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14.2 Comparison on the Period 2005-2015

In contrast to the period 1985-1995, the stock markets experienced major
upsets in the period 2005-2015. The financial crisis of 2007-2008 led to
a fall of the FSTE All Share Index of over 30%. Moreover, low inflation
expecations and quantitative easing programs led to a Bank Base Rate below
1% since March 2009. Therefore, we expect the parameter estimation error
to be of a higher degree than in the previous section and in turn expect the
differences in the properties of the portfolio processes to be higher as well.

In Table 14.1, we see the predicted parameters compared to those real-
ized. Note that the we state the realized volatility for the whole period as the
historical values for all volatility parameters. Neither the MLE, nor any of
the autoregressive models are able to forecast the low nominal interest rates
and in turn, the inflation parameters. In addition to the inability to model
jumps for the stock returns, we also note that the correlation coefficients are
overestimated for this specific period.

MLE Deterministic Historical

rN (t) 0.08 (0.05,0.08) (0.005,0.06)

µS(t) 0.14 (0.16,0.14) (-0.40,0.50)

σS(t) 0.18 (0.17,0.21) 0.17

rR(t) 0.05 (0.04,0.05) (-0.02,0.1)

σI(t) 0.06 (0.06,0.07) 0.05

θI(t) -0.01 (-0.11,0.02) (-0.2,0.8)

σIS(t) 0.09 (0.08,0.1) 0.03

κ(t) 0.02 (0.01,0.02) (-0.004,0.02)

σLS(t) 0 0 0

σLI(t) 0.01 0.01 0

Table 14.3: Estimated parameters for the period 2005-2015. For the de-
terministic time series and the historical parameters, the range of values is
stated.

In Figure 14.2 and in Table 14.4 the properties of the wealth process
for an initial wealth x = 1000 and target real wealth C = 50′000 can be
seen. We observe that the processes with updated parameters perform best.
Moreover, the constrained portfolio process profits greatly from determinis-
tic parameters, whereas in the case of the unconstrained portfolio process,
the performance is slightly worse for deterministic parameters than for con-

164



14.2. COMPARISON ON THE PERIOD 2005-2015

2005 2007 2009 2011 2013 2015

Years

0

2

4

6

8

A
cc

um
ul

at
ed

 W
ea

lth

104 Wealth Process Unconstrained Portfolio

Constant
Deterministic
Updated

2005 2007 2009 2011 2013 2015

Years

0

2

4

6

8

A
cc

um
ul

at
ed

 W
ea

lth

104 Wealth Process Constrained Portfolio

Constant
Deterministic
Updated

Figure 14.2: In the upper graph, the wealth process for the unconstrained
optimal portfolio process (9.22) is featured for 2005-2015. The wealth pro-
cess for the constrained optimal portfolio process (9.29) is seen below.

stant parameters. Once more, this only becomes apparent after the first
half of the investment period, once the unconstrained optimal portfolio with
constant parameters recovers.

Note that the time series of the estimated parameters varies most from
the MLE during the first 5 years. Therefore, differences during that period
can mainly be explained by the underlying parameter values. Since the
current wealth then varies between the portfolio processes, the investment
behavior continues to be different for the remainder of the investment period,
which explains the growing dissimilarity between the portfolio processes.
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Unconstrained Constant Deterministic Updated

Terminal Wealth 72’400 71’400 80’000

Rate of Return 18.5% 18.3% 20.0%

Minimal Wealth 797 1000 942

Constrained

Terminal Wealth 46’400 60’100 62’700

Rate of Return 11.5% 15.7% 16.3%

Minimal Wealth 1000 845 823

Table 14.4: Properties of the portfolio processes calculated for the period
2005-2015.

14.3 Comparison on Generated Data

During the discussion of the previous two sections, it was not clear if deter-
ministic parameters lead to a better performance than constant parameters.
Due to model uncertainty, the time series resulting from deterministic pa-
rameter estimation may be further from the realized values than the MLE,
distorting the comparison. Moreover, two periods of historical data are
hardly enough to evaluate the model performance in a meaningful way.

However, if model uncertainty is excluded and parameter values are
known exactly, using the realized parameters clearly leads to a better out-
come. This may not be applicable in practice, as the development of neither
stock processes nor interest rates is ever predictable. Nonetheless, it is im-
portant to understand, that the better we can forecast the parameters, the
better the portfolio processes perform.

In order to see this, we generate the stochastic processes using determin-
istic and predictable time series for the parameters. We assume that there
are two states in the market, in which the parameters are constant. For
example, the market may be roughly divided in bullish and bearish periods,
for which the underlying parameters will be very different. For the moment,
we maintain that the change from one state to the other one is deterministic
and fully predictable.

Example 14.3.1. We return to the market model 2.2 and assume that only
the drift and volatility parameters change between the two market states,
while the interest rate remains constant. In Figure 14.3 we see an example
of possible values for a market which starts bullish and becomes bearish in
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Figure 14.3: An example of µ(t) and σ(t) taking different values in two
market states.

the second half of the investment period.

Assuming that the parameters are predictable for the whole investment
period, we compare the performance of the portfolio processes using the ex-
act parameters, i.e. a time series, to those only using the average parameter
value. We calculate the empirical terminal wealth distribution for both the
unconstrained and the constrained optimal portfolio using constant interest
rate r = 4%, initial wealth x = 1000 and a target of C = 5000. In Figure
14.5 we observe that using the exact parameters clearly leads to a better
performance, increasing the median rate of return by close to 3% for both
portfolio processes.

The situation of Example 14.3.1 is very far from those faced in practice.
Not only does the investor somehow know the exact values of the parameters
for the stock price process in both market states, but is also able to predict at
what time the switch happens. The first point may be remedied quickly, as
market parameters may be estimated using similar procedures as in Chapter
13. Certain parameters of the models will differ between the two market
states, leading to different empirical estimates.

In order to resolve the second problem, one may introduce a probabilistic
model to determine the time of the switch. The market mode switches
according to some underlying Markov chain, independent of the Brownian
motion of the stock price process. Note that this introduces an additional
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Median Rate Of Return Constant Deterministic

Unconstrained 10.3% 13.9%

Constrained 7.9% 11.8%

Table 14.5: Histograms of the terminal wealth distribution for the uncon-
strained and the constrained optimal portfolio for constant and for deter-
ministic parameter processes. The resulting Median Rate Of Return can be
seen below.
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source of risk, rendering the market incomplete. Furthermore, the portfolio
processes developed in this thesis are no longer optimal as the assumptions
of deterministic processes are violated.

In order to resolve the second problem, one may introduce a probabilistic
model to determine the time of the switch. The market mode switches
according to some underlying Markov chain, independent of the Brownian
motion of the stock price process. Note that this introduces an additional
source of risk, rendering the market incomplete. Furthermore, the portfolio
processes developed in this thesis are no longer optimal as the assumptions
of deterministic processes are violated.

14.3.1 Outlook: Regime-Switching Models

The process outlined at the end of the last section is known as ”Regime-
Switching” and has been used to model abrupt changes in economic time
series due to financial crises, or dramatic changes in fiscal and monetary
policy. It is a promising extension to the problems discussed during this
thesis and we summarize the approach taken in [Zhou and Yin, 2003].

In addition to the setup in the market model (8.3), we choose a continuous-
time Markov chain α(t), taking values in a finite state space S = {1, 2, . . . , l},
where the states of the chain α represent different hidden states of the under-
lying economy. Instead of only depending on time, some of the parameters
also depend on the current state of the market. The wealth process (8.5)
then reads

dXπ(t) =
(
rN (t, α(t))Xπ(t) + π(t)′σ(t, α(t))θ(t, α(t)) + δL(t)

)
dt

+ π(t)′σ(t)dW (t, α(t)),

Xπ(0) =x, α(0) = i0.

Both the feasibility discussed in Section 3.1.3 and the solution for Prob-
lem 3.1.2 need to be analyzed and proved once more. To the best of
our knowledge, the optimal portfolio process for a quadratic utility func-
tion in a regime-switching environment has not yet been studies in detail.
[Zhou and Yin, 2003] solves the mean-variance problem without inflation or
contributions, while [Korn et al., 2011] solve the problem for a CRRA utility
function.

The regime-switching approach is a generalization of the methodology
used in Parts I to III and is a promising option for future research.
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14.4 On the Choice of Parameter Processes

The two historical examples of Sections 14.1 and 14.2 are not enough to dis-
card parameters estimated as constants. Nevertheless, the wealth processes
are very sensitive to changes in the underlying parameters and estimating
future parameters as time series seem to improve the performance of the
strategy. Moreover, we see in the case of a heavily changing economy, that
parameters which are updated lead to a better result.

The problem of finding a closed form solution for the portfolio strategy in
the case of non-deterministic, progressively measurable parameter processes
has yet to be solved. The results in the current section indicate, that such a
portfolio process might greatly outperform those analyzed here. As we only
work on generated stock processes for the remainder of this thesis, and do
not use the historical data to further extent, we will continue with constant
parameter estimates and note the importance of more general parameters
for future work.

170



Chapter 15

Constrained vs.
Unconstrained Porfolio
Process

We have seen in Examples 3.3.3, 6.2.6 and 9.1.10 that the no-ruin option of
the constrained portfolio process has its price and results in lower probability
of success and in lower expected terminal wealth. The additional guaran-
tee of some non-negative minimal terminal wealth of the optimal portfolio
processes with a lower bound increases this price further.

