
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applied Time Series Analysis 

SS 2020 

May 4, 2020 

 

 

 

 

 

 

Dr. Marcel Dettling 

Institute for Data Analysis and Process Design 

Zurich University of Applied Sciences 

CH-8401 Winterthur 



 

 

 

 

 

 

 

 

 



Table of Contents 

1 INTRODUCTION 1 

1.1 PURPOSE 1 
1.2 EXAMPLES 2 
1.3 GOALS IN TIME SERIES ANALYSIS 8 

2 MATHEMATICAL CONCEPTS 11 

2.1 DEFINITION OF A TIME SERIES 11 
2.2 STATIONARITY 11 
2.3 TESTING STATIONARITY 13 

3 TIME SERIES IN R 15 

3.1 TIME SERIES CLASSES 15 
3.2 DATES AND TIMES IN R 19 
3.3 DATA IMPORT 22 

4 DESCRIPTIVE ANALYSIS 25 

4.1 VISUALIZATION 25 
4.2 TRANSFORMATIONS 32 
4.3 DECOMPOSITION 36 
4.4 AUTOCORRELATION 62 
4.5 PARTIAL AUTOCORRELATION 78 

5 STATIONARY TIME SERIES MODELS 81 

5.1 WHITE NOISE 81 
5.2 ESTIMATING THE CONDITIONAL MEAN 82 
5.3 AUTOREGRESSIVE MODELS 83 
5.4 MOVING AVERAGE MODELS 99 
5.5 ARMA(P,Q) MODELS 108 

6 SARIMA AND GARCH MODELS 117 

6.1 ARIMA MODELS 117 
6.2 SARIMA MODELS 124 
6.3 ARCH/GARCH MODELS 128 

7 TIME SERIES REGRESSION 133 

7.1 WHAT IS THE PROBLEM? 133 
7.2 FINDING CORRELATED ERRORS 137 
7.3 COCHRANE-ORCUTT METHOD 144 



7.4 GENERALIZED LEAST SQUARES 145 
7.5 MISSING PREDICTOR VARIABLES 151 

8 FORECASTING 157 

8.1 STATIONARY TIME SERIES 159 
8.2 SERIES WITH TREND AND SEASON 171 
8.3 EXPONENTIAL SMOOTHING 178 

9 MULTIVARIATE TIME SERIES ANALYSIS 187 

9.1 PRACTICAL EXAMPLE 187 
9.2 CROSS CORRELATION 191 
9.3 PREWHITENING 194 
9.4 TRANSFER FUNCTION MODELS 196 

10 SPECTRAL ANALYSIS 201 

10.1 DECOMPOSING IN THE FREQUENCY DOMAIN 201 
10.2 THE SPECTRUM 205 
10.3 REAL WORLD EXAMPLE 212 

11 STATE SPACE MODELS 213 

11.1 STATE SPACE FORMULATION 213 
11.2 AR PROCESSES WITH MEASUREMENT NOISE 214 
11.3 DYNAMIC LINEAR MODELS 217 

 

 

 

 

 

 

 



ATSA  1 Introduction 

 Page 1 

1 Introduction 

1.1 Purpose 

Time series data, i.e. records which are measured sequentially over time, are 
extremely common. They arise in virtually every application field, such as e.g.: 

 Business 
Sales figures, production numbers, customer frequencies, ... 

 Economics 
Stock prices, exchange rates, interest rates, ... 

 Official Statistics 
Census data, personal expenditures, road casualties, ... 

 Natural Sciences 
Population sizes, sunspot activity, chemical process data, ... 

 Environmetrics 
Precipitation, temperature or pollution recordings, ... 

In contrast to basic data analysis where the assumption of identically and 
independently distributed data is key, time series are serially correlated. The 
purpose of time series analysis is to visualize and understand these dependencies 
in past data, and to exploit them for forecasting future values. While some simple 
descriptive techniques do often considerably enhance the understanding of the 
data, a full analysis usually involves modeling the stochastic mechanism that is 
assumed to be the generator of the observed time series. 
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Once a good model is found and fitted to data, the analyst can use that model to 
forecast future values and produce prediction intervals, or he can generate 
simulations, for example to guide planning decisions. Moreover, fitted models are 
used as a basis for statistical tests: they allow determining whether fluctuations in 
monthly sales provide evidence of some underlying change, or whether they are still 
within the range of usual random variation. 

The dominant main features of many time series are trend and seasonal variation. 
These can either be modeled deterministically by mathematical functions of time, or 
are estimated using non-parametric smoothing approaches. Yet another key feature 
of most time series is that adjacent observations tend to be correlated, i.e. serially 
dependent. Much of the methodology in time series analysis is aimed at explaining 
this correlation using appropriate statistical models. 

While the theory on mathematically oriented time series analysis is vast and may be 
studied without necessarily fitting any models to data, the focus of our course will 
be applied and directed towards data analysis. We study some basic properties of 
time series processes and models, but mostly focus on how to visualize and 
describe time series data, on how to fit models to data correctly, on how to generate 
forecasts, and on how to adequately draw conclusions from the output that was 
produced. 

1.2 Examples 

1.2.1 Air Passenger Bookings 

The numbers of international passenger bookings (in thousands) per month on an 
airline (PanAm) in the United States were obtained from the Federal Aviation 
Administration for the period 1949-1960. The company used the data to predict 
future demand before ordering new aircraft and training aircrew. The data are 
available as a time series in R. Here, we here show how to access them, and how 
to first gain an impression. 

> data(AirPassengers) 
> AirPassengers 
     Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1949 112 118 132 129 121 135 148 148 136 119 104 118 
1950 115 126 141 135 125 149 170 170 158 133 114 140 
1951 145 150 178 163 172 178 199 199 184 162 146 166 
1952 171 180 193 181 183 218 230 242 209 191 172 194 
1953 196 196 236 235 229 243 264 272 237 211 180 201 
1954 204 188 235 227 234 264 302 293 259 229 203 229 
1955 242 233 267 269 270 315 364 347 312 274 237 278 
1956 284 277 317 313 318 374 413 405 355 306 271 306 
1957 315 301 356 348 355 422 465 467 404 347 305 336 
1958 340 318 362 348 363 435 491 505 404 359 310 337 
1959 360 342 406 396 420 472 548 559 463 407 362 405 
1960 417 391 419 461 472 535 622 606 508 461 390 432 



ATSA  1 Introduction 

 Page 3 

Some further information about this dataset can be obtained by typing 
?AirPassengers in R. The data are stored in an R-object of class ts, which is the 
specific class for time series data. However, for further details on how time series 
are handled in R, we refer to section 3. 

One of the most important steps in time series analysis is to visualize the data, i.e. 
create a time series plot, where the air passenger bookings are plotted versus the 
time of booking. For a time series object, this can be done very simply in R, using 
the generic plot function: 

> plot(AirPassengers, ylab="Pax", main="Passenger Bookings") 

The result is displayed on the next page. There are a number of features in the plot 
which are common to many time series. For example, it is apparent that the number 
of passengers travelling on the airline is increasing with time. In general, a 
systematic change in the mean level of a time series that does not appear to be 
periodic is known as a trend. The simplest model for a trend is a linear increase or 
decrease, an often adequate approximation. We will discuss how to estimate trends, 
and how to decompose time series into trend and other components in section 4.3. 

The data also show a repeating pattern within each year, i.e. in summer, there are 
always more passengers than in winter. This is known as a seasonal effect, or 
seasonality. Please note that this term is applied more generally to any repeating 
pattern over a fixed period, such as for example restaurant bookings on different 
days of week. 

 

We can naturally attribute the increasing trend of the series to causes such as rising 
prosperity, greater availability of aircraft, cheaper flights and increasing population. 
The seasonal variation coincides strongly with vacation periods. For this reason, we 
here consider both trend and seasonal variation as deterministic components. As 
mentioned before, section 4.3 discusses visualization and estimation of these 
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components, while in section 7, time series regression models will be specified to 
allow for underlying causes like these, and finally section 8 discusses exploiting 
these for predictive purposes. 

1.2.2 Lynx Trappings 

The next series which we consider here is the annual number of lynx trappings for 
the years 1821-1934 in the Mackenzie River District in Canada. We again load the 
data and visualize them using a time series plot: 

> data(lynx) 
> plot(lynx, ylab="# of Lynx Trapped", main="Lynx Trappings") 

The plot on the next page shows that the number of trapped lynx reaches high and 
low values every about 10 years, and some even larger figure every about 40 years. 
While biologists often approach such data with predator-prey-models, we here focus 
on the analysis of the time signal only. This suggests that the prominent periodicity 
is to be interpreted as random, but not deterministic. 

 

This leads us to the heart of time series analysis: while understanding and modeling 
trend and seasonal variation is a very important aspect, much of the time series 
methodology is aimed at stationary series, i.e. data which do not show deterministic, 
but only random (cyclic) variation. 
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1.2.3 Luteinizing Hormone Measurements 

One of the key features of the above lynx trappings series is that the observations 
apparently do not stem from independent and identically distributed (iid) random 
variables, but there is some serial correlation. If the previous value was high (or low, 
respectively), the next one is likely to be similar to the previous one. To explore, 
model and exploit such dependence lies at the root of time series analysis. We here 
show another series, where 48 luteinizing hormone levels were recorded from blood 
samples that were taken at 10 minute intervals from a human female. This hormone, 
also called lutropin, triggers ovulation.  

> data(lh) 
> lh 
Time Series: 
Start = 1; End = 48; Frequency = 1  
 [1] 2.4 2.4 2.4 2.2 2.1 1.5 2.3 2.3 2.5 2.0 1.9 1.7 2.2 1.8 
[15] 3.2 3.2 2.7 2.2 2.2 1.9 1.9 1.8 2.7 3.0 2.3 2.0 2.0 2.9 
[29] 2.9 2.7 2.7 2.3 2.6 2.4 1.8 1.7 1.5 1.4 2.1 3.3 3.5 3.5 
[43] 3.1 2.6 2.1 3.4 3.0 2.9 

Again, the data themselves are of course needed to perform analyses, but provide 
little overview. We can improve this by generating a time series plot: 

> plot(lh, ylab="LH level", main="Luteinizing Hormone") 

 

For this series, given the way the measurements were made (i.e. 10 minute 
intervals), we can almost certainly exclude any deterministic seasonal pattern. But 
is there any stochastic cyclic behavior? This question is more difficult to answer. 
Normally, one resorts to the simpler question of analyzing the correlation of 
subsequent records, called autocorrelations. The autocorrelation for lag 1 can be 
visualized by producing a scatterplot of adjacent observations: 
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> plot(lh[1:47], lh[2:48], pch=20) 
> title("Scatterplot of LH Data with Lag 1") 
 

 

Besides the (non-standard) observation that there seems to be an inhomogeneity, 
i.e. two distinct groups of data points, it is apparent that there is a positive correlation 
between successive measurements. This manifests itself with the clearly visible fact 
that if the previous observation was above or below the mean, the next one is more 
likely to be on the same side. We can even compute the value of the Pearson 
correlation coefficient: 

> cor(lh[1:47], lh[2:48]) 
[1] 0.5807322 

Its value of 0.58 is an estimate for the so-called autocorrelation coefficient at lag 1. 
As we will see in section 4.4, the idea of considering lagged scatterplots and 
computing Pearson correlation coefficients serves as a good proxy for a 
mathematically more sound method. We also note that despite the positive 
correlation of +0.58, the series seems to always have the possibility of “reverting to 
the other side of the mean”, a property which is common to stationary series – an 
issue that will be discussed in section 2.2. 

1.2.4 Swiss Market Index 

The SMI is the blue chip index of the Swiss stock market. It summarizes the value 
of the shares of the 20 most important companies, and currently contains nearly 
90% of the total market capitalization. It was introduced on July 1, 1988 at a basis 
level of 1500.00 points. Daily closing data for 1860 consecutive trading days from 
1991-1998 are available in R. We observe a more than 4-fold increase during that 
period. As a side note, the value in February 2016 is around 7’800 points, indicating 
a sidewards movement over the latest 15 years. 
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> data(EuStockMarkets) 
> EuStockMarkets 
Time Series: 
Start = c(1991, 130)  
End = c(1998, 169)  
Frequency = 260  
             DAX    SMI    CAC   FTSE 
1991.496 1628.75 1678.1 1772.8 2443.6 
1991.500 1613.63 1688.5 1750.5 2460.2 
1991.504 1606.51 1678.6 1718.0 2448.2 
1991.508 1621.04 1684.1 1708.1 2470.4 
1991.512 1618.16 1686.6 1723.1 2484.7 
1991.515 1610.61 1671.6 1714.3 2466.8 

As we can see, EuStockMarkets is a multiple time series object, which also 
contains data from the German DAX, the French CAC and UK’s FTSE. We will focus 
on the SMI and thus extract and plot the series: 

esm <- EuStockMarkets 
tmp <- EuStockMarkets[,2] 
smi <- ts(tmp, start=start(esm), freq=frequency(esm)) 
plot(smi, main="SMI Daily Closing Value") 

Because subsetting from a multiple time series object results in a vector, but not a 
time series object, we need to regenerate a latter one, sharing the arguments of the 
original. In the plot we clearly observe that the series has a trend, i.e. the mean is 
obviously non-constant over time. This is typical for all financial time series. 

 

Such trends in financial time series are nearly impossible to predict, and difficult to 
characterize mathematically. We will not embark in this, but analyze the so-called 
log-returns, i.e. the day-to-day changes after a log-transformation of the series: 
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> lret.smi <- diff(log(smi)) 
> plot(lret.smi, main="SMI Log-Returns") 

 

These log-returns are a close approximation to the relative change (percent values) 
with respect to the previous day. As can be seen above, they do not exhibit a trend 
anymore, but show some of the stylized facts that most log-returns of financial time 
series share. Using lagged scatterplots or the correlogram (to be discussed later in 
section 4.4), you can convince yourself that there is no serial correlation. Thus, there 
is no dependency which could be exploited to predict tomorrows return based on 
the one of today and/or previous days.  

However, it is visible that large changes, i.e. log-returns with high absolute values, 
imply that future log-returns tend to be larger than normal, too. This feature is also 
known as volatility clustering, and financial service providers are trying their best to 
exploit this property to make profit. Again, you can convince yourself of the volatility 
clustering effect by taking the squared log-returns and analyzing their serial 
correlation, which is different from zero. 

1.3 Goals in Time Series Analysis 

A first impression of the purpose and goals in time series analysis could be gained 
from the previous examples. We conclude this introductory section by explicitly 
summarizing the most important goals. 

1.3.1 Exploratory Analysis 

Exploratory analysis for time series mainly involves visualization with time series 
plots, decomposition of the series into deterministic and stochastic parts, and 
studying the dependency structure in the data. 
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1.3.2 Modeling 

The formulation of a stochastic model, as it is for example also done in regression, 
can and does often lead to a deeper understanding of the series. The formulation of 
a suitable model usually arises from a mixture between background knowledge in 
the applied field, and insight from exploratory analysis. Once a suitable model is 
found, a central issue remains, i.e. the estimation of the parameters, and 
subsequent model diagnostics and evaluation. 

1.3.3 Forecasting 

An often-heard motivation for time series analysis is the prediction of future 
observations in the series. This is an ambitious goal, because time series 
forecasting relies on extrapolation, and is generally based on the assumption that 
past and present characteristics of the series continue. It seems obvious that good 
forecasting results require a very good comprehension of a series’ properties, be it 
in a more descriptive sense, or in the sense of a fitted model. 

1.3.4 Time Series Regression 

Rather than just forecasting by extrapolation, we can try to understand the relation 
between a so-identified response time series, and one or more explanatory series. 
If all of these are observed at the same time, we can in principle employ the ordinary 
least squares (OLS) regression framework. However, the all-to-common 
assumption of (serially) uncorrelated errors in OLS is usually violated in a time series 
setup. We will illustrate how to properly deal with this situation, in order to generate 
correct confidence and prediction intervals. 

1.3.5 Process Control 

Many production or other processes are measured quantitatively for the purpose of 
optimal management and quality control. This usually results in time series data, to 
which a stochastic model is fit. This allows understanding the signal in the data, but 
also the noise: it becomes feasible to monitor which fluctuations in the production 
are normal, and which ones require intervention. 

1.3.6 Time Series Clustering or Classification 

In the modern world, more and more processes create online time series data. A 
typical task with these recordings is to group snippets of time series according to 
their characteristics, be it in a supervised fashion(classification) or unsupervised via 
clustering methods. Traditional approaches focus on extracting features from the 
time series methods, whereas novel ideas focus on neural networks that do not 
require feature specification. 
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2 Mathematical Concepts 
For performing anything else than very basic exploratory time series analysis, even 
from a much applied perspective, it is necessary to introduce the mathematical 
notion of what a time series is, and to study some basic probabilistic properties, 
namely the moments and the concept of stationarity. 

2.1 Definition of a Time Series 

As we have explained in section 1.2, observations that have been collected over 
fixed sampling intervals form a time series. Following a statistical approach, we 
consider such series as realizations of random variables. A sequence of random 
variables, defined at such fixed sampling intervals, is sometimes referred to as a 
discrete-time stochastic process, though the shorter names time series model or 
time series process are more popular and will mostly be used in this scriptum. It is 
very important to make the distinction between a time series, i.e. observed values, 
and a process, i.e. a probabilistic construct. 

Definition: A time series process is a set of random variables  ,tX t T , where T  
is the set of times at which the process was, will or can be observed. We assume 
that each random variable tX  is distributed according some univariate distribution 
function tF . Please note that for our entire course and hence scriptum, we 
exclusively consider time series processes with equidistant time intervals, as well 
as real-valued random variables tX . This allows us to enumerate the set of times, 
so that we can write {1,2,3, }T   . 

An observed time series, on the other hand, is seen as a realization of the random 
vector 1 2( , , , )nX X X X  , and is denoted with small letters 1 2( , , ), nx x x x  . It is 
important to note that in a multivariate sense, a time series is only one single 
realization of the n -dimensional random variable X , with its multivariate,  
n -dimensional distribution function 1:nF . As we all know, we cannot do statistics with 
just a single observation. As a way out of this situation, we need to impose some 
conditions on the joint distribution function 1:nF . 

2.2 Stationarity 

The aforementioned condition on the joint distribution 1:nF  will be formulated as the 
concept of stationarity. In colloquial language, stationarity means that the 
probabilistic character of the series must not change over time, i.e. that any section 
of the time series is “typical” for every other section with the same length. More 
mathematically, we require that for any indices ,s t  and k , the observations 

, ,t t kx x   could have just as easily occurred at times , ,s s k  . If that is not the 
case practically, then the series is hardly stationary. 
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Imposing even more mathematical rigor, we introduce the concept of strict 
stationarity. A time series is said to be strictly stationary if and only if the  
( 1)k  -dimensional joint distribution of , ,t t kX X   coincides with the joint distribution 
of , ,s s kX X   for any combination of indices t , s  and k . For the special case of 

0k   and t s , this means that the univariate distributions tF  of all tX  are equal. 
For strictly stationary time series, we can thus leave off the index t  on the 
distribution. As the next step, we will define the unconditional moments: 

 Expectation    [ ]tE X , 
 Variance  2   ( )tVar X , 
 Covariance ( )h   ( , )t t hCov X X  . 

In other words, strictly stationary series have constant (unconditional) expectation, 
constant (unconditional) variance , and the covariance, i.e. the dependency 
structure, depends only on the lag h, which is the time difference between the two 
observations. However, the covariance terms are generally different from 0, and 
thus, the tX  are usually dependent. Moreover, the conditional expectation given the 
past of the series, 1 2[ | , ,...]t t tE X X X   is typically non-constant, denoted as t . In 
some (rarer, e.g. for financial time series) cases, even the conditional variance 

1 2( | , ,...)t t tVar X X X   can be non-constant. 

In practice however, except for simulation studies, we usually have no explicit 
knowledge of the latent time series process. Since strict stationarity is defined as a 
property of the process’ joint distributions (all of them), it is impossible to verify from 
an observed time series, i.e. a single data realization. We can, however, try to verify 
whether a time series process shows constant unconditional mean and variance, 
and whether the dependency only depends on the lag h. This much less rigorous 
property is known as weak stationarity. 

In order to do well-founded statistical analyses with time series, weak stationarity is 
a necessary condition. It is obvious that if a series’ observations do not have 
common properties such as constant mean/variance and a stable dependency 
structure, it will be impossible to statistically learn from it. On the other hand, it can 
be shown that weak stationarity, along with the additional property of ergodicity (i.e. 
the mean of a time series realization converges to the expected value, independent 
of the starting point), is sufficient for most practical purposes such as model fitting, 
forecasting, etc.. We will, however, not further embark in this subject. 

Remarks: 

 From now on, when we speak of stationarity, we strictly mean weak 
stationarity. The motivation is that weak stationarity is sufficient for applied 
time series analysis, and strict stationarity is a practically useless concept. 

 When we analyze time series data, we need to verify whether it might have 
arisen from a stationary process or not. Be careful with the wording: 
stationarity is always a property of the process, and never of the data. 
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 Moreover, bear in mind that stationarity is a hypothesis, which needs to be 
evaluated for every series. We may be able to reject this hypothesis with quite 
some certainty if the data strongly speak against it. However, we can never 
prove stationarity with data. At best, it is plausible that a series originated 
from a stationary process. 

 Some obvious violations of stationarity are trends, non-constant variance, 
deterministic seasonal variation, as well as apparent breaks in the data, 
which are indicators for changing dependency structure. 

2.3 Testing Stationarity 

If, as explained above, stationarity is a hypothesis which is tested on data, students 
and users keep asking if there are any formal tests. The answer to this question is 
yes, and there are even quite a number of tests. This includes the Augmented 
Dickey-Fuller Test, the Phillips-Perron Test, the KPSS Test, which are all available 
in R’s tseries package. The urca package includes further tests such as the 
Elliott-Rothenberg-Stock, Schmidt-Phillips und Zivot-Andrews. 

However, we will not discuss any of these tests here for a variety of reasons. First 
and foremost, they all focus on some very specific non-stationarity aspects, but do 
not test stationarity in a broad sense. While they may reasonably do their job in the 
narrow field they are aimed for, they have low power to detect general non-
stationarity and in practice often fail to do so. Additionally, theory and formalism of 
these tests is quite complex, and thus beyond the scope of this course. In summary, 
these tests are to be seen as more of a pasttime for the mathematically interested, 
rather than a useful tool for the practitioner. 

Thus, we here recommend assessing stationarity by visual inspection. The primary 
tool for this is the time series plot, but also the correlogram (see section 4.4) can be 
helpful as a second check. For long time series, it can also be useful to split up the 
series into several parts for checking whether mean, variance and dependency are 
similar over the blocks. 
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3 Time Series in R 

3.1 Time Series Classes 

In R, there are objects, which are organized in a large number of classes. These 
classes e.g. include vectors, data frames, model output, functions, and many more. 
Not surprisingly, there are also several classes for time series. We start by 
presenting ts, the basic class for regularly spaced time series. This class is 
comparably simple, as it can only represent time series with fixed interval records, 
and only uses numeric time stamps, i.e. (sophistically) enumerates the index set. 
However, it will be sufficient for most, if not all, of what we do in this course. Then, 
we also provide an outlook to more complicated concepts. 

3.1.1 The ts Class 

For defining a time series of class ts, we of course need to provide the data, but 
also the starting time as argument start, and the frequency of measurements as 
argument frequency. If no starting time is supplied, R uses its default value of 1, 
i.e. enumerates the times by the index set 1, ..., n , where n is the length of the series. 
The frequency is the number of observations per unit of time, e.g. 1 for yearly, 4 for 
quarterly, or 12 for monthly recordings. Instead of the start, we could also provide 
the end of the series, and instead of the frequency, we could supply argument 
deltat, the fraction of the sampling period between successive observations. The 
following example will illustrate the concept. 

Example: We here consider a simple and short series that holds the number of days 
per year with traffic holdups in front of the Gotthard road tunnel north entrance in 
Switzerland. The data are available from the Federal Roads Office. 

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

88 76 112 109 91 98 139 150 168 149 

The start of this series is in 2004. The time unit is years, and since we have just one 
record per year, the frequency of this series is 1. This tells us that while there may 
be a trend, there cannot be a seasonal effect, as the latter can only be present in 
periodic series, i.e. series with frequency > 1. We now define a ts object in in R. 

> rawdat <- c(88, 76, 112, 109, 91, 98, 139, 150, 168, 149) 
> ts.dat <- ts(rawdat, start=2004, freq=1) 
> ts.dat 
Time Series: Start = 2004, End = 2013  
Frequency = 1  
[1]  88  76 112 109  91  98 139 150 168 149 
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There are a number of simple but useful functions that extract basic information from 
objects of class ts, see the following examples: 

> start(ts.dat) 
[1] 2004    1 
 
> end(ts.dat) 
[1] 2013    1 
 
> frequency(ts.dat) 
[1] 1 
 
> deltat(ts.dat) 
[1] 1 

Another possibility is to obtain the measurement times from a time series object. As 
class ts only enumerates the times, they are given as fractions. This can still be 
very useful for specialized plots, etc. 

> time(ts.dat) 
Time Series: 
Start = 2004  
End = 2013  
Frequency = 1  
[1] 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

The next basic, but for practical purposes very useful function is window(). It is 
aimed at selecting a subset from a time series. Of course, also regular R-subsetting 
such as ts.dat[2:5] does work with the time series class. However, this results 
in a vector rather than a time series object, and is thus mostly of less use than the 
window() command. 

> window(ts.dat, start=2006, end=2008) 
Time Series: 
Start = 2006  
End = 2008  
Frequency = 1  
[1] 112 109  91 

While we here presented the most important basic methods/functions for class ts, 
there is a wealth of further ones. This includes the plot() function, and many more, 
e.g. for estimating trends, seasonal effects and dependency structure, for fitting time 
series models and generating forecasts. We will present them in the forthcoming 
chapters of this scriptum. 

To conclude the previous example, we will not do without showing the time series 
plot of the Gotthard road tunnel traffic holdup days, see next page. Because there 
are a limited number of observations, it is difficult to give statements regarding a 
possible trend and/or stochastic dependency. 

> plot(ts.dat, ylab="# of Days", main="Traffic Holdups") 
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3.1.2 Finding the Frequency 

Often, finding the frequency for defining the time series is straightforward. As 
mentioned above, it is the number of observations per unit of time, e.g. 1 for yearly, 
4 for quarterly, or 12 for monthly recordings. However, some real-world situation are 
quite a bit more complex to handle. Principally, it is up to the user to choose the 
correct frequency from background and field knowledge about the measurements. 
Additionally, R function findfrequency() may assist. It provides the correct 
results for the traffic holdups and the air passenger data: 

> findfrequency(ts.dat) 
[1] 1 
> findfrequency(AirPassengers) 
[1] 12 

On the other hand, it can also provide misleading results. If we apply the function to 
the lynx data, we obtain: 

> findfrequency(lynx) 
[1] 10 

The lynx data are clearly cyclic with a period of about 10 years. We interpret these 
cycles as stochastic though and the frequency should be set to a value of 1. In other 
cases, there may be ambiguity in the definition of the frequency. If we for example 
consider the a time series of the minutely averaged electricity demand in a city, the 
frequency may be: 

- Hourly (i.e. 60f  ) 
- Daily (i.e. 24 60 1'440f    ) 
- Weekly (i.e. 24 60 7 10'080f     ) 
- Yearly (i.e. 24 60 365 525'600f     ) 

Traffic Holdups

Time

#
 o

f 
D

a
ys

2004 2006 2008 2010 2012

8
0

1
0

0
1

20
1

4
0

1
6

0



ATSA  3 Time Series in R 

 Page 18 

When working with the ts() class, we need to decide for one single frequency. 
That may be far from easy, because the power demand may have a hourly, daily, 
weekly and yearly pattern. The simple rule of the thumb is to pick the frequency 
which is the most natural, the strongest or the most central for the analysis which is 
carried out. Sometimes (especially for providing accurate results in forecasting), all 
cyclic components need to be kept under the radar. For achieving this, clever 
decomposition approaches may help. Moreover, there is the advanced msts() 
class in R that allows time series to have multiple "frequencies". As soon as one 
extensively deals with weekly or daily data, further problems will appear. Namely, 
the number of observations per time unit may not be constant or not an integer. 

 Weekly data: even in the simple case where all (observation) years have 
exactly 365 days, we obtain a non-integer frequency of 365 / 7 52.14f   . 

 Daily data: the problem here arises from the leap years that have 366 days. 
As they (roughly) happen every 4th year, the quick fix is to set 365.25f  . 
This is still somewhat imprecise, because the leap year rules are more 
complicated and sometimes leap seconds are used, altering the 
astronomically correct frequency slightly. In most practical cases (if the time 
series does not comprise of hundreds or thousands of observations years) it 
won't make much practical difference, though. 

 Trading or working day data: the number of working days per year fluctuates 
even more, so that the definition of the frequency becomes tricky. One either 
works with a "representative" integer value or the mean resp. median number 
of working days per year. Most R functions also accept non-integer frequency 
values, making this strategy viable. Below we have the number of trading 
days at US Stock Markets. Commong knowledge says that "it's usually 252 
trading days a year", suggesting this value for the frequency. Alternatively, 
the mean of 251.86 could be used. 
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3.1.3 Other Classes 

Besides the basic ts class, there are several other classes which offer a variety of 
additional options. Most are designed for specific and advanced tasks, so that they 
will rarely to never be required during our course. Most prominently, this includes 
the zoo package, which provides infrastructure for both regularly and irregularly 
spaced time series using arbitrary classes for the time stamps. It is designed to be 
as consistent as possible with the ts class. Coercion from and to zoo is also readily 
available. 

Some further packages which contain classes and methods for time series include 
xts, its, tseries, fts, timeSeries and tis. Additional information on their 
content and philosophy can be found on CRAN. 

3.2 Dates and Times in R 

While for the ts class, the handling of times has been solved very simply and easily 
by enumerating, doing time series analysis in R may sometimes also require to 
explicitly working with date and time. There are several options for dealing with date 
and date/time data. The built-in as.Date() function handles dates that come 
without times. The contributed package chron handles dates and times, but does 
not control for different time zones, whereas the sophisticated but complex 
POSIXct and POSIXlt classes allow for dates and times with time zone control. 

As a general rule for date/time data in R, we suggest to use the simplest technique 
possible. Thus, for date only data, as.Date() will mostly be the optimal choice. If 
handling dates and times, but without time-zone information, is required, the chron 
package is the choice. The POSIX classes are especially useful in the relatively rare 
cases when time-zone manipulation is important. 

Apart for the POSIXlt class, dates/times are internally stored as the number of days 
or seconds from some reference date. These dates/times thus generally have a 
numeric mode. The POSIXlt class, on the other hand, stores date/time values as 
a list of components (hour, min, sec, mon, etc.), making it easy to extract these 
parts. Also the current date is accessible by typing Sys.Date() in the console, and 
returns an object of class Date. 

3.2.1 The Date Class 

As mentioned above, the easiest solution for specifying days in R is with the 
as.Date() function. Using the format argument, arbitrary date formats can be 
read. The default, however, is four-digit year, followed by month and then day, 
separated by dashes or slashes: 

> as.Date("2012-02-14") 
[1] "2012-02-14" 
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> as.Date("2012/02/07") 
[1] "2012-02-07" 

If the dates come in non-standard appearance, we require defining their format 
using some codes. While the most important ones are shown below, we reference 
to the R help file of function strptime() for the full list. 

Code Value 

%d Day of the month (decimal number) 
%m Month (decimal number) 
%b Month (character, abbreviated) 
%B Month (character, full name) 
%y Year (decimal, two digit) 
%Y Year (decimal, four digit) 

The following examples illustrate the use of the format argument: 

> as.Date("27.01.12", format="%d.%m.%y") 
[1] "2012-01-27" 
> as.Date("14. Februar, 2012", format="%d. %B, %Y")  
[1] "2012-02-14" 

Internally, Date objects are stored as the number of days passed since the 1st of 
January in 1970. Earlier dates receive negative numbers. By using the 
as.numeric() function, we can easily find out how many days are past since the 
reference date. Also back-conversion from a number of past days to a date is 
straightforward: 

> mydat <- as.Date("2012-02-14") 
> ndays <- as.numeric(mydat) 
> ndays 
[1] 15384 
> tdays <- 10000 
> class(tdays) <- "Date" 
> tdays 
[1] "1997-05-19" 

A very useful feature is the possibility of extracting weekdays, months and quarters 
from Date objects, see the examples below. This information can be converted to 
factors. In this form, they serve for purposes such as visualization, decomposition, 
or time series regression.  

> weekdays(mydat) 
[1] "Dienstag" 
> months(mydat) 
[1] "Februar" 
> quarters(mydat) 
[1] "Q1" 
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Furthermore, some very useful summary statistics can be generated from Date 
objects: median, mean, min, max, range, ... are all available. We can even subtract 
two dates, which results in a difftime object, i.e. the time difference in days. 

> dat <- as.Date(c("2000-01-01","2004-04-04","2007-08-09")) 
> dat 
[1] "2000-01-01" "2004-04-04" "2007-08-09" 
 
> min(dat) 
[1] "2000-01-01" 
> max(dat) 
[1] "2007-08-09" 
> mean(dat) 
[1] "2003-12-15" 
> median(dat) 
[1] "2004-04-04" 
 
> dat[3]-dat[1] 
Time difference of 2777 days 

Another option is generating time sequences. For example, to generate a vector of 
12 dates, starting on August 3, 1985, with an interval of one single day between 
them, we simply type: 

> seq(as.Date("1985-08-03"), by="days", length=12) 
 [1] "1985-08-03" "1985-08-04" "1985-08-05" "1985-08-06" 
 [5] "1985-08-07" "1985-08-08" "1985-08-09" "1985-08-10" 
 [9] "1985-08-11" "1985-08-12" "1985-08-13" "1985-08-14" 

The by argument proves to be very useful. We can supply various units of time, and 
even place an integer in front of it. This allows creating a sequence of dates 
separated by two weeks: 

> seq(as.Date("1992-04-17"), by="2 weeks", length=12) 
 [1] "1992-04-17" "1992-05-01" "1992-05-15" "1992-05-29" 
 [5] "1992-06-12" "1992-06-26" "1992-07-10" "1992-07-24" 
 [9] "1992-08-07" "1992-08-21" "1992-09-04" "1992-09-18" 

3.2.2 The chron Package 

The chron() function converts dates and times to chron objects. The dates and 
times are provided separately to the chron() function, which may well require 
some inital pre-processing. For such parsing, R-functions such as substr() and 
strsplit() can be of great use. In the chron package, there is no support for 
time zones and daylight savings time, and chron objects are internally stored as 
fractional days since the reference date of January 1st, 1970. By using the function 
as.numeric(), these internal values can be accessed. The following example 
illustrates the use of chron: 

> library(chron) 
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> dat <- c("2007-06-09 16:43:20", "2007-08-29 07:22:40", 
           "2007-10-21 16:48:40", "2007-12-17 11:18:50") 
> dts <- substr(dat,  1, 10) 
> tme <- substr(dat, 12, 19) 
> fmt <- c("y-m-d","h:m:s") 
> cdt <- chron(dates=dts, time=tme, format=fmt)  
> cdt 
[1] (07-06-09 16:43:20) (07-08-29 07:22:40)  
[3] (07-10-21 16:48:40) (07-12-17 11:18:50) 

As before, we can again use the entire palette of summary statistic functions. Of 
some special interest are time differences, which can now be obtained as either 
fraction of days, or in weeks, hours, minutes, seconds, etc.: 

> cdt[2]-cdt[1] 
Time in days: 
[1] 80.61065 
> difftime(cdt[2], cdt[1], units="secs") 
Time difference of 6964760 secs 

3.2.3 POSIX Classes 

The two classes POSIXct and POSIXlt implement date/time information, and in 
contrast to the chron package, also support time zones and daylight savings time. 
We recommend utilizing this functionality only when urgently needed, because the 
handling requires quite some care, and may on top of that be system dependent. 
Further details on the use of the POSIX classes can be found on CRAN. 

