

Applied Time Series Analysis

SS 2020

May 4, 2020

Dr. Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

CH-8401 Winterthur

Table of Contents

1 INTRODUCTION 1

1.1 PURPOSE 1
1.2 EXAMPLES 2
1.3 GOALS IN TIME SERIES ANALYSIS 8

2 MATHEMATICAL CONCEPTS 11

2.1 DEFINITION OF A TIME SERIES 11
2.2 STATIONARITY 11
2.3 TESTING STATIONARITY 13

3 TIME SERIES IN R 15

3.1 TIME SERIES CLASSES 15
3.2 DATES AND TIMES IN R 19
3.3 DATA IMPORT 22

4 DESCRIPTIVE ANALYSIS 25

4.1 VISUALIZATION 25
4.2 TRANSFORMATIONS 32
4.3 DECOMPOSITION 36
4.4 AUTOCORRELATION 62
4.5 PARTIAL AUTOCORRELATION 78

5 STATIONARY TIME SERIES MODELS 81

5.1 WHITE NOISE 81
5.2 ESTIMATING THE CONDITIONAL MEAN 82
5.3 AUTOREGRESSIVE MODELS 83
5.4 MOVING AVERAGE MODELS 99
5.5 ARMA(P,Q) MODELS 108

6 SARIMA AND GARCH MODELS 117

6.1 ARIMA MODELS 117
6.2 SARIMA MODELS 124
6.3 ARCH/GARCH MODELS 128

7 TIME SERIES REGRESSION 133

7.1 WHAT IS THE PROBLEM? 133
7.2 FINDING CORRELATED ERRORS 137
7.3 COCHRANE-ORCUTT METHOD 144

7.4 GENERALIZED LEAST SQUARES 145
7.5 MISSING PREDICTOR VARIABLES 151

8 FORECASTING 157

8.1 STATIONARY TIME SERIES 159
8.2 SERIES WITH TREND AND SEASON 171
8.3 EXPONENTIAL SMOOTHING 178

9 MULTIVARIATE TIME SERIES ANALYSIS 187

9.1 PRACTICAL EXAMPLE 187
9.2 CROSS CORRELATION 191
9.3 PREWHITENING 194
9.4 TRANSFER FUNCTION MODELS 196

10 SPECTRAL ANALYSIS 201

10.1 DECOMPOSING IN THE FREQUENCY DOMAIN 201
10.2 THE SPECTRUM 205
10.3 REAL WORLD EXAMPLE 212

11 STATE SPACE MODELS 213

11.1 STATE SPACE FORMULATION 213
11.2 AR PROCESSES WITH MEASUREMENT NOISE 214
11.3 DYNAMIC LINEAR MODELS 217

ATSA 1 Introduction

 Page 1

1 Introduction

1.1 Purpose

Time series data, i.e. records which are measured sequentially over time, are
extremely common. They arise in virtually every application field, such as e.g.:

 Business
Sales figures, production numbers, customer frequencies, ...

 Economics
Stock prices, exchange rates, interest rates, ...

 Official Statistics
Census data, personal expenditures, road casualties, ...

 Natural Sciences
Population sizes, sunspot activity, chemical process data, ...

 Environmetrics
Precipitation, temperature or pollution recordings, ...

In contrast to basic data analysis where the assumption of identically and
independently distributed data is key, time series are serially correlated. The
purpose of time series analysis is to visualize and understand these dependencies
in past data, and to exploit them for forecasting future values. While some simple
descriptive techniques do often considerably enhance the understanding of the
data, a full analysis usually involves modeling the stochastic mechanism that is
assumed to be the generator of the observed time series.

ATSA 1 Introduction

 Page 2

Once a good model is found and fitted to data, the analyst can use that model to
forecast future values and produce prediction intervals, or he can generate
simulations, for example to guide planning decisions. Moreover, fitted models are
used as a basis for statistical tests: they allow determining whether fluctuations in
monthly sales provide evidence of some underlying change, or whether they are still
within the range of usual random variation.

The dominant main features of many time series are trend and seasonal variation.
These can either be modeled deterministically by mathematical functions of time, or
are estimated using non-parametric smoothing approaches. Yet another key feature
of most time series is that adjacent observations tend to be correlated, i.e. serially
dependent. Much of the methodology in time series analysis is aimed at explaining
this correlation using appropriate statistical models.

While the theory on mathematically oriented time series analysis is vast and may be
studied without necessarily fitting any models to data, the focus of our course will
be applied and directed towards data analysis. We study some basic properties of
time series processes and models, but mostly focus on how to visualize and
describe time series data, on how to fit models to data correctly, on how to generate
forecasts, and on how to adequately draw conclusions from the output that was
produced.

1.2 Examples

1.2.1 Air Passenger Bookings

The numbers of international passenger bookings (in thousands) per month on an
airline (PanAm) in the United States were obtained from the Federal Aviation
Administration for the period 1949-1960. The company used the data to predict
future demand before ordering new aircraft and training aircrew. The data are
available as a time series in R. Here, we here show how to access them, and how
to first gain an impression.

> data(AirPassengers)
> AirPassengers
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432

ATSA 1 Introduction

 Page 3

Some further information about this dataset can be obtained by typing
?AirPassengers in R. The data are stored in an R-object of class ts, which is the
specific class for time series data. However, for further details on how time series
are handled in R, we refer to section 3.

One of the most important steps in time series analysis is to visualize the data, i.e.
create a time series plot, where the air passenger bookings are plotted versus the
time of booking. For a time series object, this can be done very simply in R, using
the generic plot function:

> plot(AirPassengers, ylab="Pax", main="Passenger Bookings")

The result is displayed on the next page. There are a number of features in the plot
which are common to many time series. For example, it is apparent that the number
of passengers travelling on the airline is increasing with time. In general, a
systematic change in the mean level of a time series that does not appear to be
periodic is known as a trend. The simplest model for a trend is a linear increase or
decrease, an often adequate approximation. We will discuss how to estimate trends,
and how to decompose time series into trend and other components in section 4.3.

The data also show a repeating pattern within each year, i.e. in summer, there are
always more passengers than in winter. This is known as a seasonal effect, or
seasonality. Please note that this term is applied more generally to any repeating
pattern over a fixed period, such as for example restaurant bookings on different
days of week.

We can naturally attribute the increasing trend of the series to causes such as rising
prosperity, greater availability of aircraft, cheaper flights and increasing population.
The seasonal variation coincides strongly with vacation periods. For this reason, we
here consider both trend and seasonal variation as deterministic components. As
mentioned before, section 4.3 discusses visualization and estimation of these

Passenger Bookings

Time

P
a

x

1950 1952 1954 1956 1958 1960

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

ATSA 1 Introduction

 Page 4

components, while in section 7, time series regression models will be specified to
allow for underlying causes like these, and finally section 8 discusses exploiting
these for predictive purposes.

1.2.2 Lynx Trappings

The next series which we consider here is the annual number of lynx trappings for
the years 1821-1934 in the Mackenzie River District in Canada. We again load the
data and visualize them using a time series plot:

> data(lynx)
> plot(lynx, ylab="# of Lynx Trapped", main="Lynx Trappings")

The plot on the next page shows that the number of trapped lynx reaches high and
low values every about 10 years, and some even larger figure every about 40 years.
While biologists often approach such data with predator-prey-models, we here focus
on the analysis of the time signal only. This suggests that the prominent periodicity
is to be interpreted as random, but not deterministic.

This leads us to the heart of time series analysis: while understanding and modeling
trend and seasonal variation is a very important aspect, much of the time series
methodology is aimed at stationary series, i.e. data which do not show deterministic,
but only random (cyclic) variation.

Lynx Trappings

Time

#
 o

f
L

yn
x

T
ra

p
p

e
d

1820 1840 1860 1880 1900 1920

0
2

0
0

0
4

0
0

0
6

0
0

0

ATSA 1 Introduction

 Page 5

1.2.3 Luteinizing Hormone Measurements

One of the key features of the above lynx trappings series is that the observations
apparently do not stem from independent and identically distributed (iid) random
variables, but there is some serial correlation. If the previous value was high (or low,
respectively), the next one is likely to be similar to the previous one. To explore,
model and exploit such dependence lies at the root of time series analysis. We here
show another series, where 48 luteinizing hormone levels were recorded from blood
samples that were taken at 10 minute intervals from a human female. This hormone,
also called lutropin, triggers ovulation.

> data(lh)
> lh
Time Series:
Start = 1; End = 48; Frequency = 1
 [1] 2.4 2.4 2.4 2.2 2.1 1.5 2.3 2.3 2.5 2.0 1.9 1.7 2.2 1.8
[15] 3.2 3.2 2.7 2.2 2.2 1.9 1.9 1.8 2.7 3.0 2.3 2.0 2.0 2.9
[29] 2.9 2.7 2.7 2.3 2.6 2.4 1.8 1.7 1.5 1.4 2.1 3.3 3.5 3.5
[43] 3.1 2.6 2.1 3.4 3.0 2.9

Again, the data themselves are of course needed to perform analyses, but provide
little overview. We can improve this by generating a time series plot:

> plot(lh, ylab="LH level", main="Luteinizing Hormone")

For this series, given the way the measurements were made (i.e. 10 minute
intervals), we can almost certainly exclude any deterministic seasonal pattern. But
is there any stochastic cyclic behavior? This question is more difficult to answer.
Normally, one resorts to the simpler question of analyzing the correlation of
subsequent records, called autocorrelations. The autocorrelation for lag 1 can be
visualized by producing a scatterplot of adjacent observations:

Luteinizing Hormone

Time

L
H

 le
ve

l

0 10 20 30 40

1
.5

2
.0

2
.5

3
.0

3
.5

ATSA 1 Introduction

 Page 6

> plot(lh[1:47], lh[2:48], pch=20)
> title("Scatterplot of LH Data with Lag 1")

Besides the (non-standard) observation that there seems to be an inhomogeneity,
i.e. two distinct groups of data points, it is apparent that there is a positive correlation
between successive measurements. This manifests itself with the clearly visible fact
that if the previous observation was above or below the mean, the next one is more
likely to be on the same side. We can even compute the value of the Pearson
correlation coefficient:

> cor(lh[1:47], lh[2:48])
[1] 0.5807322

Its value of 0.58 is an estimate for the so-called autocorrelation coefficient at lag 1.
As we will see in section 4.4, the idea of considering lagged scatterplots and
computing Pearson correlation coefficients serves as a good proxy for a
mathematically more sound method. We also note that despite the positive
correlation of +0.58, the series seems to always have the possibility of “reverting to
the other side of the mean”, a property which is common to stationary series – an
issue that will be discussed in section 2.2.

1.2.4 Swiss Market Index

The SMI is the blue chip index of the Swiss stock market. It summarizes the value
of the shares of the 20 most important companies, and currently contains nearly
90% of the total market capitalization. It was introduced on July 1, 1988 at a basis
level of 1500.00 points. Daily closing data for 1860 consecutive trading days from
1991-1998 are available in R. We observe a more than 4-fold increase during that
period. As a side note, the value in February 2016 is around 7’800 points, indicating
a sidewards movement over the latest 15 years.

1.5 2.0 2.5 3.0 3.5

1
.5

2
.0

2
.5

3
.0

3
.5

lh[1:47]

lh
[2

:4
8

]

Scatterplot of LH Data with Lag 1

ATSA 1 Introduction

 Page 7

> data(EuStockMarkets)
> EuStockMarkets
Time Series:
Start = c(1991, 130)
End = c(1998, 169)
Frequency = 260
 DAX SMI CAC FTSE
1991.496 1628.75 1678.1 1772.8 2443.6
1991.500 1613.63 1688.5 1750.5 2460.2
1991.504 1606.51 1678.6 1718.0 2448.2
1991.508 1621.04 1684.1 1708.1 2470.4
1991.512 1618.16 1686.6 1723.1 2484.7
1991.515 1610.61 1671.6 1714.3 2466.8

As we can see, EuStockMarkets is a multiple time series object, which also
contains data from the German DAX, the French CAC and UK’s FTSE. We will focus
on the SMI and thus extract and plot the series:

esm <- EuStockMarkets
tmp <- EuStockMarkets[,2]
smi <- ts(tmp, start=start(esm), freq=frequency(esm))
plot(smi, main="SMI Daily Closing Value")

Because subsetting from a multiple time series object results in a vector, but not a
time series object, we need to regenerate a latter one, sharing the arguments of the
original. In the plot we clearly observe that the series has a trend, i.e. the mean is
obviously non-constant over time. This is typical for all financial time series.

Such trends in financial time series are nearly impossible to predict, and difficult to
characterize mathematically. We will not embark in this, but analyze the so-called
log-returns, i.e. the day-to-day changes after a log-transformation of the series:

SMI Daily Closing Value

Time

sm
i

1992 1993 1994 1995 1996 1997 1998

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

ATSA 1 Introduction

 Page 8

> lret.smi <- diff(log(smi))
> plot(lret.smi, main="SMI Log-Returns")

These log-returns are a close approximation to the relative change (percent values)
with respect to the previous day. As can be seen above, they do not exhibit a trend
anymore, but show some of the stylized facts that most log-returns of financial time
series share. Using lagged scatterplots or the correlogram (to be discussed later in
section 4.4), you can convince yourself that there is no serial correlation. Thus, there
is no dependency which could be exploited to predict tomorrows return based on
the one of today and/or previous days.

However, it is visible that large changes, i.e. log-returns with high absolute values,
imply that future log-returns tend to be larger than normal, too. This feature is also
known as volatility clustering, and financial service providers are trying their best to
exploit this property to make profit. Again, you can convince yourself of the volatility
clustering effect by taking the squared log-returns and analyzing their serial
correlation, which is different from zero.

1.3 Goals in Time Series Analysis

A first impression of the purpose and goals in time series analysis could be gained
from the previous examples. We conclude this introductory section by explicitly
summarizing the most important goals.

1.3.1 Exploratory Analysis

Exploratory analysis for time series mainly involves visualization with time series
plots, decomposition of the series into deterministic and stochastic parts, and
studying the dependency structure in the data.

SMI Log-Returns

Time

lr
e

t.
sm

i

1992 1993 1994 1995 1996 1997 1998

-0
.0

8
-0

.0
4

0
.0

0
0

.0
4

ATSA 1 Introduction

 Page 9

1.3.2 Modeling

The formulation of a stochastic model, as it is for example also done in regression,
can and does often lead to a deeper understanding of the series. The formulation of
a suitable model usually arises from a mixture between background knowledge in
the applied field, and insight from exploratory analysis. Once a suitable model is
found, a central issue remains, i.e. the estimation of the parameters, and
subsequent model diagnostics and evaluation.

1.3.3 Forecasting

An often-heard motivation for time series analysis is the prediction of future
observations in the series. This is an ambitious goal, because time series
forecasting relies on extrapolation, and is generally based on the assumption that
past and present characteristics of the series continue. It seems obvious that good
forecasting results require a very good comprehension of a series’ properties, be it
in a more descriptive sense, or in the sense of a fitted model.

1.3.4 Time Series Regression

Rather than just forecasting by extrapolation, we can try to understand the relation
between a so-identified response time series, and one or more explanatory series.
If all of these are observed at the same time, we can in principle employ the ordinary
least squares (OLS) regression framework. However, the all-to-common
assumption of (serially) uncorrelated errors in OLS is usually violated in a time series
setup. We will illustrate how to properly deal with this situation, in order to generate
correct confidence and prediction intervals.

1.3.5 Process Control

Many production or other processes are measured quantitatively for the purpose of
optimal management and quality control. This usually results in time series data, to
which a stochastic model is fit. This allows understanding the signal in the data, but
also the noise: it becomes feasible to monitor which fluctuations in the production
are normal, and which ones require intervention.

1.3.6 Time Series Clustering or Classification

In the modern world, more and more processes create online time series data. A
typical task with these recordings is to group snippets of time series according to
their characteristics, be it in a supervised fashion(classification) or unsupervised via
clustering methods. Traditional approaches focus on extracting features from the
time series methods, whereas novel ideas focus on neural networks that do not
require feature specification.

ATSA 2 Mathematical Concepts

 Page 11

2 Mathematical Concepts
For performing anything else than very basic exploratory time series analysis, even
from a much applied perspective, it is necessary to introduce the mathematical
notion of what a time series is, and to study some basic probabilistic properties,
namely the moments and the concept of stationarity.

2.1 Definition of a Time Series

As we have explained in section 1.2, observations that have been collected over
fixed sampling intervals form a time series. Following a statistical approach, we
consider such series as realizations of random variables. A sequence of random
variables, defined at such fixed sampling intervals, is sometimes referred to as a
discrete-time stochastic process, though the shorter names time series model or
time series process are more popular and will mostly be used in this scriptum. It is
very important to make the distinction between a time series, i.e. observed values,
and a process, i.e. a probabilistic construct.

Definition: A time series process is a set of random variables  ,tX t T , where T
is the set of times at which the process was, will or can be observed. We assume
that each random variable tX is distributed according some univariate distribution
function tF . Please note that for our entire course and hence scriptum, we
exclusively consider time series processes with equidistant time intervals, as well
as real-valued random variables tX . This allows us to enumerate the set of times,
so that we can write {1,2,3, }T   .

An observed time series, on the other hand, is seen as a realization of the random
vector 1 2(, , ,)nX X X X  , and is denoted with small letters 1 2(, ,), nx x x x  . It is
important to note that in a multivariate sense, a time series is only one single
realization of the n -dimensional random variable X , with its multivariate,
n -dimensional distribution function 1:nF . As we all know, we cannot do statistics with
just a single observation. As a way out of this situation, we need to impose some
conditions on the joint distribution function 1:nF .

2.2 Stationarity

The aforementioned condition on the joint distribution 1:nF will be formulated as the
concept of stationarity. In colloquial language, stationarity means that the
probabilistic character of the series must not change over time, i.e. that any section
of the time series is “typical” for every other section with the same length. More
mathematically, we require that for any indices ,s t and k , the observations

, ,t t kx x  could have just as easily occurred at times , ,s s k  . If that is not the
case practically, then the series is hardly stationary.

ATSA 2 Mathematical Concepts

 Page 12

Imposing even more mathematical rigor, we introduce the concept of strict
stationarity. A time series is said to be strictly stationary if and only if the
(1)k  -dimensional joint distribution of , ,t t kX X  coincides with the joint distribution
of , ,s s kX X  for any combination of indices t , s and k . For the special case of

0k  and t s , this means that the univariate distributions tF of all tX are equal.
For strictly stationary time series, we can thus leave off the index t on the
distribution. As the next step, we will define the unconditional moments:

 Expectation   []tE X ,
 Variance 2  ()tVar X ,
 Covariance ()h  (,)t t hCov X X  .

In other words, strictly stationary series have constant (unconditional) expectation,
constant (unconditional) variance , and the covariance, i.e. the dependency
structure, depends only on the lag h, which is the time difference between the two
observations. However, the covariance terms are generally different from 0, and
thus, the tX are usually dependent. Moreover, the conditional expectation given the
past of the series, 1 2[| , ,...]t t tE X X X  is typically non-constant, denoted as t . In
some (rarer, e.g. for financial time series) cases, even the conditional variance

1 2(| , ,...)t t tVar X X X  can be non-constant.

In practice however, except for simulation studies, we usually have no explicit
knowledge of the latent time series process. Since strict stationarity is defined as a
property of the process’ joint distributions (all of them), it is impossible to verify from
an observed time series, i.e. a single data realization. We can, however, try to verify
whether a time series process shows constant unconditional mean and variance,
and whether the dependency only depends on the lag h. This much less rigorous
property is known as weak stationarity.

In order to do well-founded statistical analyses with time series, weak stationarity is
a necessary condition. It is obvious that if a series’ observations do not have
common properties such as constant mean/variance and a stable dependency
structure, it will be impossible to statistically learn from it. On the other hand, it can
be shown that weak stationarity, along with the additional property of ergodicity (i.e.
the mean of a time series realization converges to the expected value, independent
of the starting point), is sufficient for most practical purposes such as model fitting,
forecasting, etc.. We will, however, not further embark in this subject.

Remarks:

 From now on, when we speak of stationarity, we strictly mean weak
stationarity. The motivation is that weak stationarity is sufficient for applied
time series analysis, and strict stationarity is a practically useless concept.

 When we analyze time series data, we need to verify whether it might have
arisen from a stationary process or not. Be careful with the wording:
stationarity is always a property of the process, and never of the data.

ATSA 2 Mathematical Concepts

 Page 13

 Moreover, bear in mind that stationarity is a hypothesis, which needs to be
evaluated for every series. We may be able to reject this hypothesis with quite
some certainty if the data strongly speak against it. However, we can never
prove stationarity with data. At best, it is plausible that a series originated
from a stationary process.

 Some obvious violations of stationarity are trends, non-constant variance,
deterministic seasonal variation, as well as apparent breaks in the data,
which are indicators for changing dependency structure.

2.3 Testing Stationarity

If, as explained above, stationarity is a hypothesis which is tested on data, students
and users keep asking if there are any formal tests. The answer to this question is
yes, and there are even quite a number of tests. This includes the Augmented
Dickey-Fuller Test, the Phillips-Perron Test, the KPSS Test, which are all available
in R’s tseries package. The urca package includes further tests such as the
Elliott-Rothenberg-Stock, Schmidt-Phillips und Zivot-Andrews.

However, we will not discuss any of these tests here for a variety of reasons. First
and foremost, they all focus on some very specific non-stationarity aspects, but do
not test stationarity in a broad sense. While they may reasonably do their job in the
narrow field they are aimed for, they have low power to detect general non-
stationarity and in practice often fail to do so. Additionally, theory and formalism of
these tests is quite complex, and thus beyond the scope of this course. In summary,
these tests are to be seen as more of a pasttime for the mathematically interested,
rather than a useful tool for the practitioner.

Thus, we here recommend assessing stationarity by visual inspection. The primary
tool for this is the time series plot, but also the correlogram (see section 4.4) can be
helpful as a second check. For long time series, it can also be useful to split up the
series into several parts for checking whether mean, variance and dependency are
similar over the blocks.

ATSA 3 Time Series in R

 Page 15

3 Time Series in R

3.1 Time Series Classes

In R, there are objects, which are organized in a large number of classes. These
classes e.g. include vectors, data frames, model output, functions, and many more.
Not surprisingly, there are also several classes for time series. We start by
presenting ts, the basic class for regularly spaced time series. This class is
comparably simple, as it can only represent time series with fixed interval records,
and only uses numeric time stamps, i.e. (sophistically) enumerates the index set.
However, it will be sufficient for most, if not all, of what we do in this course. Then,
we also provide an outlook to more complicated concepts.

3.1.1 The ts Class

For defining a time series of class ts, we of course need to provide the data, but
also the starting time as argument start, and the frequency of measurements as
argument frequency. If no starting time is supplied, R uses its default value of 1,
i.e. enumerates the times by the index set 1, ..., n , where n is the length of the series.
The frequency is the number of observations per unit of time, e.g. 1 for yearly, 4 for
quarterly, or 12 for monthly recordings. Instead of the start, we could also provide
the end of the series, and instead of the frequency, we could supply argument
deltat, the fraction of the sampling period between successive observations. The
following example will illustrate the concept.

Example: We here consider a simple and short series that holds the number of days
per year with traffic holdups in front of the Gotthard road tunnel north entrance in
Switzerland. The data are available from the Federal Roads Office.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

88 76 112 109 91 98 139 150 168 149

The start of this series is in 2004. The time unit is years, and since we have just one
record per year, the frequency of this series is 1. This tells us that while there may
be a trend, there cannot be a seasonal effect, as the latter can only be present in
periodic series, i.e. series with frequency > 1. We now define a ts object in in R.

> rawdat <- c(88, 76, 112, 109, 91, 98, 139, 150, 168, 149)
> ts.dat <- ts(rawdat, start=2004, freq=1)
> ts.dat
Time Series: Start = 2004, End = 2013
Frequency = 1
[1] 88 76 112 109 91 98 139 150 168 149

ATSA 3 Time Series in R

 Page 16

There are a number of simple but useful functions that extract basic information from
objects of class ts, see the following examples:

> start(ts.dat)
[1] 2004 1

> end(ts.dat)
[1] 2013 1

> frequency(ts.dat)
[1] 1

> deltat(ts.dat)
[1] 1

Another possibility is to obtain the measurement times from a time series object. As
class ts only enumerates the times, they are given as fractions. This can still be
very useful for specialized plots, etc.

> time(ts.dat)
Time Series:
Start = 2004
End = 2013
Frequency = 1
[1] 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

The next basic, but for practical purposes very useful function is window(). It is
aimed at selecting a subset from a time series. Of course, also regular R-subsetting
such as ts.dat[2:5] does work with the time series class. However, this results
in a vector rather than a time series object, and is thus mostly of less use than the
window() command.

> window(ts.dat, start=2006, end=2008)
Time Series:
Start = 2006
End = 2008
Frequency = 1
[1] 112 109 91

While we here presented the most important basic methods/functions for class ts,
there is a wealth of further ones. This includes the plot() function, and many more,
e.g. for estimating trends, seasonal effects and dependency structure, for fitting time
series models and generating forecasts. We will present them in the forthcoming
chapters of this scriptum.

To conclude the previous example, we will not do without showing the time series
plot of the Gotthard road tunnel traffic holdup days, see next page. Because there
are a limited number of observations, it is difficult to give statements regarding a
possible trend and/or stochastic dependency.

> plot(ts.dat, ylab="# of Days", main="Traffic Holdups")

ATSA 3 Time Series in R

 Page 17

3.1.2 Finding the Frequency

Often, finding the frequency for defining the time series is straightforward. As
mentioned above, it is the number of observations per unit of time, e.g. 1 for yearly,
4 for quarterly, or 12 for monthly recordings. However, some real-world situation are
quite a bit more complex to handle. Principally, it is up to the user to choose the
correct frequency from background and field knowledge about the measurements.
Additionally, R function findfrequency() may assist. It provides the correct
results for the traffic holdups and the air passenger data:

> findfrequency(ts.dat)
[1] 1
> findfrequency(AirPassengers)
[1] 12

On the other hand, it can also provide misleading results. If we apply the function to
the lynx data, we obtain:

> findfrequency(lynx)
[1] 10

The lynx data are clearly cyclic with a period of about 10 years. We interpret these
cycles as stochastic though and the frequency should be set to a value of 1. In other
cases, there may be ambiguity in the definition of the frequency. If we for example
consider the a time series of the minutely averaged electricity demand in a city, the
frequency may be:

- Hourly (i.e. 60f )
- Daily (i.e. 24 60 1'440f   )
- Weekly (i.e. 24 60 7 10'080f    )
- Yearly (i.e. 24 60 365 525'600f    )

Traffic Holdups

Time

#
 o

f
D

a
ys

2004 2006 2008 2010 2012

8
0

1
0

0
1

20
1

4
0

1
6

0

ATSA 3 Time Series in R

 Page 18

When working with the ts() class, we need to decide for one single frequency.
That may be far from easy, because the power demand may have a hourly, daily,
weekly and yearly pattern. The simple rule of the thumb is to pick the frequency
which is the most natural, the strongest or the most central for the analysis which is
carried out. Sometimes (especially for providing accurate results in forecasting), all
cyclic components need to be kept under the radar. For achieving this, clever
decomposition approaches may help. Moreover, there is the advanced msts()
class in R that allows time series to have multiple "frequencies". As soon as one
extensively deals with weekly or daily data, further problems will appear. Namely,
the number of observations per time unit may not be constant or not an integer.

 Weekly data: even in the simple case where all (observation) years have
exactly 365 days, we obtain a non-integer frequency of 365 / 7 52.14f   .

 Daily data: the problem here arises from the leap years that have 366 days.
As they (roughly) happen every 4th year, the quick fix is to set 365.25f  .
This is still somewhat imprecise, because the leap year rules are more
complicated and sometimes leap seconds are used, altering the
astronomically correct frequency slightly. In most practical cases (if the time
series does not comprise of hundreds or thousands of observations years) it
won't make much practical difference, though.

 Trading or working day data: the number of working days per year fluctuates
even more, so that the definition of the frequency becomes tricky. One either
works with a "representative" integer value or the mean resp. median number
of working days per year. Most R functions also accept non-integer frequency
values, making this strategy viable. Below we have the number of trading
days at US Stock Markets. Commong knowledge says that "it's usually 252
trading days a year", suggesting this value for the frequency. Alternatively,
the mean of 251.86 could be used.

Time

T
ra

d
in

gD
a

ys

1990 1995 2000 2005 2010 2015

2
48

2
4

9
2

5
0

25
1

2
5

2
2

53
2

5
4

Number of Trading Days at US Stock Markets

Fixed = 252 Mean=251.86

ATSA 3 Time Series in R

 Page 19

3.1.3 Other Classes

Besides the basic ts class, there are several other classes which offer a variety of
additional options. Most are designed for specific and advanced tasks, so that they
will rarely to never be required during our course. Most prominently, this includes
the zoo package, which provides infrastructure for both regularly and irregularly
spaced time series using arbitrary classes for the time stamps. It is designed to be
as consistent as possible with the ts class. Coercion from and to zoo is also readily
available.

Some further packages which contain classes and methods for time series include
xts, its, tseries, fts, timeSeries and tis. Additional information on their
content and philosophy can be found on CRAN.

3.2 Dates and Times in R

While for the ts class, the handling of times has been solved very simply and easily
by enumerating, doing time series analysis in R may sometimes also require to
explicitly working with date and time. There are several options for dealing with date
and date/time data. The built-in as.Date() function handles dates that come
without times. The contributed package chron handles dates and times, but does
not control for different time zones, whereas the sophisticated but complex
POSIXct and POSIXlt classes allow for dates and times with time zone control.

As a general rule for date/time data in R, we suggest to use the simplest technique
possible. Thus, for date only data, as.Date() will mostly be the optimal choice. If
handling dates and times, but without time-zone information, is required, the chron
package is the choice. The POSIX classes are especially useful in the relatively rare
cases when time-zone manipulation is important.

Apart for the POSIXlt class, dates/times are internally stored as the number of days
or seconds from some reference date. These dates/times thus generally have a
numeric mode. The POSIXlt class, on the other hand, stores date/time values as
a list of components (hour, min, sec, mon, etc.), making it easy to extract these
parts. Also the current date is accessible by typing Sys.Date() in the console, and
returns an object of class Date.

3.2.1 The Date Class

As mentioned above, the easiest solution for specifying days in R is with the
as.Date() function. Using the format argument, arbitrary date formats can be
read. The default, however, is four-digit year, followed by month and then day,
separated by dashes or slashes:

> as.Date("2012-02-14")
[1] "2012-02-14"

ATSA 3 Time Series in R

 Page 20

> as.Date("2012/02/07")
[1] "2012-02-07"

If the dates come in non-standard appearance, we require defining their format
using some codes. While the most important ones are shown below, we reference
to the R help file of function strptime() for the full list.

Code Value

%d Day of the month (decimal number)
%m Month (decimal number)
%b Month (character, abbreviated)
%B Month (character, full name)
%y Year (decimal, two digit)
%Y Year (decimal, four digit)

The following examples illustrate the use of the format argument:

> as.Date("27.01.12", format="%d.%m.%y")
[1] "2012-01-27"
> as.Date("14. Februar, 2012", format="%d. %B, %Y")
[1] "2012-02-14"

Internally, Date objects are stored as the number of days passed since the 1st of
January in 1970. Earlier dates receive negative numbers. By using the
as.numeric() function, we can easily find out how many days are past since the
reference date. Also back-conversion from a number of past days to a date is
straightforward:

> mydat <- as.Date("2012-02-14")
> ndays <- as.numeric(mydat)
> ndays
[1] 15384
> tdays <- 10000
> class(tdays) <- "Date"
> tdays
[1] "1997-05-19"

A very useful feature is the possibility of extracting weekdays, months and quarters
from Date objects, see the examples below. This information can be converted to
factors. In this form, they serve for purposes such as visualization, decomposition,
or time series regression.

