
Advanced Studies in Applied Statistics (WBL), ETHZ
Applied Multivariate Statistics
Spring 2018, Week 12

Lecturer: Beate Sick

sickb@ethz.ch

1

Remark: Much of the material have been developed together with Oliver Dürr for different lectures at ZHAW.

mailto:christoph.hofer@zhaw.ch
mailto:christoph.hofer@zhaw.ch

Topics of today

2

• The concept of Bias and Variance of a classifier

• Recap concepts of over- and under-fitting

• Bagging as ensemble method to reduce variance

• Bagging

• Random Forest

• Boosting as ensemble method to reduce bias

• Adaptive Boosting

• Gradient boosting

• How to get the best prediction model?

The concept of Bias and Variance of a classification model

3

A underfitting classification model

• is not flexible enough

• quite many errors on train data and

systematic test error (high bias)

• will not vary much if new train data is

sampled from population (low variance)

A overfitting classification model

• is too flexible for data structure

• few errors on train set and non-

systematic test errors (low bias)

• will vary a lot if fitted to new train data

(high variance)

Examples for underfitting or overfitting tree models

4

partitioning resulting

from an underfitting tree

partitioning resulting

from an overfitting tree

Use ensemble methods to fight under and overfitting

5

Adaptive boosting

Gradient boosting
(fights under- and overfitting)

Bagging

Random Forest

in case of tree models

fight the deficits of the single model by

improve ensemble approach further by

Ensemble methods are the cure!

6

bias

variance

http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html

http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html
http://www.spiegel.de/spam/humor-fuer-leute-mit-humor-nel-ueber-schwarmintelligenz-a-842671.html

Bagging
&

Random Forest

7

Bagging as ensemble of parallel fitted models

Bagging: bootstrapping and averaging

1) Fit flexible models on different

bootstrap samples of train data

2) Minimize Bias by using flexible

models and allow for overfitting

3) Reduce variance by averaging over

many models

Remarks: highly non-linear estimators like trees benefit the most by bagging

 If model does not overfit the data bagging does not help nor hurt.

8

Original

Training data

....
D

1
D

2 D
t-1

D
t

D

Step 1:

Create Multiple

Data Sets

C
1

C
2

C
t -1

C
t

Step 2:

Build Multiple

Classifiers

C*

Step 3:

Combine

Classifiers

Each classifier tends to overfit its version of training data.

Recap: Why does bagging help for overfitting classifiers?

Suppose there are 25 base overfitting classifiers

Each classifier has error rate, = 0.35

Assume classifiers are independent

Probability that the ensemble classifier makes a wrong prediction

(that is if >50%, here 13 or more classifiers out of 25 make a

wrong prediction)

25
25

13

25
(wrong prediction) (1) 0.06i i

i

P
i

=> Ensembles are only better than one classifier, if

each classifier is better than random guessing!

Source: Tan, Steinbach, Kumar 9

10

• Suppose there are n=25 very flexible regression models

– All models are flexible -> the trees have no or only small bias

– All models are flexible -> the trees have high variance

– According to the Central Limit Theorem the average of the

predictions of n regression models have the same expected

value as the single model but a standard deviation which is

reduced by a factor of 𝑛 = 25 = 5.

true value

predictions for the same observation

made by different bootstrap models

average of

tree predictions

Recap: Why does bagging help for
 overfitting regression models?

Recap: Random Forest improves Bagging idea further

1) take bootstrap sample

2) grow on each bootstrap sample

a tree, but use the additional

tweak to sample from the

predictor sets at each split

before choosing among these

predictors -> uncorrelate trees

bootstrap sampling

11

Adaptive
Boosting

12

Adaptive Boosting as ensemble of sequentialy fitted models

D1
orig. data C1

D2
reweighed C2

D3
reweighed C3

combined

classifier

C’

We use in each step a simple (underfitting) model to fit the current version of the data.

After each step those observations get up-weighted, that were misclassified.