As explained above, the POSIXct class also stores dates/times with respect to the 
internal reference, whereas the POSIXlt class stores them as a list of components 
(hour, min, sec, mon, etc.), making it easy to extract these parts.  

3.3 Data Import 

We can safely assume that most time series data are already present in electronic 
form; however, not necessarily in R. Thus, some knowledge on how to import data 
into R is required. It is be beyond the scope of this scriptum to present the uncounted 
options which exist for this task. Hence, we will restrict ourselves to providing a short 
overview and some useful hints. 

The most common form for sharing time series data are certainly spreadsheets, or 
in particular, Microsoft Excel files. While library(ROBDC) offers functionality to 
directly import data from Excel files, we discourage its use. First of all, this only 
works on Windows systems. More importantly, it is usually simpler, quicker and 
more flexible to export comma- or tab-separated text files from Excel, and import 
them via the ubiquitous read.table() function, respectively the tailored version 
read.csv() (for comma separation) and read.delim() (for tab separation).  
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With packages ROBDC and RMySQL, R can also communicate with SQL databases, 
which is the method of choice for large scale problems. Furthermore, after loading 
library(foreign), it is also possible to read files from Stata, SPSS, Octave and 
SAS. 
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4 Descriptive Analysis 
As always when working with data, i.e. “a pile of numbers”, it is important to gain an 
overview. In time series analysis, this encompasses several aspects: 

 understanding the context of the problem and the data source 
 making suitable plots, looking for general structure and outliers 
 thinking about data transformations, e.g. to reduce skewness 
 judging stationarity and potentially achieve it by decomposition 
 for stationary series, the analysis of the autocorrelation function 

We start by discussing time series plots, then discuss transformations, focus on the 
decomposition of time series into trend, seasonal effect and stationary random part 
and conclude by discussing methods for visualizing the dependency structure. 

4.1 Visualization 

4.1.1 Time Series Plot 

The most important means of visualization is the time series plot, where the data 
are plotted versus time/index. There are several examples in section 1.2, where we 
also got acquainted with R’s generic plot() function. As a general rule, the data 
points are joined by lines in time series plots. This is despite the data are not 
continuous, as the plots are much easier to read in this form. The only exception 
where gaps are left is if there are missing values. Moreover, the reader expects that 
the axes are well-chosen, labeled and the measurement units are given.  

Another issue is the correct aspect ratio for time series plots: if the time axis gets 
too much compressed, it can become difficult to recognize the behavior of a series. 
Thus, we recommend choosing the aspect ratio appropriately. However, there are 
no hard and simple rules on how to do this. As a rule of the thumb, use the “banking 
the angle to 45 degrees” paradigm: increase and decrease in periodic series should 
not be displayed at angles much higher or lower than 45 degrees. For very long 
series, this can become difficult on either A4 paper or a computer screen. In this 
case, we recommend splitting up the series and display it in different frames. For 
illustration, we here show an example, the monthly unemployment rate in the US 
state of Maine, from January 1996 until August 2006. The data originate from the 
book "Introductory Time Series with R" by Cowpertwait & Metcalfe 
(https://www.springer.com/gp/book/9780387886978). The website has a zipped 
folder where you can find Maine.dat. Or alternatively, uses the lecturers 
preprocessed file unemployment.rda. 

> load("unemployment.rda") 
> plot(unemp, ylab="(%)", main="Unemployment in Maine") 
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Not surprisingly for monthly economic data, the series shows both a non-linear trend 
and a seasonal pattern that increases with the level of the series. Hence, using a 
log-tranformation as explained in section 4.2 may be adviseable. Since 
unemployment rates are one of the main economic indicators used by 
politicians/decision makers, this series poses a worthwhile forecasting problem. 

> plot(unemp, type="o", pch=20, ylab="(%)", main="…") 

 

There are various ways by which time series plots can be enhanced. In some cases 
when only relatively few data points are present and there is no distinct seasonal 
pattern, "adding the points" with argument type="o" may be worthwhile. In other 
applications, it has become the quasi-norm to plot vertical lines by type="h" rather 
than the time series plot shown above.  
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> plot(unemp, type="h", ylab="(%)", main="…") 

 

In recent years, the ggplot2-package in R with it's elegant graphics has become 
very popular. Generating a simple time series plot requires a bit more effort than 
with R standard graphics, but the main advantage lies in the numerous 
enhancements for complex data analysis situations that are relatively 
straightforward. It is however beyond the scope of this course to give extensive 
details about ggplot2 and unless needed, we will work with R standard graphics 
throughout this script. 

> ggplot(unemp, as.numeric=FALSE) + geom_line(size=1) +  
+   ggtitle("Unemp…") + xlab("Year") + ylab("(%)") 
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We finish this chapter with an automatically annoted time series plot of the lynx data 
that was generated with an add-on package to ggplot2. Producing fancy graphics 
has become its own discipline in data science and is certainly worthwhile. 

> ggplot(lynx, as.numeric = FALSE) + geom_line() +  
    ggtitle("Lynx Data with Peaks and Valleys") + 
    stat_peaks(colour = "red") + 
    stat_peaks(geom = "text", colour = "red",  
               vjust = -0.5, x.label.fmt = "%Y") + 
    stat_valleys(colour = "blue") + 
    stat_valleys(geom = "text", colour = "blue", angle = 45, 
                 vjust = 1.5, hjust = 1, x.label.fmt = "%Y")+ 
    ylim(-500, 7300) + xlab("Year") + ylab("# Trapped Lynx") 

 

4.1.2 Multiple Time Series Plots 

In applied problems, one is sometimes provided with multiple time series. Here, we 
illustrate some basics on import, definition and plotting. Our example exhibits the 
monthly supply of electricity (millions of kWh), beer (millions of liters) and chocolate-
based production (tonnes) in Australia over the period from January 1958 to 
December 1990. These data were published by the Bureau of Australian Statistics 
and are presented in the book of Cowpertwait & Metcalfe.  

> dat <- read.table("cbe.dat",sep="", header=T) 
> cbe <- ts(dat, start=1958, freq=12) 

This creates a multiple time series object that can very easily be displayed using the 
generic plot command again, although the presentation turns out to be a bit dull, see 
next page. 

> plot(tsd, main="Chocolate, Beer & Electricity") 
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A much nicer plot can be produced using the ggplot2-package using different 
facets for the three series. However, it does not directly work with the multiple time 
series object as the input, but requires creating a data frame in long format. 

> cbedf <- data.frame(t=rep(as.numeric(time(cbe)), times=3),  
         values=c(cbe[,1], cbe[,2], cbe[,3]),  
         type=rep(c("choc", "beer", "elec"), each=nrow(cbe))) 
> ggplot(cbedf, aes(time, values, fill=type)) +  
    geom_area(alpha=0.3, size=1) + geom_line() +  
    facet_grid(type~., scales="free") + 
    ggtitle("Production in Australia") + 
    xlab("Year") + ylab("Production") 
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All three series show a distinct seasonal pattern, along with a trend. It is also 
instructive to know that the Australian population increased by a factor of 1.8 during 
the period where these three series were observed. As a general rule, using different 
frames for multiple series is the most recommended means of visualization. 
However, sometimes it can be more instructive to have them in the same frame. Of 
course, this requires that the series are either on the same scale, or have been 
indexed, resp. standardized to be so. Then, we can simply use plot(ind.tsd, 
plot.type="single"). When working with one single panel, we recommend to 
use different colors for the series, which is easily possible using a 
col=c("green3", "red3", "blue3") argument.  

## Indexing the series 
tsd     <- cbe 
tsd[,1] <- tsd[,1]/tsd[1,1]*100 
tsd[,2] <- tsd[,2]/tsd[1,2]*100 
tsd[,3] <- tsd[,3]/tsd[1,3]*100 
 
## Plotting in one single frame 
clr <- c("green3", "red3", "blue3") 
plot(tsd, plot.type="single", ylab="Index", col=clr) 
title("Indexed Chocolate, Beer & Electricity") 
 
## Legend 
ltxt <- names(dat) 
legend("topleft", lty=1, col=clr, legend=ltxt) 

 

In the indexed single frame plot above, we can very well judge the relative 
development of the series over time. Due to different scaling, this was nearly 
impossible with the multiple frames on the previous page. We observe that electricity 
production increased around 8x during 1958 and 1990, whereas for chocolate the 
multiplier is around 4x, and for beer less than 2x. Also, the seasonal variation is 
most pronounced for chocolate, followed by electricity and then beer.  
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A special remark needs to be made about the indexing. In the bit of code above, the 
series were standardized using their first observed value. For seasonal time series, 
this may be a suboptimal strategy as one of the series may have the highpoint at 
the start observation, whereas for another series with an opposite pattern it may be 
the lowpoint. In such cases, it is usually beneficial to take the entire first period as 
the reference, i.e.: 

> ## Indexing the series vs. the first period 
> tsd     <- cbe 
> tsd[,1] <- tsd[,1]/mean(tsd[1:12,1])*100 
> tsd[,2] <- tsd[,2]/mean(tsd[1:12,2])*100 
> tsd[,3] <- tsd[,3]/mean(tsd[1:12,3])*100 

For complementing this chapter about visualization of time series, we present 
another output that was produced with ggplot2. As is typical for this package, 
adding different colors, legends et cetera, i.e. enhancing the basic plot is 
straightforward (if you know how to do so) and requires less code than the standard 
plots in R. 

> ## Graphical display with ggplot 
> ggplot(cbedf, aes(time, values, color=type)) +  
    geom_line() + 
    ggtitle("Production in Australia") + 
    xlab("Year") + 
    ylab("Production") 

 

Qualitatively, there is also a marked difference between the first version of the plot 
using only the first value as the reference vs. this later one that standardizes with 
the first year, notably for the evolution of beer and chocolate consumption. We 
conclude the chapter by emphasizing that graphical displays of time series should 
be well chosen and reflected. 
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4.2 Transformations 

Time series data do not necessarily need to be analyzed in the form they were 
provided to us. In many cases, it is much better, more efficient and instructive to 
transform the data. We will here highlight several cases and discuss their impact on 
the results. 

4.2.1 Linear Transformations 

A linear transformation is of the form t tY a bX  . Examples include simple changes 
in units, e.g. from meters to kilometers, kilograms to tons, et cetera. Also slightly 
more complicated conversions as for example brining Fahrenheit temperatures to 
the Celsius scale fall under this definition. It is obvious that such linear 
transformations will not change the appearance of the series. Hence, all derived 
results (i.e. autocorrelations, models, forecasts) will be equivalent. As a 
consequence, we are free to perform linear transformations whenever it seems 
convenient. 

4.2.2 Monthly Sums and Averages 

Often in time series analysis we consider monthly data and often these are delivered 
as monthly totals. However, this adds unnecessary noise to the series, simply 
because of the different number of days per month. Often, the seasonal effect 
becomes much cleaner and easier to understand if we switch to the daily average 
per month rather than considering the monthly total. From simplified patterns, we 
humans as well as prediction models usually are more successful in extracting the 
relevant information. Additionally, using daily averages also manages to deal with 
the leap year problem, since in every fourth year, February will have 29 rather than 
28 days. Obviously, this affects the monthly total, whereas the daily average is 
hardly affected. The following example of monthly milk production per cow clearly 
illustrates the issue. Please note that the monthdays() command from 
library(TSA) facilitates the standardization markedly. 

> library(TSA) 
> 
> ## Monthly totals 
> plot(milk, xlab="Year", ylab="pounds", main="Monthly …") 
> abline(v=1994:2006, col="grey", lty=3) 
> lines(milk, lwd=1.5) 
> 
> ## Monthly average per day 
> milk.adj <- milk/monthdays(milk) 
> plot(milk.adj,xlab="Year",ylab="pounds", main="Average …") 
> abline(v=1994:2006, col="grey", lty=3) 
> lines(milk.adj, lwd=1.5) 
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4.2.3 Log-Transformation 

Many popular time series models and estimators (i.e. the usual ones for mean, 
variance and correlation) are based and most efficient in case of Gaussian 
distribution and additive, linear relations. However, data may exhibit different 
behavior. In such cases, we can often improve results by working with transformed 
values 1( ),..., ( )ng x g x  rather than the original data 1,..., nx x , The most popular and 
practically relevant transformation is ( ) log( )g    . It is indicated if the variation in the 
series grows with the level, resp. if the series is on a relative scale where changes 
are better expressed in percent rather than in absolute values. This is another big 
advantage of the log-transformation: it is interpretable, i.e. the transformed values 
are the relative changes for the original values.  
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For time series where a log-transformation is beneficial, the marginal distribution is 
often (but not always!) right-skewed. Both properties are typical for time series which 
can take positive values only, such as the lynx trappings from section 1.2.2. It is 
easy to spot right-skewness by histograms and QQ-plots: 

> hist(lynx, col="lightblue") 
> qqnorm(lynx, pch=20); qqline(lynx, col="blue") 

 

The lynx data are positive, on a relative scale and strongly right-skewed. Hence, a 
log-transformation proves beneficial. Implementing the transformation is easy in R: 

> plot(log(lynx), main="Logged Lynx Trappings") 

 

Histogram of lynx

lynx

F
re

q
u

e
n

cy

0 2000 4000 6000

0
1

0
2

0
3

0
4

0
5

0
6

0

-2 -1 0 1 2

0
2

0
0

0
4

0
0

0
6

0
0

0

Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
til

e
s

Time

lo
g

(l
yn

x)

1820 1840 1860 1880 1900 1920

4
5

6
7

8
9

Logged Lynx Trappings



ATSA  4 Descriptive Analysis 

 Page 35 

The data now follow a more symmetrical pattern; the extreme upward spikes are all 
gone. Another major advantage of the log-transformation is that model-based fitted 
values, forecasts and prediction intervals will not take negative values. Often, this is 
a must for series which are strictly positive. However, an eye has to be had in the 
back-transformation to the original scale. If only the simple exp( )  is used, the back-
transformed point forecast will not be the mean, but only the median of the forecast 
distribution. Fundamentally, the median may be a very reasonable summary statistic 
for a skewed distribution. Nevertheless, there are applications where unbiased 
predictions are a must, in which case a corrected back-transformation has to be 
applied. It is given by: 

 
2ˆ

ˆexp( ) 1
2
h

tx
 

  
 

, with 2ˆh   estimated h -step forecast variance 

Obviously, the bigger the forecast variance is, the more pronounced the difference 
between median and mean in the forecast distribution will be. 

4.2.4 Box-Cox and Power Transformations 

Another type of transformations sometimes used are power transformations which 
are of the form ( ) p

t tg x x . The most popular instance is perhaps the square-root 
transformation with 1/ 2p  , which has some merit with count data. It's effect is 
similar to the one of the log-transformation, i.e. it stabilizes the variation of the series 
if that increases with the level. The drawback however is that the transformed values 
lack a direct interpretation – they are not relative changes as with the log, but just 
values on a different scale. The family of power transformations can be enhanced 
by the so-called Box-Cox transformation 

 
1

( ) t
t

x
g x






  with 0  . 

Please note that the (non-allowed) case of 0   corresponds to the (natural, i.e. 
base e ) log-transformation discussed above. Again, Box-Cox transformed values 
lack a direct interpretation, but the method is of importance as many of the (to be 
presented) functions in library(forecast) allow for estimating  . In fact, there 
is also the stand-alone function BoxCox.lambda() which allows for determining 
the most suitable transformation, i.e.: 

> BoxCox.lambda(lynx) 
[1] 0.1521849 

The value turns out to be 0.15>0, indicating that a power transformation may be 
preferable to the log. On the other hand, we so lose the interpretability of the log, 
potentially without much practical benefit. We thus recommend favoring the log over 
a Box-Cox transformation for small  's (i.e. smaller than 0.3  ). Likewise, we can 
often without any transformation at all if   is estimated close to one.  
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If a Box-Cox transformation has been used, the issue of biased fitted values and 
point forecasts appears again. For obtaining the mean of the forecast distribution, a 
correction is needed: 

 
2

1/
2

ˆ (1 )
ˆ( 1) 1

ˆ2( 1)
h

t
t

x
x

  



 

    
  

This formula looks quite complicated. Fortunately, if using the forecast() 
methods from library(forecast), it is already implemented. Corrected, bias-
free forecasts can be obtained by simply setting the argument unbiased=TRUE. 
We emphasize again that it is not obligatory to do so: in case it is not used, the point 
forecast will be the value where the realized value lies above resp. below with 50% 
probability each. If a corrected point forecast is given, it is the mean of all realized 
values – in case of a skewed distribution, this is not necessarily the better 
representant of what's going to happen. 

4.3 Decomposition 

4.3.1 The Basics 

We have learned in section 2.2 that stationarity is an important prerequisite for being 
able to statistically learn from time series data. However, many of the example 
series exhibit either trend and/or seasonal effect, and thus are non-stationary. In this 
section, we will learn how to deal with that. First, we need to define what trend and 
seasonality mean. 

Trend 

A deterministic trend in a time series is a long-term change in the mean, induced by 
external factors. Typical examples among the series we have seen so far include 
the Air Passenger, Australian Production, Maine Unemployment and SMI data. The 
Lynx data on the other hand are considered to be without a trend. The obvious 
fluctuations are attributed to a random cyclic component. 

Seasonal Effect 

A seasonal component is a deterministic cyclic component in a time series with a 
fixed and known frequency, often caused by the way the measurements are 
obtained. The most typical case is the seasonal effect in monthly data where the 
measurement period comprises of multiple years, this coined the term. Typical 
examples include the Air Passenger, Australian Production and Maine 
Unemployment data. Seasonal components can also be present in e.g. hourly data 
that were observed over several days, it is a "daily pattern" in this case. On the other 
hand, the Lynx data are (as most yearly data) non-seasonal. They do have a random 
cyclic component, but it is not a seasonal effect! 
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The standard model describes a time series tX  as an additive composition of a 
(potentially absent) deterministic trend component tm , a (potentially absent) 
seasonal effect ts  and a stationary remainder term tR . Hence,  

 t t t tX m s R   , 

where tX  is the time series process at time t , tm  is the trend, ts  is the seasonal 
effect, and tR  is the remainder, i.e. a sequence of usually correlated random 
variables with mean zero. In practice however, many time series exhibit an increase 
in seasonal and random variation with the (trend) level. This is the case in all 
seasonal series presented in this script, i.e. Air Passenger, Australian Production 
and Maine Unemployment data. For making the additive decomposition model a 
valid choice, the data need to be transformed with either a Box-Cox resp. power 
transformation, or much more often, the logarithm. Simple math demonstrates that 
an additive decomposition of a logged series means a multiplicative decomposition 
on the original scale. 

log( ) log( ) log( ) log( ) log( )t t t t t t t t t tX m s R m s R m s R            

For illustration, we carry out a log-transformation on the air passenger bookings: 

> plot(log(AirPassengers), ylab="log(Pax)", main=...) 

 

The plot shows that indeed, the magnitude of seasonal effect and random variation 
now seem to be less dependent of the level of the series than it was initially. Thus, 
the multiplicative model is much more appropriate for the Air Passenger data than 
the additive one. Alternatively, we could also estimate a Box-Cox transformation: 

> BoxCox.lambda(AirPassengers) 
[1] -0.2947156 
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The value is so close to zero that we prefer to work with the easier-to-interpret 
logarithm. Please note that if using any other Box-Cox transformation than the 
logarithm, an additive decomposition would be estimated on the transformed scale, 
but the original data do not follow a multiplicative decomposition model. Besides the 
time series plot of original and transformed data and the BoxCox.lambda() value, 
further evidence for a transformation can be found in the seasonal plots. 

> seasonplot(AirPassengers, pch=20) 
> seasonplot(log(AirPassengers), pch=20) 

 

The left one on the untransformed data clearly shows that the difference between 
summer and winter is larger in the later years when the passenger figures are 
higher. After the log-transformation, the magnitude of the seasonal differences are 
more or less constant, though. However, a further snag is that the seasonal effect 
seems to alter over time rather than being constant. In earlier years, a prominent 
secondary peak in March is apparent. Over time, this erodes away, but on the other 
hand, the summer peak seems to be ever rising. The issue of how to deal with 
evolving seasonal effects will be addressed later in chapter 4.3.4. 
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4.3.2 Differencing 

A simple approach for removing deterministic trends and/or seasonal effects from a 
time series is by taking differences. A practical interpretation of taking differences is 
that by doing so, the changes in the data will be monitored, but no longer the series 
itself. While this is conceptually simple and quick to implement, the main 
disadvantage is that it does not result in explicit estimates of the trend component 

tm , the seasonal component ts  nor the remainder tR . Hence, it does not really serve 
for a decomposition of a series tX , but the approach has its merits, especially for 
the class of SARIMA models, presented in chapter 6. 

We will first turn our attention to series with an additive trend, but without seasonal 
variation. By taking first-order differences with lag 1, and assuming a trend with little 
short-term changes, i.e. 1t tm m  , we have: 

 
1 1

t t t

t t t t t

X m R

Y X X R R 

 
   

 

In practice, this kind of differencing approach “mostly works”, i.e. manages to reduce 
presence of a trend in the series in a satisfactory manner. However, the trend is only 
fully removed if it is exactly linear, i.e. tm t   . Then, we obtain: 

 1 1t t t t tY X X R R       

Another somewhat disturbing property of the differencing approach is that strong, 
artificial new dependencies are created, meaning that the autocorrelation in tY  is 
different from the one in tR . For illustration, consider a stochastically independent 
remainder tR : the differenced process tY  has autocorrelation! 

 
1 1 1 2

1 1

( , ) ( , )

( , )

0

t t t t t t

t t

Cov Y Y Cov R R R R

Cov R R
   

 

  
 


 

We illustrate how differencing works by using a dataset that shows the traffic 
development on Swiss roads. The data are available from the federal road office 
(ASTRA) and show the indexed traffic amount from 1990-2010. We type in the 
values and plot the original series: 

> SwissTraffic <- ts(c(100.0, 102.7, 104.2, 104.6, 106.7, 
                       106.9, 107.6, 109.9, 112.0, 114.3, 
                       117.4, 118.3, 120.9, 123.7, 124.1, 
                       124.6, 125.6, 127.9, 127.4, 130.2, 
                       131.3), start=1990, freq=1) 
> 
> plot(SwissTraffic) 
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There is a clear trend, which is close to linear, thus the simple approach should work 
well here. Taking first-order differences with lag 1 shows the yearly changes in the 
Swiss Traffic Index, which must now be a stationary series. In R, the job is done with 
function diff(). 

> diff(SwissTraffic) 
Time Series: 
Start = 1991  
End = 2010  
Frequency = 1  
 [1]  2.7  1.5  0.4  2.1  0.2  0.7  2.3  2.1  2.3  3.1 
[11]  0.9  2.6  2.8  0.4  0.5  1.0  2.3 -0.5  2.8  1.1 
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Please note that the time series of differences is now 1 instance shorter than the 
original series. The reason is that for the first year, 1990, there is no difference to 
the previous year available. The differenced series now seems to have a constant 
mean, i.e. the trend was successfully removed. 

Log-Transformation and Differencing 

On a sidenote, we consider a series that was log-transformed first, before first-order 
differences with lag 1 were taken. An example is the SMI data that were shown in 
section 1.2.4. The result is the so-called log return, which is an approximation to the 
relative change, i.e. the percent in- or decrease with respect to the previous 
instance. In particular: 

 1 1
1

1 1 1

log( ) log( ) log log 1t t t t t
t t t

t t t

X X X X X
Y X X

X X X
 


  

    
        

   
 

The approximation of the log return to the relative change is very good for small 
changes, and becomes a little less precise with larger values. For example, if we 
have a 0.00% relative change, then 0.00%tY  , for 1.00% relative change we obtain 

0.995%tY   and for 5.00%, 4.88%tY  . We conclude with summarizing that for any 
non-stationary series which is also due to a log-transformation, the transformation 
is always carried out first, and then followed by the differencing! 

The Backshift Operator 

We here introduce the backshift operator B  because it allows for convenient 
notation. When the operator B  is applied to tX  it returns the instance at lag 1, i.e.  

1( )t tB X X  . 

Less mathematically, we can also say that applying B  means “go back one step”, 
or “increment the time series index t  by -1”. The operation of taking first-order 
differences at lag 1 as above can be written using the backshift operator: 

 1(1 )t t t tY B X X X      

However, the main aim of the backshift operator is to deal with more complicated 
forms of differencing, as will be explained below. 

Higher-Order Differencing 

We have seen that taking first-order differences is able to remove linear trends from 
time series. What has differencing to offer for polynomial trends, i.e. quadratic or 
cubic ones? We here demonstrate that it is possible to take higher order differences 
to remove also these, for example, in the case of a quadratic trend.  
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We see that the operator 2(1 )B  means that after taking “normal” differences, the 
resulting series is again differenced “normally”. This is a discretized variant of taking 
the second derivative, and thus it is not surprising that it manages to remove a 
quadratic trend from the data. As we can see, tY  is an additive combination of the 
stationary tR ’s terms, and thus itself stationary. Again, if tR  was an independent 
process, that would clearly not hold for tY , thus taking higher-order differences 
(strongly!) alters the dependency structure.  

Moreover, the extension to cubic trends and even higher orders d  is 
straightforward. We just use the (1 )dB  operator applied to series tX . In R, we can 
employ function diff(), but have to provide argument differences=d for 
indicating the order of the difference d . In practice, we can use R function 
ndiffs() for determining the appropriate order of differencing d . 

Removing Seasonal Effects by Differencing 

For time series with monthly measurements, seasonal effects are very common. 
Using an appropriate form of differencing, it is possible to remove these, as well as 
potential trends. We take first-order differences with lag p : 

 (1 )pt t t t pY B X X X     , 

Here, p  is the period of the seasonal effect, or in other words, the frequency of 
series, which is the number of measurements per time unit. The series tY  then is 
made up of the changes compared to the previous period’s value, e.g. the previous 
year’s value. Also, from the definition, with the same argument as above, it is evident 
that not only the seasonal variation, but also a strictly linear trend will be removed. 

Usually, trends are not exactly linear. We have seen that taking differences at lag 1 
removes slowly evolving (non-linear) trends well due to 1t tm m  . However, here the 
relevant quantities are tm  and t pm  , and especially if the period p  is long, some 
trend will usually be remaining in the data. Then, further action is required.  

Example 

We are illustrating seasonal differencing using the Mauna Loa atmospheric 2CO  
concentration data. This is a time series with monthly records from January 1959 to 
December 1997. It exhibits both a trend and a distinct seasonal pattern. We first 
load the data and do a time series plot: 

> data(co2) 
> plot(co2, main="Mauna Loa CO2 Concentrations") 
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Seasonal differencing is very conveniently available in R. We use function diff(), 
but have to set argument lag=.... For the Mauna Loa data with monthly 
measurements, the correct lag is 12. This results in the series shown on the next 
page. Because we are comparing every record with the one from the previous year, 
the resulting series is 12 observations shorter than the original one. It is pretty 
obvious that some trend is remaining and thus, the result from seasonal differencing 
cannot be considered as stationary. As the seasonal effect is gone, we could try to 
add some first-order differencing at lag 1. 

> sd.co2 <- diff(co2, lag=12) 
> plot(sd.co2, main="Differenced Mauna Loa Data (p=12)") 
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The second differencing step indeed manages to produce a stationary series, as 
can be seen below. The equation for the final series is: 

 12(1 ) (1 )(1 )t t tZ B Y B B X     . 

The next step would be to analyze the autocorrelation of the series below and fit an 
( , )ARMA p q  model. Due to the two differencing steps, such constructs are also 

named SARIMA  models. They will be discussed in chapter 6. 

 

We conclude this section by emphasizing that while differencing is quick and simple, 
and (correctly done) manages to remove any trend and/or seasonality, we do not 
obtain explicit estimates for trend tm , seasonal effect ts  and remainder tR  which 
proves problematic in many applications. 
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4.3.3 Smoothing, Filtering 

Our next goal is to define a decomposition procedure that yields explicit trend, 
seasonality and remainder estimates ˆ tm , t̂s  and ˆ

tR . In the absence of a seasonal 
effect, the trend of a time series can simply be obtained by applying an additive 
linear filter: 

 ˆ
q

t i t i
i p

m a X 


  

This definition is general, it allows for arbitrary weights and asymmetric windows. 
The most popular implementation is with p q  and 1/ (2 1)ia p  , i.e. a running 
mean or moving average estimator with symmetric window and uniformly distributed 
weights. The window size is the smoothing parameter. 

Example: Trend Estimation with Running Mean 

We here again consider the Swiss Traffic data that were already exhibited before. 
They show the indexed traffic development in Switzerland between 1990 and 2010. 
Linear filtering is available with function filter() from the base functionality in R., 
whereas for moving average computation, function ma() from 
library(forecast) is even more convenient. 

> trend.est <- filter(SwissTraffic, filter=c(1,1,1)/3) 
> trend.est <- ma(SwissTraffic, order=3) 

 

> trend.est 
Time Series: Start = 1990, End = 2010, Frequency = 1 
 [1]       NA 102.3000 103.8333 105.1667 106.0667 107.0667 
 [7] 108.1333 109.8333 112.0667 114.5667 116.6667 118.8667 
[13] 120.9667 122.9000 124.1333 124.7667 126.0333 126.9667 
[19] 128.5000 129.6333       NA 
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In our example, we chose the trend estimate to be the mean over three consecutive 
observations, resp. a 3-year moving average. This has the consequence that for 
both the first and the last instance of the time series, no trend estimate is available. 
We will later present more sophisticated methods that also allow for estimates near 
the endpoints. Furthermore, it is apparent that the Swiss Traffic series has a very 
strong trend signal, whereas the remaining stochastic term is comparably small in 
magnitude. We can now compare the estimated remainder term from the running 
mean trend estimation to the result from differencing: 

 

The blue line is the remainder estimate from running mean approach, while the grey 
one resulted from differencing with lag 1. We observe that the latter has bigger 
variance; and, while there are some similarities between the two series, there are 
also some prominent differences – please note that while both seem stationary, they 
are different. 

Trend Estimation for Seasonal Data 

We now turn our attention to time series that show both trend and seasonal effect. 
The goal is to specify a filtering approach that allows trend estimation for periodic 
data. We still base this on the running mean idea, but have to make sure that we 
average over a full period. For monthly data, the formula is: 

 6 5 5 6

1 1 1

12 2 2
ˆ t t t t tX Xm X X       

 
 

, for 7,..., 6t n   

Be careful, as there is a slight snag if the frequency is even: if we estimate the trend 
for December, we use data from July to May, and then also add half of the value of 
the previous June, as well as half of the next June. This is required for having a 
window that is centered at the time we wish to estimate the trend. Using R’s function 
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filter(), with appropriate choice of weights, we can compute the seasonal 
running mean. Or we can use function ma() with argument order=12 for the same 
task. We illustrate this with the Mauna Loa 2CO  data. 

> wghts     <- c(.5,rep(1,11),.5)/12 
> trend.est <- filter(co2, filter=wghts, sides=2) 
> trend.est <- ma(co2, order=12, centre=TRUE) 
> plot(co2, main="Mauna Loa CO2 Concentrations") 
> lines(trend.est, col="red") 

We obtain a trend which fits well to the data. It is not a linear trend, rather it seems 
to be slightly progressively increasing, and it has a few kinks, too. 

 

We finish this section about trend estimation using linear filters by stating that other 
smoothing approaches, e.g. running median estimation, the loess smoother and 
many more are valid choices for trend estimation, too. In fact, several of them have 
clear advantages over simple movering average approaches. 

Estimation of the Seasonal Effect 

For fully decomposing periodic series such as the Mauna Loa data, we also need to 
estimate the seasonal effect. This is done on the basis of the trend adjusted data: 
simple averages over all observations from the same seasonal entity are taken. The 
following formula shows the January effect estimation for the Mauna Loa data, a 
monthly series which starts in January and has 39 years of data. 

 
38

1 13 12 1 12 1
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1
ˆ ˆ ˆ ˆ... ( )

39Jan j j
j

s s s x m 


       

In R, a convenient way of estimating such seasonal effects is by generating a factor 
for the months, and then using the tapply() function. Please note that the 
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seasonal running mean naturally generates NA values at the start and end of the 
series, which need be removed in the seasonal averaging process. 

> trend.adj <- co2-trend.est 
> month     <- factor(rep(1:12,39)) 
> seasn.est <- tapply(trend.adj, month, mean, na.rm=TRUE) 
> plot(seasn.est, type="h", xlab="Month") 
> title("Seasonal Effects for Mauna Loa Data") 
> abline(h=0, col="grey") 

 

In the plot above, we observe that during a period, the highest values are usually 
observed in May, whereas the seasonal low is in October. The estimate for the 
remainder at time t  is simply obtained by subtracting estimated trend and 
seasonality from the observed value. 

 ˆ ˆ ˆt t t tR x m s    

From the plot on the next page, it seems as if the estimated remainder still has some 
periodicity and thus it is questionable whether it is stationary. The periodicity is due 
to the fact that the seasonal effect is not constant but slowly evolving over time. In 
the beginning, we tend to overestimate it for most months, whereas in the end, we 
underestimate. We will address the issue on how to visualize evolving seasonality 
below in section 4.3.4 about STL-decomposition. A further option for dealing with 
non-constant seasonality is given by the exponential smoothing approach which is 
covered in chapter 8. 

> rmain.est <- co2-trend.est-rep(seasn.est,39) 
> plot(rmain.est, main="Estimated Stochastic Remainder Term") 
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Moreover, we would like to emphasize that R offers the convenient decompose() 
function for running mean estimation and seasonal averaging.  

> co2.dec <- decompose(co2) 
> plot(co2.dec) 
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Please note that decompose() only works with periodic series where at least two 
full periods were observed; else it is not mathematically feasible to estimate trend 
and seasonality from a series. The decompose() function also offers the neat 
plotting method shown above that generates the four frames above with the series, 
and the estimated trend, seasonality and remainder. Except for the different 
visualization, the results are exactly the same as what we had produced with our 
do-it-yourself approach. 

4.3.4 Seasonal-Trend Decomposition with LOESS 

It is well known that the running mean resp. moving average is not the best smoother 
around. Thus, potential for improvement exists. While there is a dedicated R 
procedure for decomposing periodic series into trend, seasonal effect and 
remainder, we have to do some handwork in non-periodic cases. 

Trend Estimation with LOESS 

We here again consider the Swiss Traffic dataset, for which the trend had already 
been estimated above. Our goal is to re-estimate the trend with LOESS, a 
smoothing procedure that is based on local, weighted regression. The aim of the 
weighting scheme is to reduce potentially disturbing influence of outliers. Applying 
the LOESS smoother with (the often optimal) default settings is straightforward: 

> fit   <- loess(SwissTraffic~time(SwissTraffic)) 
> trend <- predict(fit) 

 

We observe that the estimated trend, in contrast to the running mean result, is now 
smooth and allows for interpolation within the observed time. Also, the loess() 
algorithm returns trend estimates which extend to the boundaries of the dataset. In 
summary, we recommend to always perform trend estimation with LOESS. 
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Using the stl() Procedure for Periodic Series 

R’s stl() procedure offers a versatile and robust decomposition of a periodic time 
series into trend, seasonality and remainder. All estimates are based on the LOESS 
smoother. STL has several advantages over the moving average decomposition 
from chapter 4.3.3. In particular, the seasonal component can remain stable over 
time, but it may also evolve with a rate of change that can be controlled by the user. 
Moreover, the user also has control over the smoothness of the trend. We do here 
without going into technical details about this iterative procedure, but focus on usage 
and interpretation. We illustrate with a time series on manufacturing of electrical 
equipment in the EU which can be found as elecequip in library(fpp). It 
contains monthly indexed values from January 1996 to November 2011. The data 
are on a relative scale and also lambda estimation indicates that a log-
transformation (i.e. multiplicative decomposition) is sensible. 