> weekdays(mydat)
[1] "Dienstag"
> months(mydat)
[1] "Februar"
> quarters(mydat)
[1] "Q1"

ATSA 3 Time Series in R

 Page 21

Furthermore, some very useful summary statistics can be generated from Date
objects: median, mean, min, max, range, ... are all available. We can even subtract
two dates, which results in a difftime object, i.e. the time difference in days.

> dat <- as.Date(c("2000-01-01","2004-04-04","2007-08-09"))
> dat
[1] "2000-01-01" "2004-04-04" "2007-08-09"

> min(dat)
[1] "2000-01-01"
> max(dat)
[1] "2007-08-09"
> mean(dat)
[1] "2003-12-15"
> median(dat)
[1] "2004-04-04"

> dat[3]-dat[1]
Time difference of 2777 days

Another option is generating time sequences. For example, to generate a vector of
12 dates, starting on August 3, 1985, with an interval of one single day between
them, we simply type:

> seq(as.Date("1985-08-03"), by="days", length=12)
 [1] "1985-08-03" "1985-08-04" "1985-08-05" "1985-08-06"
 [5] "1985-08-07" "1985-08-08" "1985-08-09" "1985-08-10"
 [9] "1985-08-11" "1985-08-12" "1985-08-13" "1985-08-14"

The by argument proves to be very useful. We can supply various units of time, and
even place an integer in front of it. This allows creating a sequence of dates
separated by two weeks:

> seq(as.Date("1992-04-17"), by="2 weeks", length=12)
 [1] "1992-04-17" "1992-05-01" "1992-05-15" "1992-05-29"
 [5] "1992-06-12" "1992-06-26" "1992-07-10" "1992-07-24"
 [9] "1992-08-07" "1992-08-21" "1992-09-04" "1992-09-18"

3.2.2 The chron Package

The chron() function converts dates and times to chron objects. The dates and
times are provided separately to the chron() function, which may well require
some inital pre-processing. For such parsing, R-functions such as substr() and
strsplit() can be of great use. In the chron package, there is no support for
time zones and daylight savings time, and chron objects are internally stored as
fractional days since the reference date of January 1st, 1970. By using the function
as.numeric(), these internal values can be accessed. The following example
illustrates the use of chron:

> library(chron)

ATSA 3 Time Series in R

 Page 22

> dat <- c("2007-06-09 16:43:20", "2007-08-29 07:22:40",
 "2007-10-21 16:48:40", "2007-12-17 11:18:50")
> dts <- substr(dat, 1, 10)
> tme <- substr(dat, 12, 19)
> fmt <- c("y-m-d","h:m:s")
> cdt <- chron(dates=dts, time=tme, format=fmt)
> cdt
[1] (07-06-09 16:43:20) (07-08-29 07:22:40)
[3] (07-10-21 16:48:40) (07-12-17 11:18:50)

As before, we can again use the entire palette of summary statistic functions. Of
some special interest are time differences, which can now be obtained as either
fraction of days, or in weeks, hours, minutes, seconds, etc.:

> cdt[2]-cdt[1]
Time in days:
[1] 80.61065
> difftime(cdt[2], cdt[1], units="secs")
Time difference of 6964760 secs

3.2.3 POSIX Classes

The two classes POSIXct and POSIXlt implement date/time information, and in
contrast to the chron package, also support time zones and daylight savings time.
We recommend utilizing this functionality only when urgently needed, because the
handling requires quite some care, and may on top of that be system dependent.
Further details on the use of the POSIX classes can be found on CRAN.

As explained above, the POSIXct class also stores dates/times with respect to the
internal reference, whereas the POSIXlt class stores them as a list of components
(hour, min, sec, mon, etc.), making it easy to extract these parts.

3.3 Data Import

We can safely assume that most time series data are already present in electronic
form; however, not necessarily in R. Thus, some knowledge on how to import data
into R is required. It is be beyond the scope of this scriptum to present the uncounted
options which exist for this task. Hence, we will restrict ourselves to providing a short
overview and some useful hints.

The most common form for sharing time series data are certainly spreadsheets, or
in particular, Microsoft Excel files. While library(ROBDC) offers functionality to
directly import data from Excel files, we discourage its use. First of all, this only
works on Windows systems. More importantly, it is usually simpler, quicker and
more flexible to export comma- or tab-separated text files from Excel, and import
them via the ubiquitous read.table() function, respectively the tailored version
read.csv() (for comma separation) and read.delim() (for tab separation).

ATSA 3 Time Series in R

 Page 23

With packages ROBDC and RMySQL, R can also communicate with SQL databases,
which is the method of choice for large scale problems. Furthermore, after loading
library(foreign), it is also possible to read files from Stata, SPSS, Octave and
SAS.

ATSA 4 Descriptive Analysis

 Page 25

4 Descriptive Analysis
As always when working with data, i.e. “a pile of numbers”, it is important to gain an
overview. In time series analysis, this encompasses several aspects:

 understanding the context of the problem and the data source
 making suitable plots, looking for general structure and outliers
 thinking about data transformations, e.g. to reduce skewness
 judging stationarity and potentially achieve it by decomposition
 for stationary series, the analysis of the autocorrelation function

We start by discussing time series plots, then discuss transformations, focus on the
decomposition of time series into trend, seasonal effect and stationary random part
and conclude by discussing methods for visualizing the dependency structure.

4.1 Visualization

4.1.1 Time Series Plot

The most important means of visualization is the time series plot, where the data
are plotted versus time/index. There are several examples in section 1.2, where we
also got acquainted with R’s generic plot() function. As a general rule, the data
points are joined by lines in time series plots. This is despite the data are not
continuous, as the plots are much easier to read in this form. The only exception
where gaps are left is if there are missing values. Moreover, the reader expects that
the axes are well-chosen, labeled and the measurement units are given.

Another issue is the correct aspect ratio for time series plots: if the time axis gets
too much compressed, it can become difficult to recognize the behavior of a series.
Thus, we recommend choosing the aspect ratio appropriately. However, there are
no hard and simple rules on how to do this. As a rule of the thumb, use the “banking
the angle to 45 degrees” paradigm: increase and decrease in periodic series should
not be displayed at angles much higher or lower than 45 degrees. For very long
series, this can become difficult on either A4 paper or a computer screen. In this
case, we recommend splitting up the series and display it in different frames. For
illustration, we here show an example, the monthly unemployment rate in the US
state of Maine, from January 1996 until August 2006. The data originate from the
book "Introductory Time Series with R" by Cowpertwait & Metcalfe
(https://www.springer.com/gp/book/9780387886978). The website has a zipped
folder where you can find Maine.dat. Or alternatively, uses the lecturers
preprocessed file unemployment.rda.

> load("unemployment.rda")
> plot(unemp, ylab="(%)", main="Unemployment in Maine")

ATSA 4 Descriptive Analysis

 Page 26

Not surprisingly for monthly economic data, the series shows both a non-linear trend
and a seasonal pattern that increases with the level of the series. Hence, using a
log-tranformation as explained in section 4.2 may be adviseable. Since
unemployment rates are one of the main economic indicators used by
politicians/decision makers, this series poses a worthwhile forecasting problem.

> plot(unemp, type="o", pch=20, ylab="(%)", main="…")

There are various ways by which time series plots can be enhanced. In some cases
when only relatively few data points are present and there is no distinct seasonal
pattern, "adding the points" with argument type="o" may be worthwhile. In other
applications, it has become the quasi-norm to plot vertical lines by type="h" rather
than the time series plot shown above.

Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006

3
4

5
6

Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006

3
4

5
6

ATSA 4 Descriptive Analysis

 Page 27

> plot(unemp, type="h", ylab="(%)", main="…")

In recent years, the ggplot2-package in R with it's elegant graphics has become
very popular. Generating a simple time series plot requires a bit more effort than
with R standard graphics, but the main advantage lies in the numerous
enhancements for complex data analysis situations that are relatively
straightforward. It is however beyond the scope of this course to give extensive
details about ggplot2 and unless needed, we will work with R standard graphics
throughout this script.

> ggplot(unemp, as.numeric=FALSE) + geom_line(size=1) +
+ ggtitle("Unemp…") + xlab("Year") + ylab("(%)")

Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006

3
4

5
6

3

4

5

6

1996 1998 2000 2002 2004 2006

Year

(%
)

Unemployment in Maine

ATSA 4 Descriptive Analysis

 Page 28

We finish this chapter with an automatically annoted time series plot of the lynx data
that was generated with an add-on package to ggplot2. Producing fancy graphics
has become its own discipline in data science and is certainly worthwhile.

> ggplot(lynx, as.numeric = FALSE) + geom_line() +
 ggtitle("Lynx Data with Peaks and Valleys") +
 stat_peaks(colour = "red") +
 stat_peaks(geom = "text", colour = "red",
 vjust = -0.5, x.label.fmt = "%Y") +
 stat_valleys(colour = "blue") +
 stat_valleys(geom = "text", colour = "blue", angle = 45,
 vjust = 1.5, hjust = 1, x.label.fmt = "%Y")+
 ylim(-500, 7300) + xlab("Year") + ylab("# Trapped Lynx")

4.1.2 Multiple Time Series Plots

In applied problems, one is sometimes provided with multiple time series. Here, we
illustrate some basics on import, definition and plotting. Our example exhibits the
monthly supply of electricity (millions of kWh), beer (millions of liters) and chocolate-
based production (tonnes) in Australia over the period from January 1958 to
December 1990. These data were published by the Bureau of Australian Statistics
and are presented in the book of Cowpertwait & Metcalfe.

> dat <- read.table("cbe.dat",sep="", header=T)
> cbe <- ts(dat, start=1958, freq=12)

This creates a multiple time series object that can very easily be displayed using the
generic plot command again, although the presentation turns out to be a bit dull, see
next page.

> plot(tsd, main="Chocolate, Beer & Electricity")

18
28

18
38

18
48 18

57

18
66

18
75

18
85

18
95

19
04

19
13
19

16

19
25

18
32

18
42 18

52
18

61
18

69
18

79

18
89

18
98 19

08

19
19 19

290

2000

4000

6000

1820 1840 1860 1880 1900 1920

Year

T

ra
pp

ed
 L

yn
x

Lynx Data with Peaks and Valleys

ATSA 4 Descriptive Analysis

 Page 29

A much nicer plot can be produced using the ggplot2-package using different
facets for the three series. However, it does not directly work with the multiple time
series object as the input, but requires creating a data frame in long format.

> cbedf <- data.frame(t=rep(as.numeric(time(cbe)), times=3),
 values=c(cbe[,1], cbe[,2], cbe[,3]),
 type=rep(c("choc", "beer", "elec"), each=nrow(cbe)))
> ggplot(cbedf, aes(time, values, fill=type)) +
 geom_area(alpha=0.3, size=1) + geom_line() +
 facet_grid(type~., scales="free") +
 ggtitle("Production in Australia") +
 xlab("Year") + ylab("Production")

20
00

60
00

ch
o

c
10

0
15

0
20

0

b
e

e
r

20
00

80
00

14
00

0

1960 1965 1970 1975 1980 1985 1990

e
le

c

Time

Chocolate, Beer & Electricity

ATSA 4 Descriptive Analysis

 Page 30

All three series show a distinct seasonal pattern, along with a trend. It is also
instructive to know that the Australian population increased by a factor of 1.8 during
the period where these three series were observed. As a general rule, using different
frames for multiple series is the most recommended means of visualization.
However, sometimes it can be more instructive to have them in the same frame. Of
course, this requires that the series are either on the same scale, or have been
indexed, resp. standardized to be so. Then, we can simply use plot(ind.tsd,
plot.type="single"). When working with one single panel, we recommend to
use different colors for the series, which is easily possible using a
col=c("green3", "red3", "blue3") argument.

Indexing the series
tsd <- cbe
tsd[,1] <- tsd[,1]/tsd[1,1]*100
tsd[,2] <- tsd[,2]/tsd[1,2]*100
tsd[,3] <- tsd[,3]/tsd[1,3]*100

Plotting in one single frame
clr <- c("green3", "red3", "blue3")
plot(tsd, plot.type="single", ylab="Index", col=clr)
title("Indexed Chocolate, Beer & Electricity")

Legend
ltxt <- names(dat)
legend("topleft", lty=1, col=clr, legend=ltxt)

In the indexed single frame plot above, we can very well judge the relative
development of the series over time. Due to different scaling, this was nearly
impossible with the multiple frames on the previous page. We observe that electricity
production increased around 8x during 1958 and 1990, whereas for chocolate the
multiplier is around 4x, and for beer less than 2x. Also, the seasonal variation is
most pronounced for chocolate, followed by electricity and then beer.

Time

In
d

e
x

1960 1965 1970 1975 1980 1985 1990

2
0

0
4

0
0

6
0

0
8

0
0

Indexed Chocolate, Beer & Electricity

choc
beer
elec

ATSA 4 Descriptive Analysis

 Page 31

A special remark needs to be made about the indexing. In the bit of code above, the
series were standardized using their first observed value. For seasonal time series,
this may be a suboptimal strategy as one of the series may have the highpoint at
the start observation, whereas for another series with an opposite pattern it may be
the lowpoint. In such cases, it is usually beneficial to take the entire first period as
the reference, i.e.:

> ## Indexing the series vs. the first period
> tsd <- cbe
> tsd[,1] <- tsd[,1]/mean(tsd[1:12,1])*100
> tsd[,2] <- tsd[,2]/mean(tsd[1:12,2])*100
> tsd[,3] <- tsd[,3]/mean(tsd[1:12,3])*100

For complementing this chapter about visualization of time series, we present
another output that was produced with ggplot2. As is typical for this package,
adding different colors, legends et cetera, i.e. enhancing the basic plot is
straightforward (if you know how to do so) and requires less code than the standard
plots in R.

> ## Graphical display with ggplot
> ggplot(cbedf, aes(time, values, color=type)) +
 geom_line() +
 ggtitle("Production in Australia") +
 xlab("Year") +
 ylab("Production")

Qualitatively, there is also a marked difference between the first version of the plot
using only the first value as the reference vs. this later one that standardizes with
the first year, notably for the evolution of beer and chocolate consumption. We
conclude the chapter by emphasizing that graphical displays of time series should
be well chosen and reflected.

ATSA 4 Descriptive Analysis

 Page 32

4.2 Transformations

Time series data do not necessarily need to be analyzed in the form they were
provided to us. In many cases, it is much better, more efficient and instructive to
transform the data. We will here highlight several cases and discuss their impact on
the results.

4.2.1 Linear Transformations

A linear transformation is of the form t tY a bX  . Examples include simple changes
in units, e.g. from meters to kilometers, kilograms to tons, et cetera. Also slightly
more complicated conversions as for example brining Fahrenheit temperatures to
the Celsius scale fall under this definition. It is obvious that such linear
transformations will not change the appearance of the series. Hence, all derived
results (i.e. autocorrelations, models, forecasts) will be equivalent. As a
consequence, we are free to perform linear transformations whenever it seems
convenient.

4.2.2 Monthly Sums and Averages

Often in time series analysis we consider monthly data and often these are delivered
as monthly totals. However, this adds unnecessary noise to the series, simply
because of the different number of days per month. Often, the seasonal effect
becomes much cleaner and easier to understand if we switch to the daily average
per month rather than considering the monthly total. From simplified patterns, we
humans as well as prediction models usually are more successful in extracting the
relevant information. Additionally, using daily averages also manages to deal with
the leap year problem, since in every fourth year, February will have 29 rather than
28 days. Obviously, this affects the monthly total, whereas the daily average is
hardly affected. The following example of monthly milk production per cow clearly
illustrates the issue. Please note that the monthdays() command from
library(TSA) facilitates the standardization markedly.

> library(TSA)
>
> ## Monthly totals
> plot(milk, xlab="Year", ylab="pounds", main="Monthly …")
> abline(v=1994:2006, col="grey", lty=3)
> lines(milk, lwd=1.5)
>
> ## Monthly average per day
> milk.adj <- milk/monthdays(milk)
> plot(milk.adj,xlab="Year",ylab="pounds", main="Average …")
> abline(v=1994:2006, col="grey", lty=3)
> lines(milk.adj, lwd=1.5)

ATSA 4 Descriptive Analysis

 Page 33

4.2.3 Log-Transformation

Many popular time series models and estimators (i.e. the usual ones for mean,
variance and correlation) are based and most efficient in case of Gaussian
distribution and additive, linear relations. However, data may exhibit different
behavior. In such cases, we can often improve results by working with transformed
values 1(),..., ()ng x g x rather than the original data 1,..., nx x , The most popular and
practically relevant transformation is () log()g    . It is indicated if the variation in the
series grows with the level, resp. if the series is on a relative scale where changes
are better expressed in percent rather than in absolute values. This is another big
advantage of the log-transformation: it is interpretable, i.e. the transformed values
are the relative changes for the original values.

Monthly Milk Production per Cow

Year

p
o

u
n

d
s

1994 1996 1998 2000 2002 2004 2006

1
3

0
0

1
5

0
0

1
7

0
0

Average Milk Production per Cow per Day

Year

p
o

u
n

d
s

1994 1996 1998 2000 2002 2004 2006

4
4

4
6

4
8

5
0

5
2

5
4

5
6

ATSA 4 Descriptive Analysis

 Page 34

For time series where a log-transformation is beneficial, the marginal distribution is
often (but not always!) right-skewed. Both properties are typical for time series which
can take positive values only, such as the lynx trappings from section 1.2.2. It is
easy to spot right-skewness by histograms and QQ-plots:

> hist(lynx, col="lightblue")
> qqnorm(lynx, pch=20); qqline(lynx, col="blue")

The lynx data are positive, on a relative scale and strongly right-skewed. Hence, a
log-transformation proves beneficial. Implementing the transformation is easy in R:

> plot(log(lynx), main="Logged Lynx Trappings")

Histogram of lynx

lynx

F
re

q
u

e
n

cy

0 2000 4000 6000

0
1

0
2

0
3

0
4

0
5

0
6

0

-2 -1 0 1 2

0
2

0
0

0
4

0
0

0
6

0
0

0

Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
til

e
s

Time

lo
g

(l
yn

x)

1820 1840 1860 1880 1900 1920

4
5

6
7

8
9

Logged Lynx Trappings

ATSA 4 Descriptive Analysis

 Page 35

The data now follow a more symmetrical pattern; the extreme upward spikes are all
gone. Another major advantage of the log-transformation is that model-based fitted
values, forecasts and prediction intervals will not take negative values. Often, this is
a must for series which are strictly positive. However, an eye has to be had in the
back-transformation to the original scale. If only the simple exp() is used, the back-
transformed point forecast will not be the mean, but only the median of the forecast
distribution. Fundamentally, the median may be a very reasonable summary statistic
for a skewed distribution. Nevertheless, there are applications where unbiased
predictions are a must, in which case a corrected back-transformation has to be
applied. It is given by:

2ˆ

ˆexp() 1
2
h

tx
 

  
 

, with 2ˆh  estimated h -step forecast variance

Obviously, the bigger the forecast variance is, the more pronounced the difference
between median and mean in the forecast distribution will be.

4.2.4 Box-Cox and Power Transformations

Another type of transformations sometimes used are power transformations which
are of the form () p

t tg x x . The most popular instance is perhaps the square-root
transformation with 1/ 2p  , which has some merit with count data. It's effect is
similar to the one of the log-transformation, i.e. it stabilizes the variation of the series
if that increases with the level. The drawback however is that the transformed values
lack a direct interpretation – they are not relative changes as with the log, but just
values on a different scale. The family of power transformations can be enhanced
by the so-called Box-Cox transformation

1

() t
t

x
g x






 with 0  .

Please note that the (non-allowed) case of 0  corresponds to the (natural, i.e.
base e) log-transformation discussed above. Again, Box-Cox transformed values
lack a direct interpretation, but the method is of importance as many of the (to be
presented) functions in library(forecast) allow for estimating  . In fact, there
is also the stand-alone function BoxCox.lambda() which allows for determining
the most suitable transformation, i.e.:

> BoxCox.lambda(lynx)
[1] 0.1521849

The value turns out to be 0.15>0, indicating that a power transformation may be
preferable to the log. On the other hand, we so lose the interpretability of the log,
potentially without much practical benefit. We thus recommend favoring the log over
a Box-Cox transformation for small  's (i.e. smaller than 0.3 ). Likewise, we can
often without any transformation at all if  is estimated close to one.

ATSA 4 Descriptive Analysis

 Page 36

If a Box-Cox transformation has been used, the issue of biased fitted values and
point forecasts appears again. For obtaining the mean of the forecast distribution, a
correction is needed:

2

1/
2

ˆ (1)
ˆ(1) 1

ˆ2(1)
h

t
t

x
x

  



 

    

This formula looks quite complicated. Fortunately, if using the forecast()
methods from library(forecast), it is already implemented. Corrected, bias-
free forecasts can be obtained by simply setting the argument unbiased=TRUE.
We emphasize again that it is not obligatory to do so: in case it is not used, the point
forecast will be the value where the realized value lies above resp. below with 50%
probability each. If a corrected point forecast is given, it is the mean of all realized
values – in case of a skewed distribution, this is not necessarily the better
representant of what's going to happen.

4.3 Decomposition

4.3.1 The Basics

We have learned in section 2.2 that stationarity is an important prerequisite for being
able to statistically learn from time series data. However, many of the example
series exhibit either trend and/or seasonal effect, and thus are non-stationary. In this
section, we will learn how to deal with that. First, we need to define what trend and
seasonality mean.

Trend

A deterministic trend in a time series is a long-term change in the mean, induced by
external factors. Typical examples among the series we have seen so far include
the Air Passenger, Australian Production, Maine Unemployment and SMI data. The
Lynx data on the other hand are considered to be without a trend. The obvious
fluctuations are attributed to a random cyclic component.

Seasonal Effect

A seasonal component is a deterministic cyclic component in a time series with a
fixed and known frequency, often caused by the way the measurements are
obtained. The most typical case is the seasonal effect in monthly data where the
measurement period comprises of multiple years, this coined the term. Typical
examples include the Air Passenger, Australian Production and Maine
Unemployment data. Seasonal components can also be present in e.g. hourly data
that were observed over several days, it is a "daily pattern" in this case. On the other
hand, the Lynx data are (as most yearly data) non-seasonal. They do have a random
cyclic component, but it is not a seasonal effect!

ATSA 4 Descriptive Analysis

 Page 37

The standard model describes a time series tX as an additive composition of a
(potentially absent) deterministic trend component tm , a (potentially absent)
seasonal effect ts and a stationary remainder term tR . Hence,

 t t t tX m s R   ,

where tX is the time series process at time t , tm is the trend, ts is the seasonal
effect, and tR is the remainder, i.e. a sequence of usually correlated random
variables with mean zero. In practice however, many time series exhibit an increase
in seasonal and random variation with the (trend) level. This is the case in all
seasonal series presented in this script, i.e. Air Passenger, Australian Production
and Maine Unemployment data. For making the additive decomposition model a
valid choice, the data need to be transformed with either a Box-Cox resp. power
transformation, or much more often, the logarithm. Simple math demonstrates that
an additive decomposition of a logged series means a multiplicative decomposition
on the original scale.

log() log() log() log() log()t t t t t t t t t tX m s R m s R m s R          

For illustration, we carry out a log-transformation on the air passenger bookings:

> plot(log(AirPassengers), ylab="log(Pax)", main=...)

The plot shows that indeed, the magnitude of seasonal effect and random variation
now seem to be less dependent of the level of the series than it was initially. Thus,
the multiplicative model is much more appropriate for the Air Passenger data than
the additive one. Alternatively, we could also estimate a Box-Cox transformation:

> BoxCox.lambda(AirPassengers)
[1] -0.2947156

Logged Passenger Bookings

Time

lo
g

(P
a

x)

1950 1952 1954 1956 1958 1960

5
.0

5
.5

6
.0

6
.5

ATSA 4 Descriptive Analysis

 Page 38

The value is so close to zero that we prefer to work with the easier-to-interpret
logarithm. Please note that if using any other Box-Cox transformation than the
logarithm, an additive decomposition would be estimated on the transformed scale,
but the original data do not follow a multiplicative decomposition model. Besides the
time series plot of original and transformed data and the BoxCox.lambda() value,
further evidence for a transformation can be found in the seasonal plots.

> seasonplot(AirPassengers, pch=20)
> seasonplot(log(AirPassengers), pch=20)

The left one on the untransformed data clearly shows that the difference between
summer and winter is larger in the later years when the passenger figures are
higher. After the log-transformation, the magnitude of the seasonal differences are
more or less constant, though. However, a further snag is that the seasonal effect
seems to alter over time rather than being constant. In earlier years, a prominent
secondary peak in March is apparent. Over time, this erodes away, but on the other
hand, the summer peak seems to be ever rising. The issue of how to deal with
evolving seasonal effects will be addressed later in chapter 4.3.4.

10
0

2
0

0
3

00
4

0
0

5
0

0
6

0
0

Seasonal plot: AirPassengers

Month

Jan Mar May Jul Sep Nov

5
.0

5
.5

6
.0

6
.5

Seasonal plot: log(AirPassengers)

Month

Jan Mar May Jul Sep Nov

ATSA 4 Descriptive Analysis

 Page 39

4.3.2 Differencing

A simple approach for removing deterministic trends and/or seasonal effects from a
time series is by taking differences. A practical interpretation of taking differences is
that by doing so, the changes in the data will be monitored, but no longer the series
itself. While this is conceptually simple and quick to implement, the main
disadvantage is that it does not result in explicit estimates of the trend component

tm , the seasonal component ts nor the remainder tR . Hence, it does not really serve
for a decomposition of a series tX , but the approach has its merits, especially for
the class of SARIMA models, presented in chapter 6.

We will first turn our attention to series with an additive trend, but without seasonal
variation. By taking first-order differences with lag 1, and assuming a trend with little
short-term changes, i.e. 1t tm m  , we have:

1 1

t t t

t t t t t

X m R

Y X X R R 

 
   

In practice, this kind of differencing approach “mostly works”, i.e. manages to reduce
presence of a trend in the series in a satisfactory manner. However, the trend is only
fully removed if it is exactly linear, i.e. tm t   . Then, we obtain:

 1 1t t t t tY X X R R     

Another somewhat disturbing property of the differencing approach is that strong,
artificial new dependencies are created, meaning that the autocorrelation in tY is
different from the one in tR . For illustration, consider a stochastically independent
remainder tR : the differenced process tY has autocorrelation!

1 1 1 2

1 1

(,) (,)

(,)

0

t t t t t t

t t

Cov Y Y Cov R R R R

Cov R R
   

 

  
 


We illustrate how differencing works by using a dataset that shows the traffic
development on Swiss roads. The data are available from the federal road office
(ASTRA) and show the indexed traffic amount from 1990-2010. We type in the
values and plot the original series:

> SwissTraffic <- ts(c(100.0, 102.7, 104.2, 104.6, 106.7,
 106.9, 107.6, 109.9, 112.0, 114.3,
 117.4, 118.3, 120.9, 123.7, 124.1,
 124.6, 125.6, 127.9, 127.4, 130.2,
 131.3), start=1990, freq=1)
>
> plot(SwissTraffic)

ATSA 4 Descriptive Analysis

 Page 40

There is a clear trend, which is close to linear, thus the simple approach should work
well here. Taking first-order differences with lag 1 shows the yearly changes in the
Swiss Traffic Index, which must now be a stationary series. In R, the job is done with
function diff().

> diff(SwissTraffic)
Time Series:
Start = 1991
End = 2010
Frequency = 1
 [1] 2.7 1.5 0.4 2.1 0.2 0.7 2.3 2.1 2.3 3.1
[11] 0.9 2.6 2.8 0.4 0.5 1.0 2.3 -0.5 2.8 1.1

Swiss Traffic Index

Time

In
d

e
x

V
a

lu
e

1990 1995 2000 2005 2010

1
0

0
1

1
0

1
2

0
1

3
0

Differenced Swiss Traffic Index

Time

C
h

a
n

g
e

1995 2000 2005 2010

-0
.5

0
.5

1
.5

2
.5

ATSA 4 Descriptive Analysis

 Page 41

Please note that the time series of differences is now 1 instance shorter than the
original series. The reason is that for the first year, 1990, there is no difference to
the previous year available. The differenced series now seems to have a constant
mean, i.e. the trend was successfully removed.

Log-Transformation and Differencing

On a sidenote, we consider a series that was log-transformed first, before first-order
differences with lag 1 were taken. An example is the SMI data that were shown in
section 1.2.4. The result is the so-called log return, which is an approximation to the
relative change, i.e. the percent in- or decrease with respect to the previous
instance. In particular:

 1 1
1

1 1 1

log() log() log log 1t t t t t
t t t

t t t

X X X X X
Y X X

X X X
 


  

    
        

   

The approximation of the log return to the relative change is very good for small
changes, and becomes a little less precise with larger values. For example, if we
have a 0.00% relative change, then 0.00%tY  , for 1.00% relative change we obtain

0.995%tY  and for 5.00%, 4.88%tY  . We conclude with summarizing that for any
non-stationary series which is also due to a log-transformation, the transformation
is always carried out first, and then followed by the differencing!

The Backshift Operator

We here introduce the backshift operator B because it allows for convenient
notation. When the operator B is applied to tX it returns the instance at lag 1, i.e.

1()t tB X X  .

Less mathematically, we can also say that applying B means “go back one step”,
or “increment the time series index t by -1”. The operation of taking first-order
differences at lag 1 as above can be written using the backshift operator:

 1(1)t t t tY B X X X    

However, the main aim of the backshift operator is to deal with more complicated
forms of differencing, as will be explained below.

Higher-Order Differencing

We have seen that taking first-order differences is able to remove linear trends from
time series. What has differencing to offer for polynomial trends, i.e. quadratic or
cubic ones? We here demonstrate that it is possible to take higher order differences
to remove also these, for example, in the case of a quadratic trend.

ATSA 4 Descriptive Analysis

 Page 42

2
1 2

2

1 1 2

1 2 2

,

(1)

() ()

2 2

t t t

t t

t t t t

t t t

X t t R R stationary

Y B X

X X X X

R R R

  


  

 

   
 
   
   

We see that the operator 2(1)B means that after taking “normal” differences, the
resulting series is again differenced “normally”. This is a discretized variant of taking
the second derivative, and thus it is not surprising that it manages to remove a
quadratic trend from the data. As we can see, tY is an additive combination of the
stationary tR ’s terms, and thus itself stationary. Again, if tR was an independent
process, that would clearly not hold for tY , thus taking higher-order differences
(strongly!) alters the dependency structure.

Moreover, the extension to cubic trends and even higher orders d is
straightforward. We just use the (1)dB operator applied to series tX . In R, we can
employ function diff(), but have to provide argument differences=d for
indicating the order of the difference d . In practice, we can use R function
ndiffs() for determining the appropriate order of differencing d .