In this chapter we introduce an additional performance methodology
with which we will compare the performance of the unconstrained and the
constrained portfolio process for different parameter values. In addition
to the ruin probability and the success probability, this will give us enough
tools to compare which process outperforms the other under different market
situations. We do not include the portfolio process with a lower bound in
this discussion, as the choice of the guarantee heavily depends on the plan
member and its value is hard to quantify.

We also compare the performance of the unconstrained portfolio process
with the strategies resulting from cut-shares introduced in Section 11.2.
Similar to the updated parameters in the last section, this does not result
in an optimal portfolio process, but has the advantage of satisfying both the
non-negativity constraint for the whole path of the wealth process, as well
as the no-shorting constraint.
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15.1 Performance Methodology

In the examples so far, the choice for the target wealth C has been very
arbitrary and was simply used as an upper bound to the wealth process.
However, the target wealth plays an important role for both the expected
terminal wealth, as well as the amount of risk taken by the portfolio pro-
cesses.

We use techniques developed for mean-variance optimizing portfolios,
which face a similar problem in choosing a parameter for the risk aver-
sion of the plan member. It has been shown in [Zhou and Li, 2000] and in
[Menoncin and Vigna, 2017] that there is a one-to-one correspondence be-
tween optimal portfolios of target-based optimization problems and those of
mean-variance optimizing problems. A mean-variance optimal portfolio, is
a portfolio π ∈ A(x) that minimizes

αV[Xπ(T )]− E[Xπ(T )],

where α > 0 is a measure of risk aversion. Portfolio processes that solve
mean-variance optimization problems for given parameters α result in a so-
called efficiency frontier, i.e. the set

(
V[Xπ(T )],E[Xπ(T )]

)
, where a higher

expected terminal wealth is paid for by having higher variance.
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Figure 15.1: The expected terminal wealth against the variance of the termi-
nal wealth of the unconstrained portfolio process (3.26) for different target
values C.

Due to the one-to-one correspondence to target-based portfolios, we can
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reconstruct this efficiency frontier by varying the target wealth C. In Figure
15.1 we see such an efficiency frontier for the market model of Part I, with
parameters r = 0, µ = 5%, σ = 0.15 and initial wealth x = 1000, for
various values for the target wealth C. It is apparent that as C increases,
the expected terminal wealth also becomes larger. This in turn is paid for
by higher variance, and in turn higher downside risk.

We adapt the methodology of [Guillén et al., 2013] to compare the qual-
ity of investment strategies, which do not necessarily have the same under-
lying risk. We measure quality as the ability to maximize terminal wealth
given the amount of risk inherent to the strategy. In addition to the median
rate of return, we also use the ruin and success probabilities as indicators of
the performance.

This performance evaluation will always be connected to a benchmark
strategy. We use the strategy that invests a constant proportion of the wealth
in the risky assets, at all times t ∈ [0, T ], and define the benchmark strategy
by a certain fixed proportion πb of risky investment. We then find the target
wealth C, such that the target-based optimal portfolios are equivalent to said
benchmark strategy. Here, two strategies are called equivalent if they share
the same downside risk.

15.1.1 The Expected Shortfall

In this section we give an introduction to the expected shortfall as an ap-
proach to measuring downside risk exposure. For more details on risk mea-
surement, we refer to [McNeil et al., 2005].

Definition 15.1.1. For the terminal wealth Xπ(T ), the value-at-risk at
the confidence level α ∈ (0, 1), henceforth VaRα, is the α-quantile of the
underlying distribution, i.e.

VaRα(Xπ(T )) = sup
{
l ∈ R | P

[
Xπ(T ) ≤ l

]
≤ 1− α

}
.

Typical values for α are α = 0.95 or α = 0.99. Note that the main
weakness of VaR as a risk-quantifying tool is the lack of subadditivity. This
means that the sum of the VaR of two individual portfolios is not necessarily
larger than the VaR of the combined portfolio. As some diversification
benefit is usually observed in reality, a reasonable risk measure should satisfy
the property of subadditivity.

In order to transform the VaR risk measure into a coherent risk measure,
we utilize the expected shortfall.
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Definition 15.1.2. For terminal wealth Xπ(T ) with E
[
| Xπ(T ) |

]
<

∞, the expected shortfall at confidence level α ∈ (0, 1), henceforth ESα is
defined as

ESα(Xπ(T )) = E
[
Xπ(T ) | Xπ(T ) < VaRα(Xπ(T ))

]
.

Note that whereas the VaRα gives the (1− α)-event on the left tail, the
ESα gives the expected value of an event which is below the (1− α)-event.
Therefore, for the same confidence level α, ESα is always smaller or equal
than VaRα.

15.1.2 The Annual Financial Gain

We set the confidence level for the ES to α = 0.95 and calculate the ter-
minal wealth distribution of the benchmark strategy for different values of
πb for the proportion invested in the stock. For each πb, we calculate the
target wealth C such that the target-based optimal portfolios have the same
downside risk. Note that different values for C are used for the constrained
and the unconstrained portfolio processes.

We utilize three tools to evaluate the performance of the different strate-
gies.

• The ruin probability, defined in Definition 3.3.2. This is only non-zero
for the unconstrained portfolio strategy and measures the probability
of negative terminal wealth.

• The success probability, defined in Definition 9.1.9. This measures the
probability of achieving a net benefit, i.e. of obtaining terminal wealth
higher than the sum of the initial investment and the contributions.

• The internal rate of return, i.e. the interest rate rirr such that∫ T

0

δL(t)

(1 + rirr)t
dt+ x =

Xπ
m(T )

(1 + rirr)T
,

where Xπ
m(T ) denotes the median of the terminal wealth distribution.

Definition 15.1.3. The difference between the median internal rate of re-
turn rPirr of the portfolio process and the median internal rate of return rbirr
of the benchmark strategy is called the annual financial gain/loss.

We calculate ES0.95 and internal rate of return numerically for all strate-
gies.

174



15.2. COMPARISON IN THE MARKET MODEL OF PART I

15.2 Comparison in the Market Model of Part I

In order to compare the different portfolio strategies, we first calibrate the
equivalent target wealth for each process. In Figure 15.2 we see the equiva-
lent target wealth for different values πb of the benchmark strategy for one
specific set of parameters. In order to increase readability, the interest rate
is set to r = 0, the initial wealth to x = 1000 and the investment horizon to
T = 10 years. For this example, µ = 5% and σ = 0.25.
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Figure 15.2: The equivalent target wealth of the portfolio processes for
different benchmark strategies.

We observe that the higher the investment of the benchmark strategy,
the higher the equivalent target wealth for the portfolio processes. This
can be explained by looking at the structure of the portfolio process (3.36),
for example, where we see that a higher target wealth leads to a higher
investment in the risky asset, which in turn affects the expected shortfall.

In Figure 15.2 we also note that for higher values of πb, i.e. for strategies
which allow for a larger amount of risk, the equivalent target wealth of the
strategies start to differ substantially. The unconstrained optimal portfolio
process carries the most risk, which necessitates a lower target wealth than
for the other two strategies. Similarly, the strategy resulting from cut-shares
is less risky than even the constrained optimal portfolio process, by including
a no-shorting constraint, and hence a higher target wealth can be chosen.

Note that the equivalent target wealth of the cut-shares strategy for
πb = 1 is undefined, as the only strategy which results in the same expected
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15.2. COMPARISON IN THE MARKET MODEL OF PART I

shortfall and satisfies the no-shorting constraint is exactly the strategy of
investing everything in the asset for the whole duration. However, this
strategy is then independent of the target wealth. Similarly, we do not
include the equivalent strategies for πb = 0, as all strategies would then
invest everything in the bank account, resulting in the same strategy.

πb = 0.2 Unconstrained Constrained Cut-Shares

Equivalent Wealth 1’180 1’180 1’190

Annual Gain -0.09% -0.09% -0.06%

Success Probability 82.9% 82.8% 82.8%

πb = 0.5

Equivalent Wealth 1’400 1’410 1’410

Annual Gain -0.05% -0.05% 0.00%

Success Probability 82.9% 82.4% 82.4%

πb = 0.8

Equivalent Wealth 1’570 1’600 1’700

Annual Gain 0.26% 0.28% 0.71%

Success Probability 82.9% 81.7% 80.1%

Table 15.1: The equivalent target wealth and the corresponding performance
attributes for different values of πb.

In Table 15.1 some performance parameters are seen for three specific
values of the benchmark strategy. We note that the success probability
of the unconstrained optimal strategy is independent of the target wealth.
This can also be proved empirically by inserting the optimal terminal wealth
(3.15) into the success probability (3.18). Note that for this specific set of
parameters, both the constrained strategy, as well as the strategy resulting
from cut-shares outperform the unconstrained optimal strategy. This shows
that even though the unconstrained optimal strategy has higher annual gain
for the same target wealth, this comes at the price of a much higher under-
lying risk.