> BoxCox.lambda(elecequip) 
[1] 0.1822501 

We then apply the stl() function with its default settings. For the s.window 
argument, there is no default value. We set it to "periodic" which mean assuming 
a seasonal pattern that remains unchanged over time. 

> ee.stl <- stl(elecequip, s.window="periodic") 
> plot(ee.stl, main="STL-Decomposition of Electrical …") 

 

The graphical output is similar to the one from decompose() The grey bars on the 
right hand side facilitate interpretation of the decomposition: they show the relative 
magnitude of the effects, i.e. cover the same span on the y-scale in all of the frames. 
Hence, for the electrical equipment series, the trend contributes most the the 
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variation, followed by the seasonal effect and finally the remainder. The two principal 
arguments in function stl() are t.window and s.window: t.window controls 
the amount of smoothing for the trend, and has a default value which often yields 
good results. The value used can be inferred with: 

> ee.stl$win[2] 
 t  
19 

The result is the number of lags used as a window for trend extraction in LOESS. 
Increasing it means the trend becomes smoother; lowering it makes the trend 
rougher, but more adapted to the data. In our particular example, the trend already 
looks slightly wiggly, so it does not seem advisable to lower t.window further. On 
the other hand, the current decomposition seems unable to fully capture the sudden 
drops in years 2000 and 2009, because a couple of remainder terms before the drop 
are positive and some thereafter are negative. This is rooted somewhat in the fact 
that smoothers cannot cope well with sudden jumps in data, i.e. assume a 
continuous and smooth underlying function. Hence, the elecequip series 
manages to unveil the limits of the stl() procedure.  

Once the decomposition is obtained, some functions can be useful: seasonal() 
will extract the seasonal component, trendcycle() yields the trend, 
remainder() undoubtedly outputs the remainder and finally seasadj() 
computes the seasonally adjusted series. 

> plot(log(elecequip), main="Electrical Equipment …") 
> lines(trendcycle(ee.stl), col="red", lwd=2) 
> lines(seasadj(ee.stl), col="blue", lwd=2) 
> legend("bottomright", c("Trend", "Seasadj"), col=…) 
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In some time series, the pattern of the seasonal effect evolves over time. To some 
extent, this is the case in the above electrical equipment data. The effect is more 
prominently visible and easier to explain in the air passenger series, to which we 
switch back here. With the stl() procedure, it is straightforward to obtain an 
estimate if we just set argument s.window to a numeric value which is the 
smoothing parameter. There is no default value and the optimal setting has to be 
determined exploratively from the data. As a starting value, s.window=13 is often 
a good choice. For explaining the procedure, we here consider the logged air 
passenger data where the trend has been removed using a moving average. We 
here display all March and all August values of the trend-adjusted series and add a 
Loess smoother. 

 

When assuming a non-evolving seasonal effect, the standard procedure would be 
to take the mean of the data points in each of the above scatterplots and declare 
that as the seasonal effect for March and August, respectively. This is a rather crude 
way of data analysis, and can of course be improved if the magnitude of the March 
and August effect develops as the smoothers suggest. Please note that the above 
plots and smoother estimation were presented for didactic purpose only. In practice, 
we can conveniently use the stl() procedure. We fit two decompositions with 
differing smoothing parameters. 

> fit.05 <- stl(lap, s.window= 5) 
> fit.13 <- stl(lap, s.window=13)  

Please be reminded again that there is no default value for the seasonal span, and 
the optimal choice is left to the user upon visual inspection. An excellent means for 
doing so is the monthplot() function which shows the seasonal effects that were 
estimated by stl(). 

 

> monthplot(fit.13, main="Monthplot, s.window=13") 
> monthplot(fit.05, main="Monthplot, s.window=5") 
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The amount of smoothing seems appropriate in the left panel with s.window=13. 
However on the right, with smaller span, i.e. s.window=5, we observe overfitting: 
the seasonal effects do not evolve in a smooth way, and it means that this is not a 
good decomposition estimate. We finally display the decomposition with the chosen 
seasonal smoothing parameter. 

> plot(fit.13, main="STL-Decomposition ...") 
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Some time series, e.g. with daily or intra-daily records, may exhibit various 
seasonalities. An example is series taylor from library(forecast) which 
shows half-hour electricity demands in England and Wales from Monday 5 June 
2000 to Sunday 27 August 2000. It may show both a daily and a weekly pattern. 
This can conveniently be visualized by the fully automatic mstl() procedure from 
library(forecast). It automatically detects all present seasonalities and 
determines estimates for the Box-Cox  , t.window and s.window parameters. 

> fit <- mstl(taylor) 
> plot(fit, main="Multiple Seasonality Decomposition") 

 

The output shows that two seasonal components with a frequency of 48 (i.e. a daily 
pattern for the half-hourly measurements) and 336 (a weekly pattern) were 
identified. Potentially, these data also feature a yearly pattern. But since the data 
were only observed over around 13 weeks, this cannot be identified and becomes 
part of the trend resp. remainder components (which are also displayed).  

As always with fully automatic procedures, the results have to be critically evaluated 
and verified. It is possible to take control and alter all estimated values which may 
or may not be necessary. Moreover, the mstl() procedure does not yield the grey 
side bars and completely lacks information about the significance of the different 
components. For gaining further insight or also dealing with "seasonaltities" such as 
e.g. easter which change their position in the calendar, we better resort to the 
parametric modelling approach discussed below. There, we have access to all 
inference tools from regression and can fit even more sophisticated decompositions. 
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4.3.5 Parametric Modeling 

A powerful approach for decomposing time series is parametric modeling. In fact, it 
allows for mimicking all the decomposition approaches that were discussed here 
previously. We will here focus on two examples. The first is a very short time series 
where a parsimonius parametric model is set up for accurate estimation of a trend, 
seasonal and remainder component. The strength of the parametric modeling 
approach in this example lies in the fact that we only need spending four degrees of 
freedom for estimating a full decomposition which is much less than the smoothing 
approaches presented above would require. Additionally, this regression based 
approach also allows for formal significance testing for the trend and the seasonal 
component which is often very valuable in explorative data analysis. Some prudence 
is required though due to the potentially correlated residuals in the linear models, 
an issue which will only be thoroughly discussed in chapter 7. In a second example, 
we use parametric modeling in a more flexible way with a smooth trend component 
and a dummy variable for the seasonal component, which yields results that are 
close to a STL decomposition or the smoothing approach implemented in R’s 
decompose() procedure. 

Parsimonius Decomposition of Phosphate Measurements 

This example is an excerpt from a joint research project of the lecturer with 
Environmental Protection Office of the Swiss Canton Lucerne (UWE Luzern). Part 
of this project included the analysis of Phosphate levels in the river Suhre, which is 
an effluent of Lake Sempach. The time series with 36 monthly measurements over 
a period of 3 years is displayed below. 

> plot(spt, type="o", ylab="Phosphate Level", pch=20) 
> title("Phosphate Levels in River Suhre") 
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The time series features a prominent seasonal effect and potentially a slight 
downward trend. The aims in the project included a decomposition of the series, as 
well as statements whether there are trends and seasonalities in the various 
pollutants that were analyzed for a large number of rivers in the canton.  

As the time series only has 36 observations and there seems to be a considerable 
amount of (weather, i.e. rainfall or draught induced) noise, using smoothing 
approaches or STL did not seem promising. These methods unavoidably spend 
many degrees of freedom, primarily due to simple averaging in the seasonal 
component. A way out is to set up a parametric decomposition model that is based 
on a linear trend in time plus a cyclic seasonal component and a remainder. 

 0 1 2 3sin(2 ) cos(2 )t tX t t t R             , 2002 /12t i   with 1,...,36i  . 

This model achieves a full trend/season/remainder decomposition with only four 
unknowns that can be estimated using the least squares approach, though using 
robust fitting methods might provide a very good alternative. We here provide the 
code for estimating the model in R. 

> tnum  <- as.numeric(time(spt)) 
> fit   <- lm(spt ~ tnum + sin(2*pi*tnum) + cos(2*pi*tnum)) 
> cf    <- coef(fit); summary(fit) 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)        2831.2732  1692.7075   1.673  0.10415     
tnum                 -1.4019     0.8449  -1.659  0.10684     
sin(2 * pi * tnum)    7.8420     1.0320   7.599 1.17e-08 *** 
cos(2 * pi * tnum)    3.4357     1.0004   3.434  0.00166 **  
--- 
Residual standard error: 4.234 on 32 degrees of freedom 
Multiple R-squared: 0.7247, Adjusted R-squared:  0.6989 
F-statistic: 28.08 on 3 and 32 DF,   p-value: 4.332e-09 

The coefficients and inference results can be seen from the summary output, but 
we have to be careful with their interpretation. The error term in the linear model is 
a stationary, but potentially serially correlated time series tR . If correlation exists, 
the assumptions for the least square algorithm are violated. Chapter 7 contains a 
full expositions of these topics, but in short summary, the coefficients would be 
unbiased though slightly inefficiently estimated, whereas the standard erros are 
biased and the derived p-values are not trustworthy. We plot the fit. 

> plot(spt, type="p", pch=20, ylab="Phosphate Level") 
> abline(cf[1], cf[2], col="blue", lty=3, lwd=2) 
> lines(tnum, fitted(fit), col="red", lwd=2) 
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The red line shows the fitted values, i.e. the estimated average Phosphate levels. 
In blue, the trend function has been added. We can also provide a full decomposition 
plot as for example STL provides, but we have to construct it ourselves – see next 
page for the output. 

> plot(spt, type="o", pch=20) 
> plot(spt, type="n"); abline(cf[1], cf[2], col="blue") 
> plot(tnum, cf[3]*sin(2*pi*tnum) + cf[4]*cos(2*pi*tnum), 
       type="o", pch=20) 
> plot(tnum, residuals(fit), type="h") 
> points(tnum, residuals(fit), pch=20) 
> abline(h=0, col="grey") 

Despite the fact that a simple, linear trend function and a cyclic sine/cosine 
seasonality was used, the remainder seems like a stationary series with mean zero. 
There is no apparent serial correlation among the remainder terms, hence in this 
situation, we can even rely on the inference results. Please note that while the 
chosen model is fully adequate for the present situation, being so simplistic and 
parsimonius is not the correct strategy on all datasets. There is absolutely no need 
that a seasonal component is cyclic, with the Airline Pax being a prominent 
counterexample. 

Flexible Decomposition of Maine Unemployment Data 

We consider the Maine unemployment data from section 4.1.1. Our goal is to fit a 
smooth trend, along with a seasonal effect that is obtained from averaging. 
Sometimes, polynomial functions are used for modeling the trend function. 
However, we recommend to stay away from high-order polynomials due to their 
often very erratic behavior at the boundaries (cf. Runge’s Phenomenon), so that 
anything beyond a quadratic trend should be avoided. 
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The way out lies in using a generalized additive model (GAM) with a flexible trend 
function. The seasonal effect is included as a factor variable. In mathematical 
notation, the model is: 

( ) ,t ti tX f t R   , 

where 1, ,128t    and {1, ,12}i t   , i.e. 
i t  is a factor variable encoding for the 

month the observation was made in, see the R code below. Two questions 
immediately pop up, namely how to determine the smooth trend function ( )f  , and 
how fo fit the model as a whole. Both can conveniently be done using the gam() 
function from library(mgcv) in R. Please note that here, we model resp. 
decompose the logged Maine data, since their variation clearly increases with 
increasing level of the series. 
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> library(mgcv) 
> tnum  <- as.numeric(time(maine)) 
> mm    <- rep(c("Jan", "Feb", "Mar", "Apr", "May", "Jun", 
+                "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) 
> mm    <- factor(rep(mm,11),levels=mm)[1:128] 
> fit   <- gam(log(maine) ~ s(tnum) + mm) 

We do without displaying the summary output, because it is rather long and requires 
(as using this decomposition strategy) some knowledge in GAM. Let us just mention 
that the method decides to spend 8.196 degrees of freedom for the trend function, 
which corresponds to a polynomial of 8th grade (which however, would provide a 
much worse fit). The degrees of freedom are estimated internally using a cross 
validation approach and usually provide a sensible solution. It is possible to display 
the results graphically. It is normally very instructive to show the time series together 
with the fitted values. Furthermore, we also present the estimated trend function (via 
the partial residual plot obtained from function plot.gam()) plus the seasonal 
effect which is extracted from the dummy variable coeffcients. 

> plot(log(maine), ylab="(%)", main="Logged Unemployment…") 
> lines(tnum, fitted(fit), col="red") 

 

> plot(fit, shade=TRUE, xlab="", ylab="Time") 
> seas.eff <- c(0,coef(fit)[2:12])-mean(c(0,coef(fit)[2:12])) 
> plot(1:12, seas.eff, xlab="Month", ylab="", type="h") 
> points(1:12, seas.eff, pch=20) 
> abline(h=0, col="grey") 

As we can see from the estimated trend and seasonal components (see next page), 
a simple model using a linear trend or a cyclic seasonal component would not have 
been suitable here. Please also note that both the trend component and the 
seasonal effect are centered to mean zero here.  

Logged Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006

1
.0

1
.2

1
.4

1
.6

1
.8



ATSA  4 Descriptive Analysis 

 Page 61 

 

Finally, we extract the remainder term. These are just the residuals from the GAM 
model, which are readily available and very quickly plotted. 

> plot(resid(fit), type="o", pch=20) 

 

The plot strongly raises the question whether the remainder term can be seen as 
stationary. It seems as if the behavior over the first 50 observations is markedly 
different than in the second two thirds of the series. Moreover, the late observations 
show a prominent perdiodicity with an off-season period of roughly 20 observations. 
Hence, further investigation of these features would certainly be required. However, 
we conclude our exposition on parametric modeling for time series decomposition 
at this point.  
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4.4 Autocorrelation 

An important feature of time series is their (potential) serial correlation. This section 
aims at analyzing and visualizing these correlations. We first display the 
autocorrelation between two random variables t kX   and tX , which is defined as: 

( ,
Cor( ,

( )

)

(
)

)
t k t

t k t

t k t

Cov X X
X X

Var X Var X





  

This is a dimensionless measure for the linear association between the two random 
variables. Since for stationary series, we require the moments to be non-changing 
over time, we can drop the index t  for these, and write the autocorrelation as a 
function of the lag k : 

 ( ) ( , )t k tk Cor X X   

The goals in the forthcoming sections are estimating these autocorrelations from 
observed time series data, and to study the estimates’ properties. The latter will 
prove useful whenever we try to interpret sample autocorrelations in practice. 

The example we consider in this chapter is the wave tank data. The values are wave 
heights in millimeters relative to still water level measured at the center of the tank. 
The sampling interval is 0.1 seconds and there are 396 observations. For better 
visualization, we here display the first 60 observations only: 

> www <- "http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/" 
> dat <- read.table(paste(www,"wave.dat",sep=""), header=T) 
> wave <- ts(dat$waveht) 
> plot(window(wave, 1, 60), ylim=c(-800,800), ylab="Height") 
> title("Wave Tank Data") 
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These data show some pronounced cyclic behavior. This does not come as a 
surprise, as we all know from personal experience that waves do appear in cycles. 
The series shows some very clear serial dependence, because the current value is 
quite closely linked to the previous and following ones. But very clearly, it is also a 
stationary series. 

4.4.1 Lagged Scatterplot 

An appealing idea for analyzing the correlation among consecutive observations in 
the above series is to produce a scatterplot of 1( , )t tx x   for all 1,..., 1t n  . There is a 
designated function lag.plot() in R. The result is as follows: 

> lag.plot(wave, do.lines=FALSE, pch=20) 
> title("Lagged Scatterplot, k=1") 

 

The association seems linear and is positive. The Pearson correlation coefficient 
turns out to be 0.47, thus moderately strong. How to interpret this value from a 
practical viewpoint? Well, the square of the correlation coefficient, 20.47 0.22 , is 
the percentage of variability explained by the linear association between tx  and its 
respective predecessor. Here in this case, 1tx   explains roughly 22% of the 
variability observed in tx . We can of course extend the very same idea to higher 
lags. We here analyze the lagged scatterplot correlations for lags 2,...5k  , see next 
page. When computed, the estimated Pearson correlations turn out to be -0.27, -
0.50, -0.39 and -0.22, respectively. The formula for computing them is: 
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It is important to notice that while there are 1n  data pairs for computing (1) , there 
are only 2n   for (2) , and then less and less, i.e. n k  pairs for ( )k . Thus for 
the last autocorrelation coefficient which can be estimated, ( 2)n  , there is only 
one single data pair which is left. Of course, they can always be interconnected by 
a straight line, and the correlation in this case is always 1 . Of course, this is an 
estimation snag, rather than perfect linear association for the two random variables. 
Intuitively, it is clear that because there are less and less data pairs at higher lags, 
the respective estimated correlations are less and less precise. Indeed, by digging 
deeper in mathematical statistics, one can prove that the variance of ( )k  increases 
with k . This is undesired, as it will lead to instable results and spurious effects. The 
remedy is discussed in the next section. 

 

4.4.2 Plug-In Estimation 

For mitigating the above mentioned problem with the lagged scatterplot method, 
autocorrelation estimation is commonly done using the so-called plug-in approach, 
using estimated autocovariances as the basis. The formula is as follows: 
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Note that here, n  is used as a denominator irrespective of the lag and thus the 
number of summands. This has the consequence that ˆ (0)  is not an unbiased 
estimator for 2(0) X  , but as explained above, there are good reasons to do so. 
When plugging in the above terms, the estimate for the k th autocorrelation 
coefficient turns out to be: 
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It is straightforward to compute these in R, function acf() does the job, and we 
below do so for the wave tank data. As for the moment, we are interested in the 
numerical results, we set argument plot=FALSE. However, as we will see below, 
it is usually better to visualize the estimated autocorrelation coefficients graphically, 
as it will be explained below in section 4.4.3. Also note that R by default does not 
return all autocorrelations which are estimable in this series with 396 observations, 
but only the first 25. 

> acf(wave, plot=FALSE) 
 
Autocorrelations of series wave, by lag 
     0      1      2      3      4      5      6      7  
 1.000  0.470 -0.263 -0.499 -0.379 -0.215 -0.038  0.178  
     8      9     10     11     12     13     14     15  
 0.269  0.130 -0.074 -0.079  0.029  0.070  0.063 -0.010  
    16     17     18     19     20     21     22     23  
-0.102 -0.125 -0.109 -0.048  0.077  0.165  0.124  0.049  
    24     25  
-0.005 -0.066 

Next, we compare the autocorrelations from lagged scatterplot estimation vs. the 
ones from the plug-in approach. These are displayed below. While for the first 50 
lags, there is not much of a difference, the plug-in estimates are much more damped 
for higher lags. As claimed above, the lagged scatterplot estimate shows a value of 

1  for lag 394, and some generally very erratic behavior in the few lags before. 
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We can “prove”, or rather, provide evidence that this is an estimation artifact if we 
restrict the series to the first 60 observations and then repeat the estimation of 
autocorrelations, see next page. Again, for the highest few lags which are estimable, 
the lagged scatterplot approach shows erratic behavior – and this was not present 
at the same lags, when the series was still longer. We do not observe this kind of 
effect with the plug-in based autocorrelations, thus this is clearly the method of 
choice. 

We finish this chapter by repeating that the bigger the lag, the fewer data pairs 
remain for estimating the autocorrelation coefficient. We discourage of the use of 
the lagged scatterplot approach. While the preferred plug-in approach is biased due 
to the built-in damping mechanism, i.e. the estimates for high lags are shrunken 
towards zero; it can be shown that it has lower mean squared error. This is because 
it produces results with much less (random) variability. It can also be shown that the 
plug-in estimates are consistent, i.e. the bias disappears asymptotically.  

 

Nevertheless, all our findings still suggest that it is a good idea to consider only a 
first portion of the estimated autocorrelations. A rule of the thumb suggests that 

1010 log ( )n  is a good threshold. For a series with 100 observations, the threshold 
becomes lag 20. A second rule operates with / 4n  as the maximum lag to which the 
autocorrelations are shown. 

4.4.3 Correlogram 

Now, we know how to estimate the autocorrelation function (ACF) for any lag k . 
Here, we introduce the correlogram, the standard means of visualization for the 
ACF. We will then also study the properties of the ACF estimator. We employ R and 
type (see next page for the graphical output): 

> acf(wave, ylim=c(-1,1)) 
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It has become a widely accepted standard to use vertical spikes for displaying the 
estimated autocorrelations. Also note that the ACF in R by default starts with lag 0, 
at which it always takes the value 1. If one does not like the spike at lag 0, one can 
alternatively use the Acf() function from library(forecast). For better 
judgment, we also recommend setting the y -range to the interval [ 1,1] . Apart from 
these technicalities, the ACF reflects the properties of the series. We also observe 
a cyclic behavior with a period of 8, as it is apparent in the time series plot of the 
original data. Moreover, the absolute value of the correlations attenuates with 
increasing lag. Next, we will discuss the interpretation of the correlogram. 

 

Confidence Bands 

It is obvious that even for an iid series without any serial correlation, and thus 
( ) 0k   for all k , the estimated autocorrelations ˆ ( )k  will generally not be zero. 

Hopefully, they will be small, but the question is how much they can differ from zero 
just by chance. An answer is indicated by the confidence bands, i.e. the blue dashed 
lines in the plot above. The confidence bands are based on an asymptotic result: for 
long iid time series, it can be shown that the ˆ ( )k  approximately follow a (0,1/ )N n  
distribution. Thus, under the null hypothesis that a series is iid and hence ( ) 0k   
for all k , the 95% acceptance region for the null is given by the interval 1.96 / n . 
This leads us to the following statement that facilitates interpretation of the 
correlogram: 

“for any stationary time series, sample autocorrelation coefficients ˆ ( )k  that fall 
within the confidence band of 1.96 / n  are considered to be different from 0  only 
by chance, while those outside the confidence band are considered to be truly 
different from 0 .” 

On the other hand, the above statement means that even for iid series, we expect 
5% of the estimated ACF coefficients to exceed the confidence bounds; these 
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correspond to type 1 errors in the statistical testing business. Please note again that 
the indicated bounds are asymptotic and derived for iid series. The properties of 
serially dependent finite length series are much harder to derive! 

Ljung-Box Test 

The Ljung-Box approach tests the null hypothesis that a number of autocorrelation 
coefficients are simultaneously equal to zero. Or, more colloquially, it evaluates 
whether there is any significant autocorrelation in a series. The test statistic is: 

 
2

1

ˆ
( ) ( 2)

h
k

k

Q h n n
n k




   
  

Here, n  is the length of the time series, ˆ
k  are the sample autocorrelation 

coefficients at lag k  and h  is the lag up to which the test is performed. It is typical 
to use 1h  , 3 , 5 , 10  or 20 . The test statistic asymptotically follows a 2  distribution 
with h  degrees of freedom. As an example, we compute the test statistic and the 
respective p-value for the wave tank data with 10h  . 

> nn <- length(wave) 
> qq <- nn*(nn+2)*sum((acf(wave)$acf[2:11]^2)/(nn-(1:10))) 
> qq 
[1] 344.0155 
> 1-pchisq(qq, 10) 
[1] 0 

We observe that (10) 344.0155Q   which is far in excess of what we would expect 
by chance on independent data.The critical value, i.e. the 95%-quantile of the 2

10  
is at 18.3 and thus, the p-value is close to (but not exactly) zero. There is also a 
dedicated R function which can be used to perform Ljung-Box testing: 

> Box.test(wave, lag=10, type="Ljung-Box") 
Box-Ljung test 
data: wave  
X-squared = 344.0155, df = 10, p-value < 2.2e-16 

The result is, of course, identical. Please be aware that the test is sometimes also 
referred to as Box-Ljung test. Also R is not very consistent in its nomenclature. 
However, the two are one and the same. Moreover, with a bit of experience the 
results of the Ljung-Box test can usually be guessed quite well from the correlogram 
by eyeballing. 

ACF of Non-Stationary Series 

Estimation of the ACF from an observed time series assumes that the underlying 
process is stationary. Only then we can treat pairs of observations at lag k  as being 
probabilistically “equal” and compute sample covariance coefficients. Hence, while 
stationarity is at the root of ACF estimation, we can of course still apply the formulae 
given above to non-stationary series. The ACF then usually exhibits some typical 
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patterns. This can serve as a second check for non-stationarity, i.e. helps to identify 
it, should it have gone unnoticed in the time series plot. We start by showing the 
correlogram for the SMI daily closing values from section 1.2.4. This series does not 
have seasonality, but a very clear trend.  

> acf(smi, lag.max=100) 

We observe that the ACF decays very slowly. The reason is that if a time series 
features a trend, the observations at consecutive observations will usually be on the 
same side of the series’ global mean x . This is why that for small to moderate lags 
k , most of the terms 

( )( )s k sx x x x    

are positive. For this reason, the sample autocorrelation coefficient will be positive 
as well, and is most often also close to 1. Thus, a very slowly decaying ACF is an 
indicator for non-stationarity, i.e. a trend which was not removed before 
autocorrelations were estimated. 

 

Next, we show an example of a series that has no trend, but a strongly recurring 
seasonal effect. We use R’s data(nottem), a time series containing monthly 
average air temperatures at Nottingham Castle in England from 1920-1939. Time 
series plot and correlogram are as follows: 
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The ACF is cyclic, and owing to the recurring seasonality, the envelope again 
decays very slowly. Also note that for periodic series, R has periods rather than lags 
on the x-axis – often a matter of confusion. We conclude that a hardly, or very slowly 
decaying periodicity in the correlogram is an indication of a seasonal effect which 
was forgotten to be removed. Finally, we also show the correlogram for the logged 
air passenger bookings. This series exhibits both an increasing trend and a 
seasonal effect. The result is as follows: 

> data(AirPassengers) 
> txt <- "Correlogram of Logged Air Passenger Bookings" 
> acf(log(AirPassengers), lag.max=48, main=txt) 
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Here, the two effects described above are interspersed. We have a (here 
dominating) slow decay in the general level of the ACF, plus some periodicity. Again, 
this is an indication for a non-stationary series. It needs to be decomposed, before 
the serial correlation in the stationary remainder term can be studied. 

The ACF and Outliers 

If a time series has an outlier, it will appear twice in any lagged scatterplot, and will 
thus potentially have “double” negative influence on the ˆ ( )k . As an example, we 
consider variable temp from data frame beaver1, which can be found in R’s 
data(beavers). This is the body temperature of a female beaver, measured by 
telemetry in 10 minute intervals. We first visualize the data with a time series plot. 
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Observation 80 is a moderate, but distinct outlier. It is unclear to the author whether 
this actually is an error, or whether the reported value is correct. But because the 
purpose of this section is showing the potential influence of erroneous values, that 
is not important. Neither the Pearson correlation coefficient, nor the plug-in 
autocorrelation estimator is robust, thus the appearance of the correlogram can be 
altered quite strongly due to the presence of just one single outlier.  

> plot(beaver[1:113], beaver[2:114], pch=20,) 
> title("Lagged Scatterplot for Beaver Temperature") 

The two data points where the outlier is involved are highlighted. The Pearson 
correlation coefficients with and without these two observations are 0.86 and 0.91.  
Depending on the outliers severity, the difference can be much bigger. The next plot 
shows the entire correlogram for the beaver data, computed with (black) and without 
(red) the outlier. Also here, the difference may seem small and rather academic, but 
it could easily be severe if the outlier was just pronounced enough. 

 

The question is, how do we handle missing values in time series? In principle, we 
cannot just omit them without breaking the time structure. And breaking it means 
going away from our paradigm of equally spaced points in time. A popular choice is 
thus replacing the missing value. This can be done with various degrees of 
sophistication: 

a) replacing the value with the global mean 
b) using a local mean, i.e. +/- 3 observations 
c) model based imputation by forecasting 

The best strategy depends upon the case at hand. And in fact, there is a fourth 
alternative: while R’s acf() function by default does not allow for missing values, it 
still offers the option to proceed without imputation. If argument is set as 
na.action=na.pass, the covariances are computed from the complete cases, 
and the correlogram is shown as usual. However, having missed values in the series 
has the consequence that the estimates produced may well not be a valid (i.e. 
positive definite) autocorrelation sequence, and may contain missing values. From 
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a practical viewpoint, these drawbacks can often be neglected, though. Also many 
other R functions for time series analysis allow for the presence of missing values if 
the arguments are set properly. 

 

4.4.4 Quality of ACF Estimates 

In this section we will deal with the quality of the information that is contained in the 
correlogram. We will not do this from a very theoretical viewpoint, but rather focus 
on the practical aspects. We have already learned that the ACF estimates from the 
plug-in approach are generally biased, i.e. shrunken towards zero for higher lags. 
This means that it is better to cut off the correlogram at a certain lag. Furthermore, 
non-stationarities in the series can hamper the interpretation of the correlogram and 
we have also seen that outliers can have a quite strong impact. But there are even 
more aspects in ACF estimation that are problematic... 

The Compensation Issue 

One can show that the sum of all autocorrelation coefficients which can be estimated 
from a time series realization, i.e. the sum over all ˆ ( )k  for lags 1,..., 1k n  , adds 
up to -1/2. Or, written as a formula: 
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We omit a formal proof here, but give empirical evidence below. It is clear that the 
above condition will lead to quite severe artifacts, especially when a time series 
process has only positive correlations. We here show both the true, theoretical ACF 
of an (1)AR  process with 1 0.7  , which, as we will see in section 5, has 

1( ) (0.7) 0k kk     for all k , and the sample correlogram for a realization of that 
process with a length 200 observations. 
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The respective R-commands for producing these plots are as follows: 

## True ACF 
true.acf <- ARMAacf(ar=0.7, lag.max=200) 
plot(0:200, true.acf, type="h", xlab="Lag", ylim=c(-1,1)) 
title("True ACF of an AR(1) Process with alpha=0.7") 
abline(h=0, col="grey") 
 
## Simulation and Generating the ACF 
set.seed(25) 
ts.simul <- arima.sim(list(ar=0.7), 200) 
acf(ts.simul, lag=200, main="Correlogram ...") 
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What we observe is quite striking: only for the very first few lags, the sample ACF 
does match with its theoretical counterpart. As soon as we are beyond lag 6k  , 
the sample ACF turns negative. This is an artifact, because the sum of the estimated 
autocorrelations coefficients needs to add up to -1/2. We quickly verify this using the 
following R command on the simulated 200n   series. Please be aware that the 
acf() command in R also outputs the ACF estimate at lag 0, so the sum only starts 
from the second term in the output object: 

> est <- acf(ts.simul,length(ts.simul))$acf 
> sum(est[2:length(ts.simul)]) 
[1] -0.5 

Some of these spurious, negative correlation estimates are so big that they even 
exceed the confidence bounds – an observation that has to be well kept in mind if 
one analyzes and tries to interpret the correlogram. We conclude this section by 
visualizing the cumulative sum of estimated autocorrelation coefficients for the 
realization of the above (1)AR  process. 

> sum.acf <-numeric() 
> for (i in 2:(length(simul))) sum.acf[i-1] <- sum(est[2:i]) 
> plot(1:(length(simul)-1), sum.acf, type="l", main="…") 
> abline(h=0, lty=3) 
> abline(h=-0.5, col="red", lty=2) 
> abline(h=sum(.7^(1:199)), col="blue", lty=2) 
> text(0,2.5, "True value = 2.333", col="blue", pos=4) 
> text(0,-.67, "Sum of Estimates = -0.5", col="red", pos=4) 

 

The true value for the sum of ( ), 1,...,199k k   is 
199

1
(0.7) 2.333k

k
 , so the sum of 

the estimated autocorrelation coefficients is very far from the true value. This again 
emphasizes that the estimates should be taken with a grain of salt and that the 
confidence bands are optimistically small. 
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Simulation Study 

Last but not least, we will run a small simulation study that visualizes bias and 
variance in the sample autocorrelation coefficients. We will again base this on the 
simple (1)AR  process with coefficient 1 0.7  . For further discussion of the process’ 
properties, we refer to section 5. There, it will turn out that the thk  autocorrelation 
coefficient of such a process takes the value (0.7)k , as visualized on the previous 
page.  

For understanding the variability in ˆ (1) , ˆ (2) , ˆ (5)  and ˆ (10) , we simulate from 
the aforementioned (1)AR  process. We generate series of length 20n  , 50n  , 

100n   and 200n  . We then obtain the correlogram, record the estimated 
autocorrelation coefficients and repeat this process 1000 times. This serves as a 
basis for displaying the variability in ˆ (1) , ˆ (2) , ˆ (5)  and ˆ (10)  with boxplots. They 
can be found below. 

 

We observe that for “short” series with less than 100 observations, estimating the 
ACF is difficult: the ˆ ( )k  are strongly biased, and there is huge variability. Only for 
longer series, the consistency of the estimator “kicks in”, and yields estimates which 
are reasonably precise. For lag 10k  , on the other hand, we observe less bias, but 
the variability in the estimate remains large, even for “long” series. 

We conclude this situation by summarizing: by now, we have provided quite a bit of 
evidence that the correlogram can be tricky to interpret at best, sometimes even 
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misleading, or plain wrong. However, it is the best means we have for understanding 
the dependency in a time series. And we will base many if not most of our decisions 
in the modeling process on the correlogram. However, please be aware of the bias 
and the estimation variability there is. 

4.4.5 Confidence Interval for the Time Series Mean 

An important application of the theory on autocorrelations discussed above is the 
construction of a confidence interval for the mean of a time series. Let us assume 
we are given a stationary time series 1 2( , , , )nX X X X  . Then, the global mean of 
the series is estimated as: 
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For the construction of a confidence interval we require an estimation of ˆ( )Var  . In 
case of iid observation, we have 2ˆ( ) /XVar n  , so that plugging in the sample 
variance 2ˆ X  does the job. Unfortunately, with a time series that has autocorrelated 
instances, things are more complicated. In particular: 
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As we can see, it depends on all autocorrelations ( )k  whether ˆ( )Var   is bigger or 
smaller than under independence. Unless we have knowledge about all these 
coefficients, we cannot make a statement. 

In reality, one often has to deal with time series that only feature positive 
autocorrelation coefficients. In that case ˆ( )Var   will be larger than for an iid series. 
Hence, falsely assuming independence may lead to deflated confidence intervals 
and spuriously significant results.  

So how to practice in practice? Plugging in all autocorrelations down to ˆ ( 1)n   into 
the above formula seems like a poor choice given the mediocre quality of the 
estimates at higher lags. A reasonable compromise is to plug-in ˆ ( )k  for lags 
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101,...,10 log ( )k n   and zero for the higher lags. The confidence interval for the mean 
is then derived from the usual Gaussian asymptotics: 

 
1010 log ( )

2
1

(0)
ˆ 1.96 2 ( ) ( )

n

k

n n k k
n

 




 
      

 
  

We illustrate the issue based on the series with the body temperature of the beaver 
from above. The mean and the faulty confidence interval under iid assumption are 
simply computed as: 

> mean(beaver) 
[1] 36.862 
> mean(beaver)+c(-1.96,1.96)*sd(beaver)/sqrt(length(beaver)) 
[1] 36.827 36.898 

When adjusting for the sequential correlation of the observations, the confidence 
interval becomes around 2.7x longer, which can make a big difference! 