1

2

3

left fig credicts:

http://vinsol.com/blog/2016/06/28/computer-vision-face-detection/

13

falsely

classified

http://vinsol.com/blog/2016/06/28/computer-vision-face-detection/
http://vinsol.com/blog/2016/06/28/computer-vision-face-detection/
http://vinsol.com/blog/2016/06/28/computer-vision-face-detection/
http://vinsol.com/blog/2016/06/28/computer-vision-face-detection/
http://vinsol.com/blog/2016/06/28/computer-vision-face-detection/
http://vinsol.com/blog/2016/06/28/computer-vision-face-detection/
http://vinsol.com/blog/2016/06/28/computer-vision-face-detection/

Adaptive Boosting as weighted average of sequential models

The final classifier C’ is a weighted average of all sequential models Cm, where the

model-weights m are given by the misclassification rate errm of the model Cm

taking into account the observation-weights of the used reweighted data set Dm.

D1
orig. data C1

D2
reweighed C2

D3
reweighed C3

combined

classifier

C’

1

2

3

1

'() sign ()
M

m m

m

C x C x

Cm error small large weight m

errm

αm

14

Details of Ada Boost Algorithm

15

Remark: One can show (see ELS chapter 10.4, p.343) that the reweighting algorithm of AdaBoost is equivalent to optimizing an exponential loss.

 Fit an additive model 𝛼𝑚 ⋅ 𝐶𝑚
𝑀
𝑚=1 (ensemble) in a forward stage-wise manner.

 In each stage, introduce a weak learner to compensate the shortcomings of

existing weak learners.

 In Adaboost,“shortcomings” are identified by high-weight data points.

Ada Boost in simple words

16

Stumps are often used as simple tree models

Sepal.Length>5.4

 setosa not setosa

yes no
not

setosa

Stumps have only one split and can therefore use only 1 feature.

17

Adaptive boosting (Adaboost) relies often on “stumps” as
 underfitting tree classifiers

1

1

1

err 0.30

0.42

C

2

2

2

err 0.21

0.65

C

3

3

1

err 0.14

0.92

C

3

1

1

2

3

'

 0.42

 0.65

 0.92

m m

m

C C

C

C

C

By averaging simple classifiers we can get a much more flexible classifier (which might overfit).

18

Example (You Turn)

F
3
(x) = sign a

m
f
m
(x)

m=1

3

å
æ

èç
ö

ø÷

+1 -1

19

Example (You Turn)

F
3
(x) = sign a

m
f
m
(x)

m=1

3

å
æ

èç
ö

ø÷

20

> 0.4+0.65-0.92

[1] 0.13 # +

> -0.42+0.65-0.92

[1] -0.69 # -

> -0.42-0.65-0.92

[1] -1.99 # -

+1 -1

Performance of Boosting / Diagnostic Setting

Boosting most frequently used with trees (not necessary).

Trees are typically only grown to a certain depth – often 1 or 2.

Diagnostic: Significant interaction if depth 2 works better than depth 1.

Look at a specific case

21

Gradient
Boosting

22

 Fit an additive model 𝛼𝑚 ⋅ 𝐶𝑚
𝑀
𝑚=1 (ensemble) in a forward stage-wise manner.

 In each stage, introduce a weak learner to compensate the shortcomings of

existing weak learners.

 In Gradient Boosting, “shortcomings" are identified by gradients of the loss

 Recall: in Adaboost,“shortcomings” are identified by high-weight misclassified

data points.

Where do we go? Gradient boosting in simple words

23

Recall: regression tree with 2 predictors

x1
0.25

x2

0.4

Score: MSE (mean squared error)

?

? 1.25

1.3

0.9

1.05

1.05

3.05
4.1

3.9

3.4

-10..4

-3..1 -2..5

-5.2
?

?

?