Measuring the performance by the success probability instead, the un-
constrained portfolio process still outperforms the other two. This measure
does not give any indication as to how much the risk-free strategy is outper-
formed and how high the underlying risk is. Including the ruin probability,
which lies between 0.1% and 0.8% for the unconstrained portfolio strategy,
we see once again, that the spread of the terminal distribution is much higher
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Figure 15.3: Annual gains are shown above, while the difference in perfor-
mance can be seen below.
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15.2. COMPARISON IN THE MARKET MODEL OF PART I

for this strategy than for the other two.
In order to measure the sensitivity on the drift and the volatility of the

stock, we plot the performance for different parameters in Figure 15.3. With
regard to Figure 15.2 we choose πb = 0.75 in order to obtain significantly
different equivalent target wealth for the different portfolio processes.

We observe that the annual gain is increasing in the volatility parameter,
while decreasing in the drift parameter. For low volatilities, the benchmark
strategy of investing 75% in the stock outperforms all other strategies by up
to 1% annually. In the two bottom graphs in Figure 15.3 we compare the
performance of the different portfolio strategies. We note that for low volatil-
ities and high values for the drift parameters, the unconstrained portfolio
process allows to enter a strong short position in the bank account, in order
to invest heavily in the stock. Due to the low volatility, this only increases
the risk slightly, while increasing the upside potential. The constrained
portfolio process does not borrow as much money, in order to guarantee the
non-negativity of the terminal wealth, while the strategy resulting from the
cut-shares does not borrow at all, by definition. This explains why the un-
constrained portfolio process outperforms the other two in those scenarios,
while generally being outperformed everywhere else.

For this choice of parameters, the strategy resulting from cut-shares
generally results in the best performance. We will see in the next section, if
this stays true when we include inflation and contributions to the market.
We already noted that in the case of contributions, the optimal strategies
borrow against their future contributions from the beginning, which result
in much larger short positions than in the market model of Part I.
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15.3 Comparison in the Market Model of Part III

Similar to the last section, we start by calibrating the equivalent target
wealth for different values πb of the benchmark strategy. In order to obtain
an equivalent terminal wealth for all the strategies, it is necessary to split
the risky investment πb between the stock and the inflation-linked bond. For
simplicity, we split it equally.

We slighly alter the parameters of Example 9.1.10, i.e. we set the mar-
ket parameters as rN = 4%, µ = 8% and σS = 0.2. The investor starts
with an initial wealth x = 1000 and invests for a time horizon of T = 10
years. In addition to the initial investment x, an additional δ = 10% of the
stochastic salary of the plan member is invested in a continuous manner.
The parameters of the stochastic salary are given by l = 20′000, κ = 0.015,
σLS = 0.004 and σLI = 0.006. Furthermore, the inflation parameters are
given by rR = 3%, σI = 0.08, θI = 0.12 and the volatility of the stock with
respect to the inflation is given by σIS = 0.08.

πb = 0.2 Unconstrained Constrained Cut-Shares

Equivalent Wealth 39’200 39’200 63’800

Annual Gain 2.44% 2.43% 1.83%

Success Probability 95.5% 95.4% 91.9%

πb = 0.5

Equivalent Wealth 39’400 39’500 67’700

Annual Gain 1.89% 1.88% 1.31%

Success Probability 95.5% 95.3% 91.5%

πb = 0.8

Equivalent Wealth 40’500 40’600 88’300

Annual Gain 1.52% 1.51% 1.12%

Success Probability 94.9% 94.8% 89.4%

Table 15.2: The equivalent target wealth and the corresponding performance
attributes for different values of πb.

We see in Table 15.2 that the difference of equivalent target wealth
between the unconstrained and the constrained portfolio process is much
smaller than in the market model without contributions. This is no sur-
prise, as due to the continuous contributions to the wealth process, the ruin
probability of the unconstrained portfolio process is with maximally 0.05%
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much smaller. Note that the equivalent target wealth for this set of parame-
ters is slightly higher for the unconstrained strategy than for the constrained
strategy. The order of difference is so small however, that this effect is more
likely due to numerical inaccuracy than due to a significant difference in the
underlying risk.

On the other hand, due to not borrowing against future contributions,
the strategy resulting from cut-shares carries less risk. Thereby, the equiva-
lent target wealth for the strategy resulting from cut-shares is much larger
than for the other two strategies.
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Figure 15.4: Annual gains for the different portfolio strategies for different
values of πb.

We see in Figure 15.4 that unlike in the previous section, the higher
target wealth of the strategy resulting from cut-shares does not outweigh the
inability to enter short position. For all values of πb, the annual gain is lower
than for the other two strategies. We see in Figures 15.5 and 15.6 that this
is in part due to the specific choice of parameters. While the unconstrained
and the constrained strategy lead to very similar annual gains for most
parameters, the strategy resulting from cut-share may perform better for
certain values of the inflation and salary parameters.

Note that the performance of the strategy resulting from cut shares drops
of for low values of θI and high values of σI . For those parameters, the
optimal strategy goes short in the inflation-linked bond, which is not possible
under cut shares.
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Figure 15.5: Annual gains and difference in performance for different pa-
rameters for the inflation volatility and market price of risk.
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Figure 15.6: Annual gains and difference in performance for different pa-
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Chapter 16

On the Importance of
Hedging Inflation Risk

In Part II an inflation-linked bond was added as an additional market ele-
ment and the optimization problem was expanded to include inflation risk.
During Examples 6.2.6, 6.3.11 and 7.3.2 we found that for certain parame-
ter values, the target-based optimal portfolio process lead to higher terminal
wealth. Utilizing the performance methodology of Section 15.1 we are able
to evaluate the impact of the inflation-linked bond more thoroughly.

16.1 Comparing the Terminal Wealth Distribution

We compare the unconstrained optimal portfolio process (9.22) of market
model 8.3 to the optimal portfolio process (11.9), where inflation is not
considered. The inflation-linked bond is used as another risky asset, but the
portfolio problem to be optimized remains Problem 3.1.2. We calculate the
equivalent target wealth for the two strategies using the benchmark strategy
πb = 0.75.

Example 16.1.1. Denote by CI the equivalent target wealth for the port-
folio process with inflation, and by CN the equivalent target wealth without
inflation. Using the same parameters as in Section 15.3, we obtain

CI = 40′600,

CN = 44′100.

As Problem 3.1.2 minimizes the difference to the nominal terminal wealth,
which is usually higher than the real terminal wealth of Problem 9.1.5, it
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16.1. COMPARING THE TERMINAL WEALTH DISTRIBUTION

is unsurprising that the target wealth CN is larger. For this set of pa-
rameters, the expected inflation over the duration of the investment pe-
riod is EP[I(T )] = 1.22, so the equivalent target wealth CN is lower than
CIEP[I(T )], indicating higher underlying risk for the strategy not including
inflation in the problem statement.

Figure 16.1: Histograms of the nominal terminal wealth distribution for the
unconstrained portfolio problem with and without considering inflation.

In Figure 16.1 we plot the empirical terminal wealth for both strategies.
Note that Xπ

M (T ) denotes the median terminal wealth, whereas Xπ
A(T ) de-

notes the mean terminal wealth. We observe that the empirical terminal
distribution is much broader when inflation is considered in the problem
statement. Furthermore, the probability of ending very close to the target
in nominal terms is larger when inflation is not considered and we note that
the median terminal wealth is very close for both strategies. The mean
terminal wealth Xπ

A(T ), on the other hand, differs quite substantially and
indicates that the upside potential is much larger when inflation is consid-
ered.

We see in the analysis of Example 16.1.1 that the portfolio process in-
cluding inflation in the problem statement leads to higher terminal wealth on
average, even when the performance methodology of Section 15.1 is used. In
order to understand the impact of the parameter values on the difference of
the annual gain between the two strategies, we perform a sensitivity analysis
on the inflation parameters σI and θI . We do not include the real interest
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Figure 16.2: The sensitivity of the annual gain on the various inflation
parameters. The mesh in black denotes the annual gain of the portfolio
process not including inflation.

rate rR in the analysis as we found that the annual gain of the portfolio
process including inflation is fairly insensitive to rR. For Figure 16.2 we cal-
culate the equivalent target wealth for different parameter values of σI and
θI and compare the performance of the two portfolio processes. We note
that for most parameter values, including inflation to the analysis leads to a
higher equivalent target wealth and increases the performance. The annual
gain reacts the most to the market price of inflation risk θI and only sinks
below the annual gain of the strategy not including the inflation-linked bond
for small values of θI . Looking more closely at the form of the inflation in-
dex (5.1) we note that the parameter values for which the portfolio including
inflation is outperformed correspond to periods of low inflation. Hence it is
unsurprising that the resulting equivalent terminal wealth is lower and the
performance is worse during those periods.
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Figure 16.3: The investment behavior of the portfolio process including
inflation in the problem statement. The straight lines denote the mean
values, whereas dotted lines represent the 90%-confidence interval.
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Figure 16.4: The investment behavior of the portfolio process not including
inflation in the problem statement. The straight lines denote the mean
values, whereas dotted lines represent the 90%-confidence interval.
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16.2 Comparing the Investment Behavior

In order to understand more thoroughly how adding inflation to the problem
statement warps the investment behavior, we study the portfolio processes of
the two strategies. We return to the parameters of Section 15.3, increasing
the investment horizon to 40 years. We calculate the portfolio processes
for 10′000 paths and plot the resulting wealth and portfolio processes in
Figures 16.3 and 16.4. The solid lines correspond to the average wealth and
the average investment, while the dotted lines represent the extremes of an
estimated range, including 90% of the paths. Clearly, the uncertainty of the
investment increases as the investment horizon approaches, as the current
wealth of the different paths deviate more heavily.