> n      <- length(beaver) 
> var.ts <- 1/n^2* 
            acf(beaver, lag=0, type="covariance")$acf[1]* 
            (n+2*sum(((n-1):(n-10))*acf(beaver,10)$acf[-1])) 
> mean(beaver) + c(-1.96,1.96)*sqrt(var.ts) 
[1] 36.765 36.959 

4.5 Partial Autocorrelation 

For the above, pure (1)AR  process, with its strong positive correlation at lag 1, it is 
somehow “evident” that the autocorrelation for lags 2 and higher will be positive as 
well – just by propagation: if A is highly correlated to B, and B is highly correlated to 
C, then A is usually highly correlated to C as well. It would now be very instructive 
to understand the direct relation between A and C, i.e. exploring what dependency 
there is in excess to the one associated to B. In a time series context, this is exactly 
what the partial autocorrelations do. The mathematical definition is the one of a 
conditional correlation: 

 1 1 1 1( ) ( , | , , )t k t t t t k t kk Cor X X X x X x            

In other words, we can also say that the partial autocorrelation is the association 
between tX  and t kX   with the linear dependence of 1tX   through 1t kX    removed. 
Another instructive analogy can be drawn to linear regression. The autocorrelation 
coefficient ( )k  measures the simple dependence between tX  and t kX  , whereas 
the partial autocorrelation ( )k  measures the contribution to the multiple 
dependence, with the involvement of all intermediate instances 1 1,...,t t kX X    as 
explanatory variables. There is a (theoretical) relation between the partial 
autocorrelations ( )k  and the plain autocorrelations (1),..., ( )k  , i.e. they can be 
derived from each other, e.g.: 



ATSA  4 Descriptive Analysis 

 Page 79 

(1) (1)   and 2 2(2) ( (2) (1) ) / (1 (1) )       

The formula for higher lags k  exists, but get complicated rather quickly, so we do 
without displaying them. However, another absolutely central property of the partial 
autocorrelations ( )p  is that the thk  coefficent of the ( )AR p  model, denoted as p
, is equal to ( )p . While there is an in depth discussion of ( )AR p  models in section 
5, we here briefly sketch the idea, because it makes the above property seem rather 
logical. An autoregressive model of order p , i.e. an ( )AR p is: 

1 1t t k t p tX X X E     ,  

where tE  is a sequence of iid random variables. Making the above statement 
concrete, this means that in an (3)AR  process, we have 3(3)  , but generally 

2(2)   and 1(1)  . Moreover, we have ( ) 0k   for all k p . These properties 
are used in R for estimating partial autocorrelation coefficients. Estimates ˆ( )p  are 
generated by fitting autoregressive models of successively higher orders. The job is 
done with function pacf(): input/output are equal/similar to ACF estimation. In 
particular, the confidence bounds are also presented for the PACF. We conclude 
this section by showing the result for the wave tank data. 

> pacf(wave, ylim=c(-1,1), main="PACF of Wave Tank Data") 

 

We observe that ˆ (1) 0.5   and ˆ(2) 0.6   . Some further PACF coefficients up to 
lag 10 seem significantly different from zero, but are smaller. From what we see 
here, we could try to describe the wave tank data with an (2)AR  model. The next 
section will explain why. 

As a last remark in this chapter, we here introduce the tsdisplay() function from 
R’s library (forecast). Using the default settings, it will show a time series 
plot along with both ACF and PACF. This will turn out to be very convenient when a 
model for a time series shall be found. 
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> library(forecast) 
> tsdisplay(wave, points=FALSE) 
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5 Stationary Time Series Models 
Rather than simply describing observed time series data, we now aim for fitting time 
series models. This will prove useful for a deeper understanding of the data, but is 
especially beneficial when forecasting is the main goal. We here focus on parametric 
models for stationary time series, namely the broad class of autoregressive moving 
average (ARMA) processes – these have shown great importance in modeling real-
world data. 

5.1 White Noise 

As the most basic stochastic process, we introduce discrete White Noise. A time 
series 1 2( , ,..., )nW W W  is called White Noise if the random variables 1 2, ,...W W  are 
independent and identically distributed with mean zero. This also implies that all 
random variables tW  have identical variance, and there are no autocorrelations and 
partial autocorrelations either: ( ) 0k   and ( ) 0k   for all lags k . If in addition, the 
variables also follow a Gaussian distribution, i.e. 2~ (0, )t WW N  , the series is called 
Gaussian White Noise. 

Before we show a realization of a White Noise process, we state that the term “White 
Noise” was coined in an article on heat radiation published in Nature in April 1922. 
There, it was used to refer to series time series that contained all frequencies in 
equal proportions, analogous to white light. It is possible to show that iid sequences 
of random variables do contain all spectral frequencies in equal proportions, and 
hence, here we are. 
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In R, it is easy to generate Gaussian White Noise, we just type: 

> ts(rnorm(200, mean=0, sd=1)) 

Well, by giving more thought on how computers work, i.e. by relying on deterministic 
algorithms, it may seem implausible that they can really generate independent data. 
We do not embark into these discussions here, but treat the result of rnorm() as 
being “good enough” for a realization of a White Noise process. Here, we show ACF 
and PACF of the above series. As expected, there are no (strongly) significant 
estimates. 

 

White Noise series are important, because they usually arise as residual series 
when fitting time series models. The correlogram generally provides enough 
evidence for attributing a series as White Noise, provided the series is of reasonable 
length – our studies in section 4.4 suggests that 100 or 200 is such a value. Please 
also note that while there is not much structure in Gaussian White Noise, it still has 
a parameter. It is the variance 2

W . 

5.2 Estimating the Conditional Mean 

Before we present some time series models, it is important to build some 
understanding of what we are actually doing. All the ( )AR p , ( )MA q  and ( , )ARMA p q  
models that will be presented below are based on the assumption that the time 
series can be written as:  

 t t tX E  . 

Hereby, t  is the conditional mean of the series, i.e. 1 2[ | , ,...]t t t tE X X X    and tE  
is a disturbance term. For all models in section 5, the disturbance term is assumed 
to be a White Noise innovation.  
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It is very important to notice that while stationary series feature a constant marginal 
expectation  , the conditional mean t  is can be and often is non-constant and 
time-dependent. Or in other words, there is some short-term memory in the series. 
The ( , )ARMA p q  processes that will be discussed here in this section are built on 
the following notion: 

 1 2 1 2( , ,..., , , ,..., )t t t t p t t t qf X X X E E E       . 

In words, the conditional mean is a function of past instances of the series as well 
as past innovations. We will see that usually, a selection of the involved terms is 
made, and that the function ( )f   is a linear combination of the arguments. 

5.3 Autoregressive Models 

5.3.1 Definition and Properties 

The most natural formulation of a time series model is a linear regression approach 
on the past instances, i.e. a regression on the series itself. This coined the term 
autoregressive. In practice, such models prove to be very important; they are the 
most popular way of describing time series. 

Model and Terms 

An autoregressive model of order p , abbreviated as ( )AR p , is based on a linear 
combination of past observations according to the following equation: 

 1 1 2 2 ...t t t p t p tX X X X E         . 

Hereby, the disturbance term tE  comes from a White Noise process, i.e. is iid. 
Moreover, we require that it is an innovation, i.e. that it is stochastically independent 
of 1 2, ,...t tX X  . The term innovation is illustrative, because (under suitable 
conditions), it has the power to drive the series into a new direction, meaning that it 
is strong enough so that it can overplay the dependence of the series from its own 
past. An alternative notation for ( )AR p  models is possible with the backshift 
operator: 

 2
1 2(1 ... )pp t tB B B X E       , or short ( ) t tB X E   

Hereby, ( )B  is called the characteristic polynomial. It determines all the relevant 
properties of the process. The most important questions that we will deal with in this 
chapter are of course the choice of the order p  and the estimation of the coefficients 

1,..., p  . But first, a very important point: 

 ( )AR p  models must only be fitted to stationary time series. Any potential 
trends and/or seasonal effects need to be removed first. We will also make 
sure that the ( )AR p  processes are stationary. 
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When is an ( )AR p  stationary? Not always, but under some mild conditions. First of 
all, we study the unconditional expectation of an ( )AR p  process tX  which we 
assume to be stationary, hence [ ]tE X   for all t . When we take expectations on 
both sides of the model equation, we have: 

 1 1 1[ ] [ ... ] ( ... ) 0t t p t p t pE X E X X E                , hence 0  . 

Thus, any stationary ( )AR p  process has a global mean of zero. But please be aware 
of the fact that the conditional mean is time dependent and generally different from 
zero. 

 1 1 1[ | ,..., ] ...t t t t p t p t pE X X X x x          

The question remains if ( )AR p  processes are practically useful, because most of 
the real-word time series have a global mean   that is different from zero. However, 
that generally poses little difficulties if we add an additional parameter m  to the 
model definition: 

 t tY m X   

In that case, tY  is a shifted ( )AR p  process, i.e. it has all dependency properties from 
an ( )AR p , but its mean is different from zero. In fact, all R methodology that exists 
for fitting ( )AR p ’s assumes the process tY  and thus estimates a global mean m  
unless this is explicitly excluded. In practice, if one colloquially speaks of an ( )AR p
, mostly one thinks of tY  rather than tX . 

However, for the stationarity of an ( )AR p , some further conditions on the model 
coefficients 1,..., p   are required. The general derivation is quite complicated and 
will be omitted here. But for illustrative purpose, we assume a stationary (1)AR  which 
has 2( )t XVar X   for all t . If we determine the centralized second moment on both 
sides of the model equation, we obtain: 

 2 2 2 2
1 1 1( ) ( )X t t t X EVar X Var X E         , hence 

2
2

2
11

E
X







. 

From this we derive that an (1)AR  can only be stationary if 1 1  . That limitation 
means that the dependence from the series’ past must not be too strong, so that the 
memory fades out. If 1 1  , the process diverges. The general condition for ( )AR p  
models is (as mentioned above) more difficult to derive. We require that: 

The (potentially complex) roots of the characteristic polynomial ( )B  must 
all exceed 1 in absolute value for an ( )AR p  process to be stationary. 

In R, there is function polyroot() for finding a polynomials roots. If we want to 
verify whether an (3)AR  with 1 2 30.4, 0.2, 0.3       is stationary, we type: 

> abs(polyroot(c(1,-0.4,0.2,-0.3))) 
[1] 1.405467 1.540030 1.540030 
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Thus, the (3)AR  we specified is stationary. We will proceed by studying the 
dependency in ( )AR p  processes. For illustration, we first simulate from an (1)AR  
with 1 0.8  . The model equation is: 

 10.8t t tX X E    

So far, we had only required that tE  is a White Noise innovation, but not a 
distribution. We use the Gaussian here and set 1 1x E  as the starting value. 

> set.seed(24) 
> E    <- rnorm(200, 0, 1) 
> x    <- numeric() 
> x[1] <- E[1] 
> for(i in 2:200) x[i] <- 0.8*x[i-1] + E[i] 
> plot(ts(x), main= "AR(1) with...") 

 

We observe some cycles with exclusively positive and others with only negative 
values. That is not surprising: if the series takes a large value, then the next one is 
determined as 0.8 times that large value plus the innovation. Thus, it is more likely 
that the following value has the same sign as its predecessor. On the other hand, 
the innovation is powerful enough so that jumping to the other side of the global 
mean is always an option. Given that behavior, it is evident that the autocorrelation 
at lag 1 is positive. We can compute it explicitly from the model equation: 

 1 1 1 1 1
1 1

( , ) ( , ) (0) 0
(1) ( , )

(0) (0) (0)
t t t t t

t t

Cov X X Cov X E X
Cor X X

   
  

  


 
      

Thus we have (1) 0.8   here, or in general 1(1)  . The correlation for higher lags 
can be determined similarly by repeated plug-in of the model equation. It is: 

 1( ) kk  . 
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Thus, for stationary (1)AR  series, we have an exponential decay of the 
autocorrelation coefficients. Of course, it is also allowed to have a negative value 
for 1 , as long as 1 1  . A realization of length 200 with 1 0.8    is as follows: 

 

The series shows an alternating behavior: the next value is more likely to lie on the 
opposite side of the global mean zero, but there are exceptions when the innovation 
takes a large value. The autocorrelation still follows 1( ) kk  . It is also alternating 
between positive and negative values with an envelope for ( )k  that is 
exponentially decaying.  

We will now focus on appeareance and dependency of an (3)AR  (with the 
coefficients from above). While we could still program the simulation code by 
ourselves, it is more convenient to use function arima.sim(). 
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What is now the (theoretical) correlation in this (3)AR ? We apply the standard trick 
of plugging-in the model equation. This yields: 

 

1

1
1 1

1

( ) (0) ( , )

(0) ( ... , )

( 1) ... ( )

t k t

t k p t k p t t

p

k Cov X X

Cov X X E X

k k p

 
  
   





   

 
    
    

 

with (0) 1   and ( ) ( )k k   . For 1,...,k p  this results in a p p  linear equation 
system called the Yule-Walker equations. It can be solved to obtain the 
autocorrelation coefficients which can finally be propagated for 1, 2,...k p p   . In 
R, there is function armaACF() that allows to determine the autocorrelation from 
autoregressive model coefficients. 

> autocorr <- ARMAacf(ar=c(0.4, -0.2, 0.3), lag.max=20) 
> plot(0:20, autocorr, type="h", xlab="Lag") 

 

We observe that the theoretical correlogram shows a more complex structure than 
what could be achieved with an (1)AR . Nevertheless, one can still find an 
exponentially decaying envelope for the magnitude of the autocorrelations ( )k . 
That is a property which is common to all ( )AR p  models. 

From the above, we can conclude that the autocorrelations are generally non-zero 
for all lags, even though in the underlying model, tX  only depends on the p  
previous values 1,...,t t pX X  . In section 4.5 we learned that the partial 
autocorrelation at lag k  illustrates the dependence between tX  and t kX   when the 
linear dependence on the intermittent terms was already taken into account. It is 
evident by definition that for any ( )AR p  process, we have ( ) 0k   for all k p . This 
can and will serve as a useful indicator for deciding on the model order p  if we are 
trying to identify the suitable model order when fitting real world data. In this section, 
we focus on the PACF for the above (3)AR . 
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> autocorr <- ARMAacf(ar=..., pacf=TRUE, lag.max=20) 
> plot(0:20, autocorr, type="h", xlab="Lag") 

 

As claimed previously, we indeed observe (1) (1) 0.343    and 3(3) 0.3   . All 
partial autocorrelations from (4)  on are exactly zero. 

5.3.2 Fitting 

Fitting an ( )AR p  model to data involves three main steps. First, the model and its 
order need to be identified. Second, the model parameters need to be estimated 
and third, the quality of the fitted model needs to be verified by residual analysis.  

Model Identification 

The model identification step first requires verifying that the data show properties 
which make it plausible that they were generated from an ( )AR p  process. In 
particular, the time series we are aiming to model needs to be stationary, show an 
ACF with approximately exponentially decaying envelope and a PACF with a 
recognizable cut-off at some lag p  smaller than about 5 10 . If any of these three 
properties is strongly violated, it is unlikely that an ( )AR p  will yield a satisfactory fit, 
and there might be models which are better suited for the problem at hand. 

The choice of the model order p  then relies on the analysis of the sample PACF. 
Following the paradigm of parameter parsimony, we would first try the simplest 
model that seems plausible. This means choosing the smallest p  at which we 
suspect a cut-off, i.e. the smallest after which none, or only few and weakly 
significant partial autocorrelations follow. We illustrate the concept with the logged 
Lynx data that were already discussed in section 1.2.2. We need to generate both 
ACF and PACF, which can be found on the next page. 
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There is no reason to doubt the stationarity of the Lynx series. Moreover, the ACF 
shows a cyclic behavior that has an exponentially decaying envelope. Now does the 
PACF show a cut-off? That is a bit less clear, and several orders p  ( 2,4,7,11)  
come into question. However in summary, we conjecture that there are no strong 
objections against fitting an ( )AR p . The choice of the order is debatable, but the 
parsimony paradigm tells us that we should try with the smallest candidate first, and 
that is 2p  . 

Parameter Estimation 

Observed time series are rarely centered and thus, it is usually inappropriate to fit a 
pure ( )AR p  process. In fact, all R routines for fitting autoregressive models by 
default assume the shifted process t tY m X  . Hence, we have a regression-type 
equation with observations: 

 1 1( ) ( ) ... ( )t t p t p tY m Y m Y m E          for 1,...,t p n  . 

The goal here is to estimate the parameters 1, ,..., pm    such that the data are fitted 
well. There are several concepts that define well fitting. These include ordinary least 
squares estimation (OLS), Burg’s algorithm (Burg), the Yule-Walker approach (YW) 
and maximum likelihood estimation (MLE). Already at this point we note that while 
the four methods have fundamental individuality, they are asymptotically equivalent 
(under some mild assumptions) and yield results that mostly only differ slightly in 
practice. Still, it is worthwhile to study all the concepts. 

OLS 

The OLS approach is based on the notion with the centering; the above equation 
defines a multiple linear regression problem without intercept. The goodness-of-fit 
criterion is 2ˆ( )t tx x  resp. 2ˆ( )t ty y , the two quantities are equal. The first step with 
this approach is to center the data, which is based on subtracting the global mean: 
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Estimate 
1

ˆ
n

tt
m y y


   and then compute ˆt tx y m   for all 1,...,t n . 

On the tx , an OLS (auto)regression without intercept is performed. Note that this 
regression is (technically) conditional on the first p  observations 1,..., px x , which are 
only used as predictors, but not as response terms. In other words, the goodness-
of-fit of the model is only evaluated for the last n p  observations. The following 
code chunk implements the procedure for the logged lynx data: 

> llc     <- log(lynx)-mean(log(lynx)) 
> resp    <- llc[3:114] 
> pred1   <- llc[2:113] 
> pred2   <- llc[1:112] 
> fit.ols <- lm(resp ~ -1 + pred1 + pred2) 
> summary(fit.ols) 
 
Coefficients: 
      Estimate Std. Error t value Pr(>|t|)     
pred1  1.38435    0.06359   21.77   <2e-16 *** 
pred2 -0.74793    0.06364  -11.75   <2e-16 *** 
--- 
Residual standard error: 0.528 on 110 degrees of freedom 
Multiple R-squared: 0.8341, Adjusted R-squared: 0.8311  
F-statistic: 276.5 on 2 and 110 DF,  p-value: < 2.2e-16 

We can extract ˆ 6.686m  , 1
ˆ 1.384  , 2

ˆ 0.748    and ˆ 0.528E  . But while this is 
an instructive way of estimating ( )AR p  models, it is a bit cumbersome and time 
consuming. Not surprisingly, there are procedures that are dedicated to fitting such 
models in R. We here display the use of function ar.ols(). To replicate the hand-
produced result, we type: 

> f.ar.ols <- ar.ols(log(lynx), aic=F, intercept=F, order=2) 
> f.ar.ols 
 
Coefficients: 
      1        2   
 1.3844  -0.7479   
 
Order selected 2  sigma^2 estimated as  0.2738 

Note that for producing the result, we need to avoid AIC-based model fitting with 
aic=FALSE. The shift m  is automatically estimated, and thus we need to exclude 
an intercept term in the regression model using intercept=FALSE. We observe 
that the estimated AR -coefficients 1 2

ˆ ˆ,   take exactly the same values as with the 
hand-woven procedure above. The estimated shift m̂  can be extracted via 

> fit.ar.ols$x.mean 
[1] 6.685933 

and corresponds to the global mean of the series. Finally, the estimate for the 
innovation variance requires some prudence. The lm() summary output yields an 
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estimate of E  that was computed as / ( )RSS n p , whereas the value in the 
ar.ols() output is an estimate of 2

E  that was computed as /RSS n . The former is 
intended to be an unbiased estimate (though it should use the denominator 1n p   
due to the estimation of the shift m ), and the latter is the MLE-estimator for the 
innovation variance. In practice, the numerical difference between the two is 
neglectable for any series that has reasonable length for fitting an AR  model. 

> sum(na.omit(fit.ar.ols$resid)^2)/112 
[1] 0.2737594 

Burg’s Algorithm 

While the OLS approach works, its downside is the asymmetry: the first p  terms 
are never evaluated as responses. That is cured by Burg’s Algorithm, an alternative 
approach for estimating ( )AR p  models. It is based on the notion that any ( )AR p  
process is also an ( )AR p  if the time is run in reverse order. Under this property, 
minimizing the forward and backward 1-step squared prediction errors makes 
sense: 

2 2

1 1 1

p pn

t k t k t p k t p k
t p k k

X X X X    
   

           
     

    

In contrast to OLS, there is no explicit solution and numerical optimization is 
required. This is done with a recursive method called the Durbin-Levison algorithm. 
We do not explain its details here, but refer to the R implementation ar.burg().  

> f.ar.burg <- ar.burg(log(lynx), aic=FALSE, order.max=2) 
> f.ar.burg 
 
Call: 
ar.burg.default(x = log(lynx), aic = FALSE, order.max = 2) 
 
Coefficients: 
      1        2   
 1.3831  -0.7461   
 
Order selected 2  sigma^2 estimated as  0.2707 
 
> f.ar.burg$x.mean 
[1] 6.685933 
> sum(na.omit(f.ar.burg$resid)^2)/112 
[1] 0.2737614 

There are a few interesting points which require commenting. First and foremost, 
Burg’s algorithm also uses the arithmetic mean to estimate the global mean m̂ . The 
fitting procedure is then done on the centered observations tx . On a side remark, 
note that assuming centered observations is possible. If argument demean=FALSE 
is set, the global mean is assumed to be zero and not estimated. 
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The two coefficients 1 2
ˆ ˆ,   take some slightly different values than with OLS 

estimation. While often, the difference between the two methods is practically 
neglectable, it is nowadays generally accepted that the Burg solution is better for 
finite samples. Asymptotically, the two methods are equivalent. Finally, we observe 
that the ar.burg() output specifies 2ˆ 0.2707E  . This is different from the MLE 
estimate of 0.27376 on the residuals. The explanation is that for Burg’s Algorithm, 
the innovation variance is estimated from the Durbin-Levinson updates; see the R 
help file for further reference. 

Yule-Walker Equations 

A third option for estimating ( )AR p  models is to plugging-in the sample ACF into 
the Yule-Walker equations. In section 5.3.1 we had learned that there is a p p  
linear equation system 1( ) ( 1) ... ( )pk k k p          for 1,...,k p . Hence we 
can and will explicitly determine ˆ ˆ(0),..., ( )k   and then solve the linear equation 
system for the coefficients 1,..., p  . The procedure is implemented in R function 
ar.yw(). 

> f.ar.yw <- ar.yw(log(lynx), aic=FALSE, order.max=2) 
> f.ar.yw 
 
Call: ar.yw.default(x=log(lynx), aic=FALSE, order.max=2) 
 
Coefficients: 
      1        2   
 1.3504  -0.7200   
 
Order selected 2  sigma^2 estimated as  0.3109 

Again, the two coefficients 1 2
ˆ ˆ,   take some slightly different values than compared 

to the two methods before. Mostly this difference is practically neglectable and Yule-
Walker is asymptotically equivalent to OLS and Burg. Nevertheless, for finite 
samples, the estimates from the Yule-Walker method are often worse in the sense 
that their (Gaussian) likelihood is lower. Thus, we recommend preferring Burg’s 
algorithm. We conclude this section by noting that the Yule-Walker method also 
involves estimating the global mean m  with the arithmetic mean as the first step. 
The innovation variance is estimated from the fitted coefficients and the 
autocovariance of the series and thus again takes a different value than before. 

Maximum-Likelihood Estimation (MLE) 

The MLE is based on determining the model coefficients such that the likelihood 
given the data is maximized, i.e. the density function takes its maximal value under 
the present observations. This requires assuming a distribution for the ( )AR p  
process, which comes quite naturally if one assumes that for the innovations, we 
have 2~ (0, )t EE N  , i.e. they are iid Gaussian random variables. With some theory 
(which we omit), one can then show that an ( )AR p  process 1,..., nX X  is a random 
vector with a multivariate Gaussian distribution.  
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MLE then provides a simultaneous estimation of the shift m , the innovation variance 
2
E  and the model coefficients 1,..., p  . The criterion that is optimized can, in a 

simplified version, be written as: 

 2 2

1

ˆ( , ) exp ( )
n

E t t
t

L m x x 


    
 
  

The details are quite complex and several constants are part of the equation, too. 
But we here note that the MLE derived from the Gaussian distribution is based on 
minimizing the sum of squared errors and thus equivalent to the OLS approach. Due 
to the simultaneous estimation of model parameters and innovation variance, a 
recursive algorithm is required. There is an implementation in R: 

> f.ar.mle 
Call: arima(x = log(lynx), order = c(2, 0, 0)) 
 
Coefficients: 
         ar1      ar2  intercept 
      1.3776  -0.7399     6.6863 
s.e.  0.0614   0.0612     0.1349 
 
sigma^2 = 0.2708:  log likelihood = -88.58,  aic = 185.15 

We observe estimates which are again slightly different from the ones computed 
previously. Again, those differences are mostly neglectable for practical data 
analysis. What is known from theory is that the MLE is (under mild assumptions) 
asymptotically normal with minimum variance among all asymptotically normal 
estimators. Note that the MLE based on Gaussian distribution still works reasonably 
well if that assumption is not met, as long as we do not have strongly skewed data 
(apply a transformation in that case) or extreme outliers. 

Practical Aspects 

We presented four different methods for fitting ( )AR p  models. How to make a 
choice in practice? We explained that all methods are asymptotically equivalent and 
even on finite samples; the differences among them are little. Also, all methods are 
non-robust with respect to outliers and perform best on data which are 
approximately Gaussian. There is one practical aspect linked to the fitting routines 
that are available in R, though. Function arima() yields standard errors for m  and 

1,..., p  . Approximate 95% confidence intervals can be obtained by taking the point 
estimate +/- twice the standard error. Hence, statements about the significance of 
the estimates can be made, and a confidence interval for the mean is much more 
easily constructed as by the procedure describen in section 4.4.5. 

On the other hand, ar.ols(), ar.yw() und ar.burg() do not provide standard 
errors, but allow for convenient determination of the model order p  with the AIC 
statistic. While we still recommend investigating on the suitable order by analyzing 
ACF and PACF, the parsimonity paradigm and inspecting residual plots, using AIC 
as a second opinion is still recommended. It works as follows: 
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> fit.aic <- ar.burg(log(lynx)) 
> plot(0:fit.aic$order.max, fit.aic$aic) 

 

We observe that already 2p   yields a good AIC value. Then there is little further 
improvement until 11p  , and a just slightly lower value is found at 12p  . Hence, 
we will evaluate 2p   and 11p   as two competing models with some further tools 
in the next section. 

5.3.3 Residual Analysis 

When comparing different models, a simple approach is to plot the original series 
along with the fitted model values. However, one has to keep in mind that this is an 
insample analysis, i.e. the bigger model has an advantage which does not 
necessarily persist once out-of-sample data are analyzed. Please note that the 
residuals are estimates of the innovations tE . Thus, a good model yields residuals 
that resemble a White Noise process. We require mean zero, constant variance and 
no autocorrelation. If these properties are not met, the model is not adequate. 

> fit.ar02 <- ar.burg(log(lynx), aic=FALSE, order.max=2) 
> fit.ar11 <- ar.burg(log(lynx), aic=FALSE, order.max=11) 
> plot(log(lynx), main="Logged Lynx Data with ...") 
> lines(log(lynx)-fit.ar02$resid, col="red") 
> lines(log(lynx)-fit.ar11$resid, col="blue") 

The output is displayed on the next page. While some differences are visible, it is 
not easy to judge from the fitted values, which of the two models is preferable. A 
better focus on the quality of the fit is obtained when the residuals and their 
dependance are inspected with time series plots as well as ACF/PACF 
correlograms. The graphical output is again displayed on the next page. We observe 
that the (2)AR  residuals are not iid. Hence they do not form a White Noise process 
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and thus, we conclude that the (11)AR  model yields a better description of the 
logged lynx data. 

 

> acf(fit.ar02$resid, na.action=na.pass, ylim=c(-1,1)) 
> pacf(fit.ar02$resid, na.action=na.pass, ylim=c(-1,1)) 
> acf(fit.ar11$resid, na.action=na.pass, ylim=c(-1,1)) 
> pacf(fit.ar11$resid, na.action=na.pass, ylim=c(-1,1)) 
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Because our estimation routines to some extent rely on the Gaussian distribution, it 
is always worthwhile to generate a Normal QQ-Plot for verification. We obtain: 

> par(mfrow=c(1,2)) 
> qqnorm(as.numeric(fit.ar02$resid)) 
> qqline(as.numeric(fit.ar02$resid)) 
> qqnorm(as.numeric(fit.ar11$resid)) 
> qqline(as.numeric(fit.ar11$resid)) 

 

We observe that in the left plot from the AR(2) model, negative residuals seem to 
prevail, i.e. their distribution is skewed. This further indicates that this model may 
not be appropriate. The distribution of residuals is more symmetrical in the right 
panel, the assumption of normally distributed innovations seems justified. In 
summary, if the distribution of residuals is distinctly non-normal, improving the model 
is mandatory. Typical ways of action include transforming the data with either the 
log or Box-Cox transformations or changing model order or type. 

The checkresiduals() Function 

In library(forecast) there is the checkresiduals() function. It provides both a graphical 
and a text output. The former involves the time series plot of the residuals, their ACF 
correlogram plus a histogram of residuals. This is very similar than what was 
suggested above. In the text output, the result of a Ljung-Box test for correlation 
among the residuals is printed. Please note that this only works if fitting was done 
with function arima(). 

> f.arima <- arima(log(lynx), c(11,0,0)) 
> checkresiduals(f.arima) 
Ljung-Box test 
data:  Residuals from ARIMA(11,0,0) with non-zero mean 
Q* = 4.7344, df = 3, p-value = 0.1923 
Model df: 12.   Total lags used: 15 
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Simulation from the Fitted Model 

If there are competing models and none of the other criterions dictate which one to 
use, another option is to generate realizations from the fitted process using R’s 
function arima.sim(). It usually pays off to generate multiple realizations from 
each fitted model. By eyeballing, one then tries to judge which model yields data 
that resemble the true observations best. We here do the following: 

> ## Repeat these commands a number of times 
> plot(arima.sim(n=114, list(ar=fit.ar02$ar))) 
> plot(arima.sim(n=114, list(ar=fit.ar11$ar))) 

 

-1.0

-0.5

0.0

0.5

1.0

1820 1840 1860 1880 1900 1920

Residuals from ARIMA(11,0,0) with non-zero mean

-0.2

-0.1

0.0

0.1

0.2

0 5 10 15 20

Lag

A
C

F

0

10

20

-1 0 1

residuals

co
un

t

Time

C
e

nt
er

e
d

 lo
g(

ly
n

x)

0 20 40 60 80 100

-8
-6

-4
-2

0
2

4
6

Simulated Series from the Fitted AR(2)



ATSA  5 Stationary Time Series Models 

 Page 98 

 

In summary, the simulations from this bigger model look more realistic than the ones 
from the (2)AR . The clearest answer about the model which is preferable here 
comes from the ACF/PACF correlograms, though. We conclude this section about 
model fitting by saying that the logged lynx data are best modeled with the (11)AR . 
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5.4 Moving Average Models 

Here, we discuss moving average models. They are an extension of the White Noise 
process, i.e. tX  is as a linear combination of the current plus a few of the most 
recent innovation terms. As we will see, this leads to a time series process that is 
always stationary, but not iid. Furthermore, we will see that in many respects, 
moving average models are complementary to autoregressive models.  

5.4.1 Definition and Properties 

As we had mentioned above, a moving average process of order q , or abbreviated, 
an ( )MA q  model for a series tX  is a linear combination of the current innovation 
term tE , plus the q  most recent ones 1,...,t t qE E  . The model equation is: 

1 1· ·t t t q t qX E E E      

We require that tE  is an innovation, which means independent and identically 
distributed, and also independent of any sX  where s t . For simple notation, we 
can make use of the backshift operator and rewrite the model: 

 1(1 ) ( )q
t q t tX B B E B E       

We call ( )B  the characteristic polynomial of the ( )MA q  process and obviously, it 
defines all properties of the series. As a remark, please note that a number of 
textbooks define the ( )MA q  process with negative signs for the j . While this is 
mathematically equivalent, we prefer our notation with the ‘+’ signs, as it matches 
the way how things are implemented in R. We turn our sights towards the motivation 
for the moving average process. 

What is the rationale for the ( )MA q  process?  

Firstly, they have been applied successfully in many applied fields, particularly in 
econometrics. Time series such as economic indicators are affected by a variety of 
random events such as strikes, government decisions, referendums, shortages of 
key commodities, et cetera. Such events will not only have an immediate effect on 
the indicator, but may also affect its value (to a lesser extent) in several of the 
consecutive periods. Thus, it is plausible that moving average processes appear in 
practice. Moreover, some of their theoretical properties are in a nice way 
complementary to the ones of autoregressive processes. This will become clear if 
we study the moments and stationarity of the MA  process. 

Moments and Dependence 

A first, straightforward but very important result is that any ( )MA q  process tX , as a 
linear combination of innovation terms, has zero mean and constant variance: 
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[ ] 0tE X   for all t , and 2 2

1

( ) 1
q

t E j
j

Var X const 


 
    

 
  

In practice, we can always enhance ( )MA q ’s by adding a constant m  that accounts 
for a non-zero mean, i.e. we can consider the shifted ( )MA q  process 

t tY m X  . 

Hence, the zero mean property does not affect the possible field of practical 
application. Now, if we could additionally show that the autocovariance in MA  
processes is independent of the time t , we had already proven their stationarity. 
This is indeed the case. We start by considering a (1)MA  with 1 1·t t tX E E    

2
1 1 1 1 1 2 1(1) ( , ) ( , )t t t t t t ECov X X Cov E E E E            . 

For any lag k  exceeding the order 1q  , we use the same trick of plugging-in the 
model equation and directly obtain a perhaps somewhat surprising result: 

 ( ) ( , ) 0t t kk Cov X X    for all 1k q  . 

Thus, there is no more unconditional serial dependence in lags 1 . For the 
autocorrelation of a (1)MA  process, we have: 

 1
2

1

(1)
(1)

(0) 1

 
 

 


 and ( ) 0k   for all 1k q  . 

From this we conclude that (1) 0.5  , no matter what the choice for 1  is. Thus if in 
practice we observe a series where the first-order autocorrelation coefficient clearly 
exceeds this value, we have counterevidence to a (1)MA  process. Furthermore, we 
have shown that any (1)MA  has zero mean, constant variance and an ACF that only 
depends on the lag k , hence it is stationary. Note that the stationarity does (in 
contrast to AR  processes) not depend on the choice of the parameter 1 . The 
stationarity property can be generalized to ( )MA q  processes. Using some 
calculations and 0 1  , we obtain: 
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/ 1,...,
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q k q
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j j

for k q
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for k q

  





 


 

 

 
 

Hence, ( )k  is independent of the time t  for any ( )MA q  process, irrespective of the 
order q . The main results which can be derived from this property is that ( )MA q  
processes are always stationary, independent of 1,..., q  . Moreover, we learn from 
the above that the autocorrelation is zero for all orders k q . And there obviously is 
a relation between the model parameters and the autocorrelation, although it gets 
quite complex for higher orders. While this formula may be employed for finding the 
true ACF of a given ( )MA q , the most convenient way of doing this in practice 
remains with the R function ARMAacf(). 
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Example of a (1)MA  

For illustration, we generate a realization consisting of 500 observations, from a 
(1)MA  process with 1 0.7  , and display a time series plot, along with both 

estimated and true ACF/PACF. 

> set.seed(21) 
> ts.ma1 <- arima.sim(list(ma=0.7), n=500) 
> plot(ts.ma1, ylab="", ylim=c(-4,4), main="…") 
> title("Simulation from a MA(1) Process") 

 

> acf.true  <- ARMAacf(ma=0.7, lag.max=20) 
> pacf.true <- ARMAacf(ma=0.7, pacf=TRUE, lag.max=20) 

We observe (see next page) that the estimates are pretty accurate: the ACF has a 
clear cut-off, whereas the PACF seems to feature some alternating behavior with 
an exponential decay in absolute value. This behavior is typical: the PACF of any 

( )MA q  process shows an exponential decay, while the ACF has a cut-off. In this 
respect, ( )MA q  processes are in full contrast to the ( )AR p ’s, i.e. the appearance of 
ACF and PACF is swapped. 