2

1

1
ˆ()

n

i

i

MSE y y
n

24

numbers indicate values

of continuous outcome

y

x1<0.25

x2<0.4

yes

yes

no

no

3.6

1.1

-5.3

Per partition predict one outcome value

Given by the mean value of the

observed data in this region

Here, we have 2 predictors:

x1<2

x1<4

yes

yes

no

no

-3.6

1.1

-5.3

Per partition predict one outcome value

Given by the mean value of the

observed data in this region

Regression tree with 1 predictor

1

0

-1

-2

-3

-4

-5

-6

2 4 6 x1

y

25

Start with a regression example of gradient boosting

figure credits: dataCamp

First see in a simple example how it works and later see why this is gradient boosting

1) Fit a shallow regression tree T1 to the

data; the first model fits the data:

𝑀1 = 𝑇1

the shortcomings of the model are

given by the residuals= 𝑦 − 𝑦 .

2) Fit a tree T2 to the residuals; the second

model is: 𝑀2 = 𝑀1 + 𝛾𝑇2 where 𝛾 is

optimized so that 𝑀2 is best fit to data.

We regularize the learning process by

introducing a learning rate 𝜂 ∈ 0,1
𝑀2 = 𝑀1 + 𝜂𝛾𝑇2

3) Again fit a tree to the residuals … and

continue until the combined model fits.

𝑀1

𝑀1

𝑀2

26

Boosting model is weighted average of sequential models

𝑀 = 𝑀1 + 𝜂 𝛾𝑖𝑇𝑖

The closer the learning rate η is to 1 the faster is the learning and the

higher the risk for overfitting.

final Model M:

update by adding

stage-wise

modeled residuals

27

Side track: Loss or Cost function in linear regression

We know that in linear Regression, we determine the parameter bi such that the

likelihood is maximized or (equivalently) the sum of the squared residuals is minimized

The loss function in linear regression is:
22

0 1

1 1

Loss(,)
n n

i i i

i i

r y xb b

 x β

 Loss
x

b

L

b

L

w

L

b

• Points to the downward

direction.

• The magnitude is

proportional to the

slope

Iterative update

Here we can
make big steps Here we should

make smaller steps

b

(1
() (1) (,)t
t t L x b

b b
b

step downhill

There is a closed solution but we can also find minimum by gradient descent:

28

Loss or Cost landscape in case of convex 2D loss

• 2 equivalent representations

L
o

s
s

0 b1 b
b1

b2

cost=0.7
0.6

0.5
0.4

0.3
0.2

0

29

Remark: if we take too large steps, we could “step over the minimum”.

 -> the learning rate aka shrinkage is one of the most important tuning parameter

Iteratively optimize the parameter to find best model

Animation: http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

sgd:

(stochastic) gradient descent is

most famous optimization method

Other methods are more efficient by adapting

the learning rates (t) for each parameter 𝑤𝑖

based on the past couple of gradients.

30

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html
http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Side track: Connection between gradients and residuals

22

1 1

Loss or Cost C ()

()
()

n n

i i i

i i

i i i

i

r y f x

C
y f x r

f x

We want to minimize the cost or loss function by adjusting the parameter and with

that the fitted values 𝑓 𝑥𝑖 - notice for a given setting of parameter and x values
𝑓 𝑥𝑖 are just some numbers and we can treat them as parameters of the loss
the gradient

𝜕𝐶

𝜕𝑓(𝑥)
 tells us (like the residual) in which direction the modeled value 𝑓 𝑥 should be changed to improve the fit.

With a squared loss the residuals are the negative gradients 𝑔 of the loss!

()
()

i i

i

C
r g x

f x

31

The benefit of formulating this algorithm using gradients is

that it allows us to consider other loss functions and derive

the corresponding algorithms in the same way.

1) Fit a shallow regression tree T1 to the data; the first model is: 𝑀1 = 𝑇1

the shortcomings of the model are given by the negative gradients.

2) Fit a tree T2 to the negative gradients; the second model is: 𝑀2 = 𝑀1 + 𝜂𝛾𝑇2

where 𝛾 is optimized so that 𝑀2 is best fit to data.

3) Again fit a tree to the negative gradients, continue until the combined model

𝑀 = 𝑀1 + 𝜂 𝛾𝑖𝑇𝑖 fits.