The main difference between the two strategies is the amount invested in
the inflation-linked bond. The optimal portfolio process for Problem 9.1.5
invests much more heaviliy into the inflation-linked bond than the stock and
finances this by borrowing from the bank account for the whole duration of
the investment period. In contrast, the optimal portfolio process for Problem
3.1.2 with contributions invests almost nothing in the inflation-linked bond,
but tends to put more money into the bank account, as maturity approaches.

Another difference of the two portfolio processes is the change in the
investment in the risky assets. Including inflation, we find that the average
amount invested in both the stock and the inflation-linked bond rises from
the beginning. Therefore, contrary to the strategy without inflation, the
riskiness increases throughout the investment period. This is also apparent,
comparing the confidence intervals for the wealth processes.

To conclude, we note that the consideration of inflation is very impor-
tant for target-based pension schemes. By altering the investment strategy
considerably, it outperforms the strategy not considering inflation in most
market situations. Due to low supply and market frictions, the current
model may not portray the real market situation correctly. Nonetheless,
pension fund managers should calculate the performance in real terms and
add inflation-linked bonds to their portfolio.
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Chapter 17

Comparing Different DC
Plan Strategies

In order to evaluate the target-based strategy as a potential alternative to
other DC plan strategies, we compare it to two popular investment plans.
As a mathematical alternative, we compare the performance to that of the
optimal portfolio process for a power utility maximizing investor, introduced
in [Zhang et al., 2007]. The second strategy to which we compare the per-
formance of the target-based strategy is the dynamic lifecycle strategy in-
troduced in [Basu et al., 2011]. Being close to the most popular strategy in
practice, while offering a dynamic upgrade, allows for comparing the more
theoretical strategies to reality. The theory behind both alternative strate-
gies is summarized in Appendix IV.D.

Consider the case of a pension plan member investing for the time horizon
of T = 40 years with a starting salary of £20′000. The salary is assumed to
follow the path of Figure 17.1, with empirical parameters κ = 0.015, σLS =
0.004 and σLI = 0.006. It follows the average salary process, increasing for
the first 30 years, before beginning to stagnate and finally falling off before
retirement. Throughout the investment period, contributions at a rate of
δ = 10% are credited to the pension plan monthly, with no contribution for
the last month of the last year. With x = £10′000, the initial wealth is set
higher than in previous discussions, as the optimal strategy for the power
utility maximizing investor involves dividing by the current wealth, which
lead to numerical inaccuracies whenever the current wealth is close to zero.

The inflation index is assumed to follow the path of Figure 17.2, with
empirical parameters rN = 4%, rR = 3%, σI = 0.08 and θI = 0.12.
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Figure 17.1: Realized path of the salary process for the hypothetical pension
plan member.
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Figure 17.2: Realized path of the inflation index for the duration of the
pension plan.
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the pension plan.
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17.1 Comparing the Strategies with no Portfolio
Constraints

The plan member can choose between four different investment strategies
at the start of the pension plan accumulation phase. The unconstrained,
target-based optimal portfolio strategy (P1), given by (9.22), the power
utility maximizing portfolio strategy (P2), given by (18.6), the dynamic
lifecycle strategy (P3), outlined in Appendix IV.D.2 and a deterministic
lifecycle strategy (P4). The target wealth for strategy (P1) and the risk
aversion parameter for strategy (P2) are chosen to obtain the same expected
shortfall at the 95%-confidence interval as that of (P4), which switches from
50% stocks and 50% inflation-linked bonds to 100% investment in the bank
account after the first 20 years. The target return r* of strategy (P3) is set
to equal the nominal rate of return.

P1 P2 P3 P4

Parameter of Interest C = 414’000 γ = -2.45 r* = 4.00% \
Median Rate of Return 6.14% 5.38% 5.42% 5.17%

Success Probability 99.0% 97.6% 96.6% 97.7%

Table 17.1: Statistics of the different portfolio processes for the parameters
of Chapter 17.

We observe in Table 17.1, that strategy (P1), the unconstrained portfolio
process, performs best for the current set of parameters. The difference
of 0.72% in the median rate of return results between the unconstrained
portfolio process and the dynamic lifecycle strategy results in a difference
of over £100′000 in the median terminal wealth. With the highest success
probability and a ruin probability of only 0.6%, the unconstrained portfolio
process clearly outperforms the other strategies for this choice of parameters.

The empirical terminal wealth distribution of the different portfolio pro-
cesses can be seen in Figure 17.4. We note that even though strategy (P1)
achieves the largest median terminal wealth, its terminal distribution is also
the broadest, indicating more uncertainty. The other three strategies show
a much narrower terminal wealth distribution, with more certainty about
the outcome, but less upside potential.

In order to study the different investment character of the strategies, we
analyze three specific stock market scenarios. The underlying parameters
remain the same with µ = 8%, σS = 0.2 and σIS = 0.08, while the realized
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Figure 17.4: Terminal Distribution of the unconstrained portfolio process
(9.22) and the power utility maximizing strategy (18.6). The target wealth
C and the risk aversion parameter γ of Table 17.1 are used.

paths show the characteristics of a typical stock market, the characteristics
of a bull market followed by a bear market, or the characteristics of a bear
market followed by a bull market. We expect to observe the biggest ad-
vantage of the target-based optimal strategy in the third market situation,
where high investment in the risky assets close to the retirement date should
lead to a better performance.
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General Stock Market

On the top of Figure 17.9 we see the stock price process on the left-hand
side, while the different wealth processes are plotted on the right. Below,
the investment behavior of the four strategies is shown.

For the stock price process in Figure 17.5 we note that the strategies
have a very similar wealth process, with the strategy (P1) outperforming
the others during the last five years. As both the unconstrained optimal
portfolio and the dynamic lifecycle portfolio stay heavily invested in the
risky assets, they are able to profit from the rise in the stock price during
that period.

P1 P2 P3 P4

Terminal Wealth 437’000 368’000 343’000 330’000

Rate of Return 4.6% 3.9% 3.6% 3.5%

Minimal Wealth -5’050 6’260 9’920 9’920

Table 17.2: Properties of the different portfolio processes calculated for the
salary process in Figure 17.1, the inflation process in Figure 17.2 and the
stock price process in Figure 17.5.

In Table 17.2 we observe that although the strategy (P1) achieves the
highest rate of return, it attains negative wealth during some period of the
investment. As the deficit is fairly low compared to the contributions, it is
remedied after a single period. Nonetheless, this may lead to problems in
practice.

Note that due to the choice of parameters, strategy (P2) invests almost
the same amount in the stock and the inflation-linked bond over the whole
period. We also see that this strategy is much more similar to the lifecycle
processes than the target-based strategy, as the investment in the risky assets
follows a more constant path and increasing investment in the bank account
starts after about half of the investment period.

The strategy (P3) is only able to reach its rate of return target for a short
period after 25 years and otherwise stays invested fully in the risky assets.
This leads to a more volatile wealth process than that of strategy (P4), but
allows the investor to profit from increases in the stock price process during
late stages of the investment period.
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Figure 17.5: Performance of strategies with no portfolio constraints for a
general stock price process.
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Bull Market followed by Bear Market

The stock price process in Figure 17.5 increases quickly for the first 25 years,
before falling for the following 10 years. This price process is most beneficial
for strategies (P2) and (P4), which outperform the other strategies for the
whole period. Both strategies initially profit from the good market situation
and the rise of the stock prices during the bull market. In the second half of
the investment horizon, they shift the wealth to the bank account, leading
to smaller loss during the bear market.

P1 P2 P3 P4

Terminal Wealth 243’000 342’000 266’000 314’000

Rate of Return 2.2% 3.6% 2.6% 3.3%

Minimal Wealth 3’550 8’940 10’000 10’000

Table 17.3: Properties of the different portfolio processes calculated for the
salary process in Figure 17.1, the inflation process in Figure 17.2 and the
stock price process in Figure 17.7.

Even though strategies (P2) and (P4) invest very similarly, they have
some important differences, which lead to (P2) performing slightly better.
During the first half of the investment period, strategy (P2) borrows some
money in order to invest more heavily in the risky assets. Furthermore, it
never invests fully in the bank account, allowing it to profit from stock price
increases during late periods of the investment. We can see in Table 17.3
that those characteristics lead to the highest terminal wealth for strategy
(P2).

On the other hand, strategies (P1) and (P3) are heavily invested in the
risky assets for the whole duration, leading to a large loss of wealth during
the bear market of the second half. Even though strategy (P3) achieved its
target rate of return and started shifting the investment to the bank account,
it reinvests everything as the stock prices fall, losing even more money in
the process. However, we also note this also allows strategies (P1) and (P3)
to profit from the stock price increase during the last five years.
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Figure 17.6: Performance of strategies with no portfolio constraints for a
bull market followed by a bear market.
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17.1. COMPARING THE STRATEGIES WITH NO PORTFOLIO
CONSTRAINTS

Bear Market followed by Bull Market

On contrary to the previous discussion, the stock price process in Figure
17.7 falls for the first 20 years, before recovering and rising quickly for the
remaining period of the investment plan. As expected, the strategy (P1)
outperforms the other strategies, due to staying invested in the risky assets
for the whole duration. Strategy (P2) performs especially badly for this
specific path of the stock price, and we note that it becomes very erratic
during periods where the wealth process is close to zero. This is due to
dividing by X*(t) in (18.6).