Invertibility 

It is easy to show that the first autocorrelation coefficient (1)  of an (1)MA  process 
can be written in standard form, or also as follows: 

 1 1
2 2

1 1

1/
(1)

1 1 (1/ )

 
 

 
 

 

Apparently, any (1)MA  process with coefficient 1  has exactly the same ACF as the 
one with 11/  . Thus, the two processes 10.5·t t tX E E    and 12·t t tU E E    have 
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the same dependency structure. Or in other words, given some ACF, we cannot 
identify the generating MA  process uniquely. This problem of ambiguity leads to the 
concept of invertibility. Now, if we express the processes tX  and tU  in terms of 

1 2, ,...t tX X   resp. 1 2, ,...t tU U  , we find by successive substitution: 

2
1 1 1 2

2
1 1 1 2

...

(1/ ) (1/ ) ...

t t t t

t t t t

E X X X

E U U U

 

 
 

 

   

   
 

Hence, if we rewrite the (1)MA  as an ( )AR  , only one of the processes will 
converge. That is the one where 1 1  , and it will be called invertible. It is important 
to know that invertibility of MA  processes is central when it comes to fitting them to 
data, because parameter estimation is based on rewriting them in the form of an 

( )AR  .  

 

For higher-order ( )MA q  processes, the property of invertibility is equally central. If 
it is met, the series can be rewritten in form of an ( )AR   and it is guaranteed that 
there is a unique MA  process for any given ACF. Invertibilty of a ( )MA q  is met if the 
roots of the characteristic polynomial ( )B  all lie outside of the unit circle. As was 
explained earlier in chapter 5.3.1, we can verify this using the R function 
polyroot(). Please note that the estimation procedure described below will 
always result in coefficients 1̂

ˆ,..., q   that define an invertible ( )MA q  process. 
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5.4.2 Fitting 

The process of fitting ( )MA q  models to data is more difficult than for ( )AR p , as there 
are no (efficient) explicit estimators and numerical optimization is mandatory. 
Perhaps the simplest idea for estimating the parameters is to exploit the relation 
between the model parameters and the autocorrelation coefficients, i.e.: 

2

0 0

/ 1,...,
( )

0

q k q

j j k j
j j

for k q
k

for k q

  





 


 

 

 

 

Hence in case of a (1)MA , we would determine 1̂  by plugging-in ˆ (1)  into the 
equation 2

1 1(1) / (1 )    . This can be seen as an analogon to the Yule-Walker 
approach in AR  modelling. Unfortunately, the plug-in idea yields an inefficient 
estimator and is not a viable option for practical work. 

Conditional Sum of Squares 

Another appealing idea would be to use some (adapted) least squares procedure 
for determining the parameters. A fundamental requirement for doing so is that we 
can express the sum of squared residuals 2

tE  in terms of the observations

1,..., nX X  and the parameters 1,..., q   only, and do not have to rely on the 
unobservable 1,..., nE E  directly. This is (up to the choice of some initial values) 
possible for all invertible ( )MA q  processes. For simplicity, we restrict our illustration 
to the (1)MA  case, where we can replace any innovation term tE  by: 

 2 1
1 1 1 2 1 1 1 0... ( )t t

t t t tE X X X X E   
         

By doing so, we managed to express the innovation/residual at time t  as a function 
of the model parameter 1  and a combination of the current and past observations 
of the series. What is also remaining is the (hypothetical) initial innovation term 0E . 
Conditional on the assumption 0 0E  , we can indeed rewrite the residuals sum of 
squares 2

tE  of any (1)MA  using 1,..., nX X  and 1  only. However, there is no 
closed form solution for the minimization of 2

tE , since powers of the parameter 

1  appear; but the problem can be tackled using numerical optimization. This 
approach is known as the Conditional Sum of Squares (CSS) method. It works 
similarly for higher orders q , i.e. fundamentally relies on the invertibility of the ( )MA q  
and assumes that 0tE   for all ,...,0t   . In R, the method is implemented in 
function arima() if argument method="CSS" is set. 

Maximum-Likelihood Estimation 

As can be seen from the R help file, the Conditional Sum of Squares method is only 
secondary to method="CSS-ML" in the R function arima(). This means that it is 
preferable to use CSS only to obtain a first estimate of the coefficients 1,..., q  . They 
are then used as starting values for a Maximum-Likelihood estimation, which is 
based on the assumption of Gaussian innovations tE . It is pretty obvious that 

1 1 ...t t t q t qX E E E      , as a linear combination of normally distributed random 
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variables, follows a Gaussian too. By taking the covariance terms into account, we 
obtain a multivariate Gaussian for the time series vector: 

1( ,..., ) ~ (0, )nX X X N V , resp. 1( ,..., ) ~ ( 1, )nY Y Y N m V  . 

MLE then relies on determining the parameters m  (if a shifted ( )MA q  is estimated), 

1,..., q   and 2
E  simultaneously by maximizing the probability density function of the 

above multivariate Gaussian with assuming the data 1,..., nx x  as given quantities. 
This is a quite complex non-linear problem which needs to be solved numerically. A 
good implementation is found in R’s arima(). 

The benefit of MLE is that (under mild and in practice usually fulfilled conditions) 
certain optimality conditions are guaranteed. It is well known that the estimates are 
asymptotically normal with minimum variance among all asymptotically normal 
estimators. Additionally, it is pretty easy to derive standard errors for the estimates, 
which further facilitates their interpretation. And even though MLE is based on 
assuming Gaussian innovations, it still produces reasonable results if the deviations 
from that model are not too strong. Be especially wary in case of extremely skewed 
data or massive outliers. In such cases, applying a log-transformation before the 
modelling/estimation starts is a wise idea. 

5.4.3 Example: Return of AT&T Bonds 

As an example, we consider the daily changes in the return of an AT&T bond from 
April 1975 to December 1975, which makes for a total of 192 observations. The data 
are displayed along with their ACF and PACF on the next page. 
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The series seems to originate from a stationary process. There are no very clear 
cycles visible, hence it is hard to say anything about correlation and dependency, 
and it is impossible to identify the stochastic process behind the generation of these 
data from a time series plot alone. Using the ACF and PACF as a visual aid, we 
observe a pretty clear cut-off situation in the ACF at lag 1 which lets us assume that 
a (1)MA  might be suitable. That opinion is undermined by the fact that the PACF 
drops off to small values quickly, i.e. we can attribute some exponential decay to it 
for lags 1 and 2. Our next goal is now to fit the (1)MA  to the data. As explained 
above, the simplest solution would be to determine ˆ(1) 0.266    and derive 1̂  from 

2
1 1(1) / (1 )    . This yields two solutions, namely 1̂ 0.28807    and 

1̂ 3.47132   . Only one of these (the former) defines an invertible (1)MA , hence we 
would stick to that solution. A better alternative is to use the CSS approach for 
parameter estimation. The code for doing so is as follows: 

> arima(diff(attbond), order=c(0,0,1), method="CSS") 
Coefficients: 
          ma1  intercept 
      -0.2877    -0.0246 
s.e.   0.0671     0.0426 
 
sigma^2 estimated as 0.6795:  part log likelihood = -234.11 

Even more elegant and theoretically sound is the MLE. We can also perform this in 
R using function arima(). It yields a very similar but not identical result: 

> arima(diff(attbond), order=c(0,0,1)) 
Coefficients: 
          ma1  intercept 
      -0.2865    -0.0247 
s.e.   0.0671     0.0426 
 
sigma^2 = 0.6795: log likelihood = -234.16, aic = 474.31 
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Please note that the application of the three estimation procedures here was just for 
illustrative purposes, and to show the (slight) differences that manifest themselves 
when different estimators are employed. In any practical work, you can easily restrict 
yourself to the application of the arima() procedure using the default fitting by 
method="CSS-ML". For verifying the quality of the fit, a residual analysis is 
mandatory. The residuals of the (1)MA  are estimates of the innovations tE . The 
model can be seen as adequate if the residuals reflect the main properties of the 
innovations. Namely, they should be stationary and free of any dependency, as well 
as approximately Gaussian. We can verify this by producing a time series plot of the 
residuals, along with their ACF and PACF, and a Normal QQ-Plot. Sometimes, it is 
also instructive to plot the fitted values into the original data, or to simulate from the 
fitted process, as this further helps verifying that the fit is good. 

> fit <- arima(diff(attbond), order=c(0,0,1)) 
> plot(resid(fit)) 
> qqnorm(resid(fit)); qqline(resid(fit)) 
> acf(resid(fit)); pacf(resid(fit)) 
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There are no autocorrelations or partial autocorrelations that exceed the confidence 
bounds, hence we can safely conjecture that the residuals are not correlated and 
hence, all the dependency signal has been captured by the (1)MA . When inspecting 
the time series of the residuals, it seems stationary. However, what catches the 
attention is the presence of three positive outliers and the fact that the residuals are 
generally long-tailed. We might try to overcome this problem by a log-
transformation, but this is left to the reader. 
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5.5 ARMA(p,q) Models 

Here, we discuss models that feature both dependency on previous observations 

1 2, ,...t tX X   as well as previous innovations terms 1 2, ,...t tE E  . Thus, they are a 
hybrid between ( )AR p  and ( )MA q  models, and aptly named ( , )ARMA p q . Their 
importance lies in the fact that it is possible to model a far wider spectrum of 
dependency structures, and that they are parsimonious: often, an ( , )ARMA p q  
requires (far) fewer parameters than pure AR  or MA  processes would. 

5.5.1 Definition and Properties 

The formal definition of an ( , )ARMA p q  process is as follows: 

 1 1 1 1... ...t t p t p t t q t qX X X E E E              

As before, we assume that tE  is causal and White Noise, i.e. an innovation with 
mean [ ] 0tE E   and finite variance 2( )t EVar E  . It is much more convenient to use 
the characteristic polynomials ( )   for the AR  part, and ( )   for the MA  part, 
because this allows for a very compact notation: 

 ( ) ( )t tB X B E   . 

It is obvious that all relevant properties of an ( , )ARMA p q  process lie in the 
characteristic polynomials. If the roots of ( )   are outside of the unit circle, the 
process will be stationary and have mean zero. On the other hand, if the roots of 

( )   are outside of the unit circle, the process is invertible. Both properties are 
important for practical application. If they are met, we can rewrite any ( , )ARMA p q  
in the form of a ( )AR   or an ( )MA  . This explains why fitting an ( , )ARMA p q  can 
in practice often be replaced by fitting AR - or MA -models with high orders (although 
it is not a good idea to do so!). As has been argued above, any stationary 

( , )ARMA p q  has mean zero, i.e. [ ] 0tE X  . Thus, in practice we will often consider 
shifted ARMA -processes that are of the form: 

 t tY m X  , where tX  is an ( , )ARMA p q . 

In principle, it is straightforward to derive the ACF of an ( , )ARMA p q , though 
algebraically a bit tedious. Given the applied focus of this scriptum, we do without 
and focus on the results and consequences instead. We illustrate the typical 
behavior of the ARMA  autocorrelations on the basis of an example. Namely, we 
consider the (2,1)ARMA  defined by: 

 1 2 10.8 0.4 0.6t t t t tX X X E E       

On the next page, we exhibit the (theoretical) ACF and PACF. It is typical that neither 
the ACF nor the PACF cut-off strictly at a certain lag. Instead, they both show some 
infinite behavior, i.e. an exponential decay in the magnitude of the coefficients. 
However, superimposed on that is a sudden drop-off in both ACF and PACF. In our 
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example, it is after lag 1 in the ACF, as induced by the moving average order 1q 
. In the PACF, the drop-off happens after lag 2, which is the logical consequence of 
the autoregressive order of 2p  . The general behavior of the ACF and PACF is 
summarized in the table below. 

Model ACF PACF 

( )AR p  infinite / exp. decay cut-off at lag p  
( )MA q  cut-off at lag q  infinite / exp. decay 

( , )ARMA p q  infinite / mix of decay & cut-off infinite / mix of decay & cut-off 

 

It is important to know that with ( , )ARMA p q  processes, a wealth of autocorrelation 
structures can be generated. As to how visible the two cut-offs in ACF and PACF 
are, resp. whether the cut-off or the decay is dominating, depends on the model’s 
coefficients. There are ARMA ’s where the AR  part is dominating, there are others 
where the MA  is stronger, and of course they can also be on an equal footing. 

5.5.2 Fitting 

The above properties of ACF and PACF can be exploited for choosing the type and 
order of a time series model. In particular, if neither the ACF nor the PACF shows a 
pronounced cut-off, where after some low lag (i.e. p  or 10q  ) all the following 
correlations are non-significantly different from zero, then it is usually wise to choose 
an ( , )ARMA p q . For determining the order ( , )p q , we search for the superimposed 
cut-off in the ACF (for q ), respectively PACF (for p ). The drop-off is not always 
easy to identify in practice. In “difficult” situations, it has also proven beneficial to 
support the choice of the right order with the AIC criterion. We could for example 
perform a grid search on all possible ( , )ARMA p q  models which do not use more 
than 5 parameters, i.e. 5p q  . This can readily be done in R by programming a 
for() loop or using auto.arima()in library(forecast). 

0 5 10 15 20

-1
.0

-0
.5

0
.0

0
.5

1
.0

ACF of ARMA(2,1)

0:20

A
C

F

5 10 15 20

-1
.0

-0
.5

0
.0

0
.5

1
.0

PACF of ARMA(2,1)

1:20

P
A

C
F



ATSA  5 Stationary Time Series Models 

 Page 110 

It is very important to know that ARMA  models are parsimonious, i.e. they usually 
do not require high orders p  and q . In particular, they work well with far fewer 
parameters then pure AR  or MA  models would. Or in other words: often it is 
possible to fit high-order ( )AR p ’s or ( )MA q ’s instead of a low-order ( , )ARMA p q . 
That property does not come as a surprise: as we conjectured above, any stationary 
and invertible ARMA  can be represented in the form of an ( )AR   or an ( )MA  . 
However, this is not a good idea in practice: estimating parameters “costs money”, 
i.e. will lead to less precise estimates. Thus, a low-order ( , )ARMA p q  is always to 
be preferred over a high-order ( )AR p  or ( )MA q . As an example, we here study the 
time series of the North Atlantic Oscillation, obtained from 
https://www.ncdc.noaa.gov/teleconnections/nao/. It reports the atmospheric 
pressure difference at sea level between the Icelandic Low and the Azores High 
from January 1950 to January 2020. We inspect the series, ACF and PACF. 

> tsdisplay(nao, points=FALSE, main="North Atlantic …") 

 

We observe a series for which we can withhold the stationarity assumption and that 
fluctuates around a global mean of around zero. The first ACF and PACF 
coefficients clearly exceed the confidence bands, while all further correlations seem 
to be much smaller and if, only barely exceed the bounds. A nearby model for this 
series is an ARMA(1,1). For estimating the coefficients, we are again confronted 
with the fact that there are no explicit estimators available. This is due to the MA  
component in the model which involves innovation terms that are unobservable. By 
rearranging terms in the model equation, we can again represent any ( , )ARMA p q  
in a form where it only depends on the observed tX , the coefficients 

1 1,..., ; ,...,p q     and some previous innovations tE  with 1t  . If these latter terms 
are all set to zero, we can determine the optimal set of model coefficients by 
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minimizing the sum of squared residuals (i.e. innovations) with a numerical method. 
This is the CSS approach that was already mentioned in 5.4.2 and is implemented 
in function arima() when method="CSS". By default however, these CSS 
estimates are only used as starting values for a MLE. If Gaussian innovations are 
assumed, then the joint distribution of any ( , )ARMA p q  process vector 

1( ,..., )nX X X  has a multivariate normal distribution.  

1( ,..., ) ~ (0, )nX X X N V , resp. 1( ,..., ) ~ ( 1, )nY Y Y N m V  . 

MLE then relies on determining the parameters m  (if a shifted ( , )ARMA p q  is 
estimated), 1 1,..., ; ,...,p q     and 2

E  simultaneously by maximizing the probability 
density function of the above multivariate Gaussian with assuming the data 1,..., nx x  
as given quantities. This is a quite complex non-linear problem which needs to be 
solved numerically. A good implementation is found in R’s arima(). As was stated 
previously, the benefit of MLE is that (under mild and mostly met conditions) some 
optimality is guaranteed. In particular, the estimates are asymptotically normal with 
minimum variance among all asymptotically normal estimators. Another benefit is 
provided by the standard errors which allow for judging the precision of the 
estimates. We proceed with our example from above and now fit an ARMA(1,1) to 
the North Atlantic Oscillation series: 

> fit0 <- arima(nao, order=c(1,0,1)); fit0 
Coefficients: 
         ar1      ma1  intercept 
      0.3273  -0.1285    -0.0012 
s.e.  0.1495   0.1565     0.0446 
sigma^2=0.9974; log likelihood=-1192.28; aic=2392.55 

It turns out that the global mean (i.e. the intercept in the model) is not significantly 
different from zero, because the 95% confidence interval of 0.0012 2 0.0446    
contains the value zero. Thus, we can remove the intercept from the model which 
saves estimating one useless parameter. 

> fit1 <- arima(nao, order=c(1,0,1), include.mean = F); fit1 
Coefficients: 
         ar1      ma1 
      0.3273  -0.1285 
s.e.  0.1495   0.1565 
sigma^2=0.9974; log likelihood=-1192.28; aic=2390.55 

Apparently, this changes all other estimated quantities unsubstantially. If we further 
proceed with optimizing the model, we notice that also 1̂  is not significantly different 
from zero. Thus, we reduce the model to an AR(1) without the constant: 

> fit2 <- arima(nao, order=c(1,0,0), include.mean = F); fit2 
Coefficients: 
         ar1 
      0.2041 
s.e.  0.0338 
sigma^2=0.9982; log likelihood=-1192.59; aic=2389.18 
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Now, the 95% confidence interval for 1  clearly indicates that the the AR(1) 
coefficient is significantly different from zero. Moreover, reducing the model also 
seems beneficial in terms of AIC (see below for a thorough explanation of this 
quantity). Thus, despite an ACF/PACF that indicated an ARMA(1,1), a simpler 
model seems to do the job here. However, we should not be overly quick with our 
conjectures, but first verify that the residuals meet the White Noise assumption. 

> tsdisplay(residuals(fit2), points=FALSE) 

 

Except for the ACF and PACF at lag 16, the situation looks unproblematic. Can we 
ignore those two estimates that crack the confidence bands? In the opinion of the 
lecturer, the answer is yes in this particular example. In the first place, the 
dependency of the ARMA(1,1) residuals (not shown here) does not look markedly 
different and an even bigger model does not seem to be justified. Second, the  
p-value of a Ljung-Box test over the first 24 levels is at 0.3056, providing further 
evidence that the remaining dependence is insignificant. 

5.5.3 AIC-Based Model Choice 

We have explained above how the order of ( , )ARMA p q  models can be found by 
inspecting ACF and PACF and complementing this with classical model selection 
approaches and residual analysis. Another alternative is to run a criterion-based 
model selection. In R, this is conveniently possible by using function 
auto.arima() from library(forecast). However, handle this with care: the 
function will always identify a “best fitting” ( , )ARMA p q model, but it is of course not 
guaranteed that it fits the data well. Moreover, usage of the function is somewhat 
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tricky, as many arguments need being set. We first address the definition of the 
information criteria, as they are central to the auto.arima() function. 

2 log( ) 2( 1)AIC L p q k       

Here, the first term measures how well the model fits the training data with the value 
of the Log-Likelihood function as the goodness-of-fit measure. The second term 
penalizes for model complexity, where ,p q  are the AR- resp. MA-orders, 1k   if a 
global mean was estimated (else 0k  ) and the final 1  stands for the innovation 
variance which always needs to be estimated. Function auto.arima() by default 
relies on a small sample corrected version AICc : 

 
2( 1)( 2)

2

p q k p q k
AICc AIC

n p q k

     
 

   
 

A third option consists of using the BIC criterion, which penalizes model size 
somewhat differently. The definition is as follows: 

 2 log( ) log( )( 1) (log( ) 2)( 1)BIC L n p q k AIC n p q k            . 

It is noteworthy that the outcome can be sensitive to the criterion used, because in 
practice many models may perform similarly. In those cases, there is usually no 
"right or wrong" in model selection, but several nearly equivalent alternatives may 
exist. Next, we focus on the algorithm behind the convenient auto.arima(). It is 
concisely summarized on https://otexts.com/fpp2/arima-r.html by Hyndman & 
Athanasopoulos (2018), from where we copy the following scheme: 
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Please be aware that we have not yet addressed true ( , , )ARIMA p d q  models with 
0d    i.e. where differencing is involved to cope with non-stationary series. Hence, 

the first step is currently to be ignored. We illustrate the use of this function using 
data(sunspotarea) from library(fpp). It contains annual averages of the 
daily sunspot areas (in units of millionths of a hemisphere) for the full sun. Sunspots 
are magnetic regions that appear as dark spots on the surface of the sun. The Royal 
Greenwich Observatory compiled daily sunspot observations from May 1874 to 
1976. Later data are from the US Air Force and the US National Oceanic and 
Atmospheric Administration and were calibrated to be consistent across the whole 
history of observations. We assume the data to be on a relative scale and hence 
use a log-transformation before modelling them. 

> tsdisplay(sunspotarea) 

 

The series, much like the lynx data, shows some strong periodic behavior. However, 
these periods are seen to be stochastic, hence the series as a whole is considered 
being stationary. The ACF has a slow decay and the PACF cuts-off after lag 10, 
suggesting an (10)AR . We complement with an exhaustive AIC-based search over 
all ( , )ARMA p q  up to , 10p q  . 
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> fit <- auto.arima(log(sunspotarea), max.p=10, max.q=10, 
         stationary=TRUE, seasonal=FALSE, ic="aic", 
         stepwise=FALSE); fit 
ARIMA(2,0,3) with non-zero mean  
Coefficients: 
         ar1      ar2      ma1      ma2     ma3  intercept 
      1.6548  -0.9775  -0.8583  -0.0425  0.4484     6.1968 
s.e.  0.0210   0.0192   0.0830   0.1004  0.0785     0.0935 
sigma^2 estimated as 0.4127:  log likelihood=-135.33 
AIC=284.67   AICc=285.53   BIC=305.11 

Note that we need to set the information criterion argument ic="aic". Moreover, 
if it is computationally feasible, we recommend to set stepwise=FALSE, because 
else a non-exhaustive, stepwise search strategy will be employed which may not 
result in the AIC-optimal model. As it turns out, an (2,3)ARMA  yields the lowest AIC 
value, i.e. is better in this respect than an (10)AR  and spends fewer parameters, 
too. To verify whether the model fits adequately, we need to run a residual analysis. 

> tsdisplay(resid(fit)) 
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As we can observe, the time series of residuals is not White Noise, since there are 
several ACF and PACF coefficients that exceed the confidence bands. Hence, the 
AIC-selected model clearly underfits these data. If an (10)AR  is used in place of the 

(2,3)ARMA , the residuals feature the desired White Noise property. As a conjecture, 
we would reject the (2,3)ARMA  here despite its better AIC value and note that blindly 
trusting in automatic model selection procedures may well lead to models that fit 
poorly. 
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6 SARIMA and GARCH Models 
As we have discovered previously, many time series are non-stationary due to 
trends and/or seasonal effects. While we have learned to decompose these and 
then explain the remainder with some time series models, there are other models 
that can directly incorporate trend and seasonality. While they usually lack some 
transparency for the decomposition, their all-in-one approach allows for convenient 
forecasting, and also AIC-based decisions for choosing the right amount of trend 
and seasonality modeling become feasible. 

Time series from financial or economic background often show serial correlation in 
the conditional variance, i.e. are conditionally heteroskedastic. This means that they 
exhibit periods of high and low volatility. Understanding the behavior of such series 
pays off, and the usual approach is to set up autoregressive models for the 
conditional variance. These are the famous ARCH models, which we will discuss 
along with their generalized variant, the GARCH class. 

6.1 ARIMA Models 

ARIMA models are aimed at describing series which exhibit a trend that can be 
removed by differencing at lag 1; and where these differences can be described by 
an ( , )ARMA p q  model. Thus, the definition of an ( , , )ARIMA p d q  process arises 
naturally: 

Definition: A series tX  follows an ( , , )ARIMA p d q  model if the d th order lag 1 
difference of tX  is an ( , )ARMA p q  process. If we introduce 

  (1 )dt tY B X  , 

 where B  is the backshift operator, then we can write the ARIMA  
process using the characteristics polynomials, i.e. ( )   that accounts 
for theMA , and ( )   that stands for the AR  part. 

   
( ) ( )

( )(1 ) ( )
t t

d
t t

B Y B E

B B X B E

  
   

 

Such series do appear in practice, as our example of the monthly prices for a barrel 
of crude oil (in US$) from January 1986 to January 2006 shows. To stabilize the 
variance, we decide to log-transform the data, and model these. 

> library(TSA) 
> data(oil.price) 
> lop <- log(oil.price) 
> plot(lop, ylab="log(Price)") 
> title("Logged Monthly Price for a Crude Oil Barrel") 
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The series does not exhibit any apparent seasonality, but there is a clear trend, so 
that it is non-stationary. We try first-order (i.e. 1d  ) differencing at lag 1, and then 
check whether the result is stationary.  

> dlop <- diff(lop) 
> plot(dlop, ylab="Differences") 
> title("Differences of Logged Monthly Crude Oil Prices") 

 

The trend was successfully removed by taking differences. ACF and PACF show 
that the result is serially correlated. There may be a drop-off in the ACF at lag 1, and 
in the PACF at either lag 1 or 2, suggesting an (1,1,1)ARIMA  or an (2,1,1)ARIMA  for 
the logged oil prices. We base our choice on the AIC value which suggests using 
the smaller model (1,1,1)ARIMA . 
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> par(mfrow=c(1,2)) 
> acf(dlop, main="ACF", ylim=c(-1,1), lag.max=24) 
> pacf(dlop, main="ACF", ylim=c(-1,1), lag.max=24) 

 

The fitting can be done with the arima() procedure that (by default) estimates the 
coefficients using Maximum Likelihood with starting values obtained from the 
Conditional Sum of Squares method. We can either let the procedure do the 
differencing: 

> arima(lop, order=c(1,1,1)) 
 
Call: arima(x = lop, order = c(1, 1, 1)) 
 
Coefficients: 
          ar1      ma1 
      -0.2987   0.5700 
s.e.   0.2009   0.1723 
 
sigma^2 = 0.006642:  log likelihood = 261.11,  aic = -518.22 

Or, we can use the differenced series dlop as input and fit an (1,1)ARMA . However, 
we need to tell R to not include an intercept – this is not necessary when the trend 
was removed by taking differences and the constant would result in a so-called 
(sometimes useful) drift-term, see chapter 8.2.1. The command is: 

> arima(dlop, order=c(1,0,1), include.mean=FALSE) 

The output from this is exactly the same as above, although it is generally better to 
use the first approach and fit a true ARIMA  model. The next step is to perform 
residual analysis – if the model is appropriate, they must look like White Noise. This 
is more or less the case, see next page. For decisions on the correct model order, 
also the AIC statistics can provide valuable information. 
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We finish this section by making some considerations on the model equation. We 
have: 

 
1 1

1 1 2 1

1 2 1

0.30 0.57

0.30 ( ) 0.57

0.70 0.30 0.57

t t t t

t t t t t t

t t t t t

Y Y E E

X X X X E E

X X X E E

 

   

  

     
       

       
 

Thus, the (1,1,1)ARIMA  can be rewritten as a non-stationary (2,1)ARMA . The non-
stationarity is due to a unit root in the AR parts' characteristic polynomial. We can 
identify this using the polyroot() function in R. 

> abs(polyroot(c(1,0.7, -0.3))) 
[1] 1.000000 3.333333 

 Finally, we give some recipe for fitting ARIMA  models: 

1) Choose the appropriate order of differencing, usually 1d   or (in rare 
cases) 2d  , such that the result is a stationary series. 

2) Analyze ACF and PACF of the differenced series. If the stylized facts of 
an ARMA  process are present, decide for the orders p  and q . 

3) Fit the model using the arima() procedure. This can be done on the 
original series by setting d  accordingly, or on the differences, by setting 

0d   and argument include.mean=FALSE. 

4) Analyze the residuals; these must look like White Noise. If several 
competing models are appropriate, use AIC to decide for the winner. 

The fitted ARIMA model can then be used to generate forecasts including prediction 
intervals. This will, however, only be discussed in section 8. 
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Example: Ambiguity in ARIMA Modeling 

We here discuss another example where the tree ring widths of a douglas fir are 
considered over a very long period lasting from 1107 to 1964. Modeling these data 
is non-trivial, since there remains a lot of ambiguity on how to approach them. The 
first question is about how to transform these data before modelling. They take 
positive values only and show some pronounced right skewness, hence a log-
transformation might be indicated. After the log-transformation however, the data 
are left-skewed. In order to achieve a symmetrical distribution, we can use a Box-
Cox transformation instead. Function BoxCox() suggests 0.6  , but since the 
data are more symmetrically distributed with 0.4  , we choose that value.  

> layout(matrix(c(1, 1, 1, 2, 3, 4), 2, 3, byrow = TRUE)) 
> plot(douglasfir, main="Douglas Fir Tree Ring Width…") 
> qqnorm(douglasfir, pch=20); qqline(douglasfir) 
> qqnorm(log(douglasfir), pch=20); qqline(log(douglasfir)) 
> tdf <- BoxCox(douglasfir, lambda=0.4) 
> qqnorm(tdf, pch=20, main="…"); qqline(tdf) 

 

The next step is the analysis of ACF and PACF (see next page). It raises the 
important question whether the data generating process was stationary or not. The 
ACF shows a relatively slow decay and the local mean of the series seems to persist 
on higher/lower levels for longer periods of time. On the other hand, what we 
observe in this series would clearly still fit within the envelope of what can be 
produced by a stationary time series process. But then, the differenced data (see 
the page thereafter) look clearly “more stationary”. Hence, both options, a pure 

( , )ARMA p q  and an ( ,1, )ARIMA p q  remain open. We here lay some focus on the 
aspects that are involved in the decision process. 
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First and foremost, the model chosen needs to fit with the series, the ACF and PACF 
that we observe. As mentioned above, this here leaves both the option for a 
stationary and integrated model. Next, we can of course try both approaches and 
compare the insample fit via the AIC. If function auto.arima() is employed, we 
can even set the scope such that the search includes both stationary and integrated 
models in one step. 

> tsdisplay(tdf, points=FALSE, main="Box-Cox Trsf Douglas …") 

 

Let us here first focus on modelling the non-differenced data. The analysis of 
ACF/PACF above suggests using an (2,0)ARMA  or (1,1)ARMA  as the most 
parsimonius models, a slightly bigger option would be to use an (2,1)ARMA . The 
residuals of all these look similar and acceptable; the lowest AIC value is achieved 
with the (2,1)ARMA  which is also the model that auto.arima() suggests. 

> fit <- auto.arima(tdf, max.p=5, max.q=5, ic="aic", 
                    stationary=T, allowmean=T, stepwise=T) 
> fit 
Series: tdf; ARIMA(2,0,1) with non-zero mean  
Coefficients: 
         ar1      ar2      ma1     mean 
      1.1333  -0.2163  -0.6973  12.9683 
s.e.  0.1044   0.0743   0.0933   0.2605 
sigma^2 estimated as 4.46:  log likelihood=-1857.11 
AIC=3724.22   AICc=3724.29   BIC=3747.99 
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The settings in the auto.arima() search were such that only stationary models 
(including an intercept) are allowed. The maximum order for p  and q  equals 5, but 
also 5p q   due to the max.order=5 default setting in the function. If larger 
models are desired, then this needs to be adjusted accordingly. Moreover, for a full 
search over all possible models, we need setting stepwise=FALSE, which may 
change the output. We now inspect the differenced data. 

> tsdisplay(diff(tdf), points=FALSE, main="…") 

 

There is a clear cut-off in the ACF at lag 1. In the PACF, there is some decay, 
perhaps with an additional cut-off at lag 1. Hence, the most plausible parsimonious 
integrated models include the (0,1,1)ARIMA  and the (1,1,1)ARIMA . The former 
cannot capture the dependencies in a reasonable way, the residuals are still 
correlated and violate the White Noise assumption. The (1,1,1)ARIMA  is much better 
in this regard. However, its AIC value is worse than the one of the (2,0,1)ARIMA  
considered previously. We again employ auto.arima() for a non-stepwise grid 
search over all ( ,1, )ARIMA p q  with , 5p q   and 5p q  . Since we want to avoid a 
drift-term and directly work on the differenced data, we have to set 
allowmean=FALSE. 

> fit <- auto.arima(diff(tdf), max.p=5, max.q=5,  
                    stationary=TRUE, allowmean=FALSE,  
                    stepwise=FALSE, ic="aic") 
 

Differenced Box-Cox Transformed Douglas Fir Tree Ring Width from 1107-1964

1200 1400 1600 1800

-5
0

5

0 5 10 15 20 25 30

-0
.3

-0
.2

-0
.1

0.
0

0.
1

Lag

A
C

F

0 5 10 15 20 25 30

-0
.3

-0
.2

-0
.1

0.
0

0.
1

Lag

P
A

C
F



ATSA  6 SARIMA and GARCH Models 

 Page 124 

> fit 
Series: diff(tdf)  
ARIMA(2,0,1) with zero mean  
Coefficients: 
         ar1     ar2     ma1 
      0.4219  0.1249  -0.961 
s.e.  0.0484  0.0460   0.032 
sigma^2 estimated as 4.557:  log likelihood=-1865.15 
AIC=3738.29   AICc=3738.34   BIC=3757.31 

Somewhat surprisingly, this yields an (2,1,1)ARIMA  which is not really obvious from 
the PACF. So we end up with a number of different models whose residuals look 
reasonable and have AIC values that are quite close. Hence, a decision is far from 
being easy. While for the model order, the choice is somewhat arbitrary, the decision 
for a pure or integrated ARMA  is much more important. This is where practical 
aspects, i.e. the meaning of the model should come into play as well. With a 
stationary ( , )ARMA p q , we would here focus more on the long-term aspects of the 
series, i.e. the climatic changes that happen over decades or even centuries. If the 
data are differenced, we consider the changes in growth from year to year. This puts 
the focus on the bio-chemical aspect, while climate change is ruled out. Not 
surprisingly, the autocorrelation among the differenced data is strongly negative at 
lag 1. This means that a big positive change in growth is more likely to be followed 
by a negative change in growth and vice versa. Hence this model focuses more on 
the recovery of the tree after strong resp. weak growth in one year versus the next. 
Hence it would not primarily be the climate which is modelled, but more the bio-
chemical processes within the tree. Thus, it is also a matter of the applied research 
question which of the two models is more suited. 

6.2 SARIMA Models 

After becoming acquainted with the ARIMA  models, it is quite natural to ask for an 
extension to seasonal series; especially, because we learned that differencing at a 
lag equal to the period s  does remove seasonal effects, too. Suppose we have a 
series tX  with monthly data. Then, series 

 12
12 (1 )t t t tY X X B X     

usually has the seasonality removed. However, it is quite often the case that the 
result has not yet constant global mean, and thus, some further differencing at lag 
1 is required to achieve stationarity: 

 12
1 1 12 13(1 ) (1 )(1 )t t t t t t t t tZ Y Y B Y B B X X X X X               

We illustrate this using the Australian beer production series that we had already 
considered in section 4. It has monthly data that range from January 1958 to 
December 1990. A log-transformation to stabilize the variance is indicated. We 
display the transformed series tX , the seasonally differenced series tY  and finally 
the seasonal-trend differenced series tZ . 
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> www <- "http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/" 
> dat <- read.table(paste(www,"cbe.dat",sep="", header=T) 
> beer      <- ts(dat$beer, start=1958, freq=12) 
> d12.lbeer <- diff(log(beer), lag=12) 
> d.d12.lbeer <- diff(d12.lbeer) 
> plot(log(beer)) 
> plot(d12.lbeer) 
> plot(d.d12.lbeer)) 
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While the two series tX  and tY  are non-stationary, the last one, tZ  may be, although 
it is a bit debatable whether the assumption of constant variation is violated or not. 
We proceed by analyzing ACF and PACF of series tZ . 