Removing Seasonal Effects by Differencing

For time series with monthly measurements, seasonal effects are very common.
Using an appropriate form of differencing, it is possible to remove these, as well as
potential trends. We take first-order differences with lag p :

 (1)pt t t t pY B X X X     ,

Here, p is the period of the seasonal effect, or in other words, the frequency of
series, which is the number of measurements per time unit. The series tY then is
made up of the changes compared to the previous period’s value, e.g. the previous
year’s value. Also, from the definition, with the same argument as above, it is evident
that not only the seasonal variation, but also a strictly linear trend will be removed.

Usually, trends are not exactly linear. We have seen that taking differences at lag 1
removes slowly evolving (non-linear) trends well due to 1t tm m  . However, here the
relevant quantities are tm and t pm  , and especially if the period p is long, some
trend will usually be remaining in the data. Then, further action is required.

Example

We are illustrating seasonal differencing using the Mauna Loa atmospheric 2CO
concentration data. This is a time series with monthly records from January 1959 to
December 1997. It exhibits both a trend and a distinct seasonal pattern. We first
load the data and do a time series plot:

> data(co2)
> plot(co2, main="Mauna Loa CO2 Concentrations")

ATSA 4 Descriptive Analysis

 Page 43

Seasonal differencing is very conveniently available in R. We use function diff(),
but have to set argument lag=.... For the Mauna Loa data with monthly
measurements, the correct lag is 12. This results in the series shown on the next
page. Because we are comparing every record with the one from the previous year,
the resulting series is 12 observations shorter than the original one. It is pretty
obvious that some trend is remaining and thus, the result from seasonal differencing
cannot be considered as stationary. As the seasonal effect is gone, we could try to
add some first-order differencing at lag 1.

> sd.co2 <- diff(co2, lag=12)
> plot(sd.co2, main="Differenced Mauna Loa Data (p=12)")

Mauna Loa CO2 Concentrations

Time

co
2

1960 1970 1980 1990

3
2

0
3

3
0

3
4

0
3

5
0

3
6

0

Differenced Mauna Loa Data (p=12)

Time

sd
.c

o
2

1960 1970 1980 1990

0
.0

1
.0

2
.0

3
.0

ATSA 4 Descriptive Analysis

 Page 44

The second differencing step indeed manages to produce a stationary series, as
can be seen below. The equation for the final series is:

 12(1) (1)(1)t t tZ B Y B B X     .

The next step would be to analyze the autocorrelation of the series below and fit an
(,)ARMA p q model. Due to the two differencing steps, such constructs are also

named SARIMA models. They will be discussed in chapter 6.

We conclude this section by emphasizing that while differencing is quick and simple,
and (correctly done) manages to remove any trend and/or seasonality, we do not
obtain explicit estimates for trend tm , seasonal effect ts and remainder tR which
proves problematic in many applications.

Twice Differenced Mauna Loa Data (p=12, p=1)

Time

d
1

.s
d

.c
o

2

1960 1970 1980 1990

-1
.0

-0
.5

0
.0

0
.5

1
.0

ATSA 4 Descriptive Analysis

 Page 45

4.3.3 Smoothing, Filtering

Our next goal is to define a decomposition procedure that yields explicit trend,
seasonality and remainder estimates ˆ tm , t̂s and ˆ

tR . In the absence of a seasonal
effect, the trend of a time series can simply be obtained by applying an additive
linear filter:

 ˆ
q

t i t i
i p

m a X 




This definition is general, it allows for arbitrary weights and asymmetric windows.
The most popular implementation is with p q and 1/ (2 1)ia p  , i.e. a running
mean or moving average estimator with symmetric window and uniformly distributed
weights. The window size is the smoothing parameter.

Example: Trend Estimation with Running Mean

We here again consider the Swiss Traffic data that were already exhibited before.
They show the indexed traffic development in Switzerland between 1990 and 2010.
Linear filtering is available with function filter() from the base functionality in R.,
whereas for moving average computation, function ma() from
library(forecast) is even more convenient.

> trend.est <- filter(SwissTraffic, filter=c(1,1,1)/3)
> trend.est <- ma(SwissTraffic, order=3)

> trend.est
Time Series: Start = 1990, End = 2010, Frequency = 1
 [1] NA 102.3000 103.8333 105.1667 106.0667 107.0667
 [7] 108.1333 109.8333 112.0667 114.5667 116.6667 118.8667
[13] 120.9667 122.9000 124.1333 124.7667 126.0333 126.9667
[19] 128.5000 129.6333 NA

Time

In
d

e
x

V
a

lu
e

1990 1995 2000 2005 2010

1
0

0
1

1
0

1
2

0
1

3
0

Swiss Traffic Index with Running Mean

ATSA 4 Descriptive Analysis

 Page 46

In our example, we chose the trend estimate to be the mean over three consecutive
observations, resp. a 3-year moving average. This has the consequence that for
both the first and the last instance of the time series, no trend estimate is available.
We will later present more sophisticated methods that also allow for estimates near
the endpoints. Furthermore, it is apparent that the Swiss Traffic series has a very
strong trend signal, whereas the remaining stochastic term is comparably small in
magnitude. We can now compare the estimated remainder term from the running
mean trend estimation to the result from differencing:

The blue line is the remainder estimate from running mean approach, while the grey
one resulted from differencing with lag 1. We observe that the latter has bigger
variance; and, while there are some similarities between the two series, there are
also some prominent differences – please note that while both seem stationary, they
are different.

Trend Estimation for Seasonal Data

We now turn our attention to time series that show both trend and seasonal effect.
The goal is to specify a filtering approach that allows trend estimation for periodic
data. We still base this on the running mean idea, but have to make sure that we
average over a full period. For monthly data, the formula is:

 6 5 5 6

1 1 1

12 2 2
ˆ t t t t tX Xm X X       

 
 

, for 7,..., 6t n 

Be careful, as there is a slight snag if the frequency is even: if we estimate the trend
for December, we use data from July to May, and then also add half of the value of
the previous June, as well as half of the next June. This is required for having a
window that is centered at the time we wish to estimate the trend. Using R’s function

Time

re
si

d
.r

u
m

e

1990 1995 2000 2005 2010

-2
-1

0
1

2

Estimated Stochastic Remainder Term

ATSA 4 Descriptive Analysis

 Page 47

filter(), with appropriate choice of weights, we can compute the seasonal
running mean. Or we can use function ma() with argument order=12 for the same
task. We illustrate this with the Mauna Loa 2CO data.

> wghts <- c(.5,rep(1,11),.5)/12
> trend.est <- filter(co2, filter=wghts, sides=2)
> trend.est <- ma(co2, order=12, centre=TRUE)
> plot(co2, main="Mauna Loa CO2 Concentrations")
> lines(trend.est, col="red")

We obtain a trend which fits well to the data. It is not a linear trend, rather it seems
to be slightly progressively increasing, and it has a few kinks, too.

We finish this section about trend estimation using linear filters by stating that other
smoothing approaches, e.g. running median estimation, the loess smoother and
many more are valid choices for trend estimation, too. In fact, several of them have
clear advantages over simple movering average approaches.

Estimation of the Seasonal Effect

For fully decomposing periodic series such as the Mauna Loa data, we also need to
estimate the seasonal effect. This is done on the basis of the trend adjusted data:
simple averages over all observations from the same seasonal entity are taken. The
following formula shows the January effect estimation for the Mauna Loa data, a
monthly series which starts in January and has 39 years of data.

38

1 13 12 1 12 1
0

1
ˆ ˆ ˆ ˆ... ()

39Jan j j
j

s s s x m 


     

In R, a convenient way of estimating such seasonal effects is by generating a factor
for the months, and then using the tapply() function. Please note that the

Mauna Loa CO2 Concentrations

Time

co
2

1960 1970 1980 1990

3
2

0
3

3
0

3
4

0
3

5
0

3
6

0

ATSA 4 Descriptive Analysis

 Page 48

seasonal running mean naturally generates NA values at the start and end of the
series, which need be removed in the seasonal averaging process.

> trend.adj <- co2-trend.est
> month <- factor(rep(1:12,39))
> seasn.est <- tapply(trend.adj, month, mean, na.rm=TRUE)
> plot(seasn.est, type="h", xlab="Month")
> title("Seasonal Effects for Mauna Loa Data")
> abline(h=0, col="grey")

In the plot above, we observe that during a period, the highest values are usually
observed in May, whereas the seasonal low is in October. The estimate for the
remainder at time t is simply obtained by subtracting estimated trend and
seasonality from the observed value.

 ˆ ˆ ˆt t t tR x m s  

From the plot on the next page, it seems as if the estimated remainder still has some
periodicity and thus it is questionable whether it is stationary. The periodicity is due
to the fact that the seasonal effect is not constant but slowly evolving over time. In
the beginning, we tend to overestimate it for most months, whereas in the end, we
underestimate. We will address the issue on how to visualize evolving seasonality
below in section 4.3.4 about STL-decomposition. A further option for dealing with
non-constant seasonality is given by the exponential smoothing approach which is
covered in chapter 8.

> rmain.est <- co2-trend.est-rep(seasn.est,39)
> plot(rmain.est, main="Estimated Stochastic Remainder Term")

2 4 6 8 10 12

-3
-2

-1
0

1
2

3

Month

se
a

sn
.e

st

Seasonal Effects for Mauna Loa Data

ATSA 4 Descriptive Analysis

 Page 49

Moreover, we would like to emphasize that R offers the convenient decompose()
function for running mean estimation and seasonal averaging.

> co2.dec <- decompose(co2)
> plot(co2.dec)

Estimated Stochastic Remainder Term

Time

rm
a

in
.e

st

1960 1970 1980 1990

-0
.5

0
.0

0
.5

32
0

34
0

36
0

o
b

se
rv

e
d

32
0

34
0

36
0

tr
e

n
d

-3
-1

1
2

3

se
a

so
n

a
l

-0
.5

0.
0

0.
5

1960 1970 1980 1990

ra
n

d
o

m

Time

Decomposition of additive time series

ATSA 4 Descriptive Analysis

 Page 50

Please note that decompose() only works with periodic series where at least two
full periods were observed; else it is not mathematically feasible to estimate trend
and seasonality from a series. The decompose() function also offers the neat
plotting method shown above that generates the four frames above with the series,
and the estimated trend, seasonality and remainder. Except for the different
visualization, the results are exactly the same as what we had produced with our
do-it-yourself approach.

4.3.4 Seasonal-Trend Decomposition with LOESS

It is well known that the running mean resp. moving average is not the best smoother
around. Thus, potential for improvement exists. While there is a dedicated R
procedure for decomposing periodic series into trend, seasonal effect and
remainder, we have to do some handwork in non-periodic cases.

Trend Estimation with LOESS

We here again consider the Swiss Traffic dataset, for which the trend had already
been estimated above. Our goal is to re-estimate the trend with LOESS, a
smoothing procedure that is based on local, weighted regression. The aim of the
weighting scheme is to reduce potentially disturbing influence of outliers. Applying
the LOESS smoother with (the often optimal) default settings is straightforward:

> fit <- loess(SwissTraffic~time(SwissTraffic))
> trend <- predict(fit)

We observe that the estimated trend, in contrast to the running mean result, is now
smooth and allows for interpolation within the observed time. Also, the loess()
algorithm returns trend estimates which extend to the boundaries of the dataset. In
summary, we recommend to always perform trend estimation with LOESS.

Time

In
d

e
x

V
a

lu
e

1990 1995 2000 2005 2010

1
0

0
1

1
0

1
2

0
1

3
0

Swiss Traffic Index with Running Mean

ATSA 4 Descriptive Analysis

 Page 51

Using the stl() Procedure for Periodic Series

R’s stl() procedure offers a versatile and robust decomposition of a periodic time
series into trend, seasonality and remainder. All estimates are based on the LOESS
smoother. STL has several advantages over the moving average decomposition
from chapter 4.3.3. In particular, the seasonal component can remain stable over
time, but it may also evolve with a rate of change that can be controlled by the user.
Moreover, the user also has control over the smoothness of the trend. We do here
without going into technical details about this iterative procedure, but focus on usage
and interpretation. We illustrate with a time series on manufacturing of electrical
equipment in the EU which can be found as elecequip in library(fpp). It
contains monthly indexed values from January 1996 to November 2011. The data
are on a relative scale and also lambda estimation indicates that a log-
transformation (i.e. multiplicative decomposition) is sensible.

> BoxCox.lambda(elecequip)
[1] 0.1822501

We then apply the stl() function with its default settings. For the s.window
argument, there is no default value. We set it to "periodic" which mean assuming
a seasonal pattern that remains unchanged over time.

> ee.stl <- stl(elecequip, s.window="periodic")
> plot(ee.stl, main="STL-Decomposition of Electrical …")

The graphical output is similar to the one from decompose() The grey bars on the
right hand side facilitate interpretation of the decomposition: they show the relative
magnitude of the effects, i.e. cover the same span on the y-scale in all of the frames.
Hence, for the electrical equipment series, the trend contributes most the the

STL-Decomposition of Electrical Equipment Data

4.
2

4
.4

4
.6

4
.8

da
ta

-0
.2

0
-0

.1
0

0.
00

0
.1

0

se
a

so
n

a
l

4.
40

4.
50

4.
60

4
.7

0

tre
n

d

-0
.0

5
0.

00
0.

0
5

2000 2005 2010

re
m

a
in

de
r

time

ATSA 4 Descriptive Analysis

 Page 52

variation, followed by the seasonal effect and finally the remainder. The two principal
arguments in function stl() are t.window and s.window: t.window controls
the amount of smoothing for the trend, and has a default value which often yields
good results. The value used can be inferred with:

> ee.stl$win[2]
 t
19

The result is the number of lags used as a window for trend extraction in LOESS.
Increasing it means the trend becomes smoother; lowering it makes the trend
rougher, but more adapted to the data. In our particular example, the trend already
looks slightly wiggly, so it does not seem advisable to lower t.window further. On
the other hand, the current decomposition seems unable to fully capture the sudden
drops in years 2000 and 2009, because a couple of remainder terms before the drop
are positive and some thereafter are negative. This is rooted somewhat in the fact
that smoothers cannot cope well with sudden jumps in data, i.e. assume a
continuous and smooth underlying function. Hence, the elecequip series
manages to unveil the limits of the stl() procedure.

Once the decomposition is obtained, some functions can be useful: seasonal()
will extract the seasonal component, trendcycle() yields the trend,
remainder() undoubtedly outputs the remainder and finally seasadj()
computes the seasonally adjusted series.

> plot(log(elecequip), main="Electrical Equipment …")
> lines(trendcycle(ee.stl), col="red", lwd=2)
> lines(seasadj(ee.stl), col="blue", lwd=2)
> legend("bottomright", c("Trend", "Seasadj"), col=…)

Evolving Seasonality

Electrical Equipment Manufacturing

Time

lo
g(

e
le

ce
q

u
ip

)

2000 2005 2010

4
.2

4
.4

4
.6

4
.8

Trend Seasadj

ATSA 4 Descriptive Analysis

 Page 53

In some time series, the pattern of the seasonal effect evolves over time. To some
extent, this is the case in the above electrical equipment data. The effect is more
prominently visible and easier to explain in the air passenger series, to which we
switch back here. With the stl() procedure, it is straightforward to obtain an
estimate if we just set argument s.window to a numeric value which is the
smoothing parameter. There is no default value and the optimal setting has to be
determined exploratively from the data. As a starting value, s.window=13 is often
a good choice. For explaining the procedure, we here consider the logged air
passenger data where the trend has been removed using a moving average. We
here display all March and all August values of the trend-adjusted series and add a
Loess smoother.

When assuming a non-evolving seasonal effect, the standard procedure would be
to take the mean of the data points in each of the above scatterplots and declare
that as the seasonal effect for March and August, respectively. This is a rather crude
way of data analysis, and can of course be improved if the magnitude of the March
and August effect develops as the smoothers suggest. Please note that the above
plots and smoother estimation were presented for didactic purpose only. In practice,
we can conveniently use the stl() procedure. We fit two decompositions with
differing smoothing parameters.

> fit.05 <- stl(lap, s.window= 5)
> fit.13 <- stl(lap, s.window=13)

Please be reminded again that there is no default value for the seasonal span, and
the optimal choice is left to the user upon visual inspection. An excellent means for
doing so is the monthplot() function which shows the seasonal effects that were
estimated by stl().

> monthplot(fit.13, main="Monthplot, s.window=13")
> monthplot(fit.05, main="Monthplot, s.window=5")

-0
.0

5
0

.0
0

0
.0

5
0

.1
0

1949 1952 1955 1958

Effect of March

0
.1

5
0

.2
0

0
.2

5

1949 1952 1955 1958

Effect of August

ATSA 4 Descriptive Analysis

 Page 54

The amount of smoothing seems appropriate in the left panel with s.window=13.
However on the right, with smaller span, i.e. s.window=5, we observe overfitting:
the seasonal effects do not evolve in a smooth way, and it means that this is not a
good decomposition estimate. We finally display the decomposition with the chosen
seasonal smoothing parameter.

> plot(fit.13, main="STL-Decomposition ...")

Multiple Seasonalities

Monthplot, s.window=13
se

a
so

n
a

l

J M M J S N

-0
.2

-0
.1

0
.0

0
.1

0
.2

Monthplot, s.window=5

se
a

so
n

a
l

J M M J S N

-0
.2

0
.0

0
.1

0
.2

STL-Decomposition of Logged Air Passenger Bookings

5.
0

6.
0

d
a

ta

-0
.2

0.
0

0.
2

se
a

so
n

a
l

4.
8

5.
4

6.
0

tr
e

n
d

-0
.0

5
0.

05

1950 1952 1954 1956 1958 1960

re
m

a
in

d
e

r

time

ATSA 4 Descriptive Analysis

 Page 55

Some time series, e.g. with daily or intra-daily records, may exhibit various
seasonalities. An example is series taylor from library(forecast) which
shows half-hour electricity demands in England and Wales from Monday 5 June
2000 to Sunday 27 August 2000. It may show both a daily and a weekly pattern.
This can conveniently be visualized by the fully automatic mstl() procedure from
library(forecast). It automatically detects all present seasonalities and
determines estimates for the Box-Cox  , t.window and s.window parameters.

> fit <- mstl(taylor)
> plot(fit, main="Multiple Seasonality Decomposition")

The output shows that two seasonal components with a frequency of 48 (i.e. a daily
pattern for the half-hourly measurements) and 336 (a weekly pattern) were
identified. Potentially, these data also feature a yearly pattern. But since the data
were only observed over around 13 weeks, this cannot be identified and becomes
part of the trend resp. remainder components (which are also displayed).

As always with fully automatic procedures, the results have to be critically evaluated
and verified. It is possible to take control and alter all estimated values which may
or may not be necessary. Moreover, the mstl() procedure does not yield the grey
side bars and completely lacks information about the significance of the different
components. For gaining further insight or also dealing with "seasonaltities" such as
e.g. easter which change their position in the calendar, we better resort to the
parametric modelling approach discussed below. There, we have access to all
inference tools from regression and can fit even more sophisticated decompositions.

20
0

00
30

00
0

D
a

ta

28
5

00
29

50
0

T
re

n
d

-8
00

0
-4

00
0

0
40

00

2 4 6 8 10 12

S
e

a
so

n
a

l4
8

Time

-8
00

0
-4

00
0

0
20

00

S
e

a
so

n
a

l3
3

6

-1
5

00
-5

00
0

50
0

2 4 6 8 10 12

R
e

m
a

in
d

e
r

Time

Multiple Seasonality Decomposition

ATSA 4 Descriptive Analysis

 Page 56

4.3.5 Parametric Modeling

A powerful approach for decomposing time series is parametric modeling. In fact, it
allows for mimicking all the decomposition approaches that were discussed here
previously. We will here focus on two examples. The first is a very short time series
where a parsimonius parametric model is set up for accurate estimation of a trend,
seasonal and remainder component. The strength of the parametric modeling
approach in this example lies in the fact that we only need spending four degrees of
freedom for estimating a full decomposition which is much less than the smoothing
approaches presented above would require. Additionally, this regression based
approach also allows for formal significance testing for the trend and the seasonal
component which is often very valuable in explorative data analysis. Some prudence
is required though due to the potentially correlated residuals in the linear models,
an issue which will only be thoroughly discussed in chapter 7. In a second example,
we use parametric modeling in a more flexible way with a smooth trend component
and a dummy variable for the seasonal component, which yields results that are
close to a STL decomposition or the smoothing approach implemented in R’s
decompose() procedure.

Parsimonius Decomposition of Phosphate Measurements

This example is an excerpt from a joint research project of the lecturer with
Environmental Protection Office of the Swiss Canton Lucerne (UWE Luzern). Part
of this project included the analysis of Phosphate levels in the river Suhre, which is
an effluent of Lake Sempach. The time series with 36 monthly measurements over
a period of 3 years is displayed below.

> plot(spt, type="o", ylab="Phosphate Level", pch=20)
> title("Phosphate Levels in River Suhre")

Time

P
h

o
sp

h
a

te
 L

e
ve

l

2002.0 2002.5 2003.0 2003.5 2004.0 2004.5 2005.0

1
0

1
5

2
0

2
5

3
0

3
5

Phosphate Levels in River Suhre

ATSA 4 Descriptive Analysis

 Page 57

The time series features a prominent seasonal effect and potentially a slight
downward trend. The aims in the project included a decomposition of the series, as
well as statements whether there are trends and seasonalities in the various
pollutants that were analyzed for a large number of rivers in the canton.

As the time series only has 36 observations and there seems to be a considerable
amount of (weather, i.e. rainfall or draught induced) noise, using smoothing
approaches or STL did not seem promising. These methods unavoidably spend
many degrees of freedom, primarily due to simple averaging in the seasonal
component. A way out is to set up a parametric decomposition model that is based
on a linear trend in time plus a cyclic seasonal component and a remainder.

 0 1 2 3sin(2) cos(2)t tX t t t R             , 2002 /12t i  with 1,...,36i  .

This model achieves a full trend/season/remainder decomposition with only four
unknowns that can be estimated using the least squares approach, though using
robust fitting methods might provide a very good alternative. We here provide the
code for estimating the model in R.

> tnum <- as.numeric(time(spt))
> fit <- lm(spt ~ tnum + sin(2*pi*tnum) + cos(2*pi*tnum))
> cf <- coef(fit); summary(fit)
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2831.2732 1692.7075 1.673 0.10415
tnum -1.4019 0.8449 -1.659 0.10684
sin(2 * pi * tnum) 7.8420 1.0320 7.599 1.17e-08 ***
cos(2 * pi * tnum) 3.4357 1.0004 3.434 0.00166 **

Residual standard error: 4.234 on 32 degrees of freedom
Multiple R-squared: 0.7247, Adjusted R-squared: 0.6989
F-statistic: 28.08 on 3 and 32 DF, p-value: 4.332e-09

The coefficients and inference results can be seen from the summary output, but
we have to be careful with their interpretation. The error term in the linear model is
a stationary, but potentially serially correlated time series tR . If correlation exists,
the assumptions for the least square algorithm are violated. Chapter 7 contains a
full expositions of these topics, but in short summary, the coefficients would be
unbiased though slightly inefficiently estimated, whereas the standard erros are
biased and the derived p-values are not trustworthy. We plot the fit.

> plot(spt, type="p", pch=20, ylab="Phosphate Level")
> abline(cf[1], cf[2], col="blue", lty=3, lwd=2)
> lines(tnum, fitted(fit), col="red", lwd=2)

ATSA 4 Descriptive Analysis

 Page 58

The red line shows the fitted values, i.e. the estimated average Phosphate levels.
In blue, the trend function has been added. We can also provide a full decomposition
plot as for example STL provides, but we have to construct it ourselves – see next
page for the output.

> plot(spt, type="o", pch=20)
> plot(spt, type="n"); abline(cf[1], cf[2], col="blue")
> plot(tnum, cf[3]*sin(2*pi*tnum) + cf[4]*cos(2*pi*tnum),
 type="o", pch=20)
> plot(tnum, residuals(fit), type="h")
> points(tnum, residuals(fit), pch=20)
> abline(h=0, col="grey")

Despite the fact that a simple, linear trend function and a cyclic sine/cosine
seasonality was used, the remainder seems like a stationary series with mean zero.
There is no apparent serial correlation among the remainder terms, hence in this
situation, we can even rely on the inference results. Please note that while the
chosen model is fully adequate for the present situation, being so simplistic and
parsimonius is not the correct strategy on all datasets. There is absolutely no need
that a seasonal component is cyclic, with the Airline Pax being a prominent
counterexample.

Flexible Decomposition of Maine Unemployment Data

We consider the Maine unemployment data from section 4.1.1. Our goal is to fit a
smooth trend, along with a seasonal effect that is obtained from averaging.
Sometimes, polynomial functions are used for modeling the trend function.
However, we recommend to stay away from high-order polynomials due to their
often very erratic behavior at the boundaries (cf. Runge’s Phenomenon), so that
anything beyond a quadratic trend should be avoided.

Time

P
h

o
sp

h
a

te
 L

e
ve

l

2002.0 2002.5 2003.0 2003.5 2004.0 2004.5 2005.0

1
0

1
5

2
0

2
5

3
0

3
5

Phosphate Levels in River Suhre with Fit

ATSA 4 Descriptive Analysis

 Page 59

The way out lies in using a generalized additive model (GAM) with a flexible trend
function. The seasonal effect is included as a factor variable. In mathematical
notation, the model is:

() ,t ti tX f t R   ,

where 1, ,128t   and {1, ,12}i t   , i.e.
i t is a factor variable encoding for the

month the observation was made in, see the R code below. Two questions
immediately pop up, namely how to determine the smooth trend function ()f  , and
how fo fit the model as a whole. Both can conveniently be done using the gam()
function from library(mgcv) in R. Please note that here, we model resp.
decompose the logged Maine data, since their variation clearly increases with
increasing level of the series.

Time Series

2002.0 2002.5 2003.0 2003.5 2004.0 2004.5 2005.0

10
15

20
25

30
35

Trend Component

2002.0 2002.5 2003.0 2003.5 2004.0 2004.5 2005.0

10
15

20
25

30
35

2002.0 2002.5 2003.0 2003.5 2004.0 2004.5 2005.0

-5
0

5

Seasonal Component

2002.0 2002.5 2003.0 2003.5 2004.0 2004.5 2005.0

-5
0

5

Remainder

ATSA 4 Descriptive Analysis

 Page 60

> library(mgcv)
> tnum <- as.numeric(time(maine))
> mm <- rep(c("Jan", "Feb", "Mar", "Apr", "May", "Jun",
+ "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
> mm <- factor(rep(mm,11),levels=mm)[1:128]
> fit <- gam(log(maine) ~ s(tnum) + mm)

We do without displaying the summary output, because it is rather long and requires
(as using this decomposition strategy) some knowledge in GAM. Let us just mention
that the method decides to spend 8.196 degrees of freedom for the trend function,
which corresponds to a polynomial of 8th grade (which however, would provide a
much worse fit). The degrees of freedom are estimated internally using a cross
validation approach and usually provide a sensible solution. It is possible to display
the results graphically. It is normally very instructive to show the time series together
with the fitted values. Furthermore, we also present the estimated trend function (via
the partial residual plot obtained from function plot.gam()) plus the seasonal
effect which is extracted from the dummy variable coeffcients.

> plot(log(maine), ylab="(%)", main="Logged Unemployment…")
> lines(tnum, fitted(fit), col="red")

> plot(fit, shade=TRUE, xlab="", ylab="Time")
> seas.eff <- c(0,coef(fit)[2:12])-mean(c(0,coef(fit)[2:12]))
> plot(1:12, seas.eff, xlab="Month", ylab="", type="h")
> points(1:12, seas.eff, pch=20)
> abline(h=0, col="grey")

As we can see from the estimated trend and seasonal components (see next page),
a simple model using a linear trend or a cyclic seasonal component would not have
been suitable here. Please also note that both the trend component and the
seasonal effect are centered to mean zero here.

Logged Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006

1
.0

1
.2

1
.4

1
.6

1
.8

ATSA 4 Descriptive Analysis

 Page 61

Finally, we extract the remainder term. These are just the residuals from the GAM
model, which are readily available and very quickly plotted.

> plot(resid(fit), type="o", pch=20)

The plot strongly raises the question whether the remainder term can be seen as
stationary. It seems as if the behavior over the first 50 observations is markedly
different than in the second two thirds of the series. Moreover, the late observations
show a prominent perdiodicity with an off-season period of roughly 20 observations.
Hence, further investigation of these features would certainly be required. However,
we conclude our exposition on parametric modeling for time series decomposition
at this point.

1996 2000 2004

-0
.3

-0
.1

0
.0

0
.1

0
.2

T
im

e
Trend

2 4 6 8 10 12

-0
.2

-0
.1

0
.0

0
.1

0
.2

Seasonal Effect

Month

0 20 40 60 80 100 120

-0
.1

0
-0

.0
5

0
.0

0
0

.0
5

0
.1

0

Index

re
si

d
(f

it)

Remainder

ATSA 4 Descriptive Analysis

 Page 62

4.4 Autocorrelation

An important feature of time series is their (potential) serial correlation. This section
aims at analyzing and visualizing these correlations. We first display the
autocorrelation between two random variables t kX  and tX , which is defined as:

(,
Cor(,

()

)

(
)

)
t k t

t k t

t k t

Cov X X
X X

Var X Var X







This is a dimensionless measure for the linear association between the two random
variables. Since for stationary series, we require the moments to be non-changing
over time, we can drop the index t for these, and write the autocorrelation as a
function of the lag k :

 () (,)t k tk Cor X X 

The goals in the forthcoming sections are estimating these autocorrelations from
observed time series data, and to study the estimates’ properties. The latter will
prove useful whenever we try to interpret sample autocorrelations in practice.

The example we consider in this chapter is the wave tank data. The values are wave
heights in millimeters relative to still water level measured at the center of the tank.
The sampling interval is 0.1 seconds and there are 396 observations. For better
visualization, we here display the first 60 observations only:

> www <- "http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/"
> dat <- read.table(paste(www,"wave.dat",sep=""), header=T)
> wave <- ts(dat$waveht)
> plot(window(wave, 1, 60), ylim=c(-800,800), ylab="Height")
> title("Wave Tank Data")

Time

H
e

ig
h

t

0 10 20 30 40 50 60

-5
0

0
0

5
0

0

Wave Tank Data

ATSA 4 Descriptive Analysis

 Page 63

These data show some pronounced cyclic behavior. This does not come as a
surprise, as we all know from personal experience that waves do appear in cycles.
The series shows some very clear serial dependence, because the current value is
quite closely linked to the previous and following ones. But very clearly, it is also a
stationary series.