Formulate the boosting algorithm in terms of gradients

So we are actually updating our model using gradient descent!

update first fit M1 by adding the stage-

wise modeled negative gradients

32

Commonly used loss functions for gradient boosting

Binomial Deviance

SVM

(,F) (1)L y y y F

Correct Classification Wrong Classification

Remark: One can show (see ELS chapter 10.4, p.343) that optimizing the exponential loss is equivalent to the reweighting algorithm of AdaBoost.

33

 Loss y ,M()
()

()

i i

i

i

x
g x

M x

We pick a problem specific differential Loss function.

We start with a initial (underfitting) model 𝑀 = 𝑀1

Iterate and do at each stage the following until converge:

a) calculate negative gradients
remember that for a given setting of parameter

and x values M 𝑥𝑖 are just some numbers and

we can treat them as parameters of the loss and

the gradient tells us (like the residual) in which direction

this modeled value should be changed to improve the fit.

b) fit a model T to the negative gradients −𝑔(𝑥𝑖)

c) Get an updated model by adding a fraction of T

General gradient boosting procedure

𝑀 = 𝑀1 + 𝜂 𝛾𝑘𝑇𝑘

34

Remarks: GB can easily overfit and needs to be regularized. GB based on trees cannot extrapolate

Historical View on boosting methods

• Adaptive Boosting (adaBoost) Algorithm:

– Freund & Schapire, 1990-1997

– An algorithmic method based on iterative data reweighting for two class
classification.

• Gradient Boosting (GB):

– Breiman (1999) Sound theoretical framework using iterative minimization of a
loss function (opening the door to > 2 class classification and regression)…

– Friedman/Hastie/Tibshirani (2000) Generalization to a variety of loss functions

• Extreme Gradient Boosting (xgboost - a particular implementation of GB)

– Tianqi Chen (2014 code, 2016 published arXiv://1603.02754)

– Theory similar to GB (often trees), but more emphasis on regularisation

– Much better implementation (distributed, 10x faster on single machine)

– Often used in Kaggle Competitions as part of the winning solution

35

https://arxiv.org/abs/1603.02754
https://arxiv.org/abs/1603.02754

Boosting
in R

37

Gradient boosting in R’s gbm package

library(gbm)

library(MASS) # for boston housing data

#separating training and test data

train=sample(1:506,size=374)

Boston.boost=gbm(medv ~ . ,data = Boston[train,],

 distribution = "gaussian",

 n.trees = 10000,

 shrinkage = 0.01, # aka learning rate

 interaction.depth = 4)

look at variable importance

summary(Boston.boost)
var rel.inf

lstat lstat 36.0378370

rm rm 32.0817888

dis dis 9.1929237

crim crim 5.2662981

nox nox 3.9236955

age age 3.6299790

black black 3.3031968

ptratio ptratio 2.6644378

tax tax 1.4270161

rad rad 0.7865713

indus indus 0.7627721

chas chas 0.7511395

zn zn 0.1723443

partial dependency plots

plot(Boston.boost,i="rm")

price increases with #rooms

38 code credits: https://datascienceplus.com/gradient-boosting-in-r/

https://datascienceplus.com/gradient-boosting-in-r/
https://datascienceplus.com/gradient-boosting-in-r/
https://datascienceplus.com/gradient-boosting-in-r/
https://datascienceplus.com/gradient-boosting-in-r/
https://datascienceplus.com/gradient-boosting-in-r/
https://datascienceplus.com/gradient-boosting-in-r/
https://datascienceplus.com/gradient-boosting-in-r/

Check on test error in gradient boosting in R’s gbm

Test error as function of #trees

n.trees = seq(from=100 ,to=10000, by=100)

#Generating a Prediction matrix for each Tree

predmatrix<-predict(Boston.boost,Boston[-train,],

 n.trees=n.trees, type="response")

dim(predmatrix)

#Calculating The Mean squared Test Error

test.error<-with(Boston[-train,],

 apply((predmatrix-medv)^2,2,mean))

head(test.error)

#Plotting the test error vs number of trees

plot(n.trees , test.error ,

 pch=19,col="blue",

 xlab="Number of Trees",

 ylab="Test Error",

 main="Perfomance of Boosting on Test Set")

39 code credits: https://datascienceplus.com/gradient-boosting-in-r/

https://datascienceplus.com/gradient-boosting-in-r/
https://datascienceplus.com/gradient-boosting-in-r/
https://datascienceplus.com/gradient-boosting-in-r/
https://datascienceplus.com/gradient-boosting-in-r/
https://datascienceplus.com/gradient-boosting-in-r/
https://datascienceplus.com/gradient-boosting-in-r/
https://datascienceplus.com/gradient-boosting-in-r/

How to tune an extreme gradient boosting model?