> par(mfrow=c(1,2)) 
> acf(d.d12.lbeer, ylim=c(-1,1)) 
> pacf(d.d12.lbeer, ylim=c(-1,1), main="PACF") 

 

There is very clear evidence that series tZ  is serially dependent, and we could try 
an ( , )ARMA p q  to model this dependence. As for the choice of the order, this is not 
simple on the basis of the above correlograms. They suggest that high values for 
p  and q  are required, and model fitting with subsequent residual analysis and AIC 

inspection confirm this: 14p   and 11q   yield a good result. 

It is (not so much in the above, but generally when analyzing data of this type) quite 
striking that the ACF and PACF coefficients have large values at multiples of the 
period s . This is very typical behavior for seasonally differenced series, in fact it 
originates from the evolution of resp. changes in the seasonality over the years. A 
simple model accounting for this is the so-called airline model: 
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This is a (13)MA  model, where many of the coefficients are equal to 0. Because it 
was made up of an (1)MA  with B  as an operator in the characteristic polynomial, 
and another one with sB  as the operator, we call this a 12(0,1,1)(0,1,1)SARIMA . This 
idea can be generalized: we fit AR and MA parts with both B  and sB  as operators 
in the characteristic polynomials, which again results in a high order ARMA  model 
for tZ .  
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Definition: A series tX  follows a ( , , )( , , )sSARIMA p d q P D Q  process if the following 
equation holds: 

 ( ) ( ) ( ) ( )s s
S t S tB B Z B B E     , 

 where series tZ  originated from tX  after appropriate seasonal and 
trend differencing, i.e. (1 ) (1 )d s D

tZ B B   . 

Fortunately, it turns out that usually 1d D   is enough. As for the model orders 
, , ,p q P Q , the choice can be made on the basis of ACF and PACF, by searching 

for cut-offs. Mostly, these are far from evident, and thus, an often applied alternative 
is to consider all models with , , , 2p q P Q   and doing an AIC-based grid search, 
function auto.arima() may be very handy for this task. 

For our example, the 12(2,1,2)(2,1,2)SARIMA  has the lowest value and also shows 
satisfactory residuals, although it seems to perform slightly less well than the 

12(14,1,11)(0,1,0)SARIMA . The R-command for the former is: 

> fit <- arima(log(beer), order=c(2,1,2), seasonal=c(2,1,2)) 

 

As it was mentioned in the introduction to this section, one of the main advantages 
of ARIMA  and SARIMA  models is that they allow for quick and convenient 
forecasting. While this will be discussed in depth later in section 8, we here provide 
a first example to show the potential.  

From the logged beer production data, the last 2 years were omitted before the 
SARIMA  model was fitted to the (shortened) series. On the basis of this model, a 2-
year-forecast was computed, which is displayed by the red line in the plot above. 
The original data are shown as a solid (insample, 1958-1988) line, respectively as 
a dotted (out-of-sample, 1989-1990) line. We see that the forecast is reasonably 
accurate. 
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To facilitate the fitting of SARIMA  models, we finish this chapter by providing some 
guidelines: 

1) Perform seasonal differencing on the data. The lag s  is determined by the 
periodicity of the data, for the order, in most cases 1D   is sufficient. 

2) Do a time series plot of the output of the above step. Decide whether it is 
stationary, or whether additional differencing at lag 1 is required to remove a 
potential trend. If not, then 0d  , and proceed. If yes, 1d   is enough for 
most series. 

3) From the output of step 2, i.e. series tZ , generate ACF and PACF plots to 
study the dependency structure. Look for coefficients/cut-offs at low lags that 
indicate the direct, short-term dependency and determine orders p  and q . 
Then, inspect coefficients/cut-offs at multiples of the period s , which imply 
seasonal dependency and determine P  and Q . 

4) Fit the model using procedure arima(). In contrast to ARIMA  fitting, this is 
now exclusively done on the original series, with setting the two arguments 
order=c(p,d,q) and seasonal=c(P,D,Q) accordingly. 

5) Check the accuracy of the fitted model by residual analysis. These must look 
like White Noise. If thus far, there is ambiguity in the model order, AIC 
analysis can serve to come to a final decision. 

Next, we turn our attention to series that have neither trend nor seasonality, but 
show serial dependence in the conditional variance. 

6.3 ARCH/GARCH Models 

In this chapter, we consider the SMI log-returns that were already presented in 
section 1.2.4. By closer inspection of the time series plot, we observe some long-
tailedness, and also, the series exhibits periods of increased variability, which is 
usually termed volatility in the (financial) literature. We had previously observed 
series with non-constant variation, such as the oil prices and beer production in the 
previous sections. Such series, where the variance increases with increasing level 
of the series, are called heteroskedastic, and can often be stabilized using a log-
transformation. 

However, that matter is different with the SMI log-returns: here, there are periods of 
increased volatility, and thus the conditional variance of the series is serially 
correlated, a phenomenon that is called conditional heteroskedasticity. This is not a 
violation of the stationarity assumption, but some special treatment for this type of 
series is required. Furthermore, the ACF of such series typically does not differ 
significantly from White Noise. Still, the data are not iid, which can be shown with 
the ACF of the squared observations. With the plots on the next page, we illustrate 
the presence of these stylized facts for the SMI log-returns: 
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6.3.1 The ARCH and GARCH Models 

In order to account for volatility, we require a model that reflects the dependency in 
the conditional variance. We operate under the assumption that: 

 t t tX E  , 

where the disturbance term tE  can be rewritten as t tW : t t t tX W   . Here, tW  is 
a White Noise innovation and 1 2( | , ,...)t t t tVar X X X    is the conditional variance 
that is assumed to be non-constant. Finally 1 2[ | , ,...]t t t tE X X X    is the conditional 
expectation as before. It is perfectly allowed to have both dependence in the 
conditional mean and variance, and hence a mixture of ARMA  and GARCH  
processes. However, for simplicity we assume throughout this section that both the 
conditional and the global mean are zero: 0t    and thus t t tX W . 

The most simple and intuitive way of doing this is to use an autoregressive model 
for the variance process. Thus, a series tE  is first-order autoregressive conditional 
heteroskedastic, denoted as (1)ARCH , if: 

 2
0 1 1t t tE W E    . 
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Here, tW  is a White Noise process with mean zero and unit variance. The two 
parameters 0 1,   are the model coefficients. An (1)ARCH  process shows volatility, 
as can easily be derived: 

 

2

2 2
0 1 1
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0 1 1

0 1 1

( ) [ ]

[ ] [ ]
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t t
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 
  

 

Note that this derivation is based on 2[ ] 1tE W   and [ ] [ ] 0t tE E E W  . As we had 
aimed for, the variance of an (1)ARCH  process behaves just like an (1)AR  model. 
Hence, the decay in the autocorrelations of the squared residuals should indicate 
whether an (1)ARCH  is appropriate or not. 

 

In our case, the analysis of ACF and PACF of the squared log-returns suggests that 
the variance may be well described by an (2)AR  process. This is not what we had 
discussed, but an extension exists. An ( )ARCH p  process is defined by: 

 2
0

1

p

t t p t i
i

E W E  


   

Fitting in R can be done using procedure garch(). This is a more flexible tool, which 
also allows for fitting GARCH processes, as discussed below. The command in our 
case is as follows: 

> fit <- garch(lret.smi, order = c(0,2), trace=FALSE); fit 
Call: garch(x = lret.smi, order = c(0, 2), trace = FALSE) 
Coefficient(s): 
       a0         a1         a2   
6.568e-05  1.309e-01  1.074e-01 
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For verifying appropriate fit of the (2)ARCH , we need to check the residuals of the 
fitted model. This includes inspecting ACF and PACF for both the “normal” and the 
squared residuals. We here do without showing plots, but the (2)ARCH  is OK. 

A nearby question is whether we can also use an ( , )ARMA p q  process for describing 
the dependence in the variance of the process. The answer is yes. This is what a 

( , )GARCH p q  model does. A series t t tE W H  is ( , )GARCH p q  if: 

 2
0

1 1

q p

t i t i j t j
i j

H E H   
 

     

6.3.2 Use of GARCH Models 

GARCH models are useless for the prediction of the level of a series, i.e. for the SMI 
log-returns, they do not provide any idea whether the stocks’ value will increase or 
decrease on the next day. However, they allow for a more precise understanding in 
the (up or down) changes that might be expected during the next day(s). This allows 
stockholders to adjust their position, so that they do not take any unduly risks. 
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7 Time Series Regression 

7.1 What Is the Problem? 

It is often the case that we aim for describing some time series tY  with a linear 
combination of some explanatory series 1,...,t tpx x . As we will see below, the 
predictors can either be true covariates, or terms that are derived from time, as for 
example linear trends or seasonal effects. We employ the universally known linear 
model for linking the response series with the predictors: 

 0 1 1 ...t t p tp tY x x E        

The regression coefficients 1,..., p   are usually estimated with the least squares 
algorithm, for which an error term with zero expectation, constant variation and no 
correlation is assumed. However, if response and predictors are time series with 
autocorrelation, the last condition often turns out to be violated, though this is not 
always the case. 

Now, if we are facing a (time series) regression problem with correlated errors, the 
estimates ˆ

j  will remain being unbiased, but the least squares algorithm is no 
longer efficient. Or in other words: more precisely working estimators exist. Even 
more problematic are the standard errors of the regression coefficients ˆ

j : they are 
often grossly wrong in case of correlated errors. As they are routinely 
underestimated, inference on the predictors often yields spurious significance, i.e. 
one is prone to false conclusions from the analysis. 

Thus, there is a need for more general linear regression procedures that can deal 
with serially correlated errors, and fortunately, they exist. We will here discuss the 
simple, iterative Cochrane-Orcutt procedure, and the Generalized Least Squares 
method, which marks a theoretically more sound approach to regression with 
correlated errors. But first, we present some time series regression problems to 
illustrating what we are dealing with. 

Example 1: Global Temperature 

In climate change studies time series with global temperature values are analyzed. 
The scale of measurement is anomalies, i.e. the difference between the monthly 
global mean temperature versus the overall mean between 1961 and 1990. The 
data can be obtained at http://www.cru.uea.ac.uk/cru/data or in file 
anomalies.rda. For illustration, we restrict to a period from 1971 to 2005 which 
corresponds to a series of 420 records. For a time series plot, see the next page. 

> ## Time Series Plot 
> load("anomalies.rda") 
> plot(anomalies, ylab="anomaly") 
> title("Global Temperature Anomalies") 
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There is a clear trend which seems to be linear. Despite being monthly measured, 
the data show no evident seasonality. This is not overly surprising, since we are 
considering a global mean, i.e. the season should not make for a big difference. But 
on the other hand, because the landmass is not uniformly distributed over both 
halves of the globe, it could still be present. It is natural to try a season-trend-
decomposition for this series. We will employ a parametric model featuring a linear 
trend plus a seasonal factor. 

2 [ " "] 12 [ " "]0 1 1 ... 1 ,· month Feb mont Dect h tt EY            

where 1, ,420t    and [ " "]1month Feb  is a dummy variable that takes the value 1 if an 
observation is from month February, and zero else. Clearly, this is a time series 
regression model. The response tY  is the global temperature anomalies, and even 
the predictors, i.e. the time and the dummies, can be seen as time series, even if 
simple ones. 

As we have seen previously, the goal with such parametric decomposition models 
is to obtain a stationary remainder term tE . But stationary does not necessarily 
mean White Noise, and in practice it often turns out that tE  shows some serial 
correlation. Thus, if the regression coefficients are obtained from the least squares 
algorithm, we apparently feature some violated assumption. 

This violation can be problematic, even in an applied setting: a question of utter 
importance with the above series is whether trend and seasonal effect are 
significantly present. It would be nice to answer such questions using the inference 
approaches (tests and confidence intervals) that linear regression provides. 
However, for obtaining reliable inference results, we need to account for the 
correlation among the errors. We will show this below, after introducing some more 
examples and theory. 
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Example 2: Air Pollution 

In this second example, we consider a time series that is stationary, and where the 
regression aims at understanding the series, rather than decomposing it into some 
deterministic and random components. We examine the dependence of a 
photochemical pollutant (morning maximal value) on the two meteorological 
variables wind and temperature. The series, which constitute of 30 observations 
taken on consecutive days, come from the Los Angeles basin. They are not publicly 
available, but can be obtained from the lecturer upon request. 

> ## Loading the data 
> load("oxidant.rda") 
 
> ## Visualizing the data 
> plot(dat, main="Air Pollution Data") 

 

There is no counterevidence to stationarity for all three series. What could be the 
goal here? Well, we aim for enhancing the understanding of how the pollution 
depends on the meteorology, i.e. what influence wind and temperature have on the 
oxidant values. We can naturally formulate the relation with a linear regression 
model: 

 0 1 1 2 2t t t tY x x E      . 

In this model, the response tY  is the oxidant, and as predictors we have 1tx , wind, 
and 2tx , the temperature. For the index, we have 1,...,30t  , and obviously, this is a 
time series regression model. 

For gaining some more insight with these data, it is also instructive to visualize the 
data using a pairs plot, as shown on the next page. There, a strong, positive linear 
association is recognizable between pollutant and the temperature. In contrast, 

5
10

20

O
xi

d
a

n
t

35
45

55
65

W
in

d
70

80
90

0 5 10 15 20 25 30

T
e

m
p

Time

Air Pollution Data



ATSA  7 Time Series Regression 

 Page 136 

there is a negative linear relation between pollutant and wind. Lastly, between the 
predictors wind and temperature, there is not much of a correlation. This data 
structure is not surprising because wind causes a stronger movement of the air and 
thus the pollutant is "better" distributed. Also, the wind causes some cooling. 

 

For achieving our practical goals with this dataset, we require precise and unbiased 
estimates of the regression coefficients 1  and 2 . Moreover, we might like to give 
some statements about the significance of the predictors, and thus, we require some 
sound standard errors for the estimates. However, also with these data, it is well 
conceivable that the error term tE  will be serially correlated. Thus again, we will 
require some procedure that can account for this. 

Time Series Regression Model 

The two examples have shown that time series regression models do appear when 
decomposing series, but can also be important when we try to understand the 
relation between response and predictors with measurements that were taken 
sequentially. Generally, with the model  

0 1 1 ...t t p tp tY x x E        

we assume that the influence of the series 1, ,t tpx x  on the response tY  is 
simultaneous. Nevertheless, lagged variables are also allowed, i.e. we can also use 
terms such as ( );t k jx   with 0k   as predictors. While this generalization can be easily 
built into our model, one quickly obtains models with many unknown parameters. 
Thus, when exploring the dependence of a response series to lags of some predictor 
series, there are better approaches than regression. In particular, this is the cross 
correlations and the transfer function model, which will be exhibited in later chapters 
of this script. 
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In fact, there are not many restrictions for the time series regression model. As we 
have seen, it is perfectly valid to have non-stationary series as either the response 
or as predictors. However, it is crucial that there is no feedback from tY  to the tjx . 
Additionally, the error tE  must be independent of the explanatory variables, but it 
may exhibit serial correlation. 

7.2 Finding Correlated Errors 

When dealing with a time series regression problem, we first always assume 
uncorrelated errors and start out with an ordinary least squares regression. Based 
on its residuals, the assumption can be verified, and if necessary, action can be 
taken. For identifying correlation among the residuals, we analyze their time series 
plot, ACF and PACF. 

Example 1: Global Temperature 

Our goal is the decomposition of the global temperature series into a linear trend 
plus some seasonal factor. First and foremost, we prepare the data: 

> num.temp <- as.numeric(anomalies) 
> num.time <- as.numeric(time(anomalies)) 
> mn01     <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun") 
> mn02     <- c("Jul", "Aug", "Sep", "Oct", "Nov", "Dec") 
> month    <- factor(cycle(my.temp), labels=c(mn01, mn02)) 
> dat      <- data.frame(temp=num.temp, time=num.time, month) 

The regression model is the estimated with R’s function lm(). The summary 
function returns estimates, standard errors plus the results from some hypothesis 
tests. It is important to notice that all of these results are in question should the 
errors turn out to be correlated. 

> fit.lm <- lm(temp ~ time + season, data=dat) 
> summary(fit.lm) 
 
Call: 
lm(formula = temp ~ time + season, data = dat) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.36554 -0.07972 -0.00235  0.07497  0.43348  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -3.603e+01  1.211e+00 -29.757   <2e-16 *** 
time         1.822e-02  6.089e-04  29.927   <2e-16 *** 
seasonFeb    6.539e-03  3.013e-02   0.217   0.8283     
seasonMar   -1.004e-02  3.013e-02  -0.333   0.7392     
seasonApr   -1.473e-02  3.013e-02  -0.489   0.6252     
seasonMay   -3.433e-02  3.013e-02  -1.139   0.2552     
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seasonJun   -2.628e-02  3.013e-02  -0.872   0.3836     
seasonJul   -2.663e-02  3.013e-02  -0.884   0.3774     
seasonAug   -2.409e-02  3.013e-02  -0.799   0.4245     
seasonSep   -3.883e-02  3.013e-02  -1.289   0.1982     
seasonOct   -5.212e-02  3.013e-02  -1.730   0.0844 .   
seasonNov   -6.633e-02  3.013e-02  -2.201   0.0283 *   
seasonDec   -4.485e-02  3.013e-02  -1.488   0.1374     
--- 
 
Residual standard error: 0.126 on 407 degrees of freedom 
Multiple R-squared: 0.6891, Adjusted R-squared:  0.68  
F-statistic: 75.18 on 12 and 407 DF,  p-value: < 2.2e-16 

As the next step, we need to perform some residual diagnostics. The plot() 
function, applied to a regression fit, serves as a check for zero expectation, constant 
variation and normality of the errors, and can give hints on potentially problematic 
leverage points. 

> par(mfrow=c(2,2)) 
> plot(fit.lm, pch=20) 

 

Except for some very slightly long tailed errors, which do not require any action, the 
residual plots look fine. What has not yet been verified is whether there is any serial 
correlation among the residuals. If we wish to see a time series plot, the following 
commands are useful: 
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> plot(time(anomalies), resid(fit.lm), type="l") 

 

It is fairly obvious from the time series plot that the residuals are correlated. Our 
main tool for describing the dependency structure is the ACF and PACF plots, 
however. These are as follows: 

> par(mfrow=c(1,2)) 
> acf(resid(fit.lm), main="ACF of Residuals") 
> pacf(resid(fit.lm), main="PACF of Residuals")  

 

The ACF shows a rather slow exponential decay, whereas the PACF shows a clear 
cut-off at lag 2. With these stylized facts, it might well be that an (2)AR  model is a 
good description for the dependency among the residuals. We verify this: 
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> fit.ar2 <- ar.burg(resid(fit.lm)); fit.ar2 
Call: ar.burg.default(x = resid(fit.lm)) 
Coefficients: 
     1       2   
0.4945  0.3036   
Order selected 2  sigma^2 estimated as  0.00693 

When using Burg’s algorithm for parameter estimation and doing model selection 
by AIC, order 2 also turns out to be optimal. For verifying an adequate fit, we 
visualize the residuals from the (2)AR  model. These need to look like White Noise. 

 

 

There is no contradiction to the White Noise hypothesis for the residuals from the 
(2)AR  model. Thus, we can summarize as follows: the regression model that was 
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used for decomposing the global temperature series into a linear trend and a 
seasonal factor exhibit correlated errors that seem to originate from an (2)AR  
model. Theory tells us that the point estimates for the regression coefficients are still 
unbiased, but they are no longer efficient. Moreover, the standard errors for these 
coefficients can be grossly wrong. Thus, we need to be careful with the regression 
summary approach that was displayed above. And since our goal is inferring 
significance of trend and seasonality, we need to come up with some better suited 
method. 

Example 2: Air Pollution 

Now, we are dealing with the air pollution data. Again, we begin our regression 
analysis using the standard assumption of uncorrelated errors. Thus, we start out 
by applying the lm() function and printing the summary().  

> fit.lm <- lm(Oxidant ~ Wind + Temp, data=dat) 
> summary(fit.lm) 
 
Call: 
lm(formula = Oxidant ~ Wind + Temp, data = dat) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-6.3939 -1.8608  0.5826  1.9461  4.9661  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -5.20334   11.11810  -0.468    0.644     
Wind        -0.42706    0.08645  -4.940 3.58e-05 *** 
Temp         0.52035    0.10813   4.812 5.05e-05 *** 
--- 
 
Residual standard error: 2.95 on 27 degrees of freedom 
Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608  
F-statistic: 47.12 on 2 and 27 DF,  p-value: 1.563e-09 

We will do without showing the 4 standard diagnostic plots, and here only report that 
they do not show any model violations. Because we are performing a time series 
regression, we also need to check for potential serial correlation of the errors. As 
before, this is done on the basis of time series plot, ACF and PACF: 

> plot(1:30, resid(fit.lm), type="l") 
> title("Residuals of the lm() Function") 
> par(mfrow=c(1,2)) 
> acf(resid(fit.lm), ylim=c(-1,1), main="ACF of Residuals") 
> pacf(resid(fit.lm), ylim=c(-1,1), main="PACF of Residuals") 
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Also in this example, the time series of the residuals exhibits serial dependence. 
Because the ACF shows an exponential decay and the PACF cuts off at lag 1, we 
hypothesize that an (1)AR  model is a good description. While the AIC criterion 
suggests an order of 14p  , the residuals of an (1)AR  show the behavior of White 
Noise. Additionally, using an (14)AR  would be spending too many degrees of 
freedom for a series with only 30 observations. 

Thus, we can summarize that also in our second example with the air pollution data, 
we feature a time series regression that has correlated errors. Again, we must not 
communicate the above regression summary and for sound inference, we require 
more sophisticated models. 
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7.2.1 Durbin-Watson Test 

For the less proficient user, hypothesis tests always seem like an attractive 
alternative to visual inspection of graphical output. This is certainly also the case 
when the task is identifying a potential serial correlation in a regression analysis. 
Indeed, there is a formal test that addresses the issue, called the Durbin-Watson 
test. While we will here briefly go into it, we do not recommend it for practical 
application.The Durbin-Watson test tests the null hypothesis 0 : (1) 0H    against 
the alternative : (1) 0AH   . The test statistic D̂  is calculated as follows 
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where ˆt t tyr y   is the residual from the regression model, observed at time t . 
There is an approximate relationship between the test statistic D̂  and the 
autocorrelation coefficient at lag 1: 

ˆ ˆ2(1 (1))D    

The test statistic takes values between 0 if 1t tr r  and 4 if 1t tr r  . These extremes 
indicate perfect correlation of the residuals. Values around 2, on the other hand, are 
evidence for uncorrelated errors. The exact distribution of D̂  is rather difficult to 
derive. However, we do not need to bother with this. The R package lmtest holds 
an implementation of the Durbin-Watson test with function dwtest(), where the p-
value is either (for large sample size) determined by a normal approximation, or (for 
short series) by an iterative procedure. 

Example 1: Global Temperature 

> dwtest(fit.lm) 
data:  fit.lm  
DW = 0.5785, p-value < 2.2e-16 
alt. hypothesis: true autocorrelation is greater than 0 

Example 2: Air Pollution 

> dwtest(fit.lm) 
data:  fit.lm  
DW = 1.0619, p-value = 0.001675 
alt. hypothesis: true autocorrelation is greater than 0 

Thus, the null hypothesis is rejected in both examples and we come to the same 
conclusion (“errors are correlated”) as with our visual inspection. It is very important 
to note that this is not necessary: In cases where the errors follow an ( )AR p  process 
where 1p   and | (1) |  is small, the null hypothesis will not be rejected despite the 
fact that the errors are correlated. 
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7.3 Cochrane-Orcutt Method 

The goal of this section is to solve the time series regression problem with errors 
that have an (1)AR  structure. This simple case is illustrative and helps to build the 
comprehension for more complicated error dependencies. We consider the Air 
Pollution example, where we have: 

 0 1 1 2 2t t t tY x x E       with 1t t tE E U   , where 2~ (0, )t UU N iid . 

The fundamental trick, on which in fact all time series regression methods are 
based, will be presented here and now. We make the transformation: 

 1t t tY Y Y    

Next, we plug-in the model equation and rearrange the terms. Finally, we build on 
the fundamental property that 1t t tE E U   . The result is: 

 
0 1 1 2 2 0 1 1,1 2 1,2 1

0 1 1 1,1 2 2 1,2 1

0 1 1 2 2

( )

(1 ) ( ) ( )
t t t t t t t

t t t t t t

t t t

Y x x E x x E

x x x x E E

x x U

      
      
  

  

  

        
       

     
 

Obviously, this is a time series regression problem where the error term tU  is iid. 
Also note that both the response and the predictors have undergone a 
transformation. The coefficients however, are identical in both the original and the 
modified regression equation. For implementing this approach in practice, we 
require knowledge about the (1)AR  parameter  . Usually, it is not known 
previously. A simple idea to overcome this and solve the time series regression 
problem for the Air Pollution data is as follows: 

1) Run OLS regression to obtain estimates 0
ˆ ˆ,..., p   

2) Estimate an (1)AR  on the OLS residuals to obtain ̂  

3) Determine the prime variables ;Y x   and derive *
0 1

ˆ ˆ ˆ, ,..., p    by OLS 

This procedure is know as the Cochrane-Orcutt iterative method. Please note that 
the estimates 0 1

ˆ ˆ ˆ, ,..., p    and their standard errors from the OLS regression in step 
3) are sound and valid. But while the Cochrane-Orcutt procedure has its historical 
importance and is very nice for illustration, it lacks of a direct R implementation, and, 
as an iterative procedure, also of mathematical closedness and quality. The obvious 
improvement is to solve the prime regression problem by simultaneous Maximum-
Likelihood estimation of all parameters: 

 2
0,... ; ;p U     

This is possible and implemented in the R function gls(). Also, we need to be able 
to handle more complicated structure for the regression error tE . For this, we resort 
to matrix notation, see the next section. 
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7.4 Generalized Least Squares 

The ordinary least squares regression model assumes that 2( )Var E I , i.e. the 
covariance matrix of the errors is diagonal with identical values on the diagonal itself. 
As we have seen in our examples above, this is not a good model for time series 
regression. There, we rather have 2( )Var E   , where   reports the correlation 
among the errors. Using a Cholesky decomposition, we can write TSS  , where S  
is a triangular matrix. This allows us to rewrite the regression model in matrix 
notation as follows: 

1 1 1

y X E

S y S X S E

y X E






  

 
 

   
 

This transformation is successful, because in the prime model, we have 
uncorrelated errors again: 

 1 1 1 2 2( ) ( ) ( ) T T TVar E Var S E S Var E S S SS S I          

With some algebra, it is easy to show that the estimated regression coefficients for 
the generalized least squares approach turn out to be: 

 1 1ˆ ( )T TX X X y      

This is what is known as the generalized least squares estimator. Moreover, the 
covariance matrix of the coefficient vector is: 

 1 1 2ˆ( ) ( )TVar X X     

This covariance matrix then also contains standard errors in which the correlation 
of the errors has been accounted for, and with which sound inference is possible. 
However, while this all neatly lines up, we of course require knowledge about the 
error covariance matrix  , which is generally unknown in practice. What we can do 
is estimate it from the data, for which two approaches exist. 

Cochrane-Orcutt Method 

As we have seen above, this method is iterative: it starts with an ordinary least 
squares (OLS) regression, from which the residuals are determined. For these 
residuals, we can then fit an appropriate ( , )ARMA p q  model and with its estimated 
model coefficients 1,..., p   and ( ) ( )

1 ,...,MA q MA q
q  . On the basis of the estimated 

( )AR MA  model coefficients, an estimate of the error covariance matrix   can be 
derived. We denote it by ̂ , and plug it into the formulae presented above. This 
yields adjusted regression coefficients and correct standard errors for these 
regression problems. As mentioned above, the iterative approach is secondary to a 
simultaneous MLE. Thus, we do without further performing Cochrane-Orcutt on our 
examples. 
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The gls() Procedure 

A better, yet more sophisticated approach is to estimate the regression coefficients 
and the ARMA  parameters simultaneously. This can be done using the Maximum-
Likelihood principle. Even under the assumption of Gaussian errors, this is a 
nonlinear and numerically difficult problem. However, for practical application, we 
do not need to worry. The R package nlme features the gls() procedure which 
tackles this problem. Thus, we focus on correct application of the R function. 

Example 1: Global Temperature 

Every GLS regression analysis starts by fitting an OLS an analyzing the residuals, 
as we have done above. Remember that the only model violation we found were 
correlated residuals that were well described with an (2)AR  model. Please note that 
for performing GLS, we need to provide a dependency structure for the errors. Here, 
this is the (2)AR  model, in general, it is an appropriate ( , )ARMA p q . The syntax and 
output is as follows: 

> library(nlme) 
> corStruct <- corARMA(form=~time, p=2) 
> fit.gls <- gls(temp~time+season, data=dat, corr=corStruct) 
> fit.gls 
Generalized least squares fit by REML 
  Model: temp ~ time + season  
  Data: dat  
  Log-restricted-likelihood: 366.3946 
 
Coefficients: 
  (Intercept)          time     seasonFeb     seasonMar  
-39.896981987   0.020175528   0.008313205  -0.006487876  
    seasonApr     seasonMay     seasonJun     seasonJul  
 -0.009403242  -0.027232895  -0.017405404  -0.015977913  
    seasonAug     seasonSep     seasonOct     seasonNov  
 -0.011664708  -0.024637218  -0.036152584  -0.048582236  
    seasonDec  
 -0.025326174  
 
Correlation Structure: ARMA(2,0) 
 Formula: ~time  
 Parameter estimate(s): 
      Phi1       Phi2  
 0.5539900 -0.1508046  
Degrees of freedom: 420 total; 407 residual 
Residual standard error: 0.09257678 

The result reports the regression and the AR  coefficients. Using the summary() 
function, even more output with all the standard errors can be generated. We omit 
this here and instead focus on the necessary residual analysis for the GLS model. 
We can extract the residuals using the usual resid() command. Important: these 
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residuals must not look like White Noise, but as from an ( , )ARMA p q  with orders p  
and q  as provided in the corStruct object – which in our case, is an (2)AR . 

> par(mfrow=c(1,2)) 
> acf(resid(fit.gls), main="ACF of GLS-Residuals") 
> pacf(resid(fit.gls), main="PACF of GLS-Residuals") 

 

The plots look similar to the ACF/PACF plots of the OLS residuals. This is often the 
case in practice, only for more complex situations, there can be a bigger 
discrepancy. And because we observe an exponential decay in the ACF, and a clear 
cut-off at lag 2 in the PACF, we conjecture that the GLS residuals meet the 
properties of the correlation structure we hypothesized, i.e. of an (2)AR  model. 
Thus, we can now use the GLS fit for drawing inference. We first compare the OLS 
and GLS point estimate for the trend, along with its confidence interval: 

> coef(fit.lm)["time"] 
      time  
0.01822374  
> confint(fit.lm, "time") 
          2.5 %    97.5 % 
time 0.01702668 0.0194208 
> coef(fit.gls)["time"] 
      time  
0.02017553  
> confint(fit.gls, "time") 
          2.5 %     97.5 % 
time 0.01562994 0.02472112 

We obtain a temperature increase of 0.0182 degrees per year with the OLS, and of 
0.0202 with the GLS. While this may seem academic, the difference among the point 
estimates is around 10%, and theory tells us that the GLS result is more reliable. 
Moreover, the length of the confidence interval is 0.0024 with the OLS, and 0.0091 
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and thus 3.5 times as large with the GLS. Thus, without accounting for the 
dependency among the errors, the precision of the trend estimate is by far 
overestimated. Nevertheless, also the confidence interval obtained from GLS 
regression does not contain the value 0, and thus, the null hypothesis on no global 
warming trend is rejected (with margin!). 

Finally, we investigate the significance of the seasonal effect. Because this is a 
factor variable, i.e. a set of dummy variables, we cannot just produce a confidence 
interval. Instead, we have to rely on a significance test, i.e. a partial F-test. Again, 
we compare what is obtained from OLS and GLS: 

> drop1(fit.lm, test="F") 
Single term deletions 
Model: temp ~ time + season 
 
       Df Sum of Sq     RSS     AIC  F value  Pr(F)     
<none>               6.4654 -1727.0                     
time    1   14.2274 20.6928 -1240.4 895.6210 <2e-16 *** 
season 11    0.1744  6.6398 -1737.8   0.9982 0.4472     
 
> anova(fit.gls) 
Denom. DF: 407  
            numDF  F-value p-value 
(Intercept)     1 78.40801  <.0001 
time            1 76.48005  <.0001 
season         11  0.64371  0.7912 

As for the trend, the result is identical with OLS and GLS. The seasonal effect is 
non-significant with p-values of 0.45 (OLS) and 0.79 (GLS). Again, the latter is the 
value we must believe in. We conclude that there is no seasonality in global warming 
– but there is a trend. Thus, the seasonality should be omitted from the model and 
the computations need to be repeated (not shown here). 

Example 2: Air Pollution 

For finishing the air pollution example, we also perform a GLS fit here. We identified 
an (1)AR  as the correct dependency structure for the errors. Thus, we define it 
accordingly: 

> dat       <- cbind(dat, time=1:30) 
> corStruct <- corARMA(form=~time, p=1) 
> model     <- formula(Oxidant ~ Wind + Temp) 
> fit.gls   <- gls(model, data=dat, correlation=corStruct) 

The output then is as follows: 

> fit.gls 
Generalized least squares fit by REML 
  Model: model  
  Data: dat  
  Log-restricted-likelihood: -72.00127 
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Coefficients: 
(Intercept)        Wind        Temp  
 -3.7007024  -0.4074519   0.4901431  
 
Correlation Structure: AR(1) 
 Formula: ~time  
 Parameter estimate(s): 
      Phi  
0.5267549  
Degrees of freedom: 30 total; 27 residual 
Residual standard error: 3.066183 

Again, we have to check if the GLS residuals show the stylized facts of an (1)AR : 

 

This is the case, and thus we can draw inference from the GLS results. The 
confidence intervals of the regression coefficients are: 

> confint(fit.lm, c("Wind", "Temp")) 
          2.5 %     97.5 % 
Wind -0.6044311 -0.2496841 
Temp  0.2984794  0.7422260 
 
> confint(fit.gls, c("Wind", "Temp")) 
          2.5 %     97.5 % 
Wind -0.5447329 -0.2701709 
Temp  0.2420436  0.7382426 

Here the differences among point estimates and confidence intervals are not very 
pronounced. This has to do with the fact that the correlation among the errors is 
weaker than in the global temperature example. But we emphasize again that the 
GLS results are the one to be relied on and the magnitude of the difference between 
OLS and GLS can be tremendous. 
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Simulation Study 

We provide further evidence for the importance of the GLS approach by performing 
a simulation study in which the resulting coefficients and standard errors are 
compared to the ones obtained from OLS regression. We consider the following, 
relatively simple model: 

2

/ 50

2( )
t

t t t t

x t

y x x E


  

 

where tE  is from an (1)AR  process with 1 0.65   . The innovations are Gaussian 
with 0.1  . Regression coefficients and the true standard deviations of the 
estimators are known in this extraordinary situation. However, we generate 100 
realizations with series length 50n  , on each perform OLS and GLS regression 
and record both point estimate and standard error.  

 

The simulation outcome is displayed by the boxplots in the figure above. While the 
point estimator for 1  in the left panel is unbiased for both OLS and GLS, we observe 
that the standard error for 1̂  is very poor when the error correlation is not accounted 
for. We emphasize again that OLS regression with time series will inevitably lead to 
spuriously significant predictors and thus, false conclusions. Hence, it is absolutely 
key to inspect for possible autocorrelation in the regression residuals and apply the 
gls() procedure if necessary. 