4.4.1 Lagged Scatterplot

An appealing idea for analyzing the correlation among consecutive observations in
the above series is to produce a scatterplot of 1(,)t tx x  for all 1,..., 1t n  . There is a
designated function lag.plot() in R. The result is as follows:

> lag.plot(wave, do.lines=FALSE, pch=20)
> title("Lagged Scatterplot, k=1")

The association seems linear and is positive. The Pearson correlation coefficient
turns out to be 0.47, thus moderately strong. How to interpret this value from a
practical viewpoint? Well, the square of the correlation coefficient, 20.47 0.22 , is
the percentage of variability explained by the linear association between tx and its
respective predecessor. Here in this case, 1tx  explains roughly 22% of the
variability observed in tx . We can of course extend the very same idea to higher
lags. We here analyze the lagged scatterplot correlations for lags 2,...5k  , see next
page. When computed, the estimated Pearson correlations turn out to be -0.27, -
0.50, -0.39 and -0.22, respectively. The formula for computing them is:

() (1)
1

2 2
() (1)

1 1

()()
()

() ()

n k

s k k s
s

n n k

s k t
s k t

x x x x
k

x x x x










  

 


  



 
 for 1,..., 2k n  ,

where (1)
1

1 n k

i
i

x x
n k






  and ()

1

1 n

k i
i k

x x
n k  


 

-1000 -500 0 500 1000

-5
0

0
0

5
0

0

lag 1

w
a

ve

Lagged Scatterplot, k=1

ATSA 4 Descriptive Analysis

 Page 64

It is important to notice that while there are 1n data pairs for computing (1) , there
are only 2n  for (2) , and then less and less, i.e. n k pairs for ()k . Thus for
the last autocorrelation coefficient which can be estimated, (2)n  , there is only
one single data pair which is left. Of course, they can always be interconnected by
a straight line, and the correlation in this case is always 1 . Of course, this is an
estimation snag, rather than perfect linear association for the two random variables.
Intuitively, it is clear that because there are less and less data pairs at higher lags,
the respective estimated correlations are less and less precise. Indeed, by digging
deeper in mathematical statistics, one can prove that the variance of ()k increases
with k . This is undesired, as it will lead to instable results and spurious effects. The
remedy is discussed in the next section.

4.4.2 Plug-In Estimation

For mitigating the above mentioned problem with the lagged scatterplot method,
autocorrelation estimation is commonly done using the so-called plug-in approach,
using estimated autocovariances as the basis. The formula is as follows:

ˆ()

ˆ()
ˆ(0)

k
k




 , for 1,..., 1k n  ,

 where
1

1
ˆ() ()()

n k

s k s
s

k x x x x
n







   , with
1

1 n

t
t

x x
n 

  .

Note that here, n is used as a denominator irrespective of the lag and thus the
number of summands. This has the consequence that ˆ (0) is not an unbiased
estimator for 2(0) X  , but as explained above, there are good reasons to do so.
When plugging in the above terms, the estimate for the k th autocorrelation
coefficient turns out to be:

lag 2

w
av

e
-5

00
0

50
0

-1000 -500 0 500 1000

lag 3

w
av

e

lag 4

w
av

e

lag 5

w
av

e

-5
00

0
50

0

-1000 -500 0 500 1000

ATSA 4 Descriptive Analysis

 Page 65

 1

2

1

()()
ˆ ()

()

n k

s k s
s

n

t
t

x x x x
k

x x









 







, for 1,..., 1k n  .

It is straightforward to compute these in R, function acf() does the job, and we
below do so for the wave tank data. As for the moment, we are interested in the
numerical results, we set argument plot=FALSE. However, as we will see below,
it is usually better to visualize the estimated autocorrelation coefficients graphically,
as it will be explained below in section 4.4.3. Also note that R by default does not
return all autocorrelations which are estimable in this series with 396 observations,
but only the first 25.

> acf(wave, plot=FALSE)

Autocorrelations of series wave, by lag
 0 1 2 3 4 5 6 7
 1.000 0.470 -0.263 -0.499 -0.379 -0.215 -0.038 0.178
 8 9 10 11 12 13 14 15
 0.269 0.130 -0.074 -0.079 0.029 0.070 0.063 -0.010
 16 17 18 19 20 21 22 23
-0.102 -0.125 -0.109 -0.048 0.077 0.165 0.124 0.049
 24 25
-0.005 -0.066

Next, we compare the autocorrelations from lagged scatterplot estimation vs. the
ones from the plug-in approach. These are displayed below. While for the first 50
lags, there is not much of a difference, the plug-in estimates are much more damped
for higher lags. As claimed above, the lagged scatterplot estimate shows a value of

1 for lag 394, and some generally very erratic behavior in the few lags before.

0 100 200 300 400

-1
.0

-0
.5

0
.0

0
.5

1
.0

Index

la
g

co
rr

ACF Estimation: Lagged Scatterplot vs. Plug-In

ATSA 4 Descriptive Analysis

 Page 66

We can “prove”, or rather, provide evidence that this is an estimation artifact if we
restrict the series to the first 60 observations and then repeat the estimation of
autocorrelations, see next page. Again, for the highest few lags which are estimable,
the lagged scatterplot approach shows erratic behavior – and this was not present
at the same lags, when the series was still longer. We do not observe this kind of
effect with the plug-in based autocorrelations, thus this is clearly the method of
choice.

We finish this chapter by repeating that the bigger the lag, the fewer data pairs
remain for estimating the autocorrelation coefficient. We discourage of the use of
the lagged scatterplot approach. While the preferred plug-in approach is biased due
to the built-in damping mechanism, i.e. the estimates for high lags are shrunken
towards zero; it can be shown that it has lower mean squared error. This is because
it produces results with much less (random) variability. It can also be shown that the
plug-in estimates are consistent, i.e. the bias disappears asymptotically.

Nevertheless, all our findings still suggest that it is a good idea to consider only a
first portion of the estimated autocorrelations. A rule of the thumb suggests that

1010 log ()n is a good threshold. For a series with 100 observations, the threshold
becomes lag 20. A second rule operates with / 4n as the maximum lag to which the
autocorrelations are shown.

4.4.3 Correlogram

Now, we know how to estimate the autocorrelation function (ACF) for any lag k .
Here, we introduce the correlogram, the standard means of visualization for the
ACF. We will then also study the properties of the ACF estimator. We employ R and
type (see next page for the graphical output):

> acf(wave, ylim=c(-1,1))

0 10 20 30 40 50 60

-1
.0

-0
.5

0
.0

0
.5

1
.0

Index

la
g

co
rr

Lagged Scatterplot
Plug-In

ACF Estimation: Lagged Scatterplot vs. Plug-In

ATSA 4 Descriptive Analysis

 Page 67

It has become a widely accepted standard to use vertical spikes for displaying the
estimated autocorrelations. Also note that the ACF in R by default starts with lag 0,
at which it always takes the value 1. If one does not like the spike at lag 0, one can
alternatively use the Acf() function from library(forecast). For better
judgment, we also recommend setting the y -range to the interval [1,1] . Apart from
these technicalities, the ACF reflects the properties of the series. We also observe
a cyclic behavior with a period of 8, as it is apparent in the time series plot of the
original data. Moreover, the absolute value of the correlations attenuates with
increasing lag. Next, we will discuss the interpretation of the correlogram.

Confidence Bands

It is obvious that even for an iid series without any serial correlation, and thus
() 0k  for all k , the estimated autocorrelations ˆ ()k will generally not be zero.

Hopefully, they will be small, but the question is how much they can differ from zero
just by chance. An answer is indicated by the confidence bands, i.e. the blue dashed
lines in the plot above. The confidence bands are based on an asymptotic result: for
long iid time series, it can be shown that the ˆ ()k approximately follow a (0,1/)N n
distribution. Thus, under the null hypothesis that a series is iid and hence () 0k 
for all k , the 95% acceptance region for the null is given by the interval 1.96 / n .
This leads us to the following statement that facilitates interpretation of the
correlogram:

“for any stationary time series, sample autocorrelation coefficients ˆ ()k that fall
within the confidence band of 1.96 / n are considered to be different from 0 only
by chance, while those outside the confidence band are considered to be truly
different from 0 .”

On the other hand, the above statement means that even for iid series, we expect
5% of the estimated ACF coefficients to exceed the confidence bounds; these

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

Correlogram of Wave Tank Data

ATSA 4 Descriptive Analysis

 Page 68

correspond to type 1 errors in the statistical testing business. Please note again that
the indicated bounds are asymptotic and derived for iid series. The properties of
serially dependent finite length series are much harder to derive!

Ljung-Box Test

The Ljung-Box approach tests the null hypothesis that a number of autocorrelation
coefficients are simultaneously equal to zero. Or, more colloquially, it evaluates
whether there is any significant autocorrelation in a series. The test statistic is:

2

1

ˆ
() (2)

h
k

k

Q h n n
n k




   


Here, n is the length of the time series, ˆ
k are the sample autocorrelation

coefficients at lag k and h is the lag up to which the test is performed. It is typical
to use 1h  , 3 , 5 , 10 or 20 . The test statistic asymptotically follows a 2 distribution
with h degrees of freedom. As an example, we compute the test statistic and the
respective p-value for the wave tank data with 10h  .

> nn <- length(wave)
> qq <- nn*(nn+2)*sum((acf(wave)$acf[2:11]^2)/(nn-(1:10)))
> qq
[1] 344.0155
> 1-pchisq(qq, 10)
[1] 0

We observe that (10) 344.0155Q  which is far in excess of what we would expect
by chance on independent data.The critical value, i.e. the 95%-quantile of the 2

10
is at 18.3 and thus, the p-value is close to (but not exactly) zero. There is also a
dedicated R function which can be used to perform Ljung-Box testing:

> Box.test(wave, lag=10, type="Ljung-Box")
Box-Ljung test
data: wave
X-squared = 344.0155, df = 10, p-value < 2.2e-16

The result is, of course, identical. Please be aware that the test is sometimes also
referred to as Box-Ljung test. Also R is not very consistent in its nomenclature.
However, the two are one and the same. Moreover, with a bit of experience the
results of the Ljung-Box test can usually be guessed quite well from the correlogram
by eyeballing.

ACF of Non-Stationary Series

Estimation of the ACF from an observed time series assumes that the underlying
process is stationary. Only then we can treat pairs of observations at lag k as being
probabilistically “equal” and compute sample covariance coefficients. Hence, while
stationarity is at the root of ACF estimation, we can of course still apply the formulae
given above to non-stationary series. The ACF then usually exhibits some typical

ATSA 4 Descriptive Analysis

 Page 69

patterns. This can serve as a second check for non-stationarity, i.e. helps to identify
it, should it have gone unnoticed in the time series plot. We start by showing the
correlogram for the SMI daily closing values from section 1.2.4. This series does not
have seasonality, but a very clear trend.

> acf(smi, lag.max=100)

We observe that the ACF decays very slowly. The reason is that if a time series
features a trend, the observations at consecutive observations will usually be on the
same side of the series’ global mean x . This is why that for small to moderate lags
k , most of the terms

()()s k sx x x x  

are positive. For this reason, the sample autocorrelation coefficient will be positive
as well, and is most often also close to 1. Thus, a very slowly decaying ACF is an
indicator for non-stationarity, i.e. a trend which was not removed before
autocorrelations were estimated.

Next, we show an example of a series that has no trend, but a strongly recurring
seasonal effect. We use R’s data(nottem), a time series containing monthly
average air temperatures at Nottingham Castle in England from 1920-1939. Time
series plot and correlogram are as follows:

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Correlogram of SMI Daily Closing Values

ATSA 4 Descriptive Analysis

 Page 70

The ACF is cyclic, and owing to the recurring seasonality, the envelope again
decays very slowly. Also note that for periodic series, R has periods rather than lags
on the x-axis – often a matter of confusion. We conclude that a hardly, or very slowly
decaying periodicity in the correlogram is an indication of a seasonal effect which
was forgotten to be removed. Finally, we also show the correlogram for the logged
air passenger bookings. This series exhibits both an increasing trend and a
seasonal effect. The result is as follows:

> data(AirPassengers)
> txt <- "Correlogram of Logged Air Passenger Bookings"
> acf(log(AirPassengers), lag.max=48, main=txt)

Time

F
a

h
re

n
h

e
it

1920 1925 1930 1935 1940

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

Nottingham Monthly Average Temperature Data

0 1 2 3 4 5

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

Correlogram of Nottingham Temperature Data

ATSA 4 Descriptive Analysis

 Page 71

Here, the two effects described above are interspersed. We have a (here
dominating) slow decay in the general level of the ACF, plus some periodicity. Again,
this is an indication for a non-stationary series. It needs to be decomposed, before
the serial correlation in the stationary remainder term can be studied.

The ACF and Outliers

If a time series has an outlier, it will appear twice in any lagged scatterplot, and will
thus potentially have “double” negative influence on the ˆ ()k . As an example, we
consider variable temp from data frame beaver1, which can be found in R’s
data(beavers). This is the body temperature of a female beaver, measured by
telemetry in 10 minute intervals. We first visualize the data with a time series plot.

0 1 2 3 4

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F
Correlogram of Logged Air Passenger Bookings

Beaver Body Temperature Data

Time

b
e

a
ve

r

0 20 40 60 80 100

3
6

.4
3

6
.8

3
7

.2

ATSA 4 Descriptive Analysis

 Page 72

Observation 80 is a moderate, but distinct outlier. It is unclear to the author whether
this actually is an error, or whether the reported value is correct. But because the
purpose of this section is showing the potential influence of erroneous values, that
is not important. Neither the Pearson correlation coefficient, nor the plug-in
autocorrelation estimator is robust, thus the appearance of the correlogram can be
altered quite strongly due to the presence of just one single outlier.

> plot(beaver[1:113], beaver[2:114], pch=20,)
> title("Lagged Scatterplot for Beaver Temperature")

The two data points where the outlier is involved are highlighted. The Pearson
correlation coefficients with and without these two observations are 0.86 and 0.91.
Depending on the outliers severity, the difference can be much bigger. The next plot
shows the entire correlogram for the beaver data, computed with (black) and without
(red) the outlier. Also here, the difference may seem small and rather academic, but
it could easily be severe if the outlier was just pronounced enough.

The question is, how do we handle missing values in time series? In principle, we
cannot just omit them without breaking the time structure. And breaking it means
going away from our paradigm of equally spaced points in time. A popular choice is
thus replacing the missing value. This can be done with various degrees of
sophistication:

a) replacing the value with the global mean
b) using a local mean, i.e. +/- 3 observations
c) model based imputation by forecasting

The best strategy depends upon the case at hand. And in fact, there is a fourth
alternative: while R’s acf() function by default does not allow for missing values, it
still offers the option to proceed without imputation. If argument is set as
na.action=na.pass, the covariances are computed from the complete cases,
and the correlogram is shown as usual. However, having missed values in the series
has the consequence that the estimates produced may well not be a valid (i.e.
positive definite) autocorrelation sequence, and may contain missing values. From

36.4 36.6 36.8 37.0 37.2 37.4

3
6

.4
3

6
.8

3
7

.2

Lagged Scatterplot for Beaver Temperature

ATSA 4 Descriptive Analysis

 Page 73

a practical viewpoint, these drawbacks can often be neglected, though. Also many
other R functions for time series analysis allow for the presence of missing values if
the arguments are set properly.

4.4.4 Quality of ACF Estimates

In this section we will deal with the quality of the information that is contained in the
correlogram. We will not do this from a very theoretical viewpoint, but rather focus
on the practical aspects. We have already learned that the ACF estimates from the
plug-in approach are generally biased, i.e. shrunken towards zero for higher lags.
This means that it is better to cut off the correlogram at a certain lag. Furthermore,
non-stationarities in the series can hamper the interpretation of the correlogram and
we have also seen that outliers can have a quite strong impact. But there are even
more aspects in ACF estimation that are problematic...

The Compensation Issue

One can show that the sum of all autocorrelation coefficients which can be estimated
from a time series realization, i.e. the sum over all ˆ ()k for lags 1,..., 1k n  , adds
up to -1/2. Or, written as a formula:

1

1

1
ˆ()

2

n

k

k




 

We omit a formal proof here, but give empirical evidence below. It is clear that the
above condition will lead to quite severe artifacts, especially when a time series
process has only positive correlations. We here show both the true, theoretical ACF
of an (1)AR process with 1 0.7  , which, as we will see in section 5, has

1() (0.7) 0k kk    for all k , and the sample correlogram for a realization of that
process with a length 200 observations.

0 5 10 15 20

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Correlogram of Beaver Temperature Data

with outlier
without outlier

ATSA 4 Descriptive Analysis

 Page 74

The respective R-commands for producing these plots are as follows:

True ACF
true.acf <- ARMAacf(ar=0.7, lag.max=200)
plot(0:200, true.acf, type="h", xlab="Lag", ylim=c(-1,1))
title("True ACF of an AR(1) Process with alpha=0.7")
abline(h=0, col="grey")

Simulation and Generating the ACF
set.seed(25)
ts.simul <- arima.sim(list(ar=0.7), 200)
acf(ts.simul, lag=200, main="Correlogram ...")

0 50 100 150 200

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F
True ACF of an AR(1) Process with alpha=0.7

0 50 100 150 200

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Correlogram for a Realization from an AR(1) Process

ATSA 4 Descriptive Analysis

 Page 75

What we observe is quite striking: only for the very first few lags, the sample ACF
does match with its theoretical counterpart. As soon as we are beyond lag 6k  ,
the sample ACF turns negative. This is an artifact, because the sum of the estimated
autocorrelations coefficients needs to add up to -1/2. We quickly verify this using the
following R command on the simulated 200n  series. Please be aware that the
acf() command in R also outputs the ACF estimate at lag 0, so the sum only starts
from the second term in the output object:

> est <- acf(ts.simul,length(ts.simul))$acf
> sum(est[2:length(ts.simul)])
[1] -0.5

Some of these spurious, negative correlation estimates are so big that they even
exceed the confidence bounds – an observation that has to be well kept in mind if
one analyzes and tries to interpret the correlogram. We conclude this section by
visualizing the cumulative sum of estimated autocorrelation coefficients for the
realization of the above (1)AR process.

> sum.acf <-numeric()
> for (i in 2:(length(simul))) sum.acf[i-1] <- sum(est[2:i])
> plot(1:(length(simul)-1), sum.acf, type="l", main="…")
> abline(h=0, lty=3)
> abline(h=-0.5, col="red", lty=2)
> abline(h=sum(.7^(1:199)), col="blue", lty=2)
> text(0,2.5, "True value = 2.333", col="blue", pos=4)
> text(0,-.67, "Sum of Estimates = -0.5", col="red", pos=4)

The true value for the sum of (), 1,...,199k k  is
199

1
(0.7) 2.333k

k
 , so the sum of

the estimated autocorrelation coefficients is very far from the true value. This again
emphasizes that the estimates should be taken with a grain of salt and that the
confidence bands are optimistically small.

0 50 100 150 200

0
1

2

Sum of the First n ACF estimates

Lag

S
um

True value = 2.333

Sum of Estimates = -0.5

ATSA 4 Descriptive Analysis

 Page 76

Simulation Study

Last but not least, we will run a small simulation study that visualizes bias and
variance in the sample autocorrelation coefficients. We will again base this on the
simple (1)AR process with coefficient 1 0.7  . For further discussion of the process’
properties, we refer to section 5. There, it will turn out that the thk autocorrelation
coefficient of such a process takes the value (0.7)k , as visualized on the previous
page.

For understanding the variability in ˆ (1) , ˆ (2) , ˆ (5) and ˆ (10) , we simulate from
the aforementioned (1)AR process. We generate series of length 20n  , 50n  ,

100n  and 200n  . We then obtain the correlogram, record the estimated
autocorrelation coefficients and repeat this process 1000 times. This serves as a
basis for displaying the variability in ˆ (1) , ˆ (2) , ˆ (5) and ˆ (10) with boxplots. They
can be found below.

We observe that for “short” series with less than 100 observations, estimating the
ACF is difficult: the ˆ ()k are strongly biased, and there is huge variability. Only for
longer series, the consistency of the estimator “kicks in”, and yields estimates which
are reasonably precise. For lag 10k  , on the other hand, we observe less bias, but
the variability in the estimate remains large, even for “long” series.

We conclude this situation by summarizing: by now, we have provided quite a bit of
evidence that the correlogram can be tricky to interpret at best, sometimes even

Variation in ACF(1) estimation

n=20 n=50 n=100 n=200

-1
.0

-0
.5

0.
0

0.
5

1.
0

Variation in ACF(2) estimation

n=20 n=50 n=100 n=200

-1
.0

-0
.5

0.
0

0.
5

1.
0

Variation in ACF(5) estimation

n=20 n=50 n=100 n=200

-1
.0

-0
.5

0.
0

0.
5

1.
0

Variation in ACF(10) estimation

n=20 n=50 n=100 n=200

-1
.0

-0
.5

0.
0

0.
5

1.
0

ATSA 4 Descriptive Analysis

 Page 77

misleading, or plain wrong. However, it is the best means we have for understanding
the dependency in a time series. And we will base many if not most of our decisions
in the modeling process on the correlogram. However, please be aware of the bias
and the estimation variability there is.

4.4.5 Confidence Interval for the Time Series Mean

An important application of the theory on autocorrelations discussed above is the
construction of a confidence interval for the mean of a time series. Let us assume
we are given a stationary time series 1 2(, , ,)nX X X X  . Then, the global mean of
the series is estimated as:

1

1
ˆ

n

t
t

X
n




 

For the construction of a confidence interval we require an estimation of ˆ()Var  . In
case of iid observation, we have 2ˆ() /XVar n  , so that plugging in the sample
variance 2ˆ X does the job. Unfortunately, with a time series that has autocorrelated
instances, things are more complicated. In particular:

2
1

2
1 1

2
1 1

2
1 1

2
1 1

1

2
1

1
ˆ()

1
,

1
(,)

1
()

(0)
()

(0)
2 () ()

n

t
t

n n

t t
t t

n n

s t
t s

n n

t s

n n

t s

n

k

Var Var X
n

Cov X X
n

Cov X X
n

t s
n

t s
n

n n k k
n





 

 



 

 

 

 





    
 
    
 

 

  

  

      
 



 









As we can see, it depends on all autocorrelations ()k whether ˆ()Var  is bigger or
smaller than under independence. Unless we have knowledge about all these
coefficients, we cannot make a statement.

In reality, one often has to deal with time series that only feature positive
autocorrelation coefficients. In that case ˆ()Var  will be larger than for an iid series.
Hence, falsely assuming independence may lead to deflated confidence intervals
and spuriously significant results.

So how to practice in practice? Plugging in all autocorrelations down to ˆ (1)n  into
the above formula seems like a poor choice given the mediocre quality of the
estimates at higher lags. A reasonable compromise is to plug-in ˆ ()k for lags

ATSA 4 Descriptive Analysis

 Page 78

101,...,10 log ()k n  and zero for the higher lags. The confidence interval for the mean
is then derived from the usual Gaussian asymptotics:

1010 log ()

2
1

(0)
ˆ 1.96 2 () ()

n

k

n n k k
n

 




 
      

 


We illustrate the issue based on the series with the body temperature of the beaver
from above. The mean and the faulty confidence interval under iid assumption are
simply computed as:

> mean(beaver)
[1] 36.862
> mean(beaver)+c(-1.96,1.96)*sd(beaver)/sqrt(length(beaver))
[1] 36.827 36.898

When adjusting for the sequential correlation of the observations, the confidence
interval becomes around 2.7x longer, which can make a big difference!

> n <- length(beaver)
> var.ts <- 1/n^2*
 acf(beaver, lag=0, type="covariance")$acf[1]*
 (n+2*sum(((n-1):(n-10))*acf(beaver,10)$acf[-1]))
> mean(beaver) + c(-1.96,1.96)*sqrt(var.ts)
[1] 36.765 36.959

4.5 Partial Autocorrelation

For the above, pure (1)AR process, with its strong positive correlation at lag 1, it is
somehow “evident” that the autocorrelation for lags 2 and higher will be positive as
well – just by propagation: if A is highly correlated to B, and B is highly correlated to
C, then A is usually highly correlated to C as well. It would now be very instructive
to understand the direct relation between A and C, i.e. exploring what dependency
there is in excess to the one associated to B. In a time series context, this is exactly
what the partial autocorrelations do. The mathematical definition is the one of a
conditional correlation:

 1 1 1 1() (, | , ,)t k t t t t k t kk Cor X X X x X x          

In other words, we can also say that the partial autocorrelation is the association
between tX and t kX  with the linear dependence of 1tX  through 1t kX   removed.
Another instructive analogy can be drawn to linear regression. The autocorrelation
coefficient ()k measures the simple dependence between tX and t kX  , whereas
the partial autocorrelation ()k measures the contribution to the multiple
dependence, with the involvement of all intermediate instances 1 1,...,t t kX X   as
explanatory variables. There is a (theoretical) relation between the partial
autocorrelations ()k and the plain autocorrelations (1),..., ()k  , i.e. they can be
derived from each other, e.g.:

ATSA 4 Descriptive Analysis

 Page 79

(1) (1)  and 2 2(2) ((2) (1)) / (1 (1))     

The formula for higher lags k exists, but get complicated rather quickly, so we do
without displaying them. However, another absolutely central property of the partial
autocorrelations ()p is that the thk coefficent of the ()AR p model, denoted as p
, is equal to ()p . While there is an in depth discussion of ()AR p models in section
5, we here briefly sketch the idea, because it makes the above property seem rather
logical. An autoregressive model of order p , i.e. an ()AR p is:

1 1t t k t p tX X X E     ,

where tE is a sequence of iid random variables. Making the above statement
concrete, this means that in an (3)AR process, we have 3(3)  , but generally

2(2)  and 1(1)  . Moreover, we have () 0k  for all k p . These properties
are used in R for estimating partial autocorrelation coefficients. Estimates ˆ()p are
generated by fitting autoregressive models of successively higher orders. The job is
done with function pacf(): input/output are equal/similar to ACF estimation. In
particular, the confidence bounds are also presented for the PACF. We conclude
this section by showing the result for the wave tank data.

> pacf(wave, ylim=c(-1,1), main="PACF of Wave Tank Data")

We observe that ˆ (1) 0.5  and ˆ(2) 0.6   . Some further PACF coefficients up to
lag 10 seem significantly different from zero, but are smaller. From what we see
here, we could try to describe the wave tank data with an (2)AR model. The next
section will explain why.

As a last remark in this chapter, we here introduce the tsdisplay() function from
R’s library (forecast). Using the default settings, it will show a time series
plot along with both ACF and PACF. This will turn out to be very convenient when a
model for a time series shall be found.

5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF of Wave Tank Data

ATSA 4 Descriptive Analysis

 Page 80

> library(forecast)
> tsdisplay(wave, points=FALSE)

wave

0 100 200 300 400

-5
00

0
50

0

0 5 10 15 20 25

-0
.6

-0
.2

0.
0

0.
2

0.
4

Lag

A
C

F

0 5 10 15 20 25

-0
.6

-0
.2

0.
0

0.
2

0.
4

Lag

P
A

C
F

ATSA 5 Stationary Time Series Models

 Page 81

5 Stationary Time Series Models
Rather than simply describing observed time series data, we now aim for fitting time
series models. This will prove useful for a deeper understanding of the data, but is
especially beneficial when forecasting is the main goal. We here focus on parametric
models for stationary time series, namely the broad class of autoregressive moving
average (ARMA) processes – these have shown great importance in modeling real-
world data.

5.1 White Noise

As the most basic stochastic process, we introduce discrete White Noise. A time
series 1 2(, ,...,)nW W W is called White Noise if the random variables 1 2, ,...W W are
independent and identically distributed with mean zero. This also implies that all
random variables tW have identical variance, and there are no autocorrelations and
partial autocorrelations either: () 0k  and () 0k  for all lags k . If in addition, the
variables also follow a Gaussian distribution, i.e. 2~ (0,)t WW N  , the series is called
Gaussian White Noise.

Before we show a realization of a White Noise process, we state that the term “White
Noise” was coined in an article on heat radiation published in Nature in April 1922.
There, it was used to refer to series time series that contained all frequencies in
equal proportions, analogous to white light. It is possible to show that iid sequences
of random variables do contain all spectral frequencies in equal proportions, and
hence, here we are.

Time

0 50 100 150 200

-3
-2

-1
0

1
2

3

Gaussian White Noise

ATSA 5 Stationary Time Series Models

 Page 82

In R, it is easy to generate Gaussian White Noise, we just type:

> ts(rnorm(200, mean=0, sd=1))

Well, by giving more thought on how computers work, i.e. by relying on deterministic
algorithms, it may seem implausible that they can really generate independent data.
We do not embark into these discussions here, but treat the result of rnorm() as
being “good enough” for a realization of a White Noise process. Here, we show ACF
and PACF of the above series. As expected, there are no (strongly) significant
estimates.

White Noise series are important, because they usually arise as residual series
when fitting time series models. The correlogram generally provides enough
evidence for attributing a series as White Noise, provided the series is of reasonable
length – our studies in section 4.4 suggests that 100 or 200 is such a value. Please
also note that while there is not much structure in Gaussian White Noise, it still has
a parameter. It is the variance 2

W .

5.2 Estimating the Conditional Mean

Before we present some time series models, it is important to build some
understanding of what we are actually doing. All the ()AR p , ()MA q and (,)ARMA p q
models that will be presented below are based on the assumption that the time
series can be written as:

 t t tX E  .

Hereby, t is the conditional mean of the series, i.e. 1 2[| , ,...]t t t tE X X X   and tE
is a disturbance term. For all models in section 5, the disturbance term is assumed
to be a White Noise innovation.

0 5 10 15 20

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF

5 10 15 20

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF

ATSA 5 Stationary Time Series Models

 Page 83

It is very important to notice that while stationary series feature a constant marginal
expectation  , the conditional mean t is can be and often is non-constant and
time-dependent. Or in other words, there is some short-term memory in the series.
The (,)ARMA p q processes that will be discussed here in this section are built on
the following notion:

 1 2 1 2(, ,..., , , ,...,)t t t t p t t t qf X X X E E E       .

In words, the conditional mean is a function of past instances of the series as well
as past innovations. We will see that usually, a selection of the involved terms is
made, and that the function ()f  is a linear combination of the arguments.

5.3 Autoregressive Models

5.3.1 Definition and Properties

The most natural formulation of a time series model is a linear regression approach
on the past instances, i.e. a regression on the series itself. This coined the term
autoregressive. In practice, such models prove to be very important; they are the
most popular way of describing time series.

Model and Terms

An autoregressive model of order p , abbreviated as ()AR p , is based on a linear
combination of past observations according to the following equation:

 1 1 2 2 ...t t t p t p tX X X X E         .

Hereby, the disturbance term tE comes from a White Noise process, i.e. is iid.
Moreover, we require that it is an innovation, i.e. that it is stochastically independent
of 1 2, ,...t tX X  . The term innovation is illustrative, because (under suitable
conditions), it has the power to drive the series into a new direction, meaning that it
is strong enough so that it can overplay the dependence of the series from its own
past. An alternative notation for ()AR p models is possible with the backshift
operator:

 2
1 2(1 ...)pp t tB B B X E       , or short () t tB X E 

Hereby, ()B is called the characteristic polynomial. It determines all the relevant
properties of the process. The most important questions that we will deal with in this
chapter are of course the choice of the order p and the estimation of the coefficients

1,..., p  . But first, a very important point:

 ()AR p models must only be fitted to stationary time series. Any potential
trends and/or seasonal effects need to be removed first. We will also make
sure that the ()AR p processes are stationary.

ATSA 5 Stationary Time Series Models

 Page 84

When is an ()AR p stationary? Not always, but under some mild conditions. First of
all, we study the unconditional expectation of an ()AR p process tX which we
assume to be stationary, hence []tE X  for all t . When we take expectations on
both sides of the model equation, we have:

 1 1 1[] [...] (...) 0t t p t p t pE X E X X E                , hence 0  .

Thus, any stationary ()AR p process has a global mean of zero. But please be aware
of the fact that the conditional mean is time dependent and generally different from
zero.

 1 1 1[| ,...,] ...t t t t p t p t pE X X X x x        

The question remains if ()AR p processes are practically useful, because most of
the real-word time series have a global mean  that is different from zero. However,
that generally poses little difficulties if we add an additional parameter m to the
model definition:

 t tY m X 

In that case, tY is a shifted ()AR p process, i.e. it has all dependency properties from
an ()AR p , but its mean is different from zero. In fact, all R methodology that exists
for fitting ()AR p ’s assumes the process tY and thus estimates a global mean m
unless this is explicitly excluded. In practice, if one colloquially speaks of an ()AR p
, mostly one thinks of tY rather than tX .