P1 P2 P3 P4

Terminal Wealth 580’000 246’000 444’000 363’000

Rate of Return 5.7% 2.2% 4.7% 3.9%

Minimal Wealth -55’400 -9 9’930 9’930

Table 17.4: Properties of the different portfolio processes calculated for the
salary process in Figure 17.1, the inflation process in Figure 17.2 and the
stock price process in Figure 17.7.

We note that strategy (P3) stays invested in the risky stock for much
longer than strategy (P4), as the target rate of return is not reached until
very late in the investment period. This in turn allows (P3) to profit from the
bull market and lets the dynamic strategy attain a higher terminal wealth.

In Table 17.4 we see that the wealth process of strategy (P1) becomes
heavily negative during the bear market in the first half of the investment
period and we see in Figure 17.7 that the wealth process stays negative for
almost 5 years. Even thoughit recovers during the second half, this basically
means that the initial investment x = 10′000 and the contributions during
the first 20 years of the pension plan were lost.

Even though the period of negative wealth for strategy (P1) won’t be
circumvented completely by using the constrained strategy or the strategy
with a lower bound, the performance during that period would increase, as
less money is invested in the risky assets for either strategy. As observed
in the various examples so far, this would come at the price of a lower rate
of return and may not be completely satisfying either. In order to prohibit
negative wealth completely and we use strategies resulting from cut-shares
during the next section.
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Figure 17.7: Performance of strategies with no portfolio constraints for a
bear market followed by a bull market.
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17.2. COMPARING THE STRATEGIES UNDER CUT-SHARES

17.2 Comparing the Strategies under Cut-Shares

We have seen during the last section, that both the target-based optimal
strategy and the power utility maximizing strategy may result in short posi-
tions. Not only do such position increase the underlying risk and may result
in negative wealth, they are often regulated heavily by financial conduct
authorities. Therefore, we assess the performance of the strategies under a
no-shorting constraint.

The plan member can once again choose between four different invest-
ment strategies at the start of the pension plan accumulation phase. We re-
place the unconstrained, target-based optimal strategy (P1) with the target-
based strategy resulting from cut-shares (P1’) and replace the power utility
maximizing portfolio strategy (P2) by cut-shares (P2’) as well. Since both
the dynamic lifecycle strategy (P3) and the deterministic lifecycle strategy
(P4) do not include any short positions by definition, we include them to
the comparison.

P1 P2 P3 P4

Parameter of Interest C = 971’000 γ = -2.24 r* = 4.0% \
Median Rate of Return 5.72% 5.32% 5.42% 5.17%

Success Probability 99.1% 97.7% 96.6% 97.7%

Table 17.5: Statistics of the different portfolio processes for the parameters
of Chapter 17.

Comparing Table 17.5 to Table 17.1 we see that the equivalent target
wealth is higher for strategy (P1’) and the factor of risk aversion is lower
for (P2’) than for their counterparts. This is in accordance to the discussion
in Section 15, as the underlying risk is lower when shorting positions are
impossible. We also note, that the resulting median rate of return is slighly
lower for the strategies resulting from cut-shares.

The empirical terminal wealth distribution of the different portfolio pro-
cesses can be seen in Figure 17.8. Note that compared to the distribution
of the portfolio process without the no-shorting constraint in Figure 17.4,
the distribution of the strategies resulting from cut-shares is much narrower.
Therefore, we expect the performance of the different scenarios to be much
more comparable than in the previous section. This comes at the price of
a lower median terminal wealth, but nonetheless, the target-based strategy
(P1’) still outperforms the other strategies.
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17.2. COMPARING THE STRATEGIES UNDER CUT-SHARES

Figure 17.8: Terminal Distribution of the portfolio processes resulting from
cut shares. The target wealth C and the risk aversion parameter γ of Table
17.5 are used.

For the specific scenarios of the stock price process, we expect to ob-
serve similar outcomes as in Section 17.1, while the terminal wealth of the
strategies differ less between the three scenarios. The no shorting constraint
restricts the amount that can be invested in the risky assets and therefore
narrows the terminal wealth distribution, as seen in Figure 11.1.
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17.2. COMPARING THE STRATEGIES UNDER CUT-SHARES

General Stock Market

As expected, we observe that for the stock price process in Figure 17.9, the
strategies are more similar than for the investment strategies without the
no-shorting constraint. Once more, the strategies (P1’) and (P3) profit from
the stock price increase during the last five years, catching up to the better
performance of the other strategies.

P1’ P2’ P3 P4

Terminal Wealth 373’000 353’000 343’000 330’000

Rate of Return 4.0% 3.8% 3.6% 3.5%

Minimal Wealth 9’210 9’920 9’920 9’920

Table 17.6: Properties of the different portfolio processes calculated for the
salary process in Figure 17.1, the inflation process in Figure 17.2 and the
stock price process in Figure 17.9.

This can also be observed in Table 17.8, where all parameters shown
are very similar for all strategies. We also note that contrary to the ex-
ample for unconstrained portfolio processes, none of the strategies reach a
negative wealth at any point of the investment period. Next to the regu-
latory necessity, this is one of the main advantages of the methodology of
cut-shares.

Studying the investment behavior in Figure 17.9 more closely, we observe
the similarity between strategy (P2’) and the lifecycle strategy (P4). Both
strategies start fully invested in the risky assets and start investing in the
bank account only in the second half of the investment period. Note that
contrary to strategy (P4), the allocation between the inflation-linked bond
and the stock depends on the underlying parameters and is not set to 50%.
Similarly, both the time after which money is invested in the bank account
and the speed of the reduction in risky investment depends both on the
parameters, as well as on the stock price process.

On the other hand, both the strategy (P1’) and the strategy (P4) mainly
invest in the risky assets for the whole duration of investment. This leads to
a more volatile wealth process and the main difference between the strategies
is the allocation between the inflation-linked bond and the stock, which is
set externally for (P4).
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Figure 17.9: Performance of strategies with no shorting constraints for a
general stock price process.
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Bull Market followed by Bear Market

Unsurprisingly, both strategy (P1’) and strategy (P2’) perform worse than
their respective counterparts in the previous section for the stock price pro-
cess of a bull market followed by a bear market. Since they are not able
to borrow against future contributions, less money can be invested during
the period of the bull market, leading to a lower return. As more money is
available during the second half, they still bear the brunt of the bear market,
leading to a worse performance.

P1 P2 P3 P4

Terminal Wealth 221’000 314’000 266’000 314’000

Rate of Return 1.7% 3.3% 2.6% 3.3%

Minimal Wealth 9’910 10’000 10’000 10’000

Table 17.7: Properties of the different portfolio processes calculated for the
salary process in Figure 17.1, the inflation process in Figure 17.2 and the
stock price process in Figure 17.10.

Nonetheless, we see in Table 17.8 that the ranking of the portfolio strate-
gies remains the same, with the unconstrained strategy resulting from cut-
shares being outperformed by all the other strategies. Analyzing Figure
17.10 we see why the target-based strategies are outperformed in this sce-
nario.

During the first 20 years, the wealth processes of all four strategies follow
a very similar path. On average, the investment is split equally between
the stock and the inflation-linked bond, while almost nothing is invested in
the bank account. After that period, strategies (P2’), (P3) and (P4) start
investing more heavily in the bank account, while the stock price process
enters a bear market. For strategies (P2’) and (P4) this continues until
the end of the investment period, while strategy (P3) reinvests in the risky
assets, once the target rate of return is not attained anymore.

The target-based strategy does not start reinvesting in the bank account.
On the contrary, the further away the current wealth is from the target
wealth, the more money is invested in the stock, with the hope of recovering
from the bear market. This increases the volatility of the wealth process
and leads to larger loss for this specific scenario. The increase of the stock
price during the last five years leads to some recovery of the wealth process
of strategy (P1’), but not enough to overcome the bad performance during
the bear market.
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Figure 17.10: Performance of strategies with no shorting constraints for a
bull market followed by a bear market.
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Bear Market followed by Bull Market

The optimal market situation for the target-based strategy resulting from
cut-shares can be observed in Figure 17.11. During the analysis in Section
17.1 we already noted the advantage of the target-based optimal strategy
(P1) over the other portfolio strategies. This carries over to the strategy
(P1’), as the portfolio stays heavily invested in the stock for the whole
duration of the investment.

P1 P2 P3 P4

Terminal Wealth 704’000 439’000 444’000 363’000

Rate of Return 6.4% 4.6% 4.6% 3.9%

Minimal Wealth 9’220 9’930 9’930 9’930

Table 17.8: Properties of the different portfolio processes calculated for the
salary process in Figure 17.1, the inflation process in Figure 17.2 and the
stock price process in Figure 17.11.

Comparing Table 17.8 to Table 17.2, we see that the strategies resulting
from cut-shares outperform their unconstrained counterparts. Due to the
no-shorting constraint, they are not able to borrow against the future con-
tributions at the start and hence lose less money during the bear market
of the first 20 years. This is most apparent while comparing the minimal
wealth attained, which is negative for both (P1) and (P2), while being close
to the initial wealth for (P1’) and (P2’). As more money is available for the
second half, during the bull market, both strategies can profit by investing
in the risky assets.