However, while gls() can cure the problem of autocorrelation in the error term, it 
does not solve the issue from the root. Sometimes, even this is possible. In the next 
subsection, we conclude the chapter about time series regression by showing how 
correlated errors can originate, and what practice has to offer for deeper 
understanding of the problem. 
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7.5 Missing Predictor Variables 

The presence correlated errors is often due to missing predictors. For illustration, 
we consider a straightforward example of a ski selling company in the US. The 
quarterly sales tY  are regressed on the personal disposable income (PDI) which is 
the one and only predictor tx . We start out with loading the data (which are available 
from the lecturer upon request) and presenting a time series plot. 

> ## Loading the data 
> load("ski2.rda") 
> ski.ts <- ts.union(ts(ski$sales), ts(ski$pdi)) 
> plot(ski.ts, main="Ski Sales and Personal Disposable …") 

 

Next, we treat the two series in a regression problem where the sales are the 
response variable and PDI is the predictor. As both variables are on a relative scale, 
a log-transformation is indicated. This means that we fit a linear model of type 
log( ) ~ log( )sales PDI . This corresponds to a power law with character 

1
0~sales PDI    on the original scale. A scatterplot with the fit obtained from 

applying OLS on the transformed variables is shown below. 

> ## Scatterplot 
> par(mfrow=c(1,1)) 
> plot(sales ~ pdi, data=ski, pch=20, main="Regression: …") 
>  
> ## OLS model for the transformed variables 
> fit <- lm(log(sales) ~ log(pdi), data=ski) 
>  
> Plotting the OLS fit on the original scale 
> newpdi <- 100:220; newdf <- data.frame(pdi=newpdi) 
> lines(newpdi, exp(predict(fit, newdf)), col="red") 
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The coefficient of determination is rather large, i.e. 2 0.766R   and the fit seems 
adequate, i.e. the power law seems to correctly describe the systematic relation 
between sales and PDI. However, the model diagnostic plots (see the next page) 
show some rather special behavior, i.e. there are hardly any “small” residuals (in 
absolute value). Or more precisely, the data points almost lie on two lines around 
the regression line, with almost no points near or on the line itself. 

> ## Residual diagnostics 
> par(mfrow=c(2,2)) 
> plot(fit, pch=20) 

 

120 140 160 180 200

3
5

4
0

45
5

0
5

5

Regression: Ski Sales vs. PDI

pdi

sa
le

s

3.6 3.7 3.8 3.9

-0
.1

0
0.

00
0.

10

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

37

15

28

-2 -1 0 1 2

-1
.5

-0
.5

0.
5

1.
5

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Normal Q-Q

374

15

3.6 3.7 3.8 3.9

0.
0

0.
4

0.
8

1.
2

Fitted values

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale-Location
374 15

0.00 0.02 0.04 0.06 0.08 0.10

-1
.5

-0
.5

0.
5

1.
5

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance

Residuals vs Leverage

374

38



ATSA  7 Time Series Regression 

 Page 153 

As the next step, we analyze the correlation of the residuals and perform a Durbin-
Watson test. The result is as follows: 

> dwtest(fit) 
data:  fit  
DW = 2.0224, p-value = 0.4609 
alt. hypothesis: true autocorrelation is greater than 0 

 

While the Durbin-Watson test does not reject the null hypothesis, the residuals seem 
very strongly correlated. The ACF exhibits some decay that may qualify as 
exponential, and the PACF has a clear cut-off at lag 2. Thus, an (2)AR  model could 
be appropriate. And because it is an (2)AR  where 1  and (1)  are very small, the 
Durbin-Watson test fails to detect the dependence in the residuals. The time series 
plot is as follows: 
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While we could now account for the error correlation with a GLS, it is always better 
to identify the reason behind the dependence. I admit this is suggestive here, but as 
mentioned in the introduction of this example, these are quarterly data and we might 
have forgotten to include the seasonality. It is not surprising that ski sales are much 
higher in fall and winter and thus, we introduce a factor variable which takes the 
value 0 in spring and summer, and 1 else. 

 

Introducing the seasonal factor variable accounts to fitting two separate power laws 
for summer and winter. Eyeballing already lets us assume that the fit is good. This 
is confirmed when we visualize the diagnostic plots: 
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The unwanted structure is now gone, as is the correlation among the errors: 

 

Apparently, the addition of the season as an additional predictor has removed the 
dependence in the errors. Rather than using GLS, a sophisticated estimation 
procedure, we have found a simple model extension that describes the data well 
and is certainly easier to interpret (especially when it comes to prediction) than a 
model that is built on correlated errors.  

We conclude by saying that using GLS for modeling dependent errors should only 
take place if care has been taken that no important and/or obvious predictors are 
missing in the model. 
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8 Forecasting 
One of the major motivations for and principal goals with time series analysis is to 
produce predictions which show the future evolution of the data, i.e. time series 
forecasting. It is important to recognize that this is an extrapolation in the time 
domain. In all other areas of statistical data analysis, applying models beyond the 
range of observed training data is applied with great care only, as it is prone to false 
conclusions. Of course, this is no different with time series forecasting, although it 
is often neglected or presented with naïve optimism. 

The task we are faced with in time series forecasting can be compared to driving a 
car by looking through the rear window mirror. While this may work well on a wide 
motorway that runs mostly straight on and has a few gentle bends only, things get 
more complicated as soon as we are on a narrow mountain road with sharp and 
unexpected bends. Then, we would need to drive very slowly to stay on track. This 
all translates directly to time series analysis. For series where the signal is much 
stronger than the noise, accurate forecasting is possible. However, for noisy series, 
there is a great deal of uncertainty in the predictions, and they are at best reliable 
for a very short horizon. From this, one might conclude that the principal source of 
uncertainty is inherent in the process, i.e. comes from the stochastic and 
unpredictable innovation terms. However, in practice, there are several other factors 
that can threaten the reliability of any forecasting procedure. In particular: 

 We need to be certain that the data generating process does not show a 
disruption at some point in time, i.e. continues in the future as it was observed 
in the past. Let's e.g. consider the case when we drive on a motorway by 
looking through the rear window mirror, but it (unexpectedly) ends and 
suddenly turns into a mountain road, a clear recipe for disaster. 

 When we choose/fit a model based on a realization of data, we have no 
guarantee that it is the correct, i.e. data-generating one. Translated to our 
car-driving example we never truly told on what kind of road we are driving, 
i.e. we can only guess if it's a motorway or a mountain road. In real-world 
time series practice, we are never guaranteed that the true data generating 
process is e.g. ( , )ARMA p q  and even if it is, we may commit mistakes in 
choosing the orders ,p q . 

 Even if we are so lucky to identify the correct data-generating process (or in 
cases we "know" it, e.g. in a simulation), there is additional uncertainty arising 
from the estimation of the parameters. 

It is also important to understand what a time series forecast delivers. In uninformed 
public opinion, it is often perceived as "the future evolution of the series". But this is 
mathematically wrong, as a time series forecast only yields (ane estimate of) the 
conditional mean of the future instances. Often, the influence of the unpredictable 
innovation terms is huge and adds a major source of variation. Hence, it is absolutely 
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essential to complement conditional mean forecasts with prediction intervals, i.e. a 
measure of uncertainty for the future observed values. This also creates a novel 
view on the task of time series forecasting: we cannot say what exactly will happen 
in the future. But we can hope for providing a realistic view on what we can expect 
both in terms of mean and variation around it, i.e. to what extent a time series is 
predictable at all. It often helps tremendously to accept this perspective and 
communicate it offensively. Before providing an outlook over the contents of this 
forecasting chapter, we here display the weekly number of jobless claims in the US 
from the late 1960's until March 2020. 

 

The raw data are available from the US Bureau of Labor Statistics, the visual display 
was taken from https://www.bbc.com/news/business-52231929, accessed on April 
28, 2020. The weekly average of jobless claims hovered around an average of 350k, 
sometimes increasing to twice that value in recession periods. But then, due to the 
SARS-COV2 lockdown and crisis in March 2020, that figure soared to 6.6m in a 
week. This is a major disruption – could anyone have foreseen and forecasted this 
value with a few months lead?!? Obviously, this is a completely unrealistic 
expectation and even if an interval forecast (as we advocate, rather than giving just 
the point forecast) would have been provided, it would have been broken by orders 
of magnitude. In summary, methods for time series forecasting are not the "magical 
crystal ball" that we may hope for, they will never be able to forecast outliers and 
groundbreaking events. Still, they can be useful and have their place in many 
applied fields.  
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Keeping these caveats in mind, we will now present several approaches to time 
series forecasting. First, we deal with stationary processes and present, how AR, 
MA and ARMA processes can be forecasted. These principles can be extended to 
the case of ARIMA and SARIMA models, such that forecasting series with either 
trend and/or seasonality is also possible. As we had seen in section 4.3, the 
decomposition approach for non-stationary time series helps a great deal for 
visualization and modelling. Thus, we will present some heuristics about how to 
produce forecasts with series that were decomposed into trend, seasonal pattern 
and a stationary remainder. Last but not least, we present the method of exponential 
smoothing. This was constructed as a model-free, intuitive weighting scheme that 
allows forecasting of time series. Due to its simplicity and the convenient 
implementation in the HoltWinters() and other procedures in R, it is very popular 
and often used in applied sciences. 

8.1 Stationary Time Series 

We assume a stationary time series, for which an appropriate ( )AR p , ( )MA q  or 
( , )ARMA p q  model was identified, the parameters were successfully estimated and 

where the residuals exhibited the required properties, i.e. looked like White Noise. 
Under these circumstances, forecasts may be readily computed. Given data up to 
time n , the forecasts will either involve the past observations, and/or the 
unobservable past innovation terms that are in practice replaced with residuals. 

In mathematical statistics, many forecasting methods have been studied on a 
theoretical basis with the result that the minimum mean squared error forecast 

,1:
ˆ
n k nX   for k  steps ahead is given by the conditional expectation, i.e.: 

 ,1: 1
ˆ [ | ,..., ]n k n n k nX E X X X   

In evaluating this term, we use the fact that the best forecast of all future innovation 
terms ,tE t n  is simply zero. We will be more specific in the following subsections. 
Besides providing a point forecast with the conditional expectation, it is in practice 
equally important to produce an interval forecast that makes a statement about its 
precision. 

8.1.1 Forecasting AR(1) 

For simplicity, we first consider a mean-zero, stationary (1)AR  process: 

 1 1t t tX X E   , 

tE  is the innovation, for which we do not need to assume a particular distribution. 
As we will see below, it is convenient to assume Gaussian tE , because this allows 
for an easy derivation of a prediction interval. The conditional expectation at time 

1n  is given by: 
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 1 1 1[ | ,..., ]n n nE X X X x  . 

Thus, we can easily forecast the next instance of a time series with the observed 
value of the previous one, as long as it is available. In particular: 

 1,1: 1
ˆ
n n nX x  . 

For the k -step forecast with 1k  , we need to repeatedly plug-in the model 
equation, and use the fact that 1[ | ,..., ] 0n k nE E X X   for all 0k  . 

 

,1: 1

1 1 1

1 1 1

1

ˆ [ | ,..., ]

[ | ,..., ]

[ | ,..., ]

...

n k n n k n

n k n k n

n k n

k
n

X E X X X

E X E X X

E X X X

x






 

  

 


 




 

Apparently, for any stationary (1)AR  process, the k -step forecast beyond the end 
of a series depends on the last observation nx  only and goes to zero exponentially 
quickly. Note that the value of zero also corresponds to the unconditional, global 
mean of the process. For practical implementation with real data, we would just plug-
in the estimated model parameter 1̂  and can so produce a forecast for arbitrary 
horizon. In case of a shifted (1)AR  with non-zero mean, m  is subtracted first so that 
the forecast can be obtained on the pure process in the above manner, before m  is 
finally added again. As always, a prediction is much more useful in practice if one 
knows how precise it is and for what kind of variability in the values that materialize 
we have to prepare. Under the assumption of Gaussian innovations, a 95% 
prediction interval can be derived from the conditional variance 1( | ,..., )n k nVar X X X

. For the special case of 1k   we obtain: 

 1 1.96n Ex   , 

where 1.96 is the 97.5% quantile of the standard Normal distribution, which also 
dictates how intervals with different level can be obtained. Again, for practical 
implementation of the interval, we need to plug-in 1̂  and ˆE . However, the formula 
does not account for the uncertainty that arises from plugging-in these estimates, 
so the coverage of the interval will in practice be smaller than 95%. By how much 
this is the case largely depends on the quality of the estimates, i.e. the series length 
n . For a k -step forecast, the theoretical 95% prediction interval is: 

  1 2
1 11

1.96 1
kk j

n Ej
x  


    . 

For increasing prediction horizon k , the conditional variance goes to 2 2
1/ (1 )E  , 

which is the process variance 2
X . Thus, for the 1-step forecast, the uncertainty in 

the prediction is given by the innovation variance E  alone, while for increasing 
horizon k  the prognosis interval gets wider is finally determined by the unconditional 
process variance. 
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Simulation Study 

As we have argued above, the 95% prediction interval does not account for the 
uncertainty in the parameter estimates, the choice of the model or the continuity of 
the data generating process. We run a small simulation study for pointing out the 
effect of plugging-in the parameter estimates. It consists of generating a length 
( 1)n   realization from an (1)AR  process with 1 0.5   and Gaussian innovations 
where 1E  . From the first n  data points, an (1)AR  model, respectively the 
parameters 1ˆ ˆ, E  , are estimated by MLE and the point forecast along with the 
prediction interval is determined. Finally, it was checked whether the next instance 
of the time series fell within the interval, from which an empirical coverage level 
could be determined. The values were: 

20n   50n   100n   200n   

91.01% 93.18% 94.48% 94.73% 

As we notice, the coverage is clearly too small in case of 20n  . However, already 
for a series with length 100n  , it reaches a reasonable level. Please note the 
undercoverage here arises simply from parameter estimation in a benign setting. In 
real-world examples, the undercoverage is often worse since additional uncertainty 
arises from model misspecification or potential disruption in the data-generating 
process. 

Practical Example 

We now apply the R functions that implement the above theory on the Beaver data 
from section 4.4.3. An (1)AR  seems appropriate for this series. In order to compare 
the forecast with true values that materialized, we retain the last 14 observations of 
the series from the fitting process. These will then be predicted, and the true values 
will be used for verifying the prediction. The R commands for fitting the model on the 
training data and producing the 14-step prediction are simple and straightforward. 

> btrain   <- window(beaver, 1, 100) 
> btest  <- window(beaver, 101, 114) 
> fit      <- ar.burg(btrain, order=1) 
> forecast <- predict(fit, n.ahead=14) 

The forecast object is a list that has two components, pred and se, which contain 
the point predictions and the predictions’ standard errors, respectively. We now turn 
our attention to how the forecast can be visualized: 

> plot(beaver, col="blue", lwd=2, type="n") 
> rect(100.5, 35, 120 ,40, col="grey90", border=NA) 
> lines(btrain, lwd=2) 
> lines(btest, lwd=2, col="red") 
> lines(pred$pred, lwd=2, col="blue") 
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> lines(pred$pred+pred$se*1.96, col="blue") 
> lines(pred$pred-pred$se*1.96, col="blue") 
> abline(h=mean(btrain), lty=3) 
> box() 

 

A simpler alternative to the self-construction of the above plot lies in relying on the 
plot.forecast() function. This only requires the following code: 

> plot(forecast(fit, h=14), main="Beaver Data: …") 
> lines(btest, lwd=2, col="red") 
> abline(h=mean(btrain), lty=3) 

 

The shaded regions are 80% (darker/smaller) and 95% prediction intervals. 
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One more issue requires some attention here: for the Beaver data, a pure (1)AR  
process is not appropriate, because the global series mean is clearly different from 
zero. The way out is to de-mean the series, then fit the model and produce forecasts, 
and finally re-adding the global mean. R does all this automatically. We conclude by 
summarizing what we observe in the example: the forecast is based on the last 
observed value 100 36.76x  , and from there approaches the global series mean 
ˆ 36.86   exponentially quickly. Because the estimated coefficient is 1

ˆ 0.87  , and 
thus relatively close to one, the convergence to the global mean takes some time. 
On the other hand, from a practical viewpoint the forecast seems rather dull, as it 
does not track the future evolution of the series. But again, we have to be aware of 
the situation in these data: our forecast shows the conditional mean, whereas the 
observed values are to a large extent driven by the unpredictable innovation terms. 
The point forecast quickly converging point forecast along with a large prediction 
interval clearly explains that one has to be prepared to major fluctuations in the 
beaver body temperature. This is the message that a time series forecast can deliver 
– expecting more is unrealistic. 

Measuring Forecasting Error 

Often one wishes to express the forecasting error for a time series model for 
understanding the magnitude of the deviations that we need to expect. Moreover, 
correctly implemented, forecasting errors can also serve for model choice. For truly 
evaluating the performance of a model, it is important to study the out-of-sample 
performance. This means that as above, the last part of the data need to be withheld 
from the fitting process. These values can then be forecasted and compared against 
the observed ones. Please note that we cannot rely on the insample resp. training 
error for such considerations. A good or even perfect training data fit can be 
achieved by overparametrizing a model, but this does not imply good forecasting 
performance, yet in fact overfitting is usually detrimental to the out-of-sample results. 

For a correct assessment of the accuracy, a suitable measure has to be found. The 
choice depends on whether absolute or relative errors are considered. For time 
series that did not require a transformation, one usually relies on the following 
absolute error measures: 

 
1

1
ˆ ( )

n h

t t t
t n

MAE x x mean e
h



 

      

 2

1

1
ˆ( ) ( )

n h

t t t
t n

RMSE x x mean e
h



 

      

In the above formulae, h  is the forecasting horizon, ˆtx  the forecasted value for time 
t  and te  the difference between observation and forecast. Both error measures tell 
us how "big the difference between the observed and forecasted value on average 
is". Fundamentally, the RMSE  is usually better suited, as all unbiased prediction 
methods aim for minimizing RMSE  rather than MAE . 
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We compute the forecasting errors for the Beaver test data: 

> mae <- mean(abs(btest-pred$pred)); mae 
[1] 0.07202408 
> rmse <- sqrt(mean((btest-pred$pred)^2)); rmse 
[1] 0.1044069 

They tell us that "on average", we miss the correct temperature by about 0.1 degrees 
Celsius. The RMSE  takes the larger value, because big deviations (as they exist in 
the last observations) count more. An alternative to the self-coded error computation 
lies in using the accuracy() function from library(forecast). It outputs a 
wealth of error measures and it is important to understand their meaning and 
suitability. The numerical results for MAE  and RMSE  are identical to above. Some 
of the other error measures are explained in later sections where they are 
appropriate for the respective examples, details about the further ones can be 
accessed in Hyndmans "Forecasting: principles and practice", section 3.4, 
accessible at: https://otexts.com/fpp2/accuracy.html.  

> round(accuracy(forecast(fit, h=14), btest),3) 
             ME  RMSE   MAE   MPE  MAPE  MASE   ACF1 Theils U 
Training  0.004 0.096 0.062 0.012 0.168 0.939 -0.068        NA 
Test set  0.049 0.104 0.072 0.132 0.195 1.092  0.337     1.333 

8.1.2 Forecasting AR(p) 

Forecasting from ( )AR p  processes works with the same concepts as explained 
above for (1)AR , i.e. we use the conditional expectation as a basis. The algebra for 
writing the forecasting formulae is somewhat more laborious, but not really more 
difficult. Thus, we do without displaying it here, and directly present the formula for 
the 1-step-forecast: 

 1,1: 1 2 1
ˆ ...n n n n p n pX x x x         

The question is, what do we do for longer forecasting horizons? There, the forecast 
is again based on the linear combination of the p  past instances. For the ones with 
an index between 1 and n , the observed value tx  is used. Else, if the index exceeds 
n , we just plug-in the forecasted values ,1:ˆt nx . Thus, the general formula is: 

 ( ) ( )
,1: 1 1,1: ,1: 1

ˆ ˆ ˆ... ...k k
n k n n k n p n k p n n p n pX X X x x             , 

where ,1:
ˆ
t n tX x  in all cases where t n , i.e. an observed value is available. All 

forecasted values ,1:
ˆ
t n tX x  for ;1:

ˆ
n k nX   for all k  will ultimately only depend on 

1,...,n p nx x  , i.e. we have a Markov property for ( )AR p  forecasts. We can even 
rewrite an ( )AR p  forecast as a linear combination of the p  last observed instances 
with some set of coefficients ( ) ( )

1 ,...,k k
p   that depend on the forecasting horizon k . 

It is generally difficult to present formulae for the ( )k
i  and the iterative plug-in 

approach from above is more fruitful. In R, we do not need to worry much about 
these details anyway, as we have access to the predict() function. 
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Practical Example 

We consider the logged lynx data for which we had identified an (11)AR  as a suitable 
model. Again, we use the first 100 observations for fitting the model and lay aside 
the last 14, which are in turn used for verifying the result. We display the result again 
using the plot.forecast() function where we also add the true evolution of the series. 
For not cluttering the plot we restrict to displaying the 95% prediction interval. 

> plot(forecast(fit.ar11, h=14, level=95), main="…") 
> lines(test, col="red", lwd=2) 
> abline(h=mean(train), lty=3) 

 

We observe that the forecast tracks the general behavior of the series pretty well, 
though the level of the series is underestimated in some years. This is, however, not 
due to an “error” of ours, it is just that the values were higher than our forecasting 
model resp. the conditional mean suggested. We also notice that the convergence 
of the forecast towards the global mean is much slower here than for the Beaver 
data. This is due to a much stronger signal-to-noise ration in the logged lynx data. 
However, for longer forecasting horizon k  (resp. with increasing h in the R function), 
the predicted values would also converge to the global mean. 

Another absolutely crucial point is that in practice, we won't be interested in the 
logged number of lynx shot, but our focus lies in the original scale. Hence, we have 
to back-transform the forecast. The inverse of log()  is exp() , but this basic back-
transformation requires prudence. We here reiterate our statement from chapter 
4.2.3: By simply using exp( ) , the back-transformed point forecast will not be the 
mean, but only the median of the forecast distribution. Fundamentally, the median 
may be a very reasonable summary statistic for a skewed distribution. Nevertheless, 
there are applications where unbiased predictions are a must, in which case a 
corrected back-transformation has to be applied. It is given by: 

Logged Lynx Data: 14-Step Prediction Based on AR(11)
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2ˆ

ˆexp( ) 1
2
h

tx
 

  
 

, with 2ˆh   estimated h -step forecast variance 

The easiest way of obtaining results from this formula is to rely on the forecast() 
function with arguments lambda=0 for indicating that the model was fitted on log-
transformed data and biasadj=TRUE for requiring an unbiased forecast i.e.: 

> forecast(fit.ar11, h=14, lambda=0, biasadj=TRUE)$mean 
Time Series: 
Start = 1921  
End = 1934  
Frequency = 1  
 [1]  252.4828  871.7136 1703.2313 2270.0263 2640.0801 
 [6] 2191.1800  717.0368  232.5009  215.4718  328.9176 
[11]  734.6918 1957.1592 3409.2451 4006.8297 

We continue with plot that shows the lynx data on the original scale (red) with both 
a mean (purple) and a median (blue) forecast. The mean will of course always be 
at a higher value than the median. Also, the mean is the average value of all future 
realizations that we might obtain, whereas for the median, 50% of the realizations 
will lie above and 50% below. 

> plot(forecast(fit.ar11, h=14, lambda=0, level=95), main="…") 
> lines(forecast(fit.ar11, h=14, lambda=0, biasadj=TRUE)$mean, 
        col="purple", lwd=2) 
> lines(exp(test), col="red", lwd=2) 

 

We notice that especially the interval forecast is getting huge and takes values that 
were never observed in the past. The point forecast produces peaks similar to the 
ones observed in the past. However, since it relies on the last 11 observed values 
only, it won't be able to reproduce the "superhigh" that appears every 40 years. 

Logged Lynx Data: 14-Step Prediction Based on AR(11)
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Usually after forecasting, we want to understand their quality and provide an error 
measure. As long as we do so on the log-scale, we could again use MAE  or RMSE  
that were presented in the Beaver example. However, there is normally more 
interest in an error measure for the original scale. Then, due to the fact that errors 
are relative, we have to use the mean absolut percentage error (MAPE ).  

1

ˆ( )100 n h
t t

t n t

x x
MAPE

h x



 


   

Please note that the MAPE  is not defined if a time series takes zero values. We 
compute the error measure for the (11)AR  as well as for an (2)AR  forecast, as we 
had considered the latter model in the early stages but rejected it due to the 
residuals not looking like White Noise. 

> f11 <- forecast(fit.ar11, h=14, lambda=0, biasadj=TRUE) 
> f02 <- forecast(fit.ar02, h=14, lambda=0, biasadj=TRUE) 
> mean(100*abs((exp(test)-f11$mean)/exp(test))) 
[1] 39.1808 
> mean(100*abs((exp(test)-f02$mean)/exp(test))) 
[1] 54.98648 

The output means that with the (11)AR , we miss the true number of shot lynx on 
average by around 39%. The figure for the (2)AR  is clearly worse at 55%, indicating 
that this model performs more poorly. With respect to R, it is also possible to use 
the accuracy() function for computing MAPE . 

> round(accuracy(f11, exp(test)),2) 
                ME   RMSE    MAE    MPE  MAPE MASE  ACF1 
Training set 32.98 693.28 444.06 -12.66 39.70 0.52 -0.22 
Test set     73.32 540.51 472.98   3.67 39.18 0.55  0.66 

As mentioned previously, it is crucial to pick a suitable error measure and to be 
aware that most of the numbers reported by accuracy() are not sensible for use 
in a particular time series example. 

[SCRIPT HAS ONLY BEEN UPDATED UP TO HERE, MORE UPDATES ON THE 
REMAINING FORECASTING TOPICS WILL FOLLOW] 

8.1.3 Forecasting MA(1) 

We here consider a pure, invertible (1)MA  process with mean zero: 

 1 1t t tX E E    

tE  is an innovation with expectation zero and constant variance. As above, the 
forecast ,1:

ˆ
n k nX   will again be based on the conditional expectation 1[ | ,..., ]n k nE X X X

. We get to a solution if we plug-in the model equation. First, we assume that 2k 
, i.e. predict at least 2 time steps ahead. 
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,1: 1

1 1 1

1 1 1 1

ˆ [ | ,..., ]

[ | ,..., ]

[ | ,..., ] [ | ,..., ]

0

n k n n k n

n k n k n

n k n n k n

X E X X X

E E E X X

E E X X E E X X




 

  

  


 
 


 

The best (1)MA  forecast for horizons 2 and up is thus zero. Remember that we 
require tE  being an innovation, and thus independent from previous instances 

,sX s t  of the time series process. Next, we address the 1-step forecast. This is 
more problematic, because the above derivation leads to: 

 
1,1:

1 1

ˆ ...

[ | ,..., ]

0 ( )

n n

n n

X

E E X X

generally


 




 

The 1-step forecast is generally different from zero. The term 1[ | ,..., ]n nE E X X  is 
difficult to determine. Using some mathematical trickery, we can at least propose an 
approximate value. This trick is to move the point of reference into the infinite past, 
i.e. conditioning on all previous instances of the (1)MA  process. We denote 

 : [ | ]n
n ne E E X  . 

By successive substitution, we then write the (1)MA  as an ( )AR  . This yields 

 1
0

( ) j
n n j

j

E X





  . 

If we condition the expectation of nE  on the infinite past of the series tX , we can 
plug-in the realizations tx  and obtain: 

 1
0

[ | ] ( )n j
n n n j

j

E E X e x


 


   . 

This is of course somewhat problematic for practical implementation, because we 
only have realizations for 1,..., nx x . However, because for invertible (1)MA  processes, 

1 1  , the impact of early observations dies out exponentially quickly. Thus, we let 
0tx   for 1t  , and thus also have that 0te   for 1t  . Also, we plug-in the estimated 

model parameter 1̂ , and thus, the 1-step forecast for an (1)MA  is: 

 
1

1,1: 1 1
0

ˆ ˆˆ ( )
n

j
n n n j

j

X x 


 


   

This is a sum of all observed values, with exponentially decaying weights. 
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8.1.4 Forecasting MA(q) 

When forecasting from ( )MA q  processes, we encounter the same difficulties as 
above. The prediction for horizons exceeding q  are all zero, but anything below 
contains terms for which the considerations in section 8.1.3 are again necessary. 
We do without displaying this, and proceed to giving the formulae for ( , )ARMA p q
forecasting, from which the ones for ( )MA q  can be learned. 

8.1.5 Forecasting ARMA(p,q) 

We are considering stationary and invertible ( , )ARMA p q  processes. The model 
equation for 1nX   then is: 

1 1 1 1 1 1n n p n p n n q n qX X X E E E              

As this model equation contains past innovations, we face the same problems as in 
section 8.1.3 when trying to derive the forecast for horizons q . These can be 
mitigated, if we again condition on the infinite past of the process. 

 1 1 1
1 1

1
1 1

1,1: 1

1

ˆ [ | ]

] ] ]

[ ]

[ | [ | [ |

|

p q
n n n

i n i n j n j

n
n n n

q

j

i j

p
n

i n i
i

n j
i

X E X X

E X X E E X E E X

x XE E

 

 

       
 

  

  




 


 









 

 

 

If we are aiming for k -step forecasting, we can use a recursive prediction scheme: 

 ,1:
1 1

ˆ ] ][ | [ |
p q

n n
i n kn k n i j n k j

i j

E X X E EX X      





   , 

where for the AR - and MA -part the conditional expectations are: 

 
,1:

,
[ | ] ˆ ,

tn
t

t n

x if t n
E X X

X if t n

 


 

 
, 0

[ | ]
0,
tn

t

e if t n
E E X

if t n

 
  

 

The terms te  are then determined as outlined above in section 8.1.3, and for the 
model parameters, we are plugging-in the estimates. This allows us to generate any 
forecast from an ( , )ARMA p q  model that we wish. The procedure is also known as 
Box-Jenkins procedure, after the two researchers who first introduced it. Next, we 
illustrate this with a practical example, though in R, things are quite unspectacular. 
It is again the predict() procedure that is applied to a fit from arima(), the Box-
Jenkins scheme that is employed runs in the background. 
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Practical Example 

We here consider the Douglas Fir data which show the width of a tree’s year rings 
over a period from 1107 to 1964. We choose to model the data without taking 
differences first. The auto.arima() solution with the lowest AIC value turned out 
to be an (4,1)ARMA  which will be used for generating the forecasts. For illustrative 
purpose, we choose to put the last 64 observations of the series aside so that we 
can verify our predictions. Then, the model is fitted and the Box-Jenkins forecasts 
are obtained. The result, including a 95% prognosis interval, is shown below. The R 
code used for producing the results, follows thereafter. 

 

> train <- window(douglasfir, start=1107, end=1900) 
> fit <- arima(train, order=c(4,0,1)) 
> fc  <- predict(fit, n.ahead=64) 
> plot(window(douglasfir, 1800, 1964), lty=3, ylab="") 
> lines(train, lwd=1) 
> lines(fc$pred, lwd=2, col="red") 
> lines(fc$pred+fc$se*1.96, col="red") 
> lines(fc$pred-fc$se*1.96, col="red") 
> title("Douglas Fir Data: 64-Step Prediction Based on …") 

We observe that the forecast approaches the global mean of the series very quickly, 
in fact in an exponential decay. However, because there is an AR  part in the model, 
all forecasts will be different from the global mean (but only slightly so for larger 
horizons). Then, since there is also a MA  term in the model, all time series 
observations down to the first one from 1107 have some influence on the forecast. 
Again, the ARMA  model combines the properties from pure AR  and MA  processes. 
Regarding the quality of the forecast, we notice that it does not really provide much 
value for the true evolution of the series. Furthermore, the prediction intervals seem 
rather small. As it turns out, 12 out of 64 predictions (18.75%) violate the 95% 
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prediction interval. Is it bad luck or a problem with the model? We will reconsider 
this in the discussion about ARIMA  forecasting. 

8.2 Series with Trend and Season 

It is also possible and very important for practical purposes to produce forecasts for 
time series which have a trend, a seasonal effect or both. In this chapter, we present 
two different approaches, namely the one based on ARIMA  and SARIMA  models, 
and the other based on decomposing the series into trend, seasonal effect and 
stationary remainder. 

8.2.1 Forecasting ARIMA and SARIMA 

We here assume that we are given a series tX  which follows an ( ,1, )ARIMA p q . 
After taking differences at lag 1, we remain with 1t t tY X X    which is stationary and 
follows an ( , )ARMA p q . Hence for tY , we know how to generate forecasts according 
to the recipe given in the previous section, and obtain 1;1: ;1:

ˆ ˆ,...,n n n k nY Y  . We are now 
seeking the k -step forecast for the original series tX  that has a trend. These are 
based on the notion of 1;1: 1;1:

ˆ ˆ
n n n n nX Y X    and for obtaining arbitrary forecasts 

;1:
ˆ
n k nX  , we have to integrate and hence: 

1;1: 1;1:

2;1: 2;1: 1;1: 1;1: 2;1:

;1: 1;1: ;1:

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ...

n n n n n

n n n n n n n n n n n

n k n n n n n k n

X Y X

X Y X X Y Y

X X Y Y

 

    

  

 

    

   


 

As we can see, the k -step forecast for the original data is the cumulative sum of all 
forecasted terms of the differenced data. The formulae for the prediction intervals in 
an ( ,1, )ARIMA p q  forecast are difficult to derive and are beyond the scope of this 
script. All we say at this moment is that the width of the prediction interval does not 
converge as for an ( , )ARMA p q  but is growing indefinitely with increasing forecasting 
horizon k . We illustrate this with a forecast for the Douglas Fir data using the non-
stationary (1,1,1)ARIMA  model (red) and compare it to what we had obtained when 
a stationary (4,1)ARMA  was used (blue). 



ATSA  8 Forecasting 

 Page 172 

 

In this particular example, the (4,1)ARMA  forecast is more accurate and even the 
empirical coverage of its prediction interval is closer to the 95% that are are required 
by construction. However, this is an observation on one single dataset, it would be 
plain wrong to conclude that ARIMA forecasts are generally less accurate than the 
ones which are obtained from stationary models. 

However, it is crucial to understand what ARIMA forecasts can do and what they 
cannot do. Despite the fact that ARIMA models are for non-stationary time series, 
the forecast will converge to a constant if 1d  . So in case of a series with a 
deterministic, linear trend, a default ARIMA forecast will miserably fail, see the 
example below. To be fair however, we need to point out that default ARIMA 
processes feature a unit root and are non-stationary, but are not compatible with a 
deterministic linear trend.  

To underline the issue, we present an artificial example, where an (1,1)ARMA  
process was superimposed with a linear trend. The resulting series is non-
stationary, and as differencing can make it stationary (though with non-zero mean), 
a (1,1,1)ARIMA  was used for modelling and generating forecasts. As the output 
shows, the forecast generated with the R function arima() fails to pick up the 
obvious trend and hence is of poor quality. The alternatives consist in enhancing the 
ARIMA models or using the method presented in section 8.2.2. 

> dat <- arima.sim(list(ar=0.5,ma=0.5), n=200) + (1:200)*0.03 
> fit <- arima(dat, order=c(1,1,1)) 
> plot(dat, xlim=c(0,250), ylim=c(-10,15), main="…") 
> pred <- predict(fit, n.ahead=50) 
> lines(pred$pred, col="red") 
> lines(pred$pred + 1.96*pred$se, col="red", lty=3) 
> lines(pred$pred - 1.96*pred$se, col="red", lty=3) 
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As mentioned above, a default (1,1,1)ARIMA  model is misspecified in a situation with 
linear trend, as it assumes an (1,1)ARMA  with zero mean after differencing, which 
is not the case. To act correctly, we need to add a so-called drift term (i.e. a non-
trivial global mean for the (1,1)ARMA ) to the model which leads to a forecast that 
(due to reintegration of the constant) has a linear increase and much better reflects 
reality. In R function arima(), adding such a term is possible, but not that obvious 
as the xreg argument needs being used, see the code below. 