However, for the stationarity of an ()AR p , some further conditions on the model
coefficients 1,..., p  are required. The general derivation is quite complicated and
will be omitted here. But for illustrative purpose, we assume a stationary (1)AR which
has 2()t XVar X  for all t . If we determine the centralized second moment on both
sides of the model equation, we obtain:

 2 2 2 2
1 1 1() ()X t t t X EVar X Var X E         , hence

2
2

2
11

E
X







.

From this we derive that an (1)AR can only be stationary if 1 1  . That limitation
means that the dependence from the series’ past must not be too strong, so that the
memory fades out. If 1 1  , the process diverges. The general condition for ()AR p
models is (as mentioned above) more difficult to derive. We require that:

The (potentially complex) roots of the characteristic polynomial ()B must
all exceed 1 in absolute value for an ()AR p process to be stationary.

In R, there is function polyroot() for finding a polynomials roots. If we want to
verify whether an (3)AR with 1 2 30.4, 0.2, 0.3      is stationary, we type:

> abs(polyroot(c(1,-0.4,0.2,-0.3)))
[1] 1.405467 1.540030 1.540030

ATSA 5 Stationary Time Series Models

 Page 85

Thus, the (3)AR we specified is stationary. We will proceed by studying the
dependency in ()AR p processes. For illustration, we first simulate from an (1)AR
with 1 0.8  . The model equation is:

 10.8t t tX X E  

So far, we had only required that tE is a White Noise innovation, but not a
distribution. We use the Gaussian here and set 1 1x E as the starting value.

> set.seed(24)
> E <- rnorm(200, 0, 1)
> x <- numeric()
> x[1] <- E[1]
> for(i in 2:200) x[i] <- 0.8*x[i-1] + E[i]
> plot(ts(x), main= "AR(1) with...")

We observe some cycles with exclusively positive and others with only negative
values. That is not surprising: if the series takes a large value, then the next one is
determined as 0.8 times that large value plus the innovation. Thus, it is more likely
that the following value has the same sign as its predecessor. On the other hand,
the innovation is powerful enough so that jumping to the other side of the global
mean is always an option. Given that behavior, it is evident that the autocorrelation
at lag 1 is positive. We can compute it explicitly from the model equation:

 1 1 1 1 1
1 1

(,) (,) (0) 0
(1) (,)

(0) (0) (0)
t t t t t

t t

Cov X X Cov X E X
Cor X X

   
  

  


 
    

Thus we have (1) 0.8  here, or in general 1(1)  . The correlation for higher lags
can be determined similarly by repeated plug-in of the model equation. It is:

 1() kk  .

AR(1) with 1=0.8

Time

ts
(x

)

0 50 100 150 200

-4
-2

0
2

4

ATSA 5 Stationary Time Series Models

 Page 86

Thus, for stationary (1)AR series, we have an exponential decay of the
autocorrelation coefficients. Of course, it is also allowed to have a negative value
for 1 , as long as 1 1  . A realization of length 200 with 1 0.8   is as follows:

The series shows an alternating behavior: the next value is more likely to lie on the
opposite side of the global mean zero, but there are exceptions when the innovation
takes a large value. The autocorrelation still follows 1() kk  . It is also alternating
between positive and negative values with an envelope for ()k that is
exponentially decaying.

We will now focus on appeareance and dependency of an (3)AR (with the
coefficients from above). While we could still program the simulation code by
ourselves, it is more convenient to use function arima.sim().

AR(1) with 1=-0.8

Time

ts
(x

)

0 50 100 150 200

-3
-2

-1
0

1
2

3

AR(3) with 1=0.4, 2=-0.2, 3=0.3

Time

ts
(x

x)

0 50 100 150 200

-4
-2

0
2

ATSA 5 Stationary Time Series Models

 Page 87

What is now the (theoretical) correlation in this (3)AR ? We apply the standard trick
of plugging-in the model equation. This yields:

1

1
1 1

1

() (0) (,)

(0) (... ,)

(1) ... ()

t k t

t k p t k p t t

p

k Cov X X

Cov X X E X

k k p

 
  
   





   

 
    
    

with (0) 1  and () ()k k   . For 1,...,k p this results in a p p linear equation
system called the Yule-Walker equations. It can be solved to obtain the
autocorrelation coefficients which can finally be propagated for 1, 2,...k p p   . In
R, there is function armaACF() that allows to determine the autocorrelation from
autoregressive model coefficients.

> autocorr <- ARMAacf(ar=c(0.4, -0.2, 0.3), lag.max=20)
> plot(0:20, autocorr, type="h", xlab="Lag")

We observe that the theoretical correlogram shows a more complex structure than
what could be achieved with an (1)AR . Nevertheless, one can still find an
exponentially decaying envelope for the magnitude of the autocorrelations ()k .
That is a property which is common to all ()AR p models.

From the above, we can conclude that the autocorrelations are generally non-zero
for all lags, even though in the underlying model, tX only depends on the p
previous values 1,...,t t pX X  . In section 4.5 we learned that the partial
autocorrelation at lag k illustrates the dependence between tX and t kX  when the
linear dependence on the intermittent terms was already taken into account. It is
evident by definition that for any ()AR p process, we have () 0k  for all k p . This
can and will serve as a useful indicator for deciding on the model order p if we are
trying to identify the suitable model order when fitting real world data. In this section,
we focus on the PACF for the above (3)AR .

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Theoretical Autocorrelation for an AR(3)

ATSA 5 Stationary Time Series Models

 Page 88

> autocorr <- ARMAacf(ar=..., pacf=TRUE, lag.max=20)
> plot(0:20, autocorr, type="h", xlab="Lag")

As claimed previously, we indeed observe (1) (1) 0.343   and 3(3) 0.3   . All
partial autocorrelations from (4) on are exactly zero.

5.3.2 Fitting

Fitting an ()AR p model to data involves three main steps. First, the model and its
order need to be identified. Second, the model parameters need to be estimated
and third, the quality of the fitted model needs to be verified by residual analysis.

Model Identification

The model identification step first requires verifying that the data show properties
which make it plausible that they were generated from an ()AR p process. In
particular, the time series we are aiming to model needs to be stationary, show an
ACF with approximately exponentially decaying envelope and a PACF with a
recognizable cut-off at some lag p smaller than about 5 10 . If any of these three
properties is strongly violated, it is unlikely that an ()AR p will yield a satisfactory fit,
and there might be models which are better suited for the problem at hand.

The choice of the model order p then relies on the analysis of the sample PACF.
Following the paradigm of parameter parsimony, we would first try the simplest
model that seems plausible. This means choosing the smallest p at which we
suspect a cut-off, i.e. the smallest after which none, or only few and weakly
significant partial autocorrelations follow. We illustrate the concept with the logged
Lynx data that were already discussed in section 1.2.2. We need to generate both
ACF and PACF, which can be found on the next page.

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

c(
1

,
a

u
to

co
rr

)

Theoretical Partial Autocorrelation for an AR(3)

ATSA 5 Stationary Time Series Models

 Page 89

There is no reason to doubt the stationarity of the Lynx series. Moreover, the ACF
shows a cyclic behavior that has an exponentially decaying envelope. Now does the
PACF show a cut-off? That is a bit less clear, and several orders p (2,4,7,11)
come into question. However in summary, we conjecture that there are no strong
objections against fitting an ()AR p . The choice of the order is debatable, but the
parsimony paradigm tells us that we should try with the smallest candidate first, and
that is 2p  .

Parameter Estimation

Observed time series are rarely centered and thus, it is usually inappropriate to fit a
pure ()AR p process. In fact, all R routines for fitting autoregressive models by
default assume the shifted process t tY m X  . Hence, we have a regression-type
equation with observations:

 1 1() () ... ()t t p t p tY m Y m Y m E         for 1,...,t p n  .

The goal here is to estimate the parameters 1, ,..., pm   such that the data are fitted
well. There are several concepts that define well fitting. These include ordinary least
squares estimation (OLS), Burg’s algorithm (Burg), the Yule-Walker approach (YW)
and maximum likelihood estimation (MLE). Already at this point we note that while
the four methods have fundamental individuality, they are asymptotically equivalent
(under some mild assumptions) and yield results that mostly only differ slightly in
practice. Still, it is worthwhile to study all the concepts.

OLS

The OLS approach is based on the notion with the centering; the above equation
defines a multiple linear regression problem without intercept. The goodness-of-fit
criterion is 2ˆ()t tx x resp. 2ˆ()t ty y , the two quantities are equal. The first step with
this approach is to center the data, which is based on subtracting the global mean:

0 5 10 15 20

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F
ACF Logged Lynx Data

5 10 15 20

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag
P

a
rt

ia
l A

C
F

PACF of Logged Lynx Data

ATSA 5 Stationary Time Series Models

 Page 90

Estimate
1

ˆ
n

tt
m y y


  and then compute ˆt tx y m  for all 1,...,t n .

On the tx , an OLS (auto)regression without intercept is performed. Note that this
regression is (technically) conditional on the first p observations 1,..., px x , which are
only used as predictors, but not as response terms. In other words, the goodness-
of-fit of the model is only evaluated for the last n p observations. The following
code chunk implements the procedure for the logged lynx data:

> llc <- log(lynx)-mean(log(lynx))
> resp <- llc[3:114]
> pred1 <- llc[2:113]
> pred2 <- llc[1:112]
> fit.ols <- lm(resp ~ -1 + pred1 + pred2)
> summary(fit.ols)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
pred1 1.38435 0.06359 21.77 <2e-16 ***
pred2 -0.74793 0.06364 -11.75 <2e-16 ***

Residual standard error: 0.528 on 110 degrees of freedom
Multiple R-squared: 0.8341, Adjusted R-squared: 0.8311
F-statistic: 276.5 on 2 and 110 DF, p-value: < 2.2e-16

We can extract ˆ 6.686m  , 1
ˆ 1.384  , 2

ˆ 0.748   and ˆ 0.528E  . But while this is
an instructive way of estimating ()AR p models, it is a bit cumbersome and time
consuming. Not surprisingly, there are procedures that are dedicated to fitting such
models in R. We here display the use of function ar.ols(). To replicate the hand-
produced result, we type:

> f.ar.ols <- ar.ols(log(lynx), aic=F, intercept=F, order=2)
> f.ar.ols

Coefficients:
 1 2
 1.3844 -0.7479

Order selected 2 sigma^2 estimated as 0.2738

Note that for producing the result, we need to avoid AIC-based model fitting with
aic=FALSE. The shift m is automatically estimated, and thus we need to exclude
an intercept term in the regression model using intercept=FALSE. We observe
that the estimated AR -coefficients 1 2

ˆ ˆ,  take exactly the same values as with the
hand-woven procedure above. The estimated shift m̂ can be extracted via

> fit.ar.ols$x.mean
[1] 6.685933

and corresponds to the global mean of the series. Finally, the estimate for the
innovation variance requires some prudence. The lm() summary output yields an

ATSA 5 Stationary Time Series Models

 Page 91

estimate of E that was computed as / ()RSS n p , whereas the value in the
ar.ols() output is an estimate of 2

E that was computed as /RSS n . The former is
intended to be an unbiased estimate (though it should use the denominator 1n p 
due to the estimation of the shift m), and the latter is the MLE-estimator for the
innovation variance. In practice, the numerical difference between the two is
neglectable for any series that has reasonable length for fitting an AR model.

> sum(na.omit(fit.ar.ols$resid)^2)/112
[1] 0.2737594

Burg’s Algorithm

While the OLS approach works, its downside is the asymmetry: the first p terms
are never evaluated as responses. That is cured by Burg’s Algorithm, an alternative
approach for estimating ()AR p models. It is based on the notion that any ()AR p
process is also an ()AR p if the time is run in reverse order. Under this property,
minimizing the forward and backward 1-step squared prediction errors makes
sense:

2 2

1 1 1

p pn

t k t k t p k t p k
t p k k

X X X X    
   

           
     

  

In contrast to OLS, there is no explicit solution and numerical optimization is
required. This is done with a recursive method called the Durbin-Levison algorithm.
We do not explain its details here, but refer to the R implementation ar.burg().

> f.ar.burg <- ar.burg(log(lynx), aic=FALSE, order.max=2)
> f.ar.burg

Call:
ar.burg.default(x = log(lynx), aic = FALSE, order.max = 2)

Coefficients:
 1 2
 1.3831 -0.7461

Order selected 2 sigma^2 estimated as 0.2707

> f.ar.burg$x.mean
[1] 6.685933
> sum(na.omit(f.ar.burg$resid)^2)/112
[1] 0.2737614

There are a few interesting points which require commenting. First and foremost,
Burg’s algorithm also uses the arithmetic mean to estimate the global mean m̂ . The
fitting procedure is then done on the centered observations tx . On a side remark,
note that assuming centered observations is possible. If argument demean=FALSE
is set, the global mean is assumed to be zero and not estimated.

ATSA 5 Stationary Time Series Models

 Page 92

The two coefficients 1 2
ˆ ˆ,  take some slightly different values than with OLS

estimation. While often, the difference between the two methods is practically
neglectable, it is nowadays generally accepted that the Burg solution is better for
finite samples. Asymptotically, the two methods are equivalent. Finally, we observe
that the ar.burg() output specifies 2ˆ 0.2707E  . This is different from the MLE
estimate of 0.27376 on the residuals. The explanation is that for Burg’s Algorithm,
the innovation variance is estimated from the Durbin-Levinson updates; see the R
help file for further reference.

Yule-Walker Equations

A third option for estimating ()AR p models is to plugging-in the sample ACF into
the Yule-Walker equations. In section 5.3.1 we had learned that there is a p p
linear equation system 1() (1) ... ()pk k k p         for 1,...,k p . Hence we
can and will explicitly determine ˆ ˆ(0),..., ()k  and then solve the linear equation
system for the coefficients 1,..., p  . The procedure is implemented in R function
ar.yw().

> f.ar.yw <- ar.yw(log(lynx), aic=FALSE, order.max=2)
> f.ar.yw

Call: ar.yw.default(x=log(lynx), aic=FALSE, order.max=2)

Coefficients:
 1 2
 1.3504 -0.7200

Order selected 2 sigma^2 estimated as 0.3109

Again, the two coefficients 1 2
ˆ ˆ,  take some slightly different values than compared

to the two methods before. Mostly this difference is practically neglectable and Yule-
Walker is asymptotically equivalent to OLS and Burg. Nevertheless, for finite
samples, the estimates from the Yule-Walker method are often worse in the sense
that their (Gaussian) likelihood is lower. Thus, we recommend preferring Burg’s
algorithm. We conclude this section by noting that the Yule-Walker method also
involves estimating the global mean m with the arithmetic mean as the first step.
The innovation variance is estimated from the fitted coefficients and the
autocovariance of the series and thus again takes a different value than before.

Maximum-Likelihood Estimation (MLE)

The MLE is based on determining the model coefficients such that the likelihood
given the data is maximized, i.e. the density function takes its maximal value under
the present observations. This requires assuming a distribution for the ()AR p
process, which comes quite naturally if one assumes that for the innovations, we
have 2~ (0,)t EE N  , i.e. they are iid Gaussian random variables. With some theory
(which we omit), one can then show that an ()AR p process 1,..., nX X is a random
vector with a multivariate Gaussian distribution.

ATSA 5 Stationary Time Series Models

 Page 93

MLE then provides a simultaneous estimation of the shift m , the innovation variance
2
E and the model coefficients 1,..., p  . The criterion that is optimized can, in a

simplified version, be written as:

 2 2

1

ˆ(,) exp ()
n

E t t
t

L m x x 


    
 


The details are quite complex and several constants are part of the equation, too.
But we here note that the MLE derived from the Gaussian distribution is based on
minimizing the sum of squared errors and thus equivalent to the OLS approach. Due
to the simultaneous estimation of model parameters and innovation variance, a
recursive algorithm is required. There is an implementation in R:

> f.ar.mle
Call: arima(x = log(lynx), order = c(2, 0, 0))

Coefficients:
 ar1 ar2 intercept
 1.3776 -0.7399 6.6863
s.e. 0.0614 0.0612 0.1349

sigma^2 = 0.2708: log likelihood = -88.58, aic = 185.15

We observe estimates which are again slightly different from the ones computed
previously. Again, those differences are mostly neglectable for practical data
analysis. What is known from theory is that the MLE is (under mild assumptions)
asymptotically normal with minimum variance among all asymptotically normal
estimators. Note that the MLE based on Gaussian distribution still works reasonably
well if that assumption is not met, as long as we do not have strongly skewed data
(apply a transformation in that case) or extreme outliers.

Practical Aspects

We presented four different methods for fitting ()AR p models. How to make a
choice in practice? We explained that all methods are asymptotically equivalent and
even on finite samples; the differences among them are little. Also, all methods are
non-robust with respect to outliers and perform best on data which are
approximately Gaussian. There is one practical aspect linked to the fitting routines
that are available in R, though. Function arima() yields standard errors for m and

1,..., p  . Approximate 95% confidence intervals can be obtained by taking the point
estimate +/- twice the standard error. Hence, statements about the significance of
the estimates can be made, and a confidence interval for the mean is much more
easily constructed as by the procedure describen in section 4.4.5.

On the other hand, ar.ols(), ar.yw() und ar.burg() do not provide standard
errors, but allow for convenient determination of the model order p with the AIC
statistic. While we still recommend investigating on the suitable order by analyzing
ACF and PACF, the parsimonity paradigm and inspecting residual plots, using AIC
as a second opinion is still recommended. It works as follows:

ATSA 5 Stationary Time Series Models

 Page 94

> fit.aic <- ar.burg(log(lynx))
> plot(0:fit.aic$order.max, fit.aic$aic)

We observe that already 2p  yields a good AIC value. Then there is little further
improvement until 11p  , and a just slightly lower value is found at 12p  . Hence,
we will evaluate 2p  and 11p  as two competing models with some further tools
in the next section.

5.3.3 Residual Analysis

When comparing different models, a simple approach is to plot the original series
along with the fitted model values. However, one has to keep in mind that this is an
insample analysis, i.e. the bigger model has an advantage which does not
necessarily persist once out-of-sample data are analyzed. Please note that the
residuals are estimates of the innovations tE . Thus, a good model yields residuals
that resemble a White Noise process. We require mean zero, constant variance and
no autocorrelation. If these properties are not met, the model is not adequate.

> fit.ar02 <- ar.burg(log(lynx), aic=FALSE, order.max=2)
> fit.ar11 <- ar.burg(log(lynx), aic=FALSE, order.max=11)
> plot(log(lynx), main="Logged Lynx Data with ...")
> lines(log(lynx)-fit.ar02$resid, col="red")
> lines(log(lynx)-fit.ar11$resid, col="blue")

The output is displayed on the next page. While some differences are visible, it is
not easy to judge from the fitted values, which of the two models is preferable. A
better focus on the quality of the fit is obtained when the residuals and their
dependance are inspected with time series plots as well as ACF/PACF
correlograms. The graphical output is again displayed on the next page. We observe
that the (2)AR residuals are not iid. Hence they do not form a White Noise process

0 5 10 15 20

0
5

0
1

0
0

1
5

0
2

0
0

0:fit.ar.aic$order.max

fit
.a

r.
a

ic
$

a
ic

AIC-Values for AR(p)-Models on the Logged Lynx Data

ATSA 5 Stationary Time Series Models

 Page 95

and thus, we conclude that the (11)AR model yields a better description of the
logged lynx data.

> acf(fit.ar02$resid, na.action=na.pass, ylim=c(-1,1))
> pacf(fit.ar02$resid, na.action=na.pass, ylim=c(-1,1))
> acf(fit.ar11$resid, na.action=na.pass, ylim=c(-1,1))
> pacf(fit.ar11$resid, na.action=na.pass, ylim=c(-1,1))

Logged Lynx Data with AR(2) and AR(11)

Time

lo
g

(l
yn

x)

1820 1840 1860 1880 1900 1920

4
5

6
7

8
9

AR(2) AR(11)

0 5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

A
C

F

ACF of AR(2)

5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

P
ar

tia
l A

C
F

PACF of AR(2)

0 5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

A
C

F

ACF of AR(11)

5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

P
ar

tia
l A

C
F

PACF of AR(11)

ATSA 5 Stationary Time Series Models

 Page 96

Because our estimation routines to some extent rely on the Gaussian distribution, it
is always worthwhile to generate a Normal QQ-Plot for verification. We obtain:

> par(mfrow=c(1,2))
> qqnorm(as.numeric(fit.ar02$resid))
> qqline(as.numeric(fit.ar02$resid))
> qqnorm(as.numeric(fit.ar11$resid))
> qqline(as.numeric(fit.ar11$resid))

We observe that in the left plot from the AR(2) model, negative residuals seem to
prevail, i.e. their distribution is skewed. This further indicates that this model may
not be appropriate. The distribution of residuals is more symmetrical in the right
panel, the assumption of normally distributed innovations seems justified. In
summary, if the distribution of residuals is distinctly non-normal, improving the model
is mandatory. Typical ways of action include transforming the data with either the
log or Box-Cox transformations or changing model order or type.

The checkresiduals() Function

In library(forecast) there is the checkresiduals() function. It provides both a graphical
and a text output. The former involves the time series plot of the residuals, their ACF
correlogram plus a histogram of residuals. This is very similar than what was
suggested above. In the text output, the result of a Ljung-Box test for correlation
among the residuals is printed. Please note that this only works if fitting was done
with function arima().

> f.arima <- arima(log(lynx), c(11,0,0))
> checkresiduals(f.arima)
Ljung-Box test
data: Residuals from ARIMA(11,0,0) with non-zero mean
Q* = 4.7344, df = 3, p-value = 0.1923
Model df: 12. Total lags used: 15

-2 -1 0 1 2

-1
.0

-0
.5

0
.0

0
.5

1
.0

Normal QQ-Plot: AR(2)

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
til

e
s

-2 -1 0 1 2

-1
.0

-0
.5

0
.0

0
.5

1
.0

Normal QQ-Plot: AR(11)

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
til

e
s

ATSA 5 Stationary Time Series Models

 Page 97

Simulation from the Fitted Model

If there are competing models and none of the other criterions dictate which one to
use, another option is to generate realizations from the fitted process using R’s
function arima.sim(). It usually pays off to generate multiple realizations from
each fitted model. By eyeballing, one then tries to judge which model yields data
that resemble the true observations best. We here do the following:

> ## Repeat these commands a number of times
> plot(arima.sim(n=114, list(ar=fit.ar02$ar)))
> plot(arima.sim(n=114, list(ar=fit.ar11$ar)))

-1.0

-0.5

0.0

0.5

1.0

1820 1840 1860 1880 1900 1920

Residuals from ARIMA(11,0,0) with non-zero mean

-0.2

-0.1

0.0

0.1

0.2

0 5 10 15 20

Lag

A
C

F

0

10

20

-1 0 1

residuals

co
un

t

Time

C
e

nt
er

e
d

 lo
g(

ly
n

x)

0 20 40 60 80 100

-8
-6

-4
-2

0
2

4
6

Simulated Series from the Fitted AR(2)

ATSA 5 Stationary Time Series Models

 Page 98

In summary, the simulations from this bigger model look more realistic than the ones
from the (2)AR . The clearest answer about the model which is preferable here
comes from the ACF/PACF correlograms, though. We conclude this section about
model fitting by saying that the logged lynx data are best modeled with the (11)AR .

Time

C
e

n
te

re
d

 lo
g

(l
yn

x)

0 20 40 60 80 100

-5
0

5

Simulated Series from the Fitted AR(11)

ATSA 5 Stationary Time Series Models

 Page 99

5.4 Moving Average Models

Here, we discuss moving average models. They are an extension of the White Noise
process, i.e. tX is as a linear combination of the current plus a few of the most
recent innovation terms. As we will see, this leads to a time series process that is
always stationary, but not iid. Furthermore, we will see that in many respects,
moving average models are complementary to autoregressive models.

5.4.1 Definition and Properties

As we had mentioned above, a moving average process of order q , or abbreviated,
an ()MA q model for a series tX is a linear combination of the current innovation
term tE , plus the q most recent ones 1,...,t t qE E  . The model equation is:

1 1· ·t t t q t qX E E E    

We require that tE is an innovation, which means independent and identically
distributed, and also independent of any sX where s t . For simple notation, we
can make use of the backshift operator and rewrite the model:

 1(1) ()q
t q t tX B B E B E     

We call ()B the characteristic polynomial of the ()MA q process and obviously, it
defines all properties of the series. As a remark, please note that a number of
textbooks define the ()MA q process with negative signs for the j . While this is
mathematically equivalent, we prefer our notation with the ‘+’ signs, as it matches
the way how things are implemented in R. We turn our sights towards the motivation
for the moving average process.

What is the rationale for the ()MA q process?

Firstly, they have been applied successfully in many applied fields, particularly in
econometrics. Time series such as economic indicators are affected by a variety of
random events such as strikes, government decisions, referendums, shortages of
key commodities, et cetera. Such events will not only have an immediate effect on
the indicator, but may also affect its value (to a lesser extent) in several of the
consecutive periods. Thus, it is plausible that moving average processes appear in
practice. Moreover, some of their theoretical properties are in a nice way
complementary to the ones of autoregressive processes. This will become clear if
we study the moments and stationarity of the MA process.

Moments and Dependence

A first, straightforward but very important result is that any ()MA q process tX , as a
linear combination of innovation terms, has zero mean and constant variance:

ATSA 5 Stationary Time Series Models

 Page 100

[] 0tE X  for all t , and 2 2

1

() 1
q

t E j
j

Var X const 


 
    

 


In practice, we can always enhance ()MA q ’s by adding a constant m that accounts
for a non-zero mean, i.e. we can consider the shifted ()MA q process

t tY m X  .

Hence, the zero mean property does not affect the possible field of practical
application. Now, if we could additionally show that the autocovariance in MA
processes is independent of the time t , we had already proven their stationarity.
This is indeed the case. We start by considering a (1)MA with 1 1·t t tX E E  

2
1 1 1 1 1 2 1(1) (,) (,)t t t t t t ECov X X Cov E E E E            .

For any lag k exceeding the order 1q  , we use the same trick of plugging-in the
model equation and directly obtain a perhaps somewhat surprising result:

 () (,) 0t t kk Cov X X   for all 1k q  .

Thus, there is no more unconditional serial dependence in lags 1 . For the
autocorrelation of a (1)MA process, we have:

 1
2

1

(1)
(1)

(0) 1

 
 

 


 and () 0k  for all 1k q  .

From this we conclude that (1) 0.5  , no matter what the choice for 1 is. Thus if in
practice we observe a series where the first-order autocorrelation coefficient clearly
exceeds this value, we have counterevidence to a (1)MA process. Furthermore, we
have shown that any (1)MA has zero mean, constant variance and an ACF that only
depends on the lag k , hence it is stationary. Note that the stationarity does (in
contrast to AR processes) not depend on the choice of the parameter 1 . The
stationarity property can be generalized to ()MA q processes. Using some
calculations and 0 1  , we obtain:

2

0 0

/ 1,...,
()

0

q k q

j j k j
j j

for k q
k

for k q

  





 


 

 

 

Hence, ()k is independent of the time t for any ()MA q process, irrespective of the
order q . The main results which can be derived from this property is that ()MA q
processes are always stationary, independent of 1,..., q  . Moreover, we learn from
the above that the autocorrelation is zero for all orders k q . And there obviously is
a relation between the model parameters and the autocorrelation, although it gets
quite complex for higher orders. While this formula may be employed for finding the
true ACF of a given ()MA q , the most convenient way of doing this in practice
remains with the R function ARMAacf().

ATSA 5 Stationary Time Series Models

 Page 101

Example of a (1)MA

For illustration, we generate a realization consisting of 500 observations, from a
(1)MA process with 1 0.7  , and display a time series plot, along with both

estimated and true ACF/PACF.

> set.seed(21)
> ts.ma1 <- arima.sim(list(ma=0.7), n=500)
> plot(ts.ma1, ylab="", ylim=c(-4,4), main="…")
> title("Simulation from a MA(1) Process")

> acf.true <- ARMAacf(ma=0.7, lag.max=20)
> pacf.true <- ARMAacf(ma=0.7, pacf=TRUE, lag.max=20)

We observe (see next page) that the estimates are pretty accurate: the ACF has a
clear cut-off, whereas the PACF seems to feature some alternating behavior with
an exponential decay in absolute value. This behavior is typical: the PACF of any

()MA q process shows an exponential decay, while the ACF has a cut-off. In this
respect, ()MA q processes are in full contrast to the ()AR p ’s, i.e. the appearance of
ACF and PACF is swapped.

Invertibility

It is easy to show that the first autocorrelation coefficient (1) of an (1)MA process
can be written in standard form, or also as follows:

 1 1
2 2

1 1

1/
(1)

1 1 (1/)

 
 

 
 

Apparently, any (1)MA process with coefficient 1 has exactly the same ACF as the
one with 11/  . Thus, the two processes 10.5·t t tX E E   and 12·t t tU E E   have

Time

0 100 200 300 400 500

-4
-2

0
2

4

Simulation from a MA(1) Process

ATSA 5 Stationary Time Series Models

 Page 102

the same dependency structure. Or in other words, given some ACF, we cannot
identify the generating MA process uniquely. This problem of ambiguity leads to the
concept of invertibility. Now, if we express the processes tX and tU in terms of

1 2, ,...t tX X  resp. 1 2, ,...t tU U  , we find by successive substitution:

2
1 1 1 2

2
1 1 1 2

...

(1/) (1/) ...

t t t t

t t t t

E X X X

E U U U

 

 
 

 

   

   

Hence, if we rewrite the (1)MA as an ()AR  , only one of the processes will
converge. That is the one where 1 1  , and it will be called invertible. It is important
to know that invertibility of MA processes is central when it comes to fitting them to
data, because parameter estimation is based on rewriting them in the form of an

()AR  .

For higher-order ()MA q processes, the property of invertibility is equally central. If
it is met, the series can be rewritten in form of an ()AR  and it is guaranteed that
there is a unique MA process for any given ACF. Invertibilty of a ()MA q is met if the
roots of the characteristic polynomial ()B all lie outside of the unit circle. As was
explained earlier in chapter 5.3.1, we can verify this using the R function
polyroot(). Please note that the estimation procedure described below will
always result in coefficients 1̂

ˆ,..., q  that define an invertible ()MA q process.

0 5 10 15 20 25

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

A
C

F

Estimated ACF

0 5 10 15 20 25

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

P
ar

tia
l A

C
F

Estimated PACF

0 5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

lag

ac
f.

tr
ue

True ACF

5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

lag

pa
cf

.t
ru

e

True PACF

ATSA 5 Stationary Time Series Models

 Page 103

5.4.2 Fitting

The process of fitting ()MA q models to data is more difficult than for ()AR p , as there
are no (efficient) explicit estimators and numerical optimization is mandatory.
Perhaps the simplest idea for estimating the parameters is to exploit the relation
between the model parameters and the autocorrelation coefficients, i.e.:

2

0 0

/ 1,...,
()

0

q k q

j j k j
j j

for k q
k

for k q

  





 


 

 

 

Hence in case of a (1)MA , we would determine 1̂ by plugging-in ˆ (1) into the
equation 2

1 1(1) / (1)    . This can be seen as an analogon to the Yule-Walker
approach in AR modelling. Unfortunately, the plug-in idea yields an inefficient
estimator and is not a viable option for practical work.