In Figure 17.11 another advantage of the target-based approach becomes
apparent. While the allocation to the stock and the inflation-linked process
is very similar for the three market scenarios for the other portfolio processes,
it varies more heavily for strategies (P1) and (P1’). This is already apparent
from the form of the optimal portfolio process (11.5). The investment in
the inflation-linked bond depends in a different way on the current optimal
wealth than the investment in the stock, which allows to vary the allocation
depending on the wealth attained. For the CRRA strategy (18.6), we see
that the inflation-linked bond is treated the same as an additional stock and
hence does not allow for the same degree of variation in allocation.
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Figure 17.11: Performance of strategies with no shorting constraints for a
bear market followed by a bull market.
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Chapter 18

Conclusion and Further
Work

The goal of this thesis was to analyze the DC pension plan strategy result-
ing from a target-based approach. We believe that the resulting investment
plan is a viable alternative to other strategies used in practice. With life-
cycle strategies being simple to explain but lacking a proper mathematical
framework and other utility maximizing strategies working with abstract
risk aversion coefficients, the target-based strategy fills a niche in combining
the best of both worlds.

We have shown that the target wealth can fulfill two roles. It can either
be chosen by a plan member, taking a figurative step back towards DB
schemes, where the risk is still borne by the pension plan member, but a
certain direction is provided. On the other hand, the target wealth can
also be chosen by the performance methodology of Section 15.1 in order to
limit downside risk and thereby identifying the risk profile of the pension
plan member. Both roles are more suitable for the average pension fund
member, as it is easier to select a wealth target rather than an abstract
index.

In addition to the psychological advantages, the numerical analysis of
Chapter 17 has shown that the target-based optimal portfolio performs very
well in many situation. While it misses a certain time component, after
which the asset allocation is shifted to a less risky portfolio, it is able to react
to changes in the market quickly and thoroughly. As the amount invested
in the different underlyings starts varying more heavily close to maturity, it
seems reasonable to reassess the portfolio strategy more frequently towards
the end of the pension plan.
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Unlike for other utility maximizing portfolio strategies, the inflation-
linked bond is not simply seen as an additional stock, but used as an im-
portant tool to hedge inflation risk. During the analysis in Chapter 16 we
validated that the stronger the inflation present in the market, the more im-
portant it is to consider real wealth instead of nominal wealth as the target.
Even though more money is invested in the risky asset, the underlying risk
can be reduced by diversification benefits to a degree that the performance
of the strategy including the inflation-linked bond is simply better than that
of the strategy without.

We see two extensions of the quadratic utility maximizing portfolio as
the most promising approaches for future research on the target-based op-
timal portfolio problem. Firstly, non-negativity constraints on the terminal
wealth are shown to be of less importance in the market model including
contributions. A general lower bound may improve the performance some-
what, however we believe that constraints on the portfolio processes offer
more potential. We have seen that by enforcing the no-shorting constraint
on the portfolio process ex-post, the performance improves for certain sce-
narios. As this is not a mathematically optimal portfolio, it only gives an
upper bound on the optimal portfolio process with those constraints.

Secondly, in order to utilize the target-based optimal portfolio process
in practice, the parameter values need to be estimated in some better way.
Optimally, one would find a solution for the optimization problem using
predictable processes instead of deterministic ones. Since very little theoretic
advance has been made in this regard, it may be more profitable to include
more stochastic factors to the market. This can be done via the regime-
switching model touched upon in Section 14.3.1 or by modeling some of the
parameters as stochastic processes directly. This leads to a similar procedure
as in Part II, where the stochastic inflation index was added to the market.

Concluding, we remark that the target-based approach for DC pension
schemes is an important alternative to consider, for both practitioners and
researchers. Even though some points may still be improved upon, the
numerical analysis in Part IV leads us to believe that the target-based ap-
proach outperforms the lifecycle strategy as well as other popular, utility
maximizing, investment plans. Together with the advantage of setting a
target wealth instead of some abstract risk factor, this gives us great hope
for the use of the quadratic risk minimization approach in practice.

210



Appendix

In order to estimate parameters and to compare the quality of the different
models, we heavily rely on statistical tools. In this section, we summarize the
techniques used and provide insight into different models used for parameter
estimation. Most proofs will not be given in this thesis, but a reference is
always provided.

IV.A Terminology and the Maximum Likelihood
Estimator

We start with a short introduction to the terminology and notation used
in this section, mainly based on [Van de Geer, 2017] and [Wüthrich, 2017].
Suppose we are given a set of data points (X, y) ∈ Rp × R and try to find
the characteristic of the relation between X and y, given by

y = f(X) + ε,

where f : Rp → R is a deterministic function which is to be determined and
ε captures noise terms, model errors and other inabilities of the model to cap-
ture the underlying relation betweenX and y. The variables (X(1), . . . , X(p))
are called predictor variables, whereas y is the response variable.

As the real function f is very hard to find, we estimate f by some function
f̂ and predict the response by ŷ = f̂(X). In order to measure the quality
of the chosen function f̂ , we utilize a measure for the goodness-of-fit, the
mean squared error of prediction.

Definition IV.A.1. Suppose we are given a set of data points (Xi, yi) ∈
Rp × R, for i = 1, . . . , n. The mean squared error of prediction is given by

MSE =
1

n

n∑
i=1

(
yi − f̂(Xi)

)2
.
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IV.A. TERMINOLOGY AND THE MAXIMUM LIKELIHOOD ESTIMATOR

Note that minimizing the mean squared error of prediction over all pos-
sible functions f̂ is very hard, as the set of possible functions is very large.
Moreover, no knowledge on the response variable y is used. In most applica-
tions, f̂ is chosen to be of a certain form, which implies certain properties of
the predicted response ŷ. These properties may then be used to find specific
parameters for f̂ .

Assume that the y1, . . . , yn are independent and identically distributed
from some distribution P . Further model assumptions then concern the
modelling of the distribution P , which is typically indexed by a parameter
ϑ in some parameter space Θ. We write P = Pϑ, ϑ ∈ Θ. Suppose that the
densities pϑ exist.

Definition IV.A.2. The likelihood function L(ϑ) : Θ→ R is given by

L(ϑ) =

n∏
i=1

pϑ(yi).

The maximum likelihood estimator, henceforth MLE, is given by

ϑ̂ = arg max
ϑ∈Θ
L(ϑ),

if it exists.

Remark. Alternatively, we may maximize the log-likelihood

ϑ̂ = arg max
ϑ∈Θ
L(ϑ) = arg max

ϑ∈Θ

n∑
i=1

logPϑ(yi),

as the logarithm is an increasing transformation.

Note that the MLE does not always exist and other methods may be
used to estimate parameters. However, for the applications in this thesis, the
MLE is sufficient. For properties of the MLE we refer to [Lehmann, 2003].

IV.A.1 Model Selection

In the previous section we presented the MLE as a way to estimate param-
eters of some models such that they lead to a good fit to the data at hand.
However, the MLE does not tell us if the form of the model function f̂ is
suitable for the underlying data. Graphical tools can be used to determine
the usefulness of certain models, but more methodological tools offer more
insight.
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IV.B. THE AUTOREGRESSIVE MOVING-AVERAGE MODEL

If the particular continuous distribution function for the model can be
found, different tests, like the Kolmogorov-Smirnov test, or the Anderson-
Darling test may be used to compare it to the empirical distribution function.
As for the models applied here, the distribution function cannot be found
easily, we present some information criteria which can be used to compare
different models instead, and refer to [Wüthrich, 2017] for the tests mean-
tioned above instead. Note that these information criteria will not give a test
for one model, but instead provide a tool to compare two different models.

Definition IV.A.3. The Akaike information criterion, henceforth AIC, is
defined by

AIC = −2 logL(ϑ) + 2d,

whereas the Bayesian information criterion, henceforth BIC, is defined by

BIC = −2 logL(ϑ) + log(n)d.

Here, L denotes the likelihood function of the density chosen for the model
and d denotes the number of parameters to be estimated.

The preferred model, from a selection of models, is then the one that
has minimum AIC or BIC of the group. Both information criteria penalise
the model on the number of parameters that need to be estimated, which
decreases the likeliness of overfitting. We do not discuss the justification of
these criteria here, but just mention two results.

• The AIC is an unbiased estimate of a distance between the fitted and
the true model.

• Compared to the BIC, the AIC favors complex models and does not
provide a consistent estimate of the true order.

See e.g. [Shumway and Stoffer, 2011][Chapter 2] for a more thorough dis-
cussion on information criteria.

IV.B The Autoregressive Moving-Average Model

Having introduced tools to estimate parameters and compare different mod-
els in the previous section, we study a specific model, where the predictor
variables are previous values of the response variable and its innovations.
Namely, we view the stochastic process X(t) as a process experiencing some
form of autocorrelation, i.e. depending on its path and we assume that its
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IV.B. THE AUTOREGRESSIVE MOVING-AVERAGE MODEL

volatility is constant in time. The family of autoregressive, moving-average
models, henceforth ARMA, allows to make certain statements and predic-
tions for such processes. For the proofs of the theorems in this section, we
refer to [Shumway and Stoffer, 2011][Chapter 2].

ARMA models make the strong assumption that the distribution of the
underlying time series is unchanged for arbitrary shifts in time. Most fi-
nancial time series have non-constant volatility in time, which cannot be
captured in the family of ARMA models. The next section introduces a
model extension that is able to portray the conditional heteroskedasticity of
certain time series.