> fitd  <- arima(dat, order=c(1,1,1), xreg=1:200) 
> predd <- predict(fitd, n.ahead=50, newxreg=201:250) 
> lines(predd$pred, col="blue") 
> lines(predd$pred + 1.96*pred$se, col="blue", lty=3) 
> lines(predd$pred - 1.96*pred$se, col="blue", lty=3) 

 

Two things need to be emphasized. First, function auto.arima() does consider 
adding drift terms automatically if the arguments are set accordingly. In the example 
presented here, the method identifies an (3,1, 2)ARIMA  with drift term as the best 
fitting model and produces a forecast that is linearly increasing. Nevertheless, in 
practice, where we do not have intimate knowledge about the data generating 
process, careful modelling with ARIMA (and potentially adding drift terms) is 
important for producing successful forecasts. In many cases, it may seem easier to 
decompose a series into trend, (season) and remainder as it is easier to take care 
of each component on its own.  

We continue with presenting an example of a SARIMA forecast. We do without 
giving much detail here, but only remark that these are also based on producing 
forecasts for the differenced, stationary series and subsequent integration. Again, 
careful modelling is generally required to get the trend extrapolation right. As we see 
in our example for the Air Pax data, we also undershoot the trend development 
somewhat. Again, adding a drift term may be successful here. 

ARIMA(1,1,1) Forecast for ARMA(1,1) with Linear Trend
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> fit    <- arima(shlap, order=c(0,1,1), seasonal=c(0,1,1)) 
> pred   <- predict(fit, n.ahead=24) 
> plot(…) 

 

8.2.2 Forecasting Decomposed Series 

Another approach for forecasting series with deterministic trend and/or seasonality 
is based on the descriptive decomposition. The paradigm is as follows: 

 Trend 

We assume a smooth trend for which we recommend linear extrapolation.  

 Seasonal Effect 

We extrapolate the seasonal effect according to the last observed period. 

 Stationary Remainder 

We fit an ( , )ARMA p q  and determine the forecast as discussed above. 

We illustrate the procedure on the Maine unemployment data. We will work with the 
log-transformed data, for which an STL decomposition under assuming a constant 
seasonal effect was performed. 

> fit <- stl(log(tsd), s.window="periodic") 
> plot(fit, main="…") 
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We first focus on the central issue which is the trend extrapolation. We recommend 
the following procedure: 

Fit a least squares regression line into the past trend values. The window on 
which this fit happens is chosen such that is has the same length as the 
forecasting horizon. In our particular example, where we want to forecast the 
upcoming two years of the series, these are the last 24 data points. Or in 
other words: for the trend forecast, we use the last observation as an anchor 
point and predict with the average slope from the last two years. 

Please note that the so-produced trend forecast is a recommendation, but not 
necessarily the best solution. If some expert knowledge from the application field 
suggests another trend extrapolation, then it may well be used. It is however 
important, to clearly declare how the trend forecast was determined. The following 
code does the job, see next page for the result: 

> ## STL decomposition 
> fit <- stl(log(tsd), s.window="periodic") 
>  
> ## Trend Forecast by Linear Extrapolation 
> plot(fit$time.series[,2], xlim=c(1996, 2008+9/12)) 
> rect(2004+8/12, 1 , 2006+7/12, 2, col="grey93", border=NA) 
> rect(2006+7/12, 1, 2008+6/12, 2, col="grey83", border=NA) 
> title("Trend Forecast by Linear Extrapolation") 
> xx <- time(fit$time.series[,2])[105:128] 
> yy <- fit$time.series[105:128,2] 
> fit.regr <- lm(yy~xx) 
> t.fore   <- 1.494 + (0:23)/12 * coef(fit.regr)[2]) 
> lines(xx, fitted(fit.regr), col="blue") 
> lines(xx[1]+(23:46)/12, t.fore, col="red") 
> lines(fit$time.series[,2]) 
> box() 
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The blue line in the light grey window indicates the average trend over the last two 
years of observations. For the trend extrapolation, we use the last observed trend 
value as the anchor, and then continue using the determined slope. Please note 
that generally (though not in the stl() context), function loess() in R allows for 
extrapolation if argument surface= "direct ". However, according to the 
author’s experience, such trend extrapolations are often extreme and perform worse 
than the linear extrapolation that is suggested here. As we have now solved the 
issue with the trend, we remain with forecasting the seasonal effect and the 
remainder term. For the former, things are trivial, as we assume that it stays as it 
was last. The R code for producing the forecast of the seasonal component is: 

## Seasonal Forecast Using Last Values 
season <- fit$time.series[,1] 
l2y    <- window(season,start=c(2004,9),end=c(2006,8)) 
s.fore <- ts(l2y, start=c(2006,9), end=c(2008,8), freq=12) 

Hence, we only need to take care of the stationary remainder. Generally, this is a 
stationary series that will be described with an ( , )ARMA p q , for which the forecasting 
method has already been presented in chapter 8.1. Hence, we here focus on the 
particular case at hand, where a simple solution is to recognize an exponential 
decay in the ACF and a cut-off at lag 4 in the PACF, so that an (4)AR  model (here 
without using a global mean!) will be fitted. Residual analysis (not shown here) 
indicates that the White Noise assumption for the estimated innovation terms is 
justified in this case. Using the predict() command, we then produce a 24-step 
forecast from the (4)AR  for the stationary remainder. 

> rmndr     <- fit$time.series[,3] 
> fit.rmndr <- arima(rmndr, order=c(4,0,0), include.mean=F) 
> r.fore    <- predict(fit.rmndr, n.ahead=24)$pred 
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The final task is then to couple the forecasts for all three parts (trend, seasonal 
component and remainder) to produce a 2-year-forecast for the original series with 
the logged unemployment figures from the state of Maine. This is based on a simple 
addition of the three components. 

> ## Adding the 3 Components 
> fore <- t.fore + s.fore + r.fore 
> ## Displaying the Output 
> plot(log(tsd), xlim=c(1996, 2008.75), ylab="log(%)") 
> rect(2006+8/12, 0, 2008+9/12, 2, col="grey90", border=NA) 
> lines(fore, col="red") 
> box() 
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This procedure is a practical way for forecasting decomposed series. It is especially 
attractive if one wants to have a second thought on the predicted trend, and maybe 
correct it manually, based on deeper insight e.g. into the corporate plans about 
increasing or decreasing the market share, upcoming competitors, et cetera. On the 
downside, the procedure requires somewhat more effort for coming up with the 
forecasts, when compared to the SARIMA model and exponential smoothing. The 
choice of the right method however, depends on the use case. Another 
disadvantage is the lack of prediction intervals here – most of the uncertainty in the 
prediction comes from the trend extrapolation, for which it is not possible to give a 
reasonable interval. While the other methods for forecasting non-stationary series 
technically do provide prediction intervals, they are according to the opinion of the 
author, often too small as they do not reflect the uncertainties that come from trend 
extrapolation. Hence it may be more genuine not to provide an interval at all, rather 
than a flawed one. 

8.3 Exponential Smoothing 

8.3.1 Simple Exponential Smoothing 

The objective in this section is to predict some future values n kX   given an observed 
series 1{ ,..., }nX X , and thus no different than before. We first assume that the data 
do not exhibit any deterministic trend or seasonality, or that these have been 
identified and removed. The (conditional) expected value of the process can change 
from one time step to the next, but we do not have any information about the 
direction of this change. A typical application is forecasting sales of a well-
established product in a stable market. The model is: 

 t t tX E  , 
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where t  is the non-stationary mean of the process at time t , and tE  are 
independent random innovations with expectation zero and constant variance 2

E . 
We will here use the same notation as R does, and let ta , called level of the series, 
be our estimate of t . By assuming that there is no deterministic trend, an intuitive 
estimate for the level at time t  is to take a weighted average of the current time 
series observation and the previous level: 

 1(1 )t t ta x a     , with 0 1  . 

Apparently, the value of   determines the amount of smoothing: if it is near 1, there 
is little smoothing and the level ta  closely tracks the series tx . This would be 
appropriate if the changes in the mean of the series are large compared to the 
innovation variance 2

E . At the other extreme, an  -value near 0 gives highly 
smoothed estimates of the current mean which take little account of the most recent 
observation. This would be the way to go for series with a large amount of noise 
compared to the signal size. A typical default value is 0.2  , chosen in the light 
that for most series, the change in the mean between t  and 1t   is smaller than 2

E
. Alternatively, it is (with R) also possible to estimate  , see below. 

Because we assume absence of deterministic trend and seasonality, the best 
forecast at time n  for the future level of the series, no matter what horizon we are 
aiming for, is given by the level estimate at time n , i.e. 

 ,1:
ˆ
n k n nX a  , for all 1, 2,...k  . 

We can rewrite the weighted average equation in two further ways, which yields 
insight into how exponential smoothing works. Firstly, we can write the level at time 
t  as the sum of 1ta   and the 1-step forecasting error and obtain the update formula: 

 1 1( )t t t ta x a a      

Now, if we repeatedly apply back substitution, we obtain: 

 2
1 2(1 ) (1 ) ...t t t ta x x x            

When written in this form, we see that the level ta  is a linear combination of the 
current and all past observations with more weight given to recent observations. The 
restriction 0 1   ensures that the weights (1 )i   become smaller as i  
increases. In fact, they are exponentially decaying and form a geometric series. 
When the sum over these terms is taken to infinity, the result is 1. In practice, the 
infinite sum is not feasible, but can be avoided by specifying 1 1a x . 

For any given smoothing parameter  , the update formula plus the choice of 1 1a x  
as a starting value can be used to determine the level ta  for all times 2,3,...t  . The 
1-step prediction errors te  are given by: 

 ,1:( 1) 1ˆt t t t t te x x x a     . 
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By default, R obtains a value for the smoothing parameter   by minimizing the sum 
of squared 1-step prediction errors, called 1SS PE : 

 2

2

1
n

t
t

SS PE e


 . 

There is some mathematical theory that examines the quality of the 1SS PE -
minimizing  . Not surprisingly, this depends very much on the true, underlying 
process. However in practice, this value is reasonable and allows for good 
predictions. 

Practical Example 

We here consider a time series that shows the number of complaint letters that were 
submitted to a motoring organization over the four years 1996-1999. At the 
beginning of year 2000, the organization wishes to estimate the current level of 
complaints and investigate whether there was any trend in the past. We import the 
data and do a time series plot: 

> www <- "http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/" 
> dat <- read.table(paste(www,"motororg.dat",sep="", head=T) 
> cmpl <- ts(dat$complaints, start=c(1996,1), freq=12) 
> plot(cmpl, ylab="", main="Complaints ...") 

 

The series is rather short, and there is no clear evidence for a deterministic trend 
and/or seasonality. Thus, it seems sensible to use exponential smoothing here. The 
algorithm that was described above is implemented in R’s HoltWinters() 
procedure. Please note that HoltWinters() can do more than plain exponential 
smoothing, and thus we have to set arguments beta=FALSE and gamma=FALSE. 
If we do not specify a value for the smoothing parameter   with argument alpha, 
it will be estimated using the 1SS PE  criterion. 
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> fit <- HoltWinters(cmpl, beta=FALSE, gamma=FALSE); fit 
Call: HoltWinters(x = cmpl, beta = FALSE, gamma = FALSE)  
Smoothing parameters: 
 alpha:  0.1429622  
 beta :  FALSE  
 gamma:  FALSE  
Coefficients: 
      [,1] 
a 17.70343 
> plot(fit) 

 

The output shows that the level in December 1999, this is 48a , is estimated as 17.70. 
The optimal value for   according to the 1SS PE  criterion is 0.143, and the sum of 
squared prediction errors was 2502. Any other value for   will yield a worse result, 
thus we proceed and display the result visually. 

8.3.2 The Holt-Winters Method 

The simple exponential smoothing approach from above can be generalized for 
series which exhibit deterministic trend and/or seasonality. As we have seen in 
many examples, such series are the norm rather than the exception and thus, such 
a method comes in handy. It is based on these formulae: 

1 1

1 1

( ) (1 )( )

( ) (1 )

( ) (1 )

t t t p t t

t t t t

t t t t p

a x s a b

b a a b

s x a s

 
 
 

  

 



    
   
   

 

In the above equations, ta  is again the level at time t , tb  is called the slope and ts  
is the seasonal effect. There are three smoothing parameters , ,    which are 
aimed at level, slope and season. The explanation of the equations is as follows: 
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 The first updating equation for the level takes a weighted average of the most 
recent observation with the existing estimate of the previous’ period seasonal 
effect term subtracted, and the 1-step level forecast at 1t  , which is given 
by level plus slope. 

 The second updating equation takes a weighted average of the difference 
between the current and the previous level with the estimated slope at time 

1t  . Note that this can only be computed if ta  is available. 

 Finally, we obtain another estimate for the respective seasonal term by taking 
a weighted average of the difference between observation and level with the 
previous estimate of the seasonal term for the same unit, which was made at 
time t p .  

If nothing else is known, the typical choice for the smoothing parameters is 
0.2     . Moreover, starting values for the updating equations are required. 

Mostly, one chooses 1 1a x , the slope 1 0b   and the seasonal effects 1,..., ps s  are 
either also set to zero or to the mean over the observations of a particular season. 
When applying the R function HoltWinters(), the starting values are obtained 
from the decompose() procedure, and it is possible to estimate the smoothing 
parameters through 1SS PE  minimization. The most interesting aspect are the 
predictions, though: the k -step forecasting equation for n kX   at time n  is: 

 ,1:
ˆ
n k n n n n k pX a kb s     , 

i.e. the current level with linear trend extrapolation plus the appropriate seasonal 
effect term. The following practical example nicely illustrates the method. 

Practical Example 

We here discuss the series of monthly sales (in thousands of litres) of Australian 
white wine from January 1980 to July 1995. This series features a deterministic 
trend, the most striking feature is the sharp increase in the mid-80ies, followed by a 
reduction to a distinctly lower level again. The magnitude of both the seasonal effect 
and the errors seem to be increasing with the level of the series, and are thus 
multiplicative rather than additive. We will cure this by a log-transformation of the 
series, even though there exists a multiplicative formulation of the Holt-Winters 
algorithm, too.  

> www <- "http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/" 
> dat <- read.table(paste(www,"wine.dat",sep="", header=T) 
> aww  <- ts(dat$sweetw, start=c(1980,1), freq=12) 
> plot(aww, ylab="", main="Sales of Australian White Wine") 
> plot(log(aww), ylab="", main="Logged Sales ...") 
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The transformation seems successful, thus we proceed to the Holt-Winters 
modeling. When we apply parameter estimation by 1SS PE , this is straightforward. 
The fit contains the current estimates for level, trend and seasonality. Note that 
these are only valid for time n , and not for the entire series. Anyhow, it is much 
better to visualize the sequence of ,t ta b  and t  graphically. Moreover, plotting the 
fitted values along with the time series is informative, too. 

> fit 
Call: HoltWinters(x = log(aww))  
Smoothing parameters: 
 alpha:  0.4148028  
 beta :  0  
 gamma:  0.4741967  
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Coefficients: 
a    5.62591329  s4   0.20894897  s9  -0.17107682 
b    0.01148402  s5   0.45515787  s10 -0.29304652 
s1  -0.01230437  s6  -0.37315236  s11 -0.26986816 
s2   0.01344762  s7  -0.09709593  s12 -0.01984965 
s3   0.06000025  s8  -0.25718994 

The coefficient values (at time n ) are also the ones which are used for forecasting 
from that series with the formula given above. We produce a prediction up until the 
end of 1998, which is a 29-step forecast. The R commands are: 

> plot(fit, xlim=c(1980, 1998)) 
> lines(predict(fit, n.ahead=29), col="blue", lty=3) 

 
> plot(fit$fitted, main="Holt-Winters-Fit") 
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The last plot on the previous page shows how level, trend and seasonality evolved 
over time. However, since we are usually more interested in the prediction on the 
original scale, i.e. in liters rather than log-liters of wine, we just re-exponentiate the 
values. Please note that the result is an estimate of the median rather than the mean 
of the series. There are methods for correction, but the difference is usually only 
small. 

> plot(aww, xlim=c(1980, 1998)) 
> lines(exp(fit$fitted[,1]), col="red") 
> lines(exp(predict(fit, n.ahead=29)), col="blue", lty=3) 

 

Also, we note that the (insample) 1-step prediction error is equal to 50.04, which is 
quite a reduction when compared to the series’ standard deviation which is 121.4. 
Thus, the Holt-Winters fit has substantial explanatory power. Of course, it would now 
be interesting to test the accuracy of the predictions. We recommend that you, as 
an exercise, put aside the last 24 observations of the Australian white wine data, 
and run a forecasting evaluation where all the methods (SARIMA, decomposition 
approaches, Holt-Winters) compete against each other. 
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9 Multivariate Time Series Analysis 
While the header of this section says multivariate time series analysis, we will here 
restrict to two series series 1 1,( )tX X  and 2 2,( )tX X , and thus bivariate time series 
analysis, because an extension to more than two series is essentially analogous. 
Please note that a prerequisite for all the theory in this section is that the series 1X  
and 2X  are stationary. 

Generally speaking, the goal of this section is to describe and understand the 
(inter)dependency between two series. We introduce the basic concepts of cross 
correlation and transfer function models, warn of arising difficulties in interpretation 
and show how these can be mitigated.  

9.1 Practical Example 

We will illustrate the theory on multivariate time series analysis with a practical 
example. The data were obtained in the context of the diploma thesis of Evelyn 
Zenklusen Mutter, a former WBL student who works for the Swiss Institute for Snow 
and Avalanche Research SLF. The topic is how the ground temperature in 
permafrost terrain depends on the ambient air temperature. The following section 
gives a few more details. 

Ambient air temperatures influence ground temperatures with a certain temporal 
delay. Borehole temperatures measured at 0.5m depth in alpine permafrost terrain, 
as well as air temperatures measured at or nearby the boreholes will be used to 
model this dependency. The reaction of the ground on the air temperature is 
influenced by various factors such as ground surface cover, snow depth, water or 
ground ice content. To avoid complications induced by the insulating properties of 
the snow cover and by phase changes in the ground, only the snow-free summer 
period when the ground at 0.5m is thawed will be considered. 

We here consider only one single borehole, it is located near the famous Hörnli hut 
at the base of Matterhorn near Zermatt/CH on 3295m above sea level. The air 
temperature was recorded on the nearby Platthorn at 3345m of elevation and 9.2km 
distance from the borehole. Data are available from beginning of July 2006 to the 
end of September 2006. After the middle of the observation period, there is a period 
of 23 days during which the ground was covered by snow, highlighted in grey color 
in the time series plots on the next page.  

Because the snow insulates the ground, we do not expect the soil to follow the air 
temperature during that period. Hence, we set all values during that period equal to 
NA. The time series plots, and especially the indexed plot where both series are 
shown, clearly indicate that the soil reacts to the air temperature with a delay of a 
few days. We now aim for analyzing this relationship on a more quantitative basis, 
for which the methods of multivariate time series analysis will be employed. 
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As we had stated above, multivariate time series analysis requires stationarity. Is 
this met with our series? The time series plot does not give a very clear answer. 
Science tells us that temperature has a seasonal pattern. Moreover, the correlogram 
of the two series is enlightening. 
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The ACF exhibits a slow decay, especially for the soil temperature. Thus, we decide 
to perform lag 1 differencing before analyzing the series. This has another 
advantage: we are then exploring how changes in the air temperature are 
associated with changes in the soil temperature and if so, what the time delay is. 
These results are easier to interpret than a direct analysis of air and soil 
temperatures. Next, we display the differenced series with their ACF and PACF. The 
observations during the snow cover period are now omitted. 

 

 

The differenced air temperature series seems stationary, but is clearly not iid. There 
seems to be some strong negative correlation at lag 4. This may indicate the 
properties of the meteorological weather patterns at that time of year in that part of 
Switzerland. We now perform the same analysis for the changes in the soil 
temperature. 
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In the course of our discussion of multivariate time series analysis, we will require 
some ( , )ARMA p q  models fitted to the changes in air and soil temperature. For the 
former series, model choice is not simple, as in both ACF and PACF, the coefficient 
at lag 4 sticks out. A grid search shows that an (5)AR  model yields the best AIC 
value, and also, the residuals from this model do look as desired, i.e. it seems 
plausible that they are White Noise. 

For the changes in the soil temperature, model identification is easier. ACF and 
PACF suggest either a (1)MA , an (2,1)ARMA  or an (2)AR . From these three 
models, the (1)MA  shows both the lowest AIC value as well as the “best looking” 
residuals. Furthermore, it is the parsimonious choice, and hence we got with it. 
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9.2 Cross Correlation 

To begin with, we consider the (theoretical) cross covariance, the measure that 
describes the amount of linear dependence between the two time series processes. 
Firstly, we recall the definition of the within-series autocovariances, denoted by 

11( )k  and 22( )k : 

 11 1, 1,( ) ( , ) t k tk Cov X X  , 22 2, 2,( ) ( , ) t k tk Cov X X   

The cross covariances between the two processes 1X  and 2X  are given by: 

12 1, 2,( ) ( , )t k tk Cov X X  , 21 2, 1,( ) ( , )t k tk Cov X X   

Note that owing to the stationarity of the two series, the cross covariances 12( )k  
and 21( )k  both do not depend on the time t . Moreover, there is some obvious 
symmetry in the cross covariance: 

12 1, 2, 1, 2, 21( ) ( , ) ( , ) ( )t k t t t kk Cov X X Cov X X k       

Thus, for practical purposes, it suffices to consider 12( )k  for positive and negative 
values of k . Note that we will preferably work with correlations rather than 
covariances, because they are scale-free and thus easier to interpret. We can obtain 
the cross correlations by standardizing the cross covariances: 

12
12

11 22

( )
( )

(0) (0)

k
k


 

 , 21
21

11 22

( )
( )

(0) (0)

k
k


 

 . 

Not surprisingly, we also have symmetry here, i.e. 12 21( ) ( )k k   . Additionally, the 
cross correlations are limited to the interval between -1 and +1, i.e. 12| ( ) | 1k  . As 
for the interpretation, 12( )k  measures the linear association between two values of 

1X  and 2,X  if the value of the first time series is k  steps ahead. Concerning 
estimation of cross covariances and cross correlations, we apply the usual sample 
estimators: 

 12 1, 1 2, 2

1
ˆ ( ) ( )( )t k t

t

k x x x x
n

     and 21 2, 2 1, 1

1
ˆ ( ) ( )( )t k t

t

k x x x x
n

    ,  

where the summation index t  for 0k   goes from 1 to n k  and for 0k   goes from 
1 k  to n . With 1x  and 2x  we denote the mean values of 1,tx  and 2,tx , respectively. 
We define the estimation of the cross-correlations as 

 12
12

11 22

ˆ ( )
ˆ ( )

ˆ ˆ(0) (0)

k
k


 

 , 21
21

11 22

ˆ ( )
ˆ ( )

ˆ ˆ(0) (0)

k
k


 

 . 

The plot of 12ˆ ( )k  against k  is called the cross-correlogram. Note that this must be 
viewed for both positive and negative k . In R, we the job is done by the acf() function, 
applied to a multiple time series object. 
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> both <- ts.union(diff(air.na), diff(soil.na)) 
> acf(both, na.action=na.pass, ylim=c(-1,1)) 

 

The top left panel shows the ACF of the differenced air temperature, the bottom right 
one holds the pure autocorrelations of the differenced soil temperature. The two off-
diagonal plots contains estimates of the cross correlations: The top right panel has 

12
ˆ ( )k  for positive values of k , and thus shows how changes in the air temperature 

depend on changes in the soil temperature.  

Note that we do not expect any significant correlation coefficients here, because the 
ground temperature has hardly any influence on the future air temperature at all. 
Conversely, the bottom left panel shows 12

ˆ ( )k  for negative values of k , and thus 
how the changes in the soil temperature depend on changes in the air temperature. 
Here, we expect to see significant correlation. 

9.2.1 Interpreting the Cross Correlogram 

Interpreting the cross correlogram is tricky, because the within-series dependency 
results in a mixing of the correlations. It is very important to note that the confidence 
bounds shown in the above plots are usually wrong and can thus be strongly 
misleading. If not the additional steps to be discussed below are taken, interpreting 
the raw cross correlograms will lead to false conclusions.  

The reason for these problems is that the variances and covariances of the 12ˆ ( )k  
are very complicated functions of 11 22( ), ( )j j   and 12( ),j j  . For illustrative 
purposes, we will treat some special cases explicitly. 
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Case 1: No correlation between the two series for large lags 

In the case where the cross correlation 12( ) 0j   for | |j m , we have for | |k m :  

 12 11 22 12 12

1
ˆ( ( )) { ( ) ( ) ( ) ( )}

j

Var k j j j k j k
n

    




    . 

Thus, the variance of the estimated cross correlation coefficients goes to zero for 
$n \rightarrow \infty$, but for a deeper understanding with finite sample size, we 
must know all true auto and cross-correlations, which is of course impossible in 
practice. 

Case 2: No correlation between the series for all lags 

If the two processes 1X  and 2X  are independent, i.e. 12( ) 0j   for all j , then the 
variance of the cross correlation estimator simplifies to: 

 12 11 22

1
ˆ( ( )) ( ) ( )

j

Var k j j
n

  




  . 

If, for example, 1X  and 2X  are two independent (1)AR  processes with parameters 

1  and 2 , then | | | |
11 1 22 2( ) , ( )j jj j      and 12( ) 0j  . For the variance of 12ˆ ( )k  

we have, because the autocorrelations form a geometric series: 

| | 1 2
12 1 2

1 2

1 1 1
ˆ( ( )) ( ) ·

1
j

j

Var k
n n

   
 






 

 . 

For 1 1   and 2 1   this expression goes to  , i.e. the estimator 12ˆ ( )k  can, for 
a finite time series, differ greatly from the true value 0 . We would like to illustrate 
this with two simulated (1)AR  processes with 1 2 0.9   . According to theory all 
cross-correlations are 0. However, as we can see in the figure on the next page, the 
estimated cross correlations differ greatly from 0, even though the length of the 
estimated series is 200. In fact, 12ˆ2 ( ( )) 0.44Var k   , i.e. the 95% confidence 
interval is $\pm 0.44$. Thus even with an estimated cross-correlation of 0.4 the null 
hypothesis “true cross-correlation is equal to 0” cannot be rejected. 

Case 3: No cross correlations for all lags and one series uncorrelated 

Only now, in this special case, the variance of the cross correlation estimator is 
significantly simplified. In particular, if 1X  is a White Noise process which is 
independent of 2X , we have, for large n  and small k : 

 12

1
ˆ( ( ))Var k

n
  . 

Thus, in this special case, the rule of thumb 2 / n  yields a valid approximation to 
a 95% confidence interval for the cross correlations and can help to decide whether 
they are significantly or just randomly different from zero.  
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In most practical examples, however, the data will be auto- and also cross 
correlated. Thus, the question arises whether it is at all possible to do something 
here. Fortunately, the answer is yes: with the method of prewhitening, described in 
the next chapter, we do obtain a theoretically sound and practically useful cross 
correlation analysis.  

9.3 Prewhitening 

The idea behind prewhitening is to transform one of the two series such that it is 
uncorrelated, i.e. a White Noise series, which also explains the name of the 
approach. Formally, we assume that the two stationary processes 1X  and 2X  can 
be transformed as follows: 

1,
0

t i t i
i

U a X





  

2,
0

 t i t i
i

V b X





  

Thus, we are after coefficients ia  and ib  such that an infinite linear combination of 
past terms leads to White Noise. We know from previous theory that such a 
representation exists for all stationary and invertible ( , )ARMA p q  processes, it is the 

( )AR   representation. For the cross-correlations between tU  and tV  and between 

tX  and tY , the following relation holds: 
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1 2

0 0

( ) ( )UV i j X X
i j

k a b k i j 
 

 

    

We conjecture that for two independent processes 1X  and 2X , where all cross 
correlation coefficients 

1 2
( ) 0X X k  , also all ( ) 0UV k  . Additionally, the converse is 

also true, i.e. it follows from “ tU  and tV  uncorrelated” that the original processes 1X  
and 2X  are uncorrelated, too. Since tU  and tV  are White Noise processes, we are 
in the above explained case 3, and thus the confidence bounds in the cross 
correlograms are valid. Hence, any cross correlation analysis on “real” time series 
starts with representing them in terms of tu  and tv . 

Example: (1)AR  Simulations 

For our example with the two simulated (1)AR  processes, we can estimate the AR  
model coefficients with the Burg method and plug them in for prewhitening the 
series. Note that this amounts considering the residuals from the two fitted models! 

1, 1 1, 1ˆt t txu x   , where 1ˆ 0.889  , and 

2, 2 2, 1ˆt t txv x   , where 2ˆ 0.917  . 

 

The figure on the previous page shows both the auto and cross correlations of the 
prewhitened series. We emphasize again that we here consider the residuals from 
the (1)AR  models that were fitted to series 1X  and 2X . We observe that, as we 
expect, there are no significant autocorrelations, and there is just one cross 
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correlation coefficient that exceeds the 95% confidence bounds. We can attribute 
this to random variation. 

The theory suggests, because tU  and tV  are uncorrelated, that also 1X  and 2X  do 
not show any linear dependence. Well, owing to how we set up the simulation, we 
know this for a fact, and take the result as evidence that the prewhitening approach 
works in practice. 

Example: Air and Soil Temperatures 

For verifying whether there is any cross correlation between the changes in air and 
soil temperatures, we have to perform prewhitening also for the two differenced 
series. Previously, we had identified an (5)AR and a (1)MA  model as. We can now 
just take their residuals and perform a cross correlation analysis: 

> fit.air  <- arima(diff(air.na), order=c(5,0,0)) 
> fit.soil <- arima(diff(soil.na), order=c(0,0,1)) 
> u.air    <- resid(fit.air); v.soil   <- resid(fit.soil) 
> acf(ts.union(u.air, v.soil), na.action=na.pass) 

 

The bottom left panel shows some significant cross correlations. A change in the air 
temperature seems to induce a change in the ground with a lag of 1 or 2 days. 

9.4 Transfer Function Models 

In the previous section we had observed significant cross correlations between the 
prewhitened air and soil temperature changes. This means that the cross 
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correlations between the original air and soil temperature changes will also be 
different from zero. However, due to the prewhitening, inferring the magnitude of the 
linear association is different. The aim of this section is to clarify this issue. 

The transfer function models are a possible way to capture the dependency between 
two time series. We must assume that the first series influences the second, but the 
second does not influence the first. Furthermore, the influence occurs only at 
simultaneously or in the future, but not on past values. Both assumptions are met in 
our example. The transfer function model is: 

2, 2 1, 1
0

( )t j t j t
j

X X E  





     

We call 1X  the input and correspondingly, 2X  is named the output. For the error 
term tE  we require zero expectation and that they are independent from the input 
series, in particular: 

[ ] 0tE E   and 1,,( ) 0t sCov E X   for all t  and s .  

However, the errors tE  are usually autocorrelated. Note that this model is very 
similar to the time series regression model. However, here we have infinitely many 
unknown coefficients j , i.e. we do not know (a priori) on which lags to regress the 
input for obtaining the output. For the following theory, we assume (w.l.o.g.) that 

1 2 0   , i.e. the two series were adjusted for their means. In this case the cross 
covariances 21( )k  are given by: 

21 2, 1, 1, 1, 11
0 0

( ) ( , ) ( , ) ( )t k t j t k j t j
j j

k Cov X X Cov X X k j   
 

  
 

     . 

In cases where the transfer function model has a finite number of coefficients j  
only, i.e. 0j   for j K , then the above formula turns into a linear system of 1K   
equations that we could theoretically solve for the unknowns , 0, ,j j K   . 

If we replaced the theoretical 11  and 21  by the empirical covariances 11̂  and 21̂ , 
this would yield, estimates ˆ j . However, this method is statistically inefficient and 
the choice of K  proves to be difficult in practice. We again resort to some special 
case, for which the relation between cross covariance and transfer function model 
coefficients simplifies drastically.  

Special Case: Uncorrelated input series 1X  

In this case, 11( ) 0k   for 0k   and we have 21 11( ) (0)kk   . For the coefficients k  

this results in the simplified transfer function model: 

21 22
21

11 11

( ) (0)

(0) (0)k

k  
 

  , for 0k  .  
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However, 1X  generally is not a White Noise process. We can resort to prewhitening 
the input series. As we will show below, we can obtain an equivalent transfer 
function model with identical coefficients if a smart transformation is applied to the 
output series. Namely, we have to filter the output with the model coefficients from 
the input series. 

1, 1, 1 1, 2 1, 3 1, 4 1, 50.296· 0.242· 0.119· 0.497· 0.216·t t t t t t tX X X X X X D          , 

where tD  is the innovation, i.e. a White Noise process, for which we estimate the 
variance to be 2ˆ 2.392D  . We now solve this equation for tD  and get: 

1, 1, 1 1, 2 1, 3 1, 4 1, 5
2 3 4 5

1,

0.296· 0.242· 0.119· 0.497· 0.216·

(1 0.296 0.242 0.119 0.497 0.216 )
t

t

t t t t t tX X X X X X

B B B B B X

D         
    




 

We now apply this same transformation, i.e. the characteristic polynomial of the 
AR(5) also on the output series 2X  and the transfer function model errors tE : 

 2 3 4 5
2,(1 0.296 0.242 0.119 0.497 0.216 )t tZ B B B B B X       

 2 3 4 5(1 0.296 0.242 0.119 0.497 0.216 ) tt BU B B B B E     . 

We can now equivalently write the transfer function model with the new processes

tD , tZ  and tU . It takes the form: 

 
0

t j t j t
j

Z D U





  , 

where the coefficients j  are identical than for the previous formulation of the model. 
The advantage of this latest formulation, however, is that the input series tD  is now 
White Noise, such that the above special case applies, and the transfer function 
model coefficients can be obtained by a straightforward computation from the cross 
correlations: 

 21
212

ˆ ˆ( )
ˆ ˆ ( )

ˆ ˆ
Z

k
D D

k
k

  
 

  , where 0k  . 

where 21̂  and 21̂  denote the empirical cross covariances and cross correlations of 

tD  and tZ . However, keep in mind that tZ  and tU  are generally correlated. Thus, 
the outlined method is not a statistically efficient estimator either. While efficient 
approaches exist, we will not discuss them in this course and scriptum. Furthermore, 
for practical application the outlined procedure usually yields reliable results. We 
conclude this section by showing the results for the permafrost example:  the 
transfer function model coefficients in the example are based on the cross 
correlation between the (5)AR  residuals of the air changes and the ground changes 
that had been filtered with these (5)AR coefficients. 

> dd.air  <- resid(fit.air) 
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> coefs   <- coef(fit.air)[1:5]) 
> zz.soil <- filter(diff(soil.na), c(1, -coefs, sides=1) 
> as.int  <- ts.intersect(dd.air, zz.soil) 
> acf.val <- acf(as.int, na.action=na.pass) 

 

Again, in all except for the bottom left panel, the correlation coefficients are mostly 
zero, respectively only insignificantly or by chance different from that value. This is 
different in the bottom left panel. Here, we have substantial cross correlation at lags 
1 and 2. Also, these values are proportional to the transfer function model 
coefficients. We can extract these as follows: 

> multip  <- sd(zz.soil, na.rm=TRUE)/sd(dd.air, na.rm=TRUE) 
> multip*acf.val$acf[,2,1] 
 [1]  0.054305137  0.165729551  0.250648114  0.008416697 
 [5]  0.036091971  0.042582917 -0.014780751  0.065008411 
 [9] -0.002900099 -0.001487220 -0.062670672  0.073479065 
[13] -0.049352348 -0.060899602 -0.032943583 -0.025975790 

Thus, the soil temperature in the permafrost boreholes reacts to air temperature 
changes with a delay of 1-2 days. An analysis of further boreholes has suggested 
that the delay depends on the type of terrain in which the measurements were made. 
Fastest response times are found for a very coarse-blocky rock glacier site, whereas 
slower response times are revealed for blocky scree slopes with smaller grain sizes. 
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