Conditional Sum of Squares

Another appealing idea would be to use some (adapted) least squares procedure
for determining the parameters. A fundamental requirement for doing so is that we
can express the sum of squared residuals 2

tE in terms of the observations

1,..., nX X and the parameters 1,..., q  only, and do not have to rely on the
unobservable 1,..., nE E directly. This is (up to the choice of some initial values)
possible for all invertible ()MA q processes. For simplicity, we restrict our illustration
to the (1)MA case, where we can replace any innovation term tE by:

 2 1
1 1 1 2 1 1 1 0... ()t t

t t t tE X X X X E   
       

By doing so, we managed to express the innovation/residual at time t as a function
of the model parameter 1 and a combination of the current and past observations
of the series. What is also remaining is the (hypothetical) initial innovation term 0E .
Conditional on the assumption 0 0E  , we can indeed rewrite the residuals sum of
squares 2

tE of any (1)MA using 1,..., nX X and 1 only. However, there is no
closed form solution for the minimization of 2

tE , since powers of the parameter

1 appear; but the problem can be tackled using numerical optimization. This
approach is known as the Conditional Sum of Squares (CSS) method. It works
similarly for higher orders q , i.e. fundamentally relies on the invertibility of the ()MA q
and assumes that 0tE  for all ,...,0t   . In R, the method is implemented in
function arima() if argument method="CSS" is set.

Maximum-Likelihood Estimation

As can be seen from the R help file, the Conditional Sum of Squares method is only
secondary to method="CSS-ML" in the R function arima(). This means that it is
preferable to use CSS only to obtain a first estimate of the coefficients 1,..., q  . They
are then used as starting values for a Maximum-Likelihood estimation, which is
based on the assumption of Gaussian innovations tE . It is pretty obvious that

1 1 ...t t t q t qX E E E      , as a linear combination of normally distributed random

ATSA 5 Stationary Time Series Models

 Page 104

variables, follows a Gaussian too. By taking the covariance terms into account, we
obtain a multivariate Gaussian for the time series vector:

1(,...,) ~ (0,)nX X X N V , resp. 1(,...,) ~ (1,)nY Y Y N m V  .

MLE then relies on determining the parameters m (if a shifted ()MA q is estimated),

1,..., q  and 2
E simultaneously by maximizing the probability density function of the

above multivariate Gaussian with assuming the data 1,..., nx x as given quantities.
This is a quite complex non-linear problem which needs to be solved numerically. A
good implementation is found in R’s arima().

The benefit of MLE is that (under mild and in practice usually fulfilled conditions)
certain optimality conditions are guaranteed. It is well known that the estimates are
asymptotically normal with minimum variance among all asymptotically normal
estimators. Additionally, it is pretty easy to derive standard errors for the estimates,
which further facilitates their interpretation. And even though MLE is based on
assuming Gaussian innovations, it still produces reasonable results if the deviations
from that model are not too strong. Be especially wary in case of extremely skewed
data or massive outliers. In such cases, applying a log-transformation before the
modelling/estimation starts is a wise idea.

5.4.3 Example: Return of AT&T Bonds

As an example, we consider the daily changes in the return of an AT&T bond from
April 1975 to December 1975, which makes for a total of 192 observations. The data
are displayed along with their ACF and PACF on the next page.

Daily Changes in the Return of an AT&T Bond

Time

d
iff

(a
tt

b
o

n
d

)

0 50 100 150

-2
-1

0
1

2
3

ATSA 5 Stationary Time Series Models

 Page 105

The series seems to originate from a stationary process. There are no very clear
cycles visible, hence it is hard to say anything about correlation and dependency,
and it is impossible to identify the stochastic process behind the generation of these
data from a time series plot alone. Using the ACF and PACF as a visual aid, we
observe a pretty clear cut-off situation in the ACF at lag 1 which lets us assume that
a (1)MA might be suitable. That opinion is undermined by the fact that the PACF
drops off to small values quickly, i.e. we can attribute some exponential decay to it
for lags 1 and 2. Our next goal is now to fit the (1)MA to the data. As explained
above, the simplest solution would be to determine ˆ(1) 0.266   and derive 1̂ from

2
1 1(1) / (1)    . This yields two solutions, namely 1̂ 0.28807   and

1̂ 3.47132   . Only one of these (the former) defines an invertible (1)MA , hence we
would stick to that solution. A better alternative is to use the CSS approach for
parameter estimation. The code for doing so is as follows:

> arima(diff(attbond), order=c(0,0,1), method="CSS")
Coefficients:
 ma1 intercept
 -0.2877 -0.0246
s.e. 0.0671 0.0426

sigma^2 estimated as 0.6795: part log likelihood = -234.11

Even more elegant and theoretically sound is the MLE. We can also perform this in
R using function arima(). It yields a very similar but not identical result:

> arima(diff(attbond), order=c(0,0,1))
Coefficients:
 ma1 intercept
 -0.2865 -0.0247
s.e. 0.0671 0.0426

sigma^2 = 0.6795: log likelihood = -234.16, aic = 474.31

0 5 10 15 20

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F
ACF

5 10 15 20

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag
P

a
rt

ia
l A

C
F

PACF

ATSA 5 Stationary Time Series Models

 Page 106

Please note that the application of the three estimation procedures here was just for
illustrative purposes, and to show the (slight) differences that manifest themselves
when different estimators are employed. In any practical work, you can easily restrict
yourself to the application of the arima() procedure using the default fitting by
method="CSS-ML". For verifying the quality of the fit, a residual analysis is
mandatory. The residuals of the (1)MA are estimates of the innovations tE . The
model can be seen as adequate if the residuals reflect the main properties of the
innovations. Namely, they should be stationary and free of any dependency, as well
as approximately Gaussian. We can verify this by producing a time series plot of the
residuals, along with their ACF and PACF, and a Normal QQ-Plot. Sometimes, it is
also instructive to plot the fitted values into the original data, or to simulate from the
fitted process, as this further helps verifying that the fit is good.

> fit <- arima(diff(attbond), order=c(0,0,1))
> plot(resid(fit))
> qqnorm(resid(fit)); qqline(resid(fit))
> acf(resid(fit)); pacf(resid(fit))

Time Series of Residuals

Time

re
si

d(
fit

)

0 50 100 150

-2
-1

0
1

2
3

-3 -2 -1 0 1 2 3

-2
-1

0
1

2
3

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

0 5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

A
C

F

ACF

5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

P
ar

tia
l A

C
F

PACF

ATSA 5 Stationary Time Series Models

 Page 107

There are no autocorrelations or partial autocorrelations that exceed the confidence
bounds, hence we can safely conjecture that the residuals are not correlated and
hence, all the dependency signal has been captured by the (1)MA . When inspecting
the time series of the residuals, it seems stationary. However, what catches the
attention is the presence of three positive outliers and the fact that the residuals are
generally long-tailed. We might try to overcome this problem by a log-
transformation, but this is left to the reader.

ATSA 5 Stationary Time Series Models

 Page 108

5.5 ARMA(p,q) Models

Here, we discuss models that feature both dependency on previous observations

1 2, ,...t tX X  as well as previous innovations terms 1 2, ,...t tE E  . Thus, they are a
hybrid between ()AR p and ()MA q models, and aptly named (,)ARMA p q . Their
importance lies in the fact that it is possible to model a far wider spectrum of
dependency structures, and that they are parsimonious: often, an (,)ARMA p q
requires (far) fewer parameters than pure AR or MA processes would.

5.5.1 Definition and Properties

The formal definition of an (,)ARMA p q process is as follows:

 1 1 1 1... ...t t p t p t t q t qX X X E E E            

As before, we assume that tE is causal and White Noise, i.e. an innovation with
mean [] 0tE E  and finite variance 2()t EVar E  . It is much more convenient to use
the characteristic polynomials ()  for the AR part, and ()  for the MA part,
because this allows for a very compact notation:

 () ()t tB X B E   .

It is obvious that all relevant properties of an (,)ARMA p q process lie in the
characteristic polynomials. If the roots of ()  are outside of the unit circle, the
process will be stationary and have mean zero. On the other hand, if the roots of

()  are outside of the unit circle, the process is invertible. Both properties are
important for practical application. If they are met, we can rewrite any (,)ARMA p q
in the form of a ()AR  or an ()MA  . This explains why fitting an (,)ARMA p q can
in practice often be replaced by fitting AR - or MA -models with high orders (although
it is not a good idea to do so!). As has been argued above, any stationary

(,)ARMA p q has mean zero, i.e. [] 0tE X  . Thus, in practice we will often consider
shifted ARMA -processes that are of the form:

 t tY m X  , where tX is an (,)ARMA p q .

In principle, it is straightforward to derive the ACF of an (,)ARMA p q , though
algebraically a bit tedious. Given the applied focus of this scriptum, we do without
and focus on the results and consequences instead. We illustrate the typical
behavior of the ARMA autocorrelations on the basis of an example. Namely, we
consider the (2,1)ARMA defined by:

 1 2 10.8 0.4 0.6t t t t tX X X E E     

On the next page, we exhibit the (theoretical) ACF and PACF. It is typical that neither
the ACF nor the PACF cut-off strictly at a certain lag. Instead, they both show some
infinite behavior, i.e. an exponential decay in the magnitude of the coefficients.
However, superimposed on that is a sudden drop-off in both ACF and PACF. In our

ATSA 5 Stationary Time Series Models

 Page 109

example, it is after lag 1 in the ACF, as induced by the moving average order 1q 
. In the PACF, the drop-off happens after lag 2, which is the logical consequence of
the autoregressive order of 2p  . The general behavior of the ACF and PACF is
summarized in the table below.

Model ACF PACF

()AR p infinite / exp. decay cut-off at lag p
()MA q cut-off at lag q infinite / exp. decay

(,)ARMA p q infinite / mix of decay & cut-off infinite / mix of decay & cut-off

It is important to know that with (,)ARMA p q processes, a wealth of autocorrelation
structures can be generated. As to how visible the two cut-offs in ACF and PACF
are, resp. whether the cut-off or the decay is dominating, depends on the model’s
coefficients. There are ARMA ’s where the AR part is dominating, there are others
where the MA is stronger, and of course they can also be on an equal footing.

5.5.2 Fitting

The above properties of ACF and PACF can be exploited for choosing the type and
order of a time series model. In particular, if neither the ACF nor the PACF shows a
pronounced cut-off, where after some low lag (i.e. p or 10q ) all the following
correlations are non-significantly different from zero, then it is usually wise to choose
an (,)ARMA p q . For determining the order (,)p q , we search for the superimposed
cut-off in the ACF (for q), respectively PACF (for p). The drop-off is not always
easy to identify in practice. In “difficult” situations, it has also proven beneficial to
support the choice of the right order with the AIC criterion. We could for example
perform a grid search on all possible (,)ARMA p q models which do not use more
than 5 parameters, i.e. 5p q  . This can readily be done in R by programming a
for() loop or using auto.arima()in library(forecast).

0 5 10 15 20

-1
.0

-0
.5

0
.0

0
.5

1
.0

ACF of ARMA(2,1)

0:20

A
C

F

5 10 15 20

-1
.0

-0
.5

0
.0

0
.5

1
.0

PACF of ARMA(2,1)

1:20

P
A

C
F

ATSA 5 Stationary Time Series Models

 Page 110

It is very important to know that ARMA models are parsimonious, i.e. they usually
do not require high orders p and q . In particular, they work well with far fewer
parameters then pure AR or MA models would. Or in other words: often it is
possible to fit high-order ()AR p ’s or ()MA q ’s instead of a low-order (,)ARMA p q .
That property does not come as a surprise: as we conjectured above, any stationary
and invertible ARMA can be represented in the form of an ()AR  or an ()MA  .
However, this is not a good idea in practice: estimating parameters “costs money”,
i.e. will lead to less precise estimates. Thus, a low-order (,)ARMA p q is always to
be preferred over a high-order ()AR p or ()MA q . As an example, we here study the
time series of the North Atlantic Oscillation, obtained from
https://www.ncdc.noaa.gov/teleconnections/nao/. It reports the atmospheric
pressure difference at sea level between the Icelandic Low and the Azores High
from January 1950 to January 2020. We inspect the series, ACF and PACF.

> tsdisplay(nao, points=FALSE, main="North Atlantic …")

We observe a series for which we can withhold the stationarity assumption and that
fluctuates around a global mean of around zero. The first ACF and PACF
coefficients clearly exceed the confidence bands, while all further correlations seem
to be much smaller and if, only barely exceed the bounds. A nearby model for this
series is an ARMA(1,1). For estimating the coefficients, we are again confronted
with the fact that there are no explicit estimators available. This is due to the MA
component in the model which involves innovation terms that are unobservable. By
rearranging terms in the model equation, we can again represent any (,)ARMA p q
in a form where it only depends on the observed tX , the coefficients

1 1,..., ; ,...,p q    and some previous innovations tE with 1t  . If these latter terms
are all set to zero, we can determine the optimal set of model coefficients by

North Atlantic Oscillation

1950 1960 1970 1980 1990 2000 2010 2020

-3
-2

-1
0

1
2

3

0 5 10 15 20 25 30 35

-0
.1

0
0.

00
0.

10
0.

20

Lag

A
C

F

0 5 10 15 20 25 30 35

-0
.1

0
0.

00
0.

10
0.

20

Lag

P
A

C
F

ATSA 5 Stationary Time Series Models

 Page 111

minimizing the sum of squared residuals (i.e. innovations) with a numerical method.
This is the CSS approach that was already mentioned in 5.4.2 and is implemented
in function arima() when method="CSS". By default however, these CSS
estimates are only used as starting values for a MLE. If Gaussian innovations are
assumed, then the joint distribution of any (,)ARMA p q process vector

1(,...,)nX X X has a multivariate normal distribution.

1(,...,) ~ (0,)nX X X N V , resp. 1(,...,) ~ (1,)nY Y Y N m V  .

MLE then relies on determining the parameters m (if a shifted (,)ARMA p q is
estimated), 1 1,..., ; ,...,p q    and 2

E simultaneously by maximizing the probability
density function of the above multivariate Gaussian with assuming the data 1,..., nx x
as given quantities. This is a quite complex non-linear problem which needs to be
solved numerically. A good implementation is found in R’s arima(). As was stated
previously, the benefit of MLE is that (under mild and mostly met conditions) some
optimality is guaranteed. In particular, the estimates are asymptotically normal with
minimum variance among all asymptotically normal estimators. Another benefit is
provided by the standard errors which allow for judging the precision of the
estimates. We proceed with our example from above and now fit an ARMA(1,1) to
the North Atlantic Oscillation series:

> fit0 <- arima(nao, order=c(1,0,1)); fit0
Coefficients:
 ar1 ma1 intercept
 0.3273 -0.1285 -0.0012
s.e. 0.1495 0.1565 0.0446
sigma^2=0.9974; log likelihood=-1192.28; aic=2392.55

It turns out that the global mean (i.e. the intercept in the model) is not significantly
different from zero, because the 95% confidence interval of 0.0012 2 0.0446  
contains the value zero. Thus, we can remove the intercept from the model which
saves estimating one useless parameter.

> fit1 <- arima(nao, order=c(1,0,1), include.mean = F); fit1
Coefficients:
 ar1 ma1
 0.3273 -0.1285
s.e. 0.1495 0.1565
sigma^2=0.9974; log likelihood=-1192.28; aic=2390.55

Apparently, this changes all other estimated quantities unsubstantially. If we further
proceed with optimizing the model, we notice that also 1̂ is not significantly different
from zero. Thus, we reduce the model to an AR(1) without the constant:

> fit2 <- arima(nao, order=c(1,0,0), include.mean = F); fit2
Coefficients:
 ar1
 0.2041
s.e. 0.0338
sigma^2=0.9982; log likelihood=-1192.59; aic=2389.18

ATSA 5 Stationary Time Series Models

 Page 112

Now, the 95% confidence interval for 1 clearly indicates that the the AR(1)
coefficient is significantly different from zero. Moreover, reducing the model also
seems beneficial in terms of AIC (see below for a thorough explanation of this
quantity). Thus, despite an ACF/PACF that indicated an ARMA(1,1), a simpler
model seems to do the job here. However, we should not be overly quick with our
conjectures, but first verify that the residuals meet the White Noise assumption.

> tsdisplay(residuals(fit2), points=FALSE)

Except for the ACF and PACF at lag 16, the situation looks unproblematic. Can we
ignore those two estimates that crack the confidence bands? In the opinion of the
lecturer, the answer is yes in this particular example. In the first place, the
dependency of the ARMA(1,1) residuals (not shown here) does not look markedly
different and an even bigger model does not seem to be justified. Second, the
p-value of a Ljung-Box test over the first 24 levels is at 0.3056, providing further
evidence that the remaining dependence is insignificant.

5.5.3 AIC-Based Model Choice

We have explained above how the order of (,)ARMA p q models can be found by
inspecting ACF and PACF and complementing this with classical model selection
approaches and residual analysis. Another alternative is to run a criterion-based
model selection. In R, this is conveniently possible by using function
auto.arima() from library(forecast). However, handle this with care: the
function will always identify a “best fitting” (,)ARMA p q model, but it is of course not
guaranteed that it fits the data well. Moreover, usage of the function is somewhat

residuals(fit2)

1950 1960 1970 1980 1990 2000 2010 2020

-3
-2

-1
0

1
2

0 5 10 15 20 25 30 35

-0
.1

0
-0

.0
5

0.
00

0.
05

0.
10

Lag

A
C

F

0 5 10 15 20 25 30 35

-0
.1

0
-0

.0
5

0.
00

0.
05

0.
10

Lag

P
A

C
F

ATSA 5 Stationary Time Series Models

 Page 113

tricky, as many arguments need being set. We first address the definition of the
information criteria, as they are central to the auto.arima() function.

2 log() 2(1)AIC L p q k     

Here, the first term measures how well the model fits the training data with the value
of the Log-Likelihood function as the goodness-of-fit measure. The second term
penalizes for model complexity, where ,p q are the AR- resp. MA-orders, 1k  if a
global mean was estimated (else 0k ) and the final 1 stands for the innovation
variance which always needs to be estimated. Function auto.arima() by default
relies on a small sample corrected version AICc :

2(1)(2)

2

p q k p q k
AICc AIC

n p q k

     
 

   

A third option consists of using the BIC criterion, which penalizes model size
somewhat differently. The definition is as follows:

 2 log() log()(1) (log() 2)(1)BIC L n p q k AIC n p q k            .

It is noteworthy that the outcome can be sensitive to the criterion used, because in
practice many models may perform similarly. In those cases, there is usually no
"right or wrong" in model selection, but several nearly equivalent alternatives may
exist. Next, we focus on the algorithm behind the convenient auto.arima(). It is
concisely summarized on https://otexts.com/fpp2/arima-r.html by Hyndman &
Athanasopoulos (2018), from where we copy the following scheme:

ATSA 5 Stationary Time Series Models

 Page 114

Please be aware that we have not yet addressed true (, ,)ARIMA p d q models with
0d  i.e. where differencing is involved to cope with non-stationary series. Hence,

the first step is currently to be ignored. We illustrate the use of this function using
data(sunspotarea) from library(fpp). It contains annual averages of the
daily sunspot areas (in units of millionths of a hemisphere) for the full sun. Sunspots
are magnetic regions that appear as dark spots on the surface of the sun. The Royal
Greenwich Observatory compiled daily sunspot observations from May 1874 to
1976. Later data are from the US Air Force and the US National Oceanic and
Atmospheric Administration and were calibrated to be consistent across the whole
history of observations. We assume the data to be on a relative scale and hence
use a log-transformation before modelling them.

> tsdisplay(sunspotarea)

The series, much like the lynx data, shows some strong periodic behavior. However,
these periods are seen to be stochastic, hence the series as a whole is considered
being stationary. The ACF has a slow decay and the PACF cuts-off after lag 10,
suggesting an (10)AR . We complement with an exhaustive AIC-based search over
all (,)ARMA p q up to , 10p q  .

log(sunspotarea)

1880 1900 1920 1940 1960 1980 2000

2
3

4
5

6
7

8

5 10 15 20

-0
.4

0.
0

0.
2

0.
4

0.
6

0.
8

Lag

A
C

F

5 10 15 20

-0
.4

0.
0

0.
2

0.
4

0.
6

0.
8

Lag

P
A

C
F

ATSA 5 Stationary Time Series Models

 Page 115

> fit <- auto.arima(log(sunspotarea), max.p=10, max.q=10,
 stationary=TRUE, seasonal=FALSE, ic="aic",
 stepwise=FALSE); fit
ARIMA(2,0,3) with non-zero mean
Coefficients:
 ar1 ar2 ma1 ma2 ma3 intercept
 1.6548 -0.9775 -0.8583 -0.0425 0.4484 6.1968
s.e. 0.0210 0.0192 0.0830 0.1004 0.0785 0.0935
sigma^2 estimated as 0.4127: log likelihood=-135.33
AIC=284.67 AICc=285.53 BIC=305.11

Note that we need to set the information criterion argument ic="aic". Moreover,
if it is computationally feasible, we recommend to set stepwise=FALSE, because
else a non-exhaustive, stepwise search strategy will be employed which may not
result in the AIC-optimal model. As it turns out, an (2,3)ARMA yields the lowest AIC
value, i.e. is better in this respect than an (10)AR and spends fewer parameters,
too. To verify whether the model fits adequately, we need to run a residual analysis.

> tsdisplay(resid(fit))

Residuals from auto.arima() Fit

1880 1900 1920 1940 1960 1980 2000

-2
-1

0
1

2

5 10 15 20

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

Lag

A
C

F

5 10 15 20

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

Lag

P
A

C
F

ATSA 5 Stationary Time Series Models

 Page 116

As we can observe, the time series of residuals is not White Noise, since there are
several ACF and PACF coefficients that exceed the confidence bands. Hence, the
AIC-selected model clearly underfits these data. If an (10)AR is used in place of the

(2,3)ARMA , the residuals feature the desired White Noise property. As a conjecture,
we would reject the (2,3)ARMA here despite its better AIC value and note that blindly
trusting in automatic model selection procedures may well lead to models that fit
poorly.

ATSA 6 SARIMA and GARCH Models

 Page 117

6 SARIMA and GARCH Models
As we have discovered previously, many time series are non-stationary due to
trends and/or seasonal effects. While we have learned to decompose these and
then explain the remainder with some time series models, there are other models
that can directly incorporate trend and seasonality. While they usually lack some
transparency for the decomposition, their all-in-one approach allows for convenient
forecasting, and also AIC-based decisions for choosing the right amount of trend
and seasonality modeling become feasible.

Time series from financial or economic background often show serial correlation in
the conditional variance, i.e. are conditionally heteroskedastic. This means that they
exhibit periods of high and low volatility. Understanding the behavior of such series
pays off, and the usual approach is to set up autoregressive models for the
conditional variance. These are the famous ARCH models, which we will discuss
along with their generalized variant, the GARCH class.

6.1 ARIMA Models

ARIMA models are aimed at describing series which exhibit a trend that can be
removed by differencing at lag 1; and where these differences can be described by
an (,)ARMA p q model. Thus, the definition of an (, ,)ARIMA p d q process arises
naturally:

Definition: A series tX follows an (, ,)ARIMA p d q model if the d th order lag 1
difference of tX is an (,)ARMA p q process. If we introduce

 (1)dt tY B X  ,

 where B is the backshift operator, then we can write the ARIMA
process using the characteristics polynomials, i.e. ()  that accounts
for theMA , and ()  that stands for the AR part.

() ()

()(1) ()
t t

d
t t

B Y B E

B B X B E

  
   

Such series do appear in practice, as our example of the monthly prices for a barrel
of crude oil (in US$) from January 1986 to January 2006 shows. To stabilize the
variance, we decide to log-transform the data, and model these.

> library(TSA)
> data(oil.price)
> lop <- log(oil.price)
> plot(lop, ylab="log(Price)")
> title("Logged Monthly Price for a Crude Oil Barrel")

ATSA 6 SARIMA and GARCH Models

 Page 118

The series does not exhibit any apparent seasonality, but there is a clear trend, so
that it is non-stationary. We try first-order (i.e. 1d ) differencing at lag 1, and then
check whether the result is stationary.

> dlop <- diff(lop)
> plot(dlop, ylab="Differences")
> title("Differences of Logged Monthly Crude Oil Prices")

The trend was successfully removed by taking differences. ACF and PACF show
that the result is serially correlated. There may be a drop-off in the ACF at lag 1, and
in the PACF at either lag 1 or 2, suggesting an (1,1,1)ARIMA or an (2,1,1)ARIMA for
the logged oil prices. We base our choice on the AIC value which suggests using
the smaller model (1,1,1)ARIMA .

Time

lo
g

(P
ri

ce
)

1990 1995 2000 2005

2
.5

3
.0

3
.5

4
.0

Logged Monthly Price for a Crude Oil Barrel

Time

D
iff

e
re

n
ce

s

1990 1995 2000 2005

-0
.4

-0
.2

0
.0

0
.2

0
.4

Differences of Logged Monthly Crude Oil Prices

ATSA 6 SARIMA and GARCH Models

 Page 119

> par(mfrow=c(1,2))
> acf(dlop, main="ACF", ylim=c(-1,1), lag.max=24)
> pacf(dlop, main="ACF", ylim=c(-1,1), lag.max=24)

The fitting can be done with the arima() procedure that (by default) estimates the
coefficients using Maximum Likelihood with starting values obtained from the
Conditional Sum of Squares method. We can either let the procedure do the
differencing:

> arima(lop, order=c(1,1,1))

Call: arima(x = lop, order = c(1, 1, 1))

Coefficients:
 ar1 ma1
 -0.2987 0.5700
s.e. 0.2009 0.1723

sigma^2 = 0.006642: log likelihood = 261.11, aic = -518.22

Or, we can use the differenced series dlop as input and fit an (1,1)ARMA . However,
we need to tell R to not include an intercept – this is not necessary when the trend
was removed by taking differences and the constant would result in a so-called
(sometimes useful) drift-term, see chapter 8.2.1. The command is:

> arima(dlop, order=c(1,0,1), include.mean=FALSE)

The output from this is exactly the same as above, although it is generally better to
use the first approach and fit a true ARIMA model. The next step is to perform
residual analysis – if the model is appropriate, they must look like White Noise. This
is more or less the case, see next page. For decisions on the correct model order,
also the AIC statistics can provide valuable information.

0.0 0.5 1.0 1.5 2.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF

0.5 1.0 1.5 2.0
-1

.0
-0

.5
0

.0
0

.5
1

.0

Lag

P
a

rt
ia

l A
C

F

PACF

ATSA 6 SARIMA and GARCH Models

 Page 120

We finish this section by making some considerations on the model equation. We
have:

1 1

1 1 2 1

1 2 1

0.30 0.57

0.30 () 0.57

0.70 0.30 0.57

t t t t

t t t t t t

t t t t t

Y Y E E

X X X X E E

X X X E E

 

   

  

     
       

       

Thus, the (1,1,1)ARIMA can be rewritten as a non-stationary (2,1)ARMA . The non-
stationarity is due to a unit root in the AR parts' characteristic polynomial. We can
identify this using the polyroot() function in R.

> abs(polyroot(c(1,0.7, -0.3)))
[1] 1.000000 3.333333

 Finally, we give some recipe for fitting ARIMA models:

1) Choose the appropriate order of differencing, usually 1d  or (in rare
cases) 2d  , such that the result is a stationary series.

2) Analyze ACF and PACF of the differenced series. If the stylized facts of
an ARMA process are present, decide for the orders p and q .

3) Fit the model using the arima() procedure. This can be done on the
original series by setting d accordingly, or on the differences, by setting

0d  and argument include.mean=FALSE.

4) Analyze the residuals; these must look like White Noise. If several
competing models are appropriate, use AIC to decide for the winner.

The fitted ARIMA model can then be used to generate forecasts including prediction
intervals. This will, however, only be discussed in section 8.

Residuals from ARIMA(1,1,1)

1990 1995 2000 2005

-0
.4

0.
0

0 5 10 15 20 25 30 35

-0
.2

-0
.1

0.
0

0
.1

0.
2

Lag

A
C

F

0 5 10 15 20 25 30 35

-0
.2

-0
.1

0.
0

0
.1

0.
2

Lag
P

A
C

F

ATSA 6 SARIMA and GARCH Models

 Page 121

Example: Ambiguity in ARIMA Modeling

We here discuss another example where the tree ring widths of a douglas fir are
considered over a very long period lasting from 1107 to 1964. Modeling these data
is non-trivial, since there remains a lot of ambiguity on how to approach them. The
first question is about how to transform these data before modelling. They take
positive values only and show some pronounced right skewness, hence a log-
transformation might be indicated. After the log-transformation however, the data
are left-skewed. In order to achieve a symmetrical distribution, we can use a Box-
Cox transformation instead. Function BoxCox() suggests 0.6  , but since the
data are more symmetrically distributed with 0.4  , we choose that value.

> layout(matrix(c(1, 1, 1, 2, 3, 4), 2, 3, byrow = TRUE))
> plot(douglasfir, main="Douglas Fir Tree Ring Width…")
> qqnorm(douglasfir, pch=20); qqline(douglasfir)
> qqnorm(log(douglasfir), pch=20); qqline(log(douglasfir))
> tdf <- BoxCox(douglasfir, lambda=0.4)
> qqnorm(tdf, pch=20, main="…"); qqline(tdf)

The next step is the analysis of ACF and PACF (see next page). It raises the
important question whether the data generating process was stationary or not. The
ACF shows a relatively slow decay and the local mean of the series seems to persist
on higher/lower levels for longer periods of time. On the other hand, what we
observe in this series would clearly still fit within the envelope of what can be
produced by a stationary time series process. But then, the differenced data (see
the page thereafter) look clearly “more stationary”. Hence, both options, a pure

(,)ARMA p q and an (,1,)ARIMA p q remain open. We here lay some focus on the
aspects that are involved in the decision process.

Douglas Fir Tree Ring Width from 1107-1964

Time

do
ug

la
sf

ir

1200 1400 1600 1800

0
50

10
0

20
0

30
0

-3 -2 -1 0 1 2 3

0
50

10
0

20
0

30
0

Normal Plot of Original Data

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

-3 -2 -1 0 1 2 3

3
4

5

Normal Plot of Logged Data

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

-3 -2 -1 0 1 2 3

5
10

15
20

Normal Plot of Box-Cox Trsf Data

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

ATSA 6 SARIMA and GARCH Models

 Page 122

First and foremost, the model chosen needs to fit with the series, the ACF and PACF
that we observe. As mentioned above, this here leaves both the option for a
stationary and integrated model. Next, we can of course try both approaches and
compare the insample fit via the AIC. If function auto.arima() is employed, we
can even set the scope such that the search includes both stationary and integrated
models in one step.

> tsdisplay(tdf, points=FALSE, main="Box-Cox Trsf Douglas …")

Let us here first focus on modelling the non-differenced data. The analysis of
ACF/PACF above suggests using an (2,0)ARMA or (1,1)ARMA as the most
parsimonius models, a slightly bigger option would be to use an (2,1)ARMA . The
residuals of all these look similar and acceptable; the lowest AIC value is achieved
with the (2,1)ARMA which is also the model that auto.arima() suggests.