The (three) most important parameter for Tree Booster:

• eta aka learning rate: Default [default=0.3][range: (0,1)]

can be lowered to fight overfitting

• gamma [default=0][range: (0,Inf)] minimum loss reduction required for

further split. Can be increased to fight overfitting with shallow trees.

• max_depth maximum depth of a tree [default=6][range: (0,Inf)].

Can (often should) be lowered to prevent overfitting.

• subsample subsample ratio of the training instance. Can be lowered to

fight influence of outliers (and decorrelate trees).

• Cross validation should be used to tune hyper-parameter. Best via a

multivariate-grid search.

• Watchlist is helpful for simple (univariate) tuning

https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/

40

https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/
https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/beginners-tutorial-on-xgboost-parameter-tuning-r/tutorial/

Extreme Gradient boosting in R’s xgboost package

library(xgboost)

library(magrittr)

library(dplyr)

library(Matrix)

data <- read.csv("binary.csv", header = T)

names(data) # "admit" "gre" "gpa" "rank"

data$rank <- as.factor(data$rank)

Partition data

set.seed(1234)

ind <- sample(2, nrow(data), replace = T, prob = c(0.8, 0.2))

train <- data[ind==1,]

test <- data[ind==2,]

Create matrix - One-Hot Encoding for Factor variables

trainm <- sparse.model.matrix(admit ~ .-1, data = train)

head(trainm)

train_label <- train[,"admit"]

train_matrix <- xgb.DMatrix(data = as.matrix(trainm), label = train_label)

testm <- sparse.model.matrix(admit~.-1, data = test)

test_label <- test[,"admit"]

test_matrix <- xgb.DMatrix(data = as.matrix(testm), label = test_label)

41

code credits: https://drive.google.com/file/d/0B5W8CO0Gb2GGVUM4c2t6bnliQ1E/view

data: https://drive.google.com/file/d/0B5W8CO0Gb2GGVjRILTdWZkpJU1E/view

youtube: youtube: https://www.youtube.com/watch?v=woVTNwRrFHE&t=299s

https://drive.google.com/file/d/0B5W8CO0Gb2GGVUM4c2t6bnliQ1E/view
https://drive.google.com/file/d/0B5W8CO0Gb2GGVjRILTdWZkpJU1E/view
youtube: https://www.youtube.com/watch?v=woVTNwRrFHE&t=299s
youtube: https://www.youtube.com/watch?v=woVTNwRrFHE&t=299s

Extreme Gradient boosting in R’s xgboost package

42

Parameters

nc <- length(unique(train_label))

xgb_params <- list("objective" = "multi:softprob",

 "eval_metric" = "mlogloss",

 "num_class" = nc)

watchlist <- list(train = train_matrix, test = test_matrix)

eXtreme Gradient Boosting Model

bst_model <- xgb.train(params = xgb_params,

 data = train_matrix,

 nrounds = 1000,

 watchlist = watchlist,

 eta = 0.001,

 max.depth = 3,

 gamma = 0,

 subsample = 1,

 colsample_bytree = 1,

 missing = NA,

 seed = 333)

Training & test error plot

e <- data.frame(bst_model$evaluation_log)

plot(e$iter, e$train_mlogloss, col = 'blue')

lines(e$iter, e$test_mlogloss, col = 'red')

min(e$test_mlogloss)

e[e$test_mlogloss == 0.625217,]

Extreme Gradient boosting in R’s xgboost package

43

Feature importance

imp <- xgb.importance(colnames(train_matrix),

 model = bst_model)

print(imp)

xgb.plot.importance(imp)

title("xgboos importance plot")