Definition IV.B.1. A stochastic process
(
X(t)

)
t∈N is stationary if the

distribution of
(
X(t1), . . . X(tk)

)
is identical to the distribution of

(
X(t1 +

h), . . . X(tk + h)
)

for all k ∈ N, t1, . . . , tk ∈ N and h ∈ Z.

Recall the notion of a random walk, where each term X(t) is dependent
solely upon the previous term X(t − 1) and some random innovation. The
family of ARMA models is an extension of this notion, where the dependence
may reach further in the past and furthermore includes a dependence on the
innovations as well.

Definition IV.B.2. A stochastic process
(
X(t)

)
t∈N is called ARMA(p, q)

if it is stationary and

X(t) =φ(1)X(t− 1) + . . .+ φ(p)X(t− p)
+W (t) + θ(1)W (t− 1) + . . .+ θ(q)W (t− q), (18.1)

where W (t) is independent of all X(s) for s < t and φ(p) 6= 0 6= θ(q).
The variable W (t) is called the innovation at time t. We assume that
W (t) ∼ N (0, σ2

W ) for all t.

Remark. If p = 0,
(
X(t)

)
t∈N is called a moving average process of order q,

denoted by MA(q). Similarly, if q = 0,
(
X(t)

)
t∈N is called an autoregressive

process of order p, denoted by AR(p).

For an ARMA(p, q) model, denote by Φ(z) = 1 − φ(1)z − . . . − φ(p)zp

and by Θ(z) = 1 + θ(1)z + . . .+ θ(q)zq.

Proposition IV.B.3. Assume that Φ and Θ have no common zeroes. If all
zeros of Φ and Θ are outside of the unit circle, then the stochastic process
given by (18.1) is stationary.

Therefore, it is clear that a stochastic process is non-stationary if it
contains a unit root. In that case, differencing or applying non-linear trans-
formations may make the model stationary.
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IV.B.1 Testing for Stationarity

In order to fit an ARMA model to the historical data of interest rates, the
stationarity of the process needs to be checked and the unknown parameters
need to be estimated.

We test the stochastic process for stationarity by testing for a unit root.
By Proposition IV.B.3, the innovation at time t can be written as

W (t) =
∞∑
i=0

ρ(i)X(t− i), (18.2)

for some coefficients ρ, see e.g. [Shumway and Stoffer, 2011][Property 3.2].
Therefore, X(t) can be written as a function of X(t − 1) and a series of
differenced lag terms, i.e.

X(t) =
(
ρ(1) + ρ(2) + . . .

)
X(t− 1)−

(
ρ(2) + ρ(3) + . . .

)
∆X(t− 1)

−
(
ρ(3) + ρ(4) + . . .

)
∆X(t− 2)− . . .+W (t)

= ρ̃(1)X(t− 1)− ρ̃(2)∆X(t− 1)− ρ̃(3)∆X(t− 2)− . . .+W (t),
(18.3)

where ρ̃(i) = ρ(i) + ρ(i + 1) + . . . denotes the cumulative sum of all the
following parameters and ∆ denotes the difference operator (∆X)(t) =
X(t)−X(t− 1). Introducing the backshift operator, defined by

(BX)(t) = X(t− 1),

we can rewrite (18.2) as
(
1−ρ(1)B−ρ(2)B2− . . .

)
X(t) = W (t). Therefore,

the existence of a unit root is equicalent to ρ̃(1) = 1 in (18.3). This is the
so called augmented Dickey Fuller test, the t-test for the null hypothesis

H0 : ρ̃(1) = 1,

based on the regression (18.3).

IV.B.2 Autocorrelation and Partial Autocorrelation

In order to determine the size of the model, i.e. the parameters p and q,
graphical tools can be used to determine the range of those parameters, be-
fore applying the information criteria of Definition IV.A.3. These graphical
tools are based on additional information on the distribution of X(t).
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Definition IV.B.4. The auto-covariance function of a stochastic process(
X(t)

)
t∈N is defined by

γ(s, t) = Cov(X(s), X(t))

= E[(X(s)− µ(s))(X(t)− µ(t))], for all s, t ∈ N,

where µ(t) denotes the mean of X(t). Similarly, the auto-correlation func-
tion is defined as

ρ(s, t) = Corr(X(s), X(t))

=
γ(s, t)√

γ(s, s)γ(t, t)
, for all s, t ∈ N.

Example IV.B.5. Assume X(t) is an MA(q) process, i.e.

X(t) =

q∑
i=0

θ(i)W (t− i),

where θ(0) = 1, and assume that the W (t) are independent and identically
distributed with W (t) ∼ N (0, σ2

W ). Note that by the stationarity of X(t),
the covariance is invariant under time-shifts and we write γ without its
second argument, i.e. γ(h) = γ(h, 0) for all h ∈ N. Moreover,

γ(h) = Cov
( q∑
i=0

θ(i)W (t+ h− i),
q∑
j=0

θ(j)W (t− j)
)

=

{
σ2
W

∑q−h
i=0 θ(j)θ(j + h) 0 ≤ |h| ≤ q,

0 else.

The auto-correlation function is then

ρ(h) =


1 h = 0∑q−h

i=0 θ(i)θ(i+h)

1+θ2(1)+...+θ2(q)
1 ≤ |h| ≤ q,

0 else.

Hence it is clear, that for an MA(q) process, the autocorrelation function is
zero after a lag of q. This can be seen in Figure 18.1, where a realization of
an MA(1) process is shown.
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Figure 18.1: An example of an MA(1) process with θ=0.6. The autocorrela-
tion function decreases below the confidence bounds after one lag, indicating
the structure of the model.

For a general ARMA(p, q) process, we can write

γ(h) =

p∑
i=1

φ(i)Cov(X(h− i), X(0)) +

q∑
j=0

θ(j)Cov(W (h− j), X(0))

=

p∑
i=1

φ(i)γ(h− i) +

q∑
j=h

θ(j)Cov(W (h− j), X(0)),

where we have used the property that W (t) is independent with X(0) for
t > 0. In particular, for h ≥ max(p, q + 1), the autocovariance function
decays exponentially fast. Notice that the general pattern of the auto-
covariance function is not different from that of an AR(p) process. Hence,
we cannot determine the presence of a moving average part simply on the
autocorrelation function alone. Therefore, we pursue a function that will
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behave in similar ways to the autocorrelation function for MA models, but
for AR models instead.

Consider an AR(1) model and write X(t) = φX(t− 1) +W (t). Then

γ(2) = Cov(φ2X(t− 1) + φW (t− 1) +W (t), X(t− 2) = φ2γ(0).

The correlation between X(t) and X(t − 2) is not zero, as the dependence
is carried on through X(t − 1). The idea is now to remove the effect of
X(t− 1) and consider the correlation between X(t)− φX(t− 1) and X(t−
2)− φX(t− 1), which is clearly zero. For general stochastic processes X(t),
the best linear prediction of X(t), based on (X(r), . . . , X(s)), for r ≤ s is
the linear combination

X̂r:s(t) =
s−r∑
j=0

β(k)X(s− k),

which minimizes the mean square error of prediction.

Definition IV.B.6. The partial autocorrelation function of a stationary
stochastic process X(t) is defined by

τ(h) = Corr(X(0)− X̂1:h−1(0), X(h)− X̂1:h−1(h)).

Example IV.B.7. Assume X(t) is an AR(p) process, i.e.

X(t) =

p∑
i=0

φ(i)X(t− i) +W (t).

When h > p, it can be shown that the best linear prediction of X(t+ h) on
(X(t+ 1), . . . , X(t+ h− 1)) is

X̂(t+ h) =

p∑
i=1

φ(i)X(t+ h− i),

and hence

τ(h) = Corr(X(t+ h)− X̂(t+ h), X(t)− X̂(t))

= Corr(W (t+ h), X(t)− X̂(t)) = 0.

Hence it is clear, that for an AR(p) process, the partial auto-correlation
function is zero after a lag of p.
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Figure 18.2: An example of an AR(1) process with φ=0.6. The partial
autocorrelation function decreases below the confidence bounds after one
lag.

Similar to the discussion above, one can show that the partial autocor-
relation function of an MA(q) process never cuts off, as in the case of an
AR(p) process. We summarize the findings in Table 18.1

Example IV.B.8. In Figures 18.2 and 18.1 we see a realization of an AR(1)
and of an MA(1) process repectively. In both these models, it is quite clear
from the autocorrelation function and the partial autocorrelation function,
which model structure should be chosen. Now assume that X(t) follows an
ARMA(1, 1) model and is given by

X(t) = φX(t− 1) +W (t) + θW (t− 1).

In Figure 18.3 we see a realization of such a process with φ = 0.8 and
θ = −0.6 and the corresponding correlation graphics. Neither the auto-
correlation function nor the partial autocorrelation function cut off after a
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Figure 18.3: An example of an ARMA(1, 1) process with φ=0.8 and θ =
−0.6. Both the autocorrelation function and the partial autocorrelation
function decreases below the confidence bounds exponentially.
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AR(p) MA(q) ARMA(p, q)

ACF Tails off Cuts off after lag q Tails off
PACF Cuts off after lag p Tails off Tails off

Table 18.1: Behavior of the ACF and the PACF of ARMA Models.

certain lag, hence we can guess the ARMA structure of the model. In order
to find the size of the parameters p and q from the simulation alone, either
the AIC or the BIC could be used.