> fit <- auto.arima(tdf, max.p=5, max.q=5, ic="aic",
 stationary=T, allowmean=T, stepwise=T)
> fit
Series: tdf; ARIMA(2,0,1) with non-zero mean
Coefficients:
 ar1 ar2 ma1 mean
 1.1333 -0.2163 -0.6973 12.9683
s.e. 0.1044 0.0743 0.0933 0.2605
sigma^2 estimated as 4.46: log likelihood=-1857.11
AIC=3724.22 AICc=3724.29 BIC=3747.99

Box-Cox Trsf Douglas Fir Tree Ring Width from 1107-1964

1200 1400 1600 1800

5
10

15
20

0 5 10 15 20 25 30

-0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Lag

A
C

F

0 5 10 15 20 25 30

-0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Lag

P
A

C
F

ATSA 6 SARIMA and GARCH Models

 Page 123

The settings in the auto.arima() search were such that only stationary models
(including an intercept) are allowed. The maximum order for p and q equals 5, but
also 5p q  due to the max.order=5 default setting in the function. If larger
models are desired, then this needs to be adjusted accordingly. Moreover, for a full
search over all possible models, we need setting stepwise=FALSE, which may
change the output. We now inspect the differenced data.

> tsdisplay(diff(tdf), points=FALSE, main="…")

There is a clear cut-off in the ACF at lag 1. In the PACF, there is some decay,
perhaps with an additional cut-off at lag 1. Hence, the most plausible parsimonious
integrated models include the (0,1,1)ARIMA and the (1,1,1)ARIMA . The former
cannot capture the dependencies in a reasonable way, the residuals are still
correlated and violate the White Noise assumption. The (1,1,1)ARIMA is much better
in this regard. However, its AIC value is worse than the one of the (2,0,1)ARIMA
considered previously. We again employ auto.arima() for a non-stepwise grid
search over all (,1,)ARIMA p q with , 5p q  and 5p q  . Since we want to avoid a
drift-term and directly work on the differenced data, we have to set
allowmean=FALSE.

> fit <- auto.arima(diff(tdf), max.p=5, max.q=5,
 stationary=TRUE, allowmean=FALSE,
 stepwise=FALSE, ic="aic")

Differenced Box-Cox Transformed Douglas Fir Tree Ring Width from 1107-1964

1200 1400 1600 1800

-5
0

5

0 5 10 15 20 25 30

-0
.3

-0
.2

-0
.1

0.
0

0.
1

Lag

A
C

F

0 5 10 15 20 25 30

-0
.3

-0
.2

-0
.1

0.
0

0.
1

Lag

P
A

C
F

ATSA 6 SARIMA and GARCH Models

 Page 124

> fit
Series: diff(tdf)
ARIMA(2,0,1) with zero mean
Coefficients:
 ar1 ar2 ma1
 0.4219 0.1249 -0.961
s.e. 0.0484 0.0460 0.032
sigma^2 estimated as 4.557: log likelihood=-1865.15
AIC=3738.29 AICc=3738.34 BIC=3757.31

Somewhat surprisingly, this yields an (2,1,1)ARIMA which is not really obvious from
the PACF. So we end up with a number of different models whose residuals look
reasonable and have AIC values that are quite close. Hence, a decision is far from
being easy. While for the model order, the choice is somewhat arbitrary, the decision
for a pure or integrated ARMA is much more important. This is where practical
aspects, i.e. the meaning of the model should come into play as well. With a
stationary (,)ARMA p q , we would here focus more on the long-term aspects of the
series, i.e. the climatic changes that happen over decades or even centuries. If the
data are differenced, we consider the changes in growth from year to year. This puts
the focus on the bio-chemical aspect, while climate change is ruled out. Not
surprisingly, the autocorrelation among the differenced data is strongly negative at
lag 1. This means that a big positive change in growth is more likely to be followed
by a negative change in growth and vice versa. Hence this model focuses more on
the recovery of the tree after strong resp. weak growth in one year versus the next.
Hence it would not primarily be the climate which is modelled, but more the bio-
chemical processes within the tree. Thus, it is also a matter of the applied research
question which of the two models is more suited.

6.2 SARIMA Models

After becoming acquainted with the ARIMA models, it is quite natural to ask for an
extension to seasonal series; especially, because we learned that differencing at a
lag equal to the period s does remove seasonal effects, too. Suppose we have a
series tX with monthly data. Then, series

 12
12 (1)t t t tY X X B X   

usually has the seasonality removed. However, it is quite often the case that the
result has not yet constant global mean, and thus, some further differencing at lag
1 is required to achieve stationarity:

 12
1 1 12 13(1) (1)(1)t t t t t t t t tZ Y Y B Y B B X X X X X             

We illustrate this using the Australian beer production series that we had already
considered in section 4. It has monthly data that range from January 1958 to
December 1990. A log-transformation to stabilize the variance is indicated. We
display the transformed series tX , the seasonally differenced series tY and finally
the seasonal-trend differenced series tZ .

ATSA 6 SARIMA and GARCH Models

 Page 125

> www <- "http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/"
> dat <- read.table(paste(www,"cbe.dat",sep="", header=T)
> beer <- ts(dat$beer, start=1958, freq=12)
> d12.lbeer <- diff(log(beer), lag=12)
> d.d12.lbeer <- diff(d12.lbeer)
> plot(log(beer))
> plot(d12.lbeer)
> plot(d.d12.lbeer))

Logged Australian Beer Production

Time

lo
g(

be
er

)

1960 1965 1970 1975 1980 1985 1990

4.
2

4.
4

4.
6

4.
8

5.
0

5.
2

5.
4

Seasonally Differenced log(Beer) Series

Time

d1
2.

lb
ee

r

1960 1965 1970 1975 1980 1985 1990

-0
.2

-0
.1

0.
0

0.
1

0.
2

Additional Trend Removal Step

Time

d.
d1

2.
lb

ee
r

1960 1965 1970 1975 1980 1985 1990

-0
.2

0.
0

0.
2

0.
4

ATSA 6 SARIMA and GARCH Models

 Page 126

While the two series tX and tY are non-stationary, the last one, tZ may be, although
it is a bit debatable whether the assumption of constant variation is violated or not.
We proceed by analyzing ACF and PACF of series tZ .

> par(mfrow=c(1,2))
> acf(d.d12.lbeer, ylim=c(-1,1))
> pacf(d.d12.lbeer, ylim=c(-1,1), main="PACF")

There is very clear evidence that series tZ is serially dependent, and we could try
an (,)ARMA p q to model this dependence. As for the choice of the order, this is not
simple on the basis of the above correlograms. They suggest that high values for
p and q are required, and model fitting with subsequent residual analysis and AIC

inspection confirm this: 14p  and 11q  yield a good result.

It is (not so much in the above, but generally when analyzing data of this type) quite
striking that the ACF and PACF coefficients have large values at multiples of the
period s . This is very typical behavior for seasonally differenced series, in fact it
originates from the evolution of resp. changes in the seasonality over the years. A
simple model accounting for this is the so-called airline model:

12
1 1

12 13
1 1 1 1

1 1 1 12 1 1 13

(1)(1)

(1)
t t

t

t t t t

Z B B E

B B B E

E E E E

 
   
     

  
   
   

This is a (13)MA model, where many of the coefficients are equal to 0. Because it
was made up of an (1)MA with B as an operator in the characteristic polynomial,
and another one with sB as the operator, we call this a 12(0,1,1)(0,1,1)SARIMA . This
idea can be generalized: we fit AR and MA parts with both B and sB as operators
in the characteristic polynomials, which again results in a high order ARMA model
for tZ .

0.0 0.5 1.0 1.5 2.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF

0.5 1.0 1.5 2.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF

ATSA 6 SARIMA and GARCH Models

 Page 127

Definition: A series tX follows a (, ,)(, ,)sSARIMA p d q P D Q process if the following
equation holds:

 () () () ()s s
S t S tB B Z B B E     ,

 where series tZ originated from tX after appropriate seasonal and
trend differencing, i.e. (1) (1)d s D

tZ B B   .

Fortunately, it turns out that usually 1d D  is enough. As for the model orders
, , ,p q P Q , the choice can be made on the basis of ACF and PACF, by searching

for cut-offs. Mostly, these are far from evident, and thus, an often applied alternative
is to consider all models with , , , 2p q P Q  and doing an AIC-based grid search,
function auto.arima() may be very handy for this task.

For our example, the 12(2,1,2)(2,1,2)SARIMA has the lowest value and also shows
satisfactory residuals, although it seems to perform slightly less well than the

12(14,1,11)(0,1,0)SARIMA . The R-command for the former is:

> fit <- arima(log(beer), order=c(2,1,2), seasonal=c(2,1,2))

As it was mentioned in the introduction to this section, one of the main advantages
of ARIMA and SARIMA models is that they allow for quick and convenient
forecasting. While this will be discussed in depth later in section 8, we here provide
a first example to show the potential.

From the logged beer production data, the last 2 years were omitted before the
SARIMA model was fitted to the (shortened) series. On the basis of this model, a 2-
year-forecast was computed, which is displayed by the red line in the plot above.
The original data are shown as a solid (insample, 1958-1988) line, respectively as
a dotted (out-of-sample, 1989-1990) line. We see that the forecast is reasonably
accurate.

Time

lo
g

(b
e

e
r)

1985 1986 1987 1988 1989 1990 1991

4
.8

4
.9

5
.0

5
.1

5
.2

5
.3

Forecast of log(beer) with SARIMA(2,1,2)(2,1,2)

ATSA 6 SARIMA and GARCH Models

 Page 128

To facilitate the fitting of SARIMA models, we finish this chapter by providing some
guidelines:

1) Perform seasonal differencing on the data. The lag s is determined by the
periodicity of the data, for the order, in most cases 1D  is sufficient.

2) Do a time series plot of the output of the above step. Decide whether it is
stationary, or whether additional differencing at lag 1 is required to remove a
potential trend. If not, then 0d  , and proceed. If yes, 1d  is enough for
most series.

3) From the output of step 2, i.e. series tZ , generate ACF and PACF plots to
study the dependency structure. Look for coefficients/cut-offs at low lags that
indicate the direct, short-term dependency and determine orders p and q .
Then, inspect coefficients/cut-offs at multiples of the period s , which imply
seasonal dependency and determine P and Q .

4) Fit the model using procedure arima(). In contrast to ARIMA fitting, this is
now exclusively done on the original series, with setting the two arguments
order=c(p,d,q) and seasonal=c(P,D,Q) accordingly.

5) Check the accuracy of the fitted model by residual analysis. These must look
like White Noise. If thus far, there is ambiguity in the model order, AIC
analysis can serve to come to a final decision.

Next, we turn our attention to series that have neither trend nor seasonality, but
show serial dependence in the conditional variance.

6.3 ARCH/GARCH Models

In this chapter, we consider the SMI log-returns that were already presented in
section 1.2.4. By closer inspection of the time series plot, we observe some long-
tailedness, and also, the series exhibits periods of increased variability, which is
usually termed volatility in the (financial) literature. We had previously observed
series with non-constant variation, such as the oil prices and beer production in the
previous sections. Such series, where the variance increases with increasing level
of the series, are called heteroskedastic, and can often be stabilized using a log-
transformation.

However, that matter is different with the SMI log-returns: here, there are periods of
increased volatility, and thus the conditional variance of the series is serially
correlated, a phenomenon that is called conditional heteroskedasticity. This is not a
violation of the stationarity assumption, but some special treatment for this type of
series is required. Furthermore, the ACF of such series typically does not differ
significantly from White Noise. Still, the data are not iid, which can be shown with
the ACF of the squared observations. With the plots on the next page, we illustrate
the presence of these stylized facts for the SMI log-returns:

ATSA 6 SARIMA and GARCH Models

 Page 129

6.3.1 The ARCH and GARCH Models

In order to account for volatility, we require a model that reflects the dependency in
the conditional variance. We operate under the assumption that:

 t t tX E  ,

where the disturbance term tE can be rewritten as t tW : t t t tX W   . Here, tW is
a White Noise innovation and 1 2(| , ,...)t t t tVar X X X   is the conditional variance
that is assumed to be non-constant. Finally 1 2[| , ,...]t t t tE X X X   is the conditional
expectation as before. It is perfectly allowed to have both dependence in the
conditional mean and variance, and hence a mixture of ARMA and GARCH
processes. However, for simplicity we assume throughout this section that both the
conditional and the global mean are zero: 0t   and thus t t tX W .

The most simple and intuitive way of doing this is to use an autoregressive model
for the variance process. Thus, a series tE is first-order autoregressive conditional
heteroskedastic, denoted as (1)ARCH , if:

 2
0 1 1t t tE W E    .

SMI Log-Returns

Time

lr
et

.s
m

i

2500 3000 3500 4000

-0
.0

8
-0

.0
4

0.
00

0.
04

+
+

++
+

+ +
+

+
+++ +++
+

+
++ ++++ +

++
++ +

+ + ++
+

+

+ +

+++
+

++
++++ ++++ ++ +

+
+

+
++++++

++
+ +

+++
+++

+++
+

+
+

++
++

+

++++ ++
+++

+

+
+

+ ++

+
+

++
++

+

+ +
++

++

+
+ +

++
++

+++
++ +

+

++

+
+

+++

+
+

++

+
+

+
+

+

++
++++ +

+
+

+
+ +++

++++ +
+ +

+
++

+
+

+ +
+

++ ++ ++
++

+ +
++

+
+

+
+ ++

+
++++

+++
+

+
++

+
+

+
+

+ +
++++

+++ +
+

+++
+

+ +
+ ++

+
++

+

+
+

++
++++ + ++ +

+
+++

+++
+

+
+

++
+

+
++

+
+

++
+

+ +
+++

++
+ +

+
+

+
+

+

+

+
+ + +

+

++ +
+ +

+++ +++
++

+++

+

+
+

+

+

+++
+ +

+
+

++
+ +

+

+

+++
+

++
+ +

+

++ +
+

+

++
+++ +

++
+

++

+
+ +++

+
+ + +++++++

+
+

+++
+

++++
++

++
++ + + +

+ +++
+

+
+

+ +
+ ++++

+
+

+
++ +++

+

+
+

+

+
+

+
++

+
+

+
+

+
+

+ + +
++ +++++

+++
++

+
++

+

+
+

+
++++++

+++

+

+

++
+ +

+
+

+ +

+++++ ++
+

+ +++++ + +++++
++ +

+
+

+
+

++++
++++ +
++

++ ++++ +++
+

++ + +

+
+

++++

+ +
+

++
+

++ +
+++++

+

+

+
+++

++ ++

+

+
+

+
+

++
+ ++

+
++++

+

+ +
+ +

+
+

+++ +
+

+
+++

+ +
+

+

+
+++

+
+

+

++
+

+
+

+ + +
+ +

+
++

+
+

+ + ++ ++ +
+

+ + ++
+

+++++ ++

++

+
+

+
+

++++ ++
+

+ ++ +
++

+
+ ++

+ +++ +
++

++++ ++
+ +

+
+ +

+
+

+ ++ +
+

+
+

+

+
+++++ +
++

+
++

+
+

+
+

+

+

++
+

+

++

+

+
+ +

+

+
+++

+

+
++

+
+

+
+

++

+
+

++

+ +
++

+

+
++

++ + + +++++
+

+
+

+ +
+

+
+

++
++

+
+

+
+

+
+

+

++

++++
+

++
+

+
+ + +

+
++ +

+

+
+

+ ++ +
+++

+

+

+
+

+
+

++

++

+

+ ++
+

+

+
+

+

++

+ +
++++

+

+ +
+

+

+++
+

+
++++

++
+++

+ ++
+

+

+ +
+

+
+

+
++

+
+ +

+ ++
+

+
+ ++

+ + +
+ ++

+

+

+ +

+
+

+
+

++
+

+ +
+

+

+ ++

++
++

+
+ +

+

+
+

++ + +
+ ++

+ +

+
+++ +

+
+

+

+
+ +

++ + ++++
+ ++++

+
++

+++
+

+
+++ + ++++
++

+
+

+
+

+
++ +

+
+

++
+

+
+

++ ++++ + ++
+

++ +
+

+
++

+
+

+

+
+

++++ +
+ +

+

+

++
+

+

+
+

+
+

+++++++++
+

++
+ + +
+

+
+

+
+

++++ +
+++++++

+

+
+

+
+

+ ++ +
+++ +

++
+++ +

+

+
+ + +

++
+

+ +
+

+ +
++

+
+ + +++

+
+++

+++++ ++ +
+

+
++++

++
+

+ +
+ ++ +++ ++ +

+
+ +

++ +
+ ++ +

+
+ +

+
+

+ +

+

+ +

+
+

+ ++
+ + ++
+

++ +++
+

+ +

+

+++

+

+ +
+

+ +
+

++ +
+ + ++

++
+

+ +++
+

+
+++ +++

+
+ ++

++ +

++

+
+

+
++

+

+ +++

+

+
+ ++

+ +
+

+

+

+

+
++

+
+++
+

+
+ +

+
+

+
+

+ + +++++++
++

+
+ +

+

+
++

+
+

+

++

+++
+

+++ ++ +
+

+
+

+++
+

++++ +
+

+++++
+ +

+
++

+

+
+ ++++ +

+
+

+
+ +

+ + +
+ +

+
+

+
+ +

++
+

+
++ +

+

+
+

+++ + +++ +++
+

+
+

+
++ +

+
+

+
++

++
+

+ + +

+

+

+

+
+ +

++ +

+

++
+

+++
+ +

+
+

+
+

+
+++ +

+ +
+

+
+

++ +
+

+
+ + +

+
+

+++
+

+ +
++

+
+ +++

+
+++ +++

+
+++++

+++
+ + + ++

++
++ +++

+ +
+ +++

++++

++
+

+

+ +

+

+
+

+
++

+
+

++++ +++
++

+++++ + ++
+

+++
+++ +

+
+

+
+

+
+

+ +
++++

+++ +
+

+ +
+

+++
+

++
+++

++ ++ +
++

+

+

+
+

+

+

+
+

+++
++

+

++
+

+

+
+

+++
+

+
++++ + +

+

+
++

+
+ +

+
+++

+++
+++

+

+

++ ++
+

+

+

+
+++

++
+

+

++
++

+
+

++
+

+
+ +

+

++

+
+

++

+
++

+
+

+

+
++

+

+

+ +
+

+

+

+ +

+

+
+

+

+ + +

+ +++

+
+

+

+

+

+

+

+

+
+

+

++
+

++++
+

+
+ +

+

+

+
++

+

+
++

++ +

++ +
+

+

+
+

++
+

+
+

+
+

+

+

+

+

+

++

+

+

+
+

++
+ + +

+

++
++

+

+
+++

+
+

+
++

+
+

++ ++

+
++

+

+
++++

+
+

+++

+

+ +
++

+

+

+ +

+
++

++
+++

+
+ +

+
++

+ +

+
+ +

+

++
+

++ +++

+
++

+

+
+

+

+

+
+++
+

+ +
+

+

+
+ ++

+

+
+ +++

++

+
+

+++ +
+

+
+

+

+
+++

+

+
+

+

+

+

+
+

+

+ +

++++
+

+
++ +

++

+
+

+
++ +

+

+
+

++
+

++
+

+

+
++

+
+

+
+ +

+

+

+ ++
+

+
+++

+
++

++
+

++
+

+

+
+

+
+

+
+

+
+

+

++

+

+

+

-3 -2 -1 0 1 2 3

-0
.0

8
-0

.0
4

0.
00

0.
04

Normal Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of SMI Log-Returns

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of Squared Log-Returns

ATSA 6 SARIMA and GARCH Models

 Page 130

Here, tW is a White Noise process with mean zero and unit variance. The two
parameters 0 1,  are the model coefficients. An (1)ARCH process shows volatility,
as can easily be derived:

2

2 2
0 1 1
2

0 1 1

0 1 1

() []

[] []

[]

()

t t

t t

t

t

Var E E E

E W E E

E E

Var E

 
 

 








 
 
  

Note that this derivation is based on 2[] 1tE W  and [] [] 0t tE E E W  . As we had
aimed for, the variance of an (1)ARCH process behaves just like an (1)AR model.
Hence, the decay in the autocorrelations of the squared residuals should indicate
whether an (1)ARCH is appropriate or not.

In our case, the analysis of ACF and PACF of the squared log-returns suggests that
the variance may be well described by an (2)AR process. This is not what we had
discussed, but an extension exists. An ()ARCH p process is defined by:

 2
0

1

p

t t p t i
i

E W E  


 

Fitting in R can be done using procedure garch(). This is a more flexible tool, which
also allows for fitting GARCH processes, as discussed below. The command in our
case is as follows:

> fit <- garch(lret.smi, order = c(0,2), trace=FALSE); fit
Call: garch(x = lret.smi, order = c(0, 2), trace = FALSE)
Coefficient(s):
 a0 a1 a2
6.568e-05 1.309e-01 1.074e-01

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

ACF of Squared Log-Returns

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

P
a

rt
ia

l A
C

F
PACF of Squared Log-Returns

ATSA 6 SARIMA and GARCH Models

 Page 131

For verifying appropriate fit of the (2)ARCH , we need to check the residuals of the
fitted model. This includes inspecting ACF and PACF for both the “normal” and the
squared residuals. We here do without showing plots, but the (2)ARCH is OK.

A nearby question is whether we can also use an (,)ARMA p q process for describing
the dependence in the variance of the process. The answer is yes. This is what a

(,)GARCH p q model does. A series t t tE W H is (,)GARCH p q if:

 2
0

1 1

q p

t i t i j t j
i j

H E H   
 

   

6.3.2 Use of GARCH Models

GARCH models are useless for the prediction of the level of a series, i.e. for the SMI
log-returns, they do not provide any idea whether the stocks’ value will increase or
decrease on the next day. However, they allow for a more precise understanding in
the (up or down) changes that might be expected during the next day(s). This allows
stockholders to adjust their position, so that they do not take any unduly risks.

ATSA 7 Time Series Regression

 Page 133

7 Time Series Regression

7.1 What Is the Problem?

It is often the case that we aim for describing some time series tY with a linear
combination of some explanatory series 1,...,t tpx x . As we will see below, the
predictors can either be true covariates, or terms that are derived from time, as for
example linear trends or seasonal effects. We employ the universally known linear
model for linking the response series with the predictors:

 0 1 1 ...t t p tp tY x x E      

The regression coefficients 1,..., p  are usually estimated with the least squares
algorithm, for which an error term with zero expectation, constant variation and no
correlation is assumed. However, if response and predictors are time series with
autocorrelation, the last condition often turns out to be violated, though this is not
always the case.

Now, if we are facing a (time series) regression problem with correlated errors, the
estimates ˆ

j will remain being unbiased, but the least squares algorithm is no
longer efficient. Or in other words: more precisely working estimators exist. Even
more problematic are the standard errors of the regression coefficients ˆ

j : they are
often grossly wrong in case of correlated errors. As they are routinely
underestimated, inference on the predictors often yields spurious significance, i.e.
one is prone to false conclusions from the analysis.

Thus, there is a need for more general linear regression procedures that can deal
with serially correlated errors, and fortunately, they exist. We will here discuss the
simple, iterative Cochrane-Orcutt procedure, and the Generalized Least Squares
method, which marks a theoretically more sound approach to regression with
correlated errors. But first, we present some time series regression problems to
illustrating what we are dealing with.

Example 1: Global Temperature

In climate change studies time series with global temperature values are analyzed.
The scale of measurement is anomalies, i.e. the difference between the monthly
global mean temperature versus the overall mean between 1961 and 1990. The
data can be obtained at http://www.cru.uea.ac.uk/cru/data or in file
anomalies.rda. For illustration, we restrict to a period from 1971 to 2005 which
corresponds to a series of 420 records. For a time series plot, see the next page.

> ## Time Series Plot
> load("anomalies.rda")
> plot(anomalies, ylab="anomaly")
> title("Global Temperature Anomalies")

ATSA 7 Time Series Regression

 Page 134

There is a clear trend which seems to be linear. Despite being monthly measured,
the data show no evident seasonality. This is not overly surprising, since we are
considering a global mean, i.e. the season should not make for a big difference. But
on the other hand, because the landmass is not uniformly distributed over both
halves of the globe, it could still be present. It is natural to try a season-trend-
decomposition for this series. We will employ a parametric model featuring a linear
trend plus a seasonal factor.

2 [" "] 12 [" "]0 1 1 ... 1 ,· month Feb mont Dect h tt EY          

where 1, ,420t   and [" "]1month Feb is a dummy variable that takes the value 1 if an
observation is from month February, and zero else. Clearly, this is a time series
regression model. The response tY is the global temperature anomalies, and even
the predictors, i.e. the time and the dummies, can be seen as time series, even if
simple ones.

As we have seen previously, the goal with such parametric decomposition models
is to obtain a stationary remainder term tE . But stationary does not necessarily
mean White Noise, and in practice it often turns out that tE shows some serial
correlation. Thus, if the regression coefficients are obtained from the least squares
algorithm, we apparently feature some violated assumption.

This violation can be problematic, even in an applied setting: a question of utter
importance with the above series is whether trend and seasonal effect are
significantly present. It would be nice to answer such questions using the inference
approaches (tests and confidence intervals) that linear regression provides.
However, for obtaining reliable inference results, we need to account for the
correlation among the errors. We will show this below, after introducing some more
examples and theory.

Time

a
n

o
m

a
ly

1970 1975 1980 1985 1990 1995 2000 2005

-0
.4

0
.0

0
.2

0
.4

0
.6

0
.8

Global Temperature Anomalies

ATSA 7 Time Series Regression

 Page 135

Example 2: Air Pollution

In this second example, we consider a time series that is stationary, and where the
regression aims at understanding the series, rather than decomposing it into some
deterministic and random components. We examine the dependence of a
photochemical pollutant (morning maximal value) on the two meteorological
variables wind and temperature. The series, which constitute of 30 observations
taken on consecutive days, come from the Los Angeles basin. They are not publicly
available, but can be obtained from the lecturer upon request.

> ## Loading the data
> load("oxidant.rda")

> ## Visualizing the data
> plot(dat, main="Air Pollution Data")

There is no counterevidence to stationarity for all three series. What could be the
goal here? Well, we aim for enhancing the understanding of how the pollution
depends on the meteorology, i.e. what influence wind and temperature have on the
oxidant values. We can naturally formulate the relation with a linear regression
model:

 0 1 1 2 2t t t tY x x E      .

In this model, the response tY is the oxidant, and as predictors we have 1tx , wind,
and 2tx , the temperature. For the index, we have 1,...,30t  , and obviously, this is a
time series regression model.

For gaining some more insight with these data, it is also instructive to visualize the
data using a pairs plot, as shown on the next page. There, a strong, positive linear
association is recognizable between pollutant and the temperature. In contrast,

5
10

20

O
xi

d
a

n
t

35
45

55
65

W
in

d
70

80
90

0 5 10 15 20 25 30

T
e

m
p

Time

Air Pollution Data

ATSA 7 Time Series Regression

 Page 136

there is a negative linear relation between pollutant and wind. Lastly, between the
predictors wind and temperature, there is not much of a correlation. This data
structure is not surprising because wind causes a stronger movement of the air and
thus the pollutant is "better" distributed. Also, the wind causes some cooling.

For achieving our practical goals with this dataset, we require precise and unbiased
estimates of the regression coefficients 1 and 2 . Moreover, we might like to give
some statements about the significance of the predictors, and thus, we require some
sound standard errors for the estimates. However, also with these data, it is well
conceivable that the error term tE will be serially correlated. Thus again, we will
require some procedure that can account for this.

Time Series Regression Model

The two examples have shown that time series regression models do appear when
decomposing series, but can also be important when we try to understand the
relation between response and predictors with measurements that were taken
sequentially. Generally, with the model

0 1 1 ...t t p tp tY x x E      

we assume that the influence of the series 1, ,t tpx x on the response tY is
simultaneous. Nevertheless, lagged variables are also allowed, i.e. we can also use
terms such as ();t k jx  with 0k  as predictors. While this generalization can be easily
built into our model, one quickly obtains models with many unknown parameters.
Thus, when exploring the dependence of a response series to lags of some predictor
series, there are better approaches than regression. In particular, this is the cross
correlations and the transfer function model, which will be exhibited in later chapters
of this script.

Oxidant

35 40 45 50 55 60 65

+

+

+

+

+ ++ ++

+

+

+
+

+

+ +

+++
+

++ +
+

+ +

+++ +

5
10

20

+

+

+

+

+ + + ++

+

+

+
+

+

++

++ +
+

+++
+

+ +

++ + +

35
45

55
65

+
+

+

+

+
+
+

+

+

+
+

+ + +

++
+

+
+

++
+

+

+

+

+ ++

+

+

Wind +
+

+

+

+
+

+

+

+

+
+

++ +

++
+
+

+
++

+

+

+

+

+ ++

+

+

5 10 15 20 25

+
+

+
++

+
+

+ + ++
+ +

+
+

+

+ +
++

+

++
+

+

+
++

+

+

+
+

+
+ +

+
+

+++ +
+ +
+

+
+

++
+ +

+

+ +
+

+

+
++

+

+

70 75 80 85 90

70
80

90

Temp

ATSA 7 Time Series Regression

 Page 137

In fact, there are not many restrictions for the time series regression model. As we
have seen, it is perfectly valid to have non-stationary series as either the response
or as predictors. However, it is crucial that there is no feedback from tY to the tjx .
Additionally, the error tE must be independent of the explanatory variables, but it
may exhibit serial correlation.

7.2 Finding Correlated Errors

When dealing with a time series regression problem, we first always assume
uncorrelated errors and start out with an ordinary least squares regression. Based
on its residuals, the assumption can be verified, and if necessary, action can be
taken. For identifying correlation among the residuals, we analyze their time series
plot, ACF and PACF.

Example 1: Global Temperature

Our goal is the decomposition of the global temperature series into a linear trend
plus some seasonal factor. First and foremost, we prepare the data:

> num.temp <- as.numeric(anomalies)
> num.time <- as.numeric(time(anomalies))
> mn01 <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun")
> mn02 <- c("Jul", "Aug", "Sep", "Oct", "Nov", "Dec")
> month <- factor(cycle(my.temp), labels=c(mn01, mn02))
> dat <- data.frame(temp=num.temp, time=num.time, month)

The regression model is the estimated with R’s function lm(). The summary
function returns estimates, standard errors plus the results from some hypothesis
tests. It is important to notice that all of these results are in question should the
errors turn out to be correlated.

> fit.lm <- lm(temp ~ time + season, data=dat)
> summary(fit.lm)

Call:
lm(formula = temp ~ time + season, data = dat)

Residuals:
 Min 1Q Median 3Q Max
-0.36554 -0.07972 -0.00235 0.07497 0.43348

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.603e+01 1.211e+00 -29.757 <2e-16 ***
time 1.822e-02 6.089e-04 29.927 <2e-16 ***
seasonFeb 6.539e-03 3.013e-02 0.217 0.8283
seasonMar -1.004e-02 3.013e-02 -0.333 0.7392
seasonApr -1.473e-02 3.013e-02 -0.489 0.6252
seasonMay -3.433e-02 3.013e-02 -1.139 0.2552

ATSA 7 Time Series Regression

 Page 138

seasonJun -2.628e-02 3.013e-02 -0.872 0.3836
seasonJul -2.663e-02 3.013e-02 -0.884 0.3774
seasonAug -2.409e-02 3.013e-02 -0.799 0.4245
seasonSep -3.883e-02 3.013e-02 -1.289 0.1982
seasonOct -5.212e-02 3.013e-02 -1.730 0.0844 .
seasonNov -6.633e-02 3.013e-02 -2.201 0.0283 *
seasonDec -4.485e-02 3.013e-02 -1.488 0.1374

Residual standard error: 0.126 on 407 degrees of freedom
Multiple R-squared: 0.6891, Adjusted R-squared: 0.68
F-statistic: 75.18 on 12 and 407 DF, p-value: < 2.2e-16

As the next step, we need to perform some residual diagnostics. The plot()
function, applied to a regression fit, serves as a check for zero expectation, constant
variation and normality of the errors, and can give hints on potentially problematic
leverage points.