Prediction & confusion matrix - test data

p <- predict(bst_model, newdata=test_matrix)

pred <- matrix(p, nrow=nc) %>%

 t() %>%

 data.frame() %>%

 mutate(label = test_label,

 max_prob = max.col(., "last")-1)

 #find max pos in each row

table(Prediction=pred$max_prob, Actual=pred$label)

Actual

Prediction 0 1

0 49 21

1 1 4

Comparison of bagging, RF, and gradient boosting

In many applications the test prediction performance

increases from bagging to RF to gradient boosting
Both, RF and gbm yield

variable importance plots

Remark: Often stumps perform better than deeper trees. A reason might be that additive model of stumps can fit very well

quadratic boundaries in each coordinate, which is often a good and robust approximation (see Hastie 2014 talk).

With glmnet we can also do a post-procession of boosting or bagging and use lasso to pick the relevant trees.

44

How to construct the best performing model?

Join Forces, use different models including

ensemble methods and learn how to combine

their predictions for a joint prediction.

45

Winning solution for the Otto Challenge

See: https://www.kaggle.com/c/otto-group-product-classification-challenge/forums/t/14335/1st-place-winner-solution-gilberto-titericz-stanislav-semenov/79598#post79598

Use outcome from models (e.g. xgboost) as meta features

46

Summary on ensemble methods with focus on boosting

• Ensemble methods often improve prediction performance of individual models

• Bagging (bootstrapping and averaging) relies on averaging “independent” models

and reduces variance of baseline model predictions (RF is an improved bagging method)

• Adaptive Boosting (synonyms: increase, go up, add to..) relies on step-wise

improving the model by up-weighting miss-classified data from previous model.

• (extreme) Gradient Boosting (synonyms for boosting: increase, go up, add to..) relies on

step-wise improving the model by adding modeled negative gradients resulting

from combined previous model.

• Bagging (or RF) is easy to use and is a good bench mark.

• Boosting, especially xgboost shows often better performance but is not so easy

to use since it has many hyper-parameter that need to be carefully tuned.

47

What have we done during this semester?
Statistics, machine learning or data science?

Machine Learning:

Here we focus on algorithms that can learn from data.

Statistical Learning:

Branch of applied statistics that emerged in response to machine learning,

emphasizing statistical models and assessment of uncertainty.

Data Science

Extraction of knowledge from data, using ideas from mathematics, statistics,

machine learning, computer science, engineering, …

All of these are very similar – with different emphases.

Credits for these definitions: Trevor Hastie (2015)

48

Classifiers

K-Nearest-Neighbors (KNN)

Classification Trees

Linear discriminant analysis

Logistic Regression

Support Vector Machine (SVM)

Neural networks NN

…

Evaluation

Cross validation

Performance measures

Confusion matrices

ROC Analysis

Ensemble methods

Bagging

Random Forest

Boosting

Theoretical Guidance / General Ideas

Bayes Classifier

Concept of Bias and Variance trade-off

overfitting (high variance)

underfitting (high bias)

Feature Engineering

Feature expansion (kernel trick, NN)

Feature Selection (lasso, tree models…)

49

What have we don during this semester?

Wrapping up

• Multivariate data sets (p>>2) call for special methods.

• First step in most data analysis project: visualization, QC…
– Outlier detection via robust PCA, c2 quantiles of MD2 …

– PCA, MDS for 2D visualization of rather small data (~located in 2D hyperplane)

– Cluster analysis such as k-means, or hierarchical

– t-SNE for 2D visualization of rather large data focusing on preserving close neighbors

• Supervised learning with “wide data sets” (p~10-100’000, n~10-1000)

– SVM, Lasso, Ridge, LDA, knn, stepwise selection

• Supervised learning with “long data sets” (p~10-1000, n~500-100’000)

– GLM, RF, Boosting

• Which method is best, depends on the (often unknown) data structure,
therefor it is a good strategy to try to understand the data as good as
possible before picking the method and to try different methods.

 50