IV.B.3 Using the ARMA Model on Financial Data

The ARMA model structure offers certain advantages in modelling financial
parameters which show some degree of autocorrelation. It offers an acces-
sible way to forecast future values of stationary time series based on its
path and in turn offers us an easy way to predict certain parameters of the
financial markets (2.2), (5.1) and (8.3) deterministically.

However, the ARMA model is not applicable to non-stationary time se-
ries. There are certain ways to make a time series stationary, e.g. detrending,
differencing and non-linear transformations, but if there is evidence of condi-
tional heteroscedasticity in the data, the requirements to apply the ARMA
model are not met. We call a series of random variables heteroskedastic
if there are certain subsets of variables, within the larger set, that have a
different variance from the remaining variables. This is a clear violation of
the stationarity of the underlying data, which would require the variance to
be independent of time. This effect can frequently be seen in the variance
of financial stocks, where an increase in variance is correlated to a further
increase in variance.

One possible way find the presence of conditional heteroskedasticity in
data is the Engle test for residual heteroscedasticity. We will not provide the
theory behind this test, and instead refer to [Engle, 1982]. However, we note
that a weakness of the Engle test is, that it assumes the heteroskedasticity
to be a linear function of the underlying variables. Failing to find evidence
of heteroskedasticity with the Engle test does not rule out a nonlinear re-
lationship. The next section outlines one possible model which is able to
model conditional heteroskedasticity.
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IV.C The GARCH Model

The generalized autoregressive conditional heteroskedasticity model, hence-
forth GARCH, builds on the ARMA model of the previous section in the
sence that it utilises an ARMA process for the variance itself. Introduced
in [Engle, 1982] it eases the restriction of constant volatility in the Black-
Scholes model is a discrete setting.

Definition IV.C.1. A stochastic process
(
ε(t)
)
t∈N is called GARCH(p, q)

if
ε(t) = σ(t)z(t),

where z(t) conditionally follows some distribution D, i.e. z(t)|Ft−1 ∼ D(0, 1)
and σ2(t) is given by

σ2(t) = α(0) +

q∑
i=1

α(i)ε2(t− i) +

p∑
j=1

β(j)σ2(t− j),

and α(q) 6= 0 6= β(p).

For most applications we will assume that the z(t) are standard normal
distributed.Note that in order for the conditional variance σ2(t) to remain
positive, we assume that all the coefficients are positive. Positive coefficients
are sufficient but not necessary conditions for the positivity of conditional
variance. For more general conditions, we refer to [Nelson and Cao, 1992].

We can utilize most of the theory on ARMA processes for GARCH pro-
cesses as well. This follows from the fact that a GARCH model can be
expressed as an ARMA model of squared residuals. Consider for example a
GARCH(1, 1) model

σ2(t) = α(0) + α(1)ε2(t− 1) + β(1)σ2(t− 1).

Since EP[ε2(t)|Ft−1

]
= σ2(t), this can be rewritten as

ε2(t) = α(0) +
(
α(1) + β(1)

)
ε2(t− 1) + u(t)− β(1)u(t− 1), (18.4)

which is an ARMA(1, 1) model with u(t) = ε2(t)− EP[ε2(t)|Ft−1

]
.

IV.C.1 Testing for GARCH Effects

By (18.4) we can test for heteroskedasticity using the autocorrelation func-
tion and the partial autocorrelation function, introduced in Section IV.B.2,
of the squared returns. The significance of these autocorrelations can then
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be quantified by the Ljung-Box test, introduced in [Ljung and Box, 1978].
Let ρ̂(j) denote the j-lag sample autocorrelation of the squared returns.
Then the Ljung-Box statistic is defined as

LJ(p) = n(n+ 2)

p∑
j=1

ρ̂2(j)

n− j
.

Under the null hypothesis of independently distributed data, one can show
that LJ(p) follows a chi-squared distribution with p degrees of freedom.

After evidence for heteroskedasticity has been found in the model, a
combination of the autocorrelation function and the partial autocorrelation
function of the squared returns can be used together with either the AIC or
the BIC to determine the size of the GARCH model.

Example IV.C.2. In Figure 18.4 we see a realization of a GARCH(1, 1)
process with α(0) = 0.01, α(1) = 0.45 and β(1) = 0.5. As the autocorre-
lation function does not show any correlation, we can guess that the un-
derlying process is not of the autoregressive form. As the autocorrelation
function of the squared process does show significant correlation, however,
the underlying GARCH structure becomes apparent.

IV.C.2 The ARMA/GARCH Model

By Definition IV.C.1, it is apparent, that a GARCH process has constant
conditional mean, but nonconstant conditional variance. On the other hand,
ARMA processes are just the opposite. If both the conditional mean, as
well as the conditional variance depend on the past, those two models can
be combined.

Definition IV.C.3. For ε(t) = σ(t)z(t), a stochastic process
(
X(t)

)
t∈N is

called ARMA(pA, qA)/GARCH(pG, qG) process, if

X(t) =

pA∑
i=1

φ(i)X(t− i) +

qA∑
j=0

θ(j)ε(t− j),

where the z(t) are independent of all X(s) for s < t, identically standard
normal distributed and φ(pA) 6= 0 6= θ(qA). Here, σ(t) satisfies the GARCH
equation

σ2(t) = α(0) +

qG∑
i=1

α(i)ε2(t− i) +

pG∑
j=1

β(j)σ2(t− j),

for α(qG) 6= 0 6= β(pG).
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Figure 18.4: An example of a GARCH(1, 1) model with α(0) = 0.01, α(1) =
0.45 and β(1) = 0.5. Note that even though the process itself is uncorrelated,
the squared process is not.
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Note that since the ε(t) are independent, X(t) still shows the auto-
correlation function of an ARMA process, while ε2(t) shows the auto-correlation
function of a GARCH process.
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IV.D Alternative Strategies

IV.D.1 The CRRA Utility Function

One of the more popular utlity function used in practice to determine in-
vestment strategies is the power utility function, given by

U(x) =
xγ

γ
, (18.5)

for γ ∈ (−∞, 1) \{0}, which is used as a factor of risk aversion. Define the
relative risk aversion by

R(x) = −xU
′′(x)

U ′(x)
.

Then the power utility function has constant relative risk aversion, called
CRRA, given by R(x) = 1− γ.

Assume the market model (8.3) with a single risky stock and constant
parameters and recall the notion of the wealth process (8.5), satisfying

dXπ(t) =
(
rN (t)Xπ(t) + π(t)′σ(t)θ(t) + δL(t)

)
dt+ π(t)′σ(t)dW (t).

Similar to Problem 3.2.3, we are interested in maximizing

J(x, π) = E[U(Xπ(T ))],

over the class

A2(x) =
{
π ∈ Π | E[U−(Xπ(T ))] <∞

}
,

but instead of using the quadratic utility function, we use the power utility
function (18.5). Denote the optimal portfolio process for a power utility
maximizing investor by π*(t). Using the Lagrangian expression (3.9) with
the admissibility constraint (9.4), we write

L = EP[U(Xπ(T ))
]

+ y
(
x+ d− EP[U(Xπ(T ))ξ(T )

])
,

which reaches its extremum for U(x) = xγ

γ−1 at

Xπ*(T ) =
(
yξ(T )

)1−γ
.

By setting

y =
( x+ d

EP
[
ξ(T )

γ
γ−1
])γ−1

,

the admissibility constrained (9.4) is satisfied.
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Proposition IV.D.1. The optimal portfolio process for a power utility max-
imizing investor is given by

π*(t) =
(
σ′
)−1
( 1

1−γ
(
Xπ*(t) +D(t)

)
θ −D(t)σL

Xπ*(t)

)
, (18.6)

where the optimal wealth process is given by

Xπ*(t) = (x+ d)e

(
rN+ 1

2
‖θ‖2t

(
1−( γ

γ−1
)2
)

+
(

1− γ
γ−1

)
θ′W (t) −D(t).

Proof. The proof follows along the same lines as the proofs of Proposition
3.3.1 and Theorem 3.4.3. We refer to [Zhang et al., 2007] for the complete
proof.

IV.D.2 The Dynamic Lifecycle Strategy

The dynamic lifecycle strategy proposed in [Basu et al., 2011] is used to
compare the portfolio processes to an alternative more closely related to
the investment strategies used in practice. Contrary to the deterministic
lifecycle strategy, the plan member sets an annual target for the internal
rate of return and the investment is adjusted depending if that target has
been reached. We adjust the procedure taken in [Basu et al., 2011], such
that the resulting strategy differs more heavily from the strategy investing
100% in the risky assets.

The strategy is divided into two periods. During the first period, set to
one half of the investment horizon, 100% of the wealth is invested in the
risky assets. During the second period, the investment behavior depends on
the rate of return achieved. The investment in the risky assets is reduced
linearly to zero if the target return set at the beginning is reached. However,
failing to achieve the target at any point during the second half results in
full investment in the risky assets once again. This procedure is repeated
annually, so the portfolio may start reducing the investment multiple times.

For simplicity, we assume that the investment in risky assets is split
equally between the stock and the inflation-linked bond. Finally, since the
strategy carries more risk than the deterministic lifecycle strategy by defi-
nition, we do not calculate the target rate of return by setting the expected
shortfall equal to that of the deterministic lifecycle strategy. This would
simply result in a target rate of return of 0%. The target is set to the
nominal interest rate instead.
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