> par(mfrow=c(2,2))
> plot(fit.lm, pch=20)

Except for some very slightly long tailed errors, which do not require any action, the
residual plots look fine. What has not yet been verified is whether there is any serial
correlation among the residuals. If we wish to see a time series plot, the following
commands are useful:

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0
.4

0.
0

0.
2

0.
4

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

326

63 278

-3 -2 -1 0 1 2 3

-3
-1

0
1

2
3

4

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q-Q

326

63 278

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale-Location
326

63 278

0.000 0.010 0.020 0.030

-2
0

2
4

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

326

63

26

ATSA 7 Time Series Regression

 Page 139

> plot(time(anomalies), resid(fit.lm), type="l")

It is fairly obvious from the time series plot that the residuals are correlated. Our
main tool for describing the dependency structure is the ACF and PACF plots,
however. These are as follows:

> par(mfrow=c(1,2))
> acf(resid(fit.lm), main="ACF of Residuals")
> pacf(resid(fit.lm), main="PACF of Residuals")

The ACF shows a rather slow exponential decay, whereas the PACF shows a clear
cut-off at lag 2. With these stylized facts, it might well be that an (2)AR model is a
good description for the dependency among the residuals. We verify this:

1970 1975 1980 1985 1990 1995 2000 2005

-0
.2

0
.0

0
.2

0
.4

dat$time

re
si

d
(f

it.
lm

)

Residuals of the lm() Function

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF of Residuals

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF of Residuals

ATSA 7 Time Series Regression

 Page 140

> fit.ar2 <- ar.burg(resid(fit.lm)); fit.ar2
Call: ar.burg.default(x = resid(fit.lm))
Coefficients:
 1 2
0.4945 0.3036
Order selected 2 sigma^2 estimated as 0.00693

When using Burg’s algorithm for parameter estimation and doing model selection
by AIC, order 2 also turns out to be optimal. For verifying an adequate fit, we
visualize the residuals from the (2)AR model. These need to look like White Noise.

There is no contradiction to the White Noise hypothesis for the residuals from the
(2)AR model. Thus, we can summarize as follows: the regression model that was

0 100 200 300 400

-0
.3

-0
.1

0
.0

0
.1

0
.2

0
.3

Residuals of AR(2)

Index

fit
.a

r2
$

re
si

d

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF of AR(2) Residuals

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

ACF of AR(2) Residuals

ATSA 7 Time Series Regression

 Page 141

used for decomposing the global temperature series into a linear trend and a
seasonal factor exhibit correlated errors that seem to originate from an (2)AR
model. Theory tells us that the point estimates for the regression coefficients are still
unbiased, but they are no longer efficient. Moreover, the standard errors for these
coefficients can be grossly wrong. Thus, we need to be careful with the regression
summary approach that was displayed above. And since our goal is inferring
significance of trend and seasonality, we need to come up with some better suited
method.

Example 2: Air Pollution

Now, we are dealing with the air pollution data. Again, we begin our regression
analysis using the standard assumption of uncorrelated errors. Thus, we start out
by applying the lm() function and printing the summary().

> fit.lm <- lm(Oxidant ~ Wind + Temp, data=dat)
> summary(fit.lm)

Call:
lm(formula = Oxidant ~ Wind + Temp, data = dat)

Residuals:
 Min 1Q Median 3Q Max
-6.3939 -1.8608 0.5826 1.9461 4.9661

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.20334 11.11810 -0.468 0.644
Wind -0.42706 0.08645 -4.940 3.58e-05 ***
Temp 0.52035 0.10813 4.812 5.05e-05 ***

Residual standard error: 2.95 on 27 degrees of freedom
Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608
F-statistic: 47.12 on 2 and 27 DF, p-value: 1.563e-09

We will do without showing the 4 standard diagnostic plots, and here only report that
they do not show any model violations. Because we are performing a time series
regression, we also need to check for potential serial correlation of the errors. As
before, this is done on the basis of time series plot, ACF and PACF:

> plot(1:30, resid(fit.lm), type="l")
> title("Residuals of the lm() Function")
> par(mfrow=c(1,2))
> acf(resid(fit.lm), ylim=c(-1,1), main="ACF of Residuals")
> pacf(resid(fit.lm), ylim=c(-1,1), main="PACF of Residuals")

ATSA 7 Time Series Regression

 Page 142

Also in this example, the time series of the residuals exhibits serial dependence.
Because the ACF shows an exponential decay and the PACF cuts off at lag 1, we
hypothesize that an (1)AR model is a good description. While the AIC criterion
suggests an order of 14p  , the residuals of an (1)AR show the behavior of White
Noise. Additionally, using an (14)AR would be spending too many degrees of
freedom for a series with only 30 observations.

Thus, we can summarize that also in our second example with the air pollution data,
we feature a time series regression that has correlated errors. Again, we must not
communicate the above regression summary and for sound inference, we require
more sophisticated models.

0 5 10 15 20 25 30

-6
-4

-2
0

2
4

1:30

re
si

d
(f

it.
lm

)
Residuals of the lm() Function

0 2 4 6 8 10 12 14

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF of Residuals

2 4 6 8 10 12 14

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF of Residuals

ATSA 7 Time Series Regression

 Page 143

7.2.1 Durbin-Watson Test

For the less proficient user, hypothesis tests always seem like an attractive
alternative to visual inspection of graphical output. This is certainly also the case
when the task is identifying a potential serial correlation in a regression analysis.
Indeed, there is a formal test that addresses the issue, called the Durbin-Watson
test. While we will here briefly go into it, we do not recommend it for practical
application.The Durbin-Watson test tests the null hypothesis 0 : (1) 0H   against
the alternative : (1) 0AH   . The test statistic D̂ is calculated as follows

2
1

2

2

1

()
ˆ

t t
t

n

n

t
t

r

r r
D












where ˆt t tyr y  is the residual from the regression model, observed at time t .
There is an approximate relationship between the test statistic D̂ and the
autocorrelation coefficient at lag 1:

ˆ ˆ2(1 (1))D  

The test statistic takes values between 0 if 1t tr r and 4 if 1t tr r  . These extremes
indicate perfect correlation of the residuals. Values around 2, on the other hand, are
evidence for uncorrelated errors. The exact distribution of D̂ is rather difficult to
derive. However, we do not need to bother with this. The R package lmtest holds
an implementation of the Durbin-Watson test with function dwtest(), where the p-
value is either (for large sample size) determined by a normal approximation, or (for
short series) by an iterative procedure.

Example 1: Global Temperature

> dwtest(fit.lm)
data: fit.lm
DW = 0.5785, p-value < 2.2e-16
alt. hypothesis: true autocorrelation is greater than 0

Example 2: Air Pollution

> dwtest(fit.lm)
data: fit.lm
DW = 1.0619, p-value = 0.001675
alt. hypothesis: true autocorrelation is greater than 0

Thus, the null hypothesis is rejected in both examples and we come to the same
conclusion (“errors are correlated”) as with our visual inspection. It is very important
to note that this is not necessary: In cases where the errors follow an ()AR p process
where 1p  and | (1) | is small, the null hypothesis will not be rejected despite the
fact that the errors are correlated.

ATSA 7 Time Series Regression

 Page 144

7.3 Cochrane-Orcutt Method

The goal of this section is to solve the time series regression problem with errors
that have an (1)AR structure. This simple case is illustrative and helps to build the
comprehension for more complicated error dependencies. We consider the Air
Pollution example, where we have:

 0 1 1 2 2t t t tY x x E      with 1t t tE E U   , where 2~ (0,)t UU N iid .

The fundamental trick, on which in fact all time series regression methods are
based, will be presented here and now. We make the transformation:

 1t t tY Y Y  

Next, we plug-in the model equation and rearrange the terms. Finally, we build on
the fundamental property that 1t t tE E U   . The result is:

0 1 1 2 2 0 1 1,1 2 1,2 1

0 1 1 1,1 2 2 1,2 1

0 1 1 2 2

()

(1) () ()
t t t t t t t

t t t t t t

t t t

Y x x E x x E

x x x x E E

x x U

      
      
  

  

  

        
       

     

Obviously, this is a time series regression problem where the error term tU is iid.
Also note that both the response and the predictors have undergone a
transformation. The coefficients however, are identical in both the original and the
modified regression equation. For implementing this approach in practice, we
require knowledge about the (1)AR parameter  . Usually, it is not known
previously. A simple idea to overcome this and solve the time series regression
problem for the Air Pollution data is as follows:

1) Run OLS regression to obtain estimates 0
ˆ ˆ,..., p 

2) Estimate an (1)AR on the OLS residuals to obtain ̂

3) Determine the prime variables ;Y x  and derive *
0 1

ˆ ˆ ˆ, ,..., p   by OLS

This procedure is know as the Cochrane-Orcutt iterative method. Please note that
the estimates 0 1

ˆ ˆ ˆ, ,..., p   and their standard errors from the OLS regression in step
3) are sound and valid. But while the Cochrane-Orcutt procedure has its historical
importance and is very nice for illustration, it lacks of a direct R implementation, and,
as an iterative procedure, also of mathematical closedness and quality. The obvious
improvement is to solve the prime regression problem by simultaneous Maximum-
Likelihood estimation of all parameters:

 2
0,... ; ;p U   

This is possible and implemented in the R function gls(). Also, we need to be able
to handle more complicated structure for the regression error tE . For this, we resort
to matrix notation, see the next section.

ATSA 7 Time Series Regression

 Page 145

7.4 Generalized Least Squares

The ordinary least squares regression model assumes that 2()Var E I , i.e. the
covariance matrix of the errors is diagonal with identical values on the diagonal itself.
As we have seen in our examples above, this is not a good model for time series
regression. There, we rather have 2()Var E   , where  reports the correlation
among the errors. Using a Cholesky decomposition, we can write TSS  , where S
is a triangular matrix. This allows us to rewrite the regression model in matrix
notation as follows:

1 1 1

y X E

S y S X S E

y X E






  

 
 

   

This transformation is successful, because in the prime model, we have
uncorrelated errors again:

 1 1 1 2 2() () () T T TVar E Var S E S Var E S S SS S I        

With some algebra, it is easy to show that the estimated regression coefficients for
the generalized least squares approach turn out to be:

 1 1ˆ ()T TX X X y    

This is what is known as the generalized least squares estimator. Moreover, the
covariance matrix of the coefficient vector is:

 1 1 2ˆ() ()TVar X X   

This covariance matrix then also contains standard errors in which the correlation
of the errors has been accounted for, and with which sound inference is possible.
However, while this all neatly lines up, we of course require knowledge about the
error covariance matrix  , which is generally unknown in practice. What we can do
is estimate it from the data, for which two approaches exist.

Cochrane-Orcutt Method

As we have seen above, this method is iterative: it starts with an ordinary least
squares (OLS) regression, from which the residuals are determined. For these
residuals, we can then fit an appropriate (,)ARMA p q model and with its estimated
model coefficients 1,..., p  and () ()

1 ,...,MA q MA q
q  . On the basis of the estimated

()AR MA model coefficients, an estimate of the error covariance matrix  can be
derived. We denote it by ̂ , and plug it into the formulae presented above. This
yields adjusted regression coefficients and correct standard errors for these
regression problems. As mentioned above, the iterative approach is secondary to a
simultaneous MLE. Thus, we do without further performing Cochrane-Orcutt on our
examples.

ATSA 7 Time Series Regression

 Page 146

The gls() Procedure

A better, yet more sophisticated approach is to estimate the regression coefficients
and the ARMA parameters simultaneously. This can be done using the Maximum-
Likelihood principle. Even under the assumption of Gaussian errors, this is a
nonlinear and numerically difficult problem. However, for practical application, we
do not need to worry. The R package nlme features the gls() procedure which
tackles this problem. Thus, we focus on correct application of the R function.

Example 1: Global Temperature

Every GLS regression analysis starts by fitting an OLS an analyzing the residuals,
as we have done above. Remember that the only model violation we found were
correlated residuals that were well described with an (2)AR model. Please note that
for performing GLS, we need to provide a dependency structure for the errors. Here,
this is the (2)AR model, in general, it is an appropriate (,)ARMA p q . The syntax and
output is as follows:

> library(nlme)
> corStruct <- corARMA(form=~time, p=2)
> fit.gls <- gls(temp~time+season, data=dat, corr=corStruct)
> fit.gls
Generalized least squares fit by REML
 Model: temp ~ time + season
 Data: dat
 Log-restricted-likelihood: 366.3946

Coefficients:
 (Intercept) time seasonFeb seasonMar
-39.896981987 0.020175528 0.008313205 -0.006487876
 seasonApr seasonMay seasonJun seasonJul
 -0.009403242 -0.027232895 -0.017405404 -0.015977913
 seasonAug seasonSep seasonOct seasonNov
 -0.011664708 -0.024637218 -0.036152584 -0.048582236
 seasonDec
 -0.025326174

Correlation Structure: ARMA(2,0)
 Formula: ~time
 Parameter estimate(s):
 Phi1 Phi2
 0.5539900 -0.1508046
Degrees of freedom: 420 total; 407 residual
Residual standard error: 0.09257678

The result reports the regression and the AR coefficients. Using the summary()
function, even more output with all the standard errors can be generated. We omit
this here and instead focus on the necessary residual analysis for the GLS model.
We can extract the residuals using the usual resid() command. Important: these

ATSA 7 Time Series Regression

 Page 147

residuals must not look like White Noise, but as from an (,)ARMA p q with orders p
and q as provided in the corStruct object – which in our case, is an (2)AR .

> par(mfrow=c(1,2))
> acf(resid(fit.gls), main="ACF of GLS-Residuals")
> pacf(resid(fit.gls), main="PACF of GLS-Residuals")

The plots look similar to the ACF/PACF plots of the OLS residuals. This is often the
case in practice, only for more complex situations, there can be a bigger
discrepancy. And because we observe an exponential decay in the ACF, and a clear
cut-off at lag 2 in the PACF, we conjecture that the GLS residuals meet the
properties of the correlation structure we hypothesized, i.e. of an (2)AR model.
Thus, we can now use the GLS fit for drawing inference. We first compare the OLS
and GLS point estimate for the trend, along with its confidence interval:

> coef(fit.lm)["time"]
 time
0.01822374
> confint(fit.lm, "time")
 2.5 % 97.5 %
time 0.01702668 0.0194208
> coef(fit.gls)["time"]
 time
0.02017553
> confint(fit.gls, "time")
 2.5 % 97.5 %
time 0.01562994 0.02472112

We obtain a temperature increase of 0.0182 degrees per year with the OLS, and of
0.0202 with the GLS. While this may seem academic, the difference among the point
estimates is around 10%, and theory tells us that the GLS result is more reliable.
Moreover, the length of the confidence interval is 0.0024 with the OLS, and 0.0091

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF of GLS-Residuals

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF of GLS-Residuals

ATSA 7 Time Series Regression

 Page 148

and thus 3.5 times as large with the GLS. Thus, without accounting for the
dependency among the errors, the precision of the trend estimate is by far
overestimated. Nevertheless, also the confidence interval obtained from GLS
regression does not contain the value 0, and thus, the null hypothesis on no global
warming trend is rejected (with margin!).

Finally, we investigate the significance of the seasonal effect. Because this is a
factor variable, i.e. a set of dummy variables, we cannot just produce a confidence
interval. Instead, we have to rely on a significance test, i.e. a partial F-test. Again,
we compare what is obtained from OLS and GLS:

> drop1(fit.lm, test="F")
Single term deletions
Model: temp ~ time + season

 Df Sum of Sq RSS AIC F value Pr(F)
<none> 6.4654 -1727.0
time 1 14.2274 20.6928 -1240.4 895.6210 <2e-16 ***
season 11 0.1744 6.6398 -1737.8 0.9982 0.4472

> anova(fit.gls)
Denom. DF: 407
 numDF F-value p-value
(Intercept) 1 78.40801 <.0001
time 1 76.48005 <.0001
season 11 0.64371 0.7912

As for the trend, the result is identical with OLS and GLS. The seasonal effect is
non-significant with p-values of 0.45 (OLS) and 0.79 (GLS). Again, the latter is the
value we must believe in. We conclude that there is no seasonality in global warming
– but there is a trend. Thus, the seasonality should be omitted from the model and
the computations need to be repeated (not shown here).

Example 2: Air Pollution

For finishing the air pollution example, we also perform a GLS fit here. We identified
an (1)AR as the correct dependency structure for the errors. Thus, we define it
accordingly:

> dat <- cbind(dat, time=1:30)
> corStruct <- corARMA(form=~time, p=1)
> model <- formula(Oxidant ~ Wind + Temp)
> fit.gls <- gls(model, data=dat, correlation=corStruct)

The output then is as follows:

> fit.gls
Generalized least squares fit by REML
 Model: model
 Data: dat
 Log-restricted-likelihood: -72.00127

ATSA 7 Time Series Regression

 Page 149

Coefficients:
(Intercept) Wind Temp
 -3.7007024 -0.4074519 0.4901431

Correlation Structure: AR(1)
 Formula: ~time
 Parameter estimate(s):
 Phi
0.5267549
Degrees of freedom: 30 total; 27 residual
Residual standard error: 3.066183

Again, we have to check if the GLS residuals show the stylized facts of an (1)AR :

This is the case, and thus we can draw inference from the GLS results. The
confidence intervals of the regression coefficients are:

> confint(fit.lm, c("Wind", "Temp"))
 2.5 % 97.5 %
Wind -0.6044311 -0.2496841
Temp 0.2984794 0.7422260

> confint(fit.gls, c("Wind", "Temp"))
 2.5 % 97.5 %
Wind -0.5447329 -0.2701709
Temp 0.2420436 0.7382426

Here the differences among point estimates and confidence intervals are not very
pronounced. This has to do with the fact that the correlation among the errors is
weaker than in the global temperature example. But we emphasize again that the
GLS results are the one to be relied on and the magnitude of the difference between
OLS and GLS can be tremendous.

0 2 4 6 8 10 12 14

-0
.4

0
.0

0
.4

0
.8

Lag

A
C

F

ACF of GLS-Residuals

2 4 6 8 10 12 14

-0
.2

0
.0

0
.2

0
.4

Lag

P
a

rt
ia

l A
C

F

PACF of GLS-Residuals

ATSA 7 Time Series Regression

 Page 150

Simulation Study

We provide further evidence for the importance of the GLS approach by performing
a simulation study in which the resulting coefficients and standard errors are
compared to the ones obtained from OLS regression. We consider the following,
relatively simple model:

2

/ 50

2()
t

t t t t

x t

y x x E


  

where tE is from an (1)AR process with 1 0.65   . The innovations are Gaussian
with 0.1  . Regression coefficients and the true standard deviations of the
estimators are known in this extraordinary situation. However, we generate 100
realizations with series length 50n  , on each perform OLS and GLS regression
and record both point estimate and standard error.

The simulation outcome is displayed by the boxplots in the figure above. While the
point estimator for 1 in the left panel is unbiased for both OLS and GLS, we observe
that the standard error for 1̂ is very poor when the error correlation is not accounted
for. We emphasize again that OLS regression with time series will inevitably lead to
spuriously significant predictors and thus, false conclusions. Hence, it is absolutely
key to inspect for possible autocorrelation in the regression residuals and apply the
gls() procedure if necessary.

However, while gls() can cure the problem of autocorrelation in the error term, it
does not solve the issue from the root. Sometimes, even this is possible. In the next
subsection, we conclude the chapter about time series regression by showing how
correlated errors can originate, and what practice has to offer for deeper
understanding of the problem.

OLS GLS

0
.8

0
.9

1
.0

1
.1

1
.2

Coefficient

OLS GLS

0
.1

0
0

.2
0

0
.3

0
Standard Error

ATSA 7 Time Series Regression

 Page 151

7.5 Missing Predictor Variables

The presence correlated errors is often due to missing predictors. For illustration,
we consider a straightforward example of a ski selling company in the US. The
quarterly sales tY are regressed on the personal disposable income (PDI) which is
the one and only predictor tx . We start out with loading the data (which are available
from the lecturer upon request) and presenting a time series plot.

> ## Loading the data
> load("ski2.rda")
> ski.ts <- ts.union(ts(ski$sales), ts(ski$pdi))
> plot(ski.ts, main="Ski Sales and Personal Disposable …")

Next, we treat the two series in a regression problem where the sales are the
response variable and PDI is the predictor. As both variables are on a relative scale,
a log-transformation is indicated. This means that we fit a linear model of type
log() ~ log()sales PDI . This corresponds to a power law with character

1
0~sales PDI   on the original scale. A scatterplot with the fit obtained from

applying OLS on the transformed variables is shown below.

> ## Scatterplot
> par(mfrow=c(1,1))
> plot(sales ~ pdi, data=ski, pch=20, main="Regression: …")
>
> ## OLS model for the transformed variables
> fit <- lm(log(sales) ~ log(pdi), data=ski)
>
> Plotting the OLS fit on the original scale
> newpdi <- 100:220; newdf <- data.frame(pdi=newpdi)
> lines(newpdi, exp(predict(fit, newdf)), col="red")

3
5

45
5

5

ts
(s

ki
$s

al
es

)

12
0

1
60

2
00

0 10 20 30 40

ts
(s

ki
$

pd
i)

Time

Ski Sales and Personal Disposable Income (PDI)

ATSA 7 Time Series Regression

 Page 152

The coefficient of determination is rather large, i.e. 2 0.766R  and the fit seems
adequate, i.e. the power law seems to correctly describe the systematic relation
between sales and PDI. However, the model diagnostic plots (see the next page)
show some rather special behavior, i.e. there are hardly any “small” residuals (in
absolute value). Or more precisely, the data points almost lie on two lines around
the regression line, with almost no points near or on the line itself.

> ## Residual diagnostics
> par(mfrow=c(2,2))
> plot(fit, pch=20)

120 140 160 180 200

3
5

4
0

45
5

0
5

5

Regression: Ski Sales vs. PDI

pdi

sa
le

s

3.6 3.7 3.8 3.9

-0
.1

0
0.

00
0.

10

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

37

15

28

-2 -1 0 1 2

-1
.5

-0
.5

0.
5

1.
5

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q-Q

374

15

3.6 3.7 3.8 3.9

0.
0

0.
4

0.
8

1.
2

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale-Location
374 15

0.00 0.02 0.04 0.06 0.08 0.10

-1
.5

-0
.5

0.
5

1.
5

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

374

38

ATSA 7 Time Series Regression

 Page 153

As the next step, we analyze the correlation of the residuals and perform a Durbin-
Watson test. The result is as follows:

> dwtest(fit)
data: fit
DW = 2.0224, p-value = 0.4609
alt. hypothesis: true autocorrelation is greater than 0

While the Durbin-Watson test does not reject the null hypothesis, the residuals seem
very strongly correlated. The ACF exhibits some decay that may qualify as
exponential, and the PACF has a clear cut-off at lag 2. Thus, an (2)AR model could
be appropriate. And because it is an (2)AR where 1 and (1) are very small, the
Durbin-Watson test fails to detect the dependence in the residuals. The time series
plot is as follows:

0 5 10 15

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

A
C

F

ACF of OLS Residuals

5 10 15

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

P
ar

tia
l A

C
F

PACF of OLS Residuals

0 10 20 30 40

-0
.1

0
-0

.0
5

0
.0

0
0.

0
5

0.
1

0

Index

re
si

d
(fi

t)

Time Series Plot of OLS Residuals

ATSA 7 Time Series Regression

 Page 154

While we could now account for the error correlation with a GLS, it is always better
to identify the reason behind the dependence. I admit this is suggestive here, but as
mentioned in the introduction of this example, these are quarterly data and we might
have forgotten to include the seasonality. It is not surprising that ski sales are much
higher in fall and winter and thus, we introduce a factor variable which takes the
value 0 in spring and summer, and 1 else.

Introducing the seasonal factor variable accounts to fitting two separate power laws
for summer and winter. Eyeballing already lets us assume that the fit is good. This
is confirmed when we visualize the diagnostic plots:

120 140 160 180 200

35
4

0
4

5
5

0
55

pdi

sa
le

s

1

0
0

1 1

0
0

1 1

0
0

1
1

0
0

1 1

00

1 1

0

0

1
1

0 0

1
1

0 0

1
1

0
0

1

1

0

0

1

Ski Sales with Season: Winter=1, Summer=0

3.5 3.6 3.7 3.8 3.9 4.0

-0
.0

4
0.

00
0.

04

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

12

3710

-2 -1 0 1 2

-1
0

1
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q-Q

37

12

10

3.5 3.6 3.7 3.8 3.9 4.0

0.
0

0.
4

0.
8

1.
2

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale-Location
371210

0.00 0.02 0.04 0.06 0.08 0.10 0.12

-2
-1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

37
394

ATSA 7 Time Series Regression

 Page 155

The unwanted structure is now gone, as is the correlation among the errors:

Apparently, the addition of the season as an additional predictor has removed the
dependence in the errors. Rather than using GLS, a sophisticated estimation
procedure, we have found a simple model extension that describes the data well
and is certainly easier to interpret (especially when it comes to prediction) than a
model that is built on correlated errors.

We conclude by saying that using GLS for modeling dependent errors should only
take place if care has been taken that no important and/or obvious predictors are
missing in the model.

0 5 10 15

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

A
C

F

ACF of Extended Model

5 10 15

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

P
ar

tia
l A

C
F

PACF of Extended Model

ATSA 8 Forecasting

 Page 157

8 Forecasting
One of the major motivations for and principal goals with time series analysis is to
produce predictions which show the future evolution of the data, i.e. time series
forecasting. It is important to recognize that this is an extrapolation in the time
domain. In all other areas of statistical data analysis, applying models beyond the
range of observed training data is applied with great care only, as it is prone to false
conclusions. Of course, this is no different with time series forecasting, although it
is often neglected or presented with naïve optimism.

The task we are faced with in time series forecasting can be compared to driving a
car by looking through the rear window mirror. While this may work well on a wide
motorway that runs mostly straight on and has a few gentle bends only, things get
more complicated as soon as we are on a narrow mountain road with sharp and
unexpected bends. Then, we would need to drive very slowly to stay on track. This
all translates directly to time series analysis. For series where the signal is much
stronger than the noise, accurate forecasting is possible. However, for noisy series,
there is a great deal of uncertainty in the predictions, and they are at best reliable
for a very short horizon. From this, one might conclude that the principal source of
uncertainty is inherent in the process, i.e. comes from the stochastic and
unpredictable innovation terms. However, in practice, there are several other factors
that can threaten the reliability of any forecasting procedure. In particular:

 We need to be certain that the data generating process does not show a
disruption at some point in time, i.e. continues in the future as it was observed
in the past. Let's e.g. consider the case when we drive on a motorway by
looking through the rear window mirror, but it (unexpectedly) ends and
suddenly turns into a mountain road, a clear recipe for disaster.

 When we choose/fit a model based on a realization of data, we have no
guarantee that it is the correct, i.e. data-generating one. Translated to our
car-driving example we never truly told on what kind of road we are driving,
i.e. we can only guess if it's a motorway or a mountain road. In real-world
time series practice, we are never guaranteed that the true data generating
process is e.g. (,)ARMA p q and even if it is, we may commit mistakes in
choosing the orders ,p q .

 Even if we are so lucky to identify the correct data-generating process (or in
cases we "know" it, e.g. in a simulation), there is additional uncertainty arising
from the estimation of the parameters.

It is also important to understand what a time series forecast delivers. In uninformed
public opinion, it is often perceived as "the future evolution of the series". But this is
mathematically wrong, as a time series forecast only yields (ane estimate of) the
conditional mean of the future instances. Often, the influence of the unpredictable
innovation terms is huge and adds a major source of variation. Hence, it is absolutely

ATSA 8 Forecasting

 Page 158

essential to complement conditional mean forecasts with prediction intervals, i.e. a
measure of uncertainty for the future observed values. This also creates a novel
view on the task of time series forecasting: we cannot say what exactly will happen
in the future. But we can hope for providing a realistic view on what we can expect
both in terms of mean and variation around it, i.e. to what extent a time series is
predictable at all. It often helps tremendously to accept this perspective and
communicate it offensively. Before providing an outlook over the contents of this
forecasting chapter, we here display the weekly number of jobless claims in the US
from the late 1960's until March 2020.

The raw data are available from the US Bureau of Labor Statistics, the visual display
was taken from https://www.bbc.com/news/business-52231929, accessed on April
28, 2020. The weekly average of jobless claims hovered around an average of 350k,
sometimes increasing to twice that value in recession periods. But then, due to the
SARS-COV2 lockdown and crisis in March 2020, that figure soared to 6.6m in a
week. This is a major disruption – could anyone have foreseen and forecasted this
value with a few months lead?!? Obviously, this is a completely unrealistic
expectation and even if an interval forecast (as we advocate, rather than giving just
the point forecast) would have been provided, it would have been broken by orders
of magnitude. In summary, methods for time series forecasting are not the "magical
crystal ball" that we may hope for, they will never be able to forecast outliers and
groundbreaking events. Still, they can be useful and have their place in many
applied fields.

ATSA 8 Forecasting

 Page 159

Keeping these caveats in mind, we will now present several approaches to time
series forecasting. First, we deal with stationary processes and present, how AR,
MA and ARMA processes can be forecasted. These principles can be extended to
the case of ARIMA and SARIMA models, such that forecasting series with either
trend and/or seasonality is also possible. As we had seen in section 4.3, the
decomposition approach for non-stationary time series helps a great deal for
visualization and modelling. Thus, we will present some heuristics about how to
produce forecasts with series that were decomposed into trend, seasonal pattern
and a stationary remainder. Last but not least, we present the method of exponential
smoothing. This was constructed as a model-free, intuitive weighting scheme that
allows forecasting of time series. Due to its simplicity and the convenient
implementation in the HoltWinters() and other procedures in R, it is very popular
and often used in applied sciences.

8.1 Stationary Time Series

We assume a stationary time series, for which an appropriate ()AR p , ()MA q or
(,)ARMA p q model was identified, the parameters were successfully estimated and

where the residuals exhibited the required properties, i.e. looked like White Noise.
Under these circumstances, forecasts may be readily computed. Given data up to
time n , the forecasts will either involve the past observations, and/or the
unobservable past innovation terms that are in practice replaced with residuals.

In mathematical statistics, many forecasting methods have been studied on a
theoretical basis with the result that the minimum mean squared error forecast

,1:
ˆ
n k nX  for k steps ahead is given by the conditional expectation, i.e.:

 ,1: 1
ˆ [| ,...,]n k n n k nX E X X X 

In evaluating this term, we use the fact that the best forecast of all future innovation
terms ,tE t n is simply zero. We will be more specific in the following subsections.
Besides providing a point forecast with the conditional expectation, it is in practice
equally important to produce an interval forecast that makes a statement about its
precision.

8.1.1 Forecasting AR(1)

For simplicity, we first consider a mean-zero, stationary (1)AR process:

 1 1t t tX X E   ,

tE is the innovation, for which we do not need to assume a particular distribution.
As we will see below, it is convenient to assume Gaussian tE , because this allows
for an easy derivation of a prediction interval. The conditional expectation at time

1n is given by:

ATSA 8 Forecasting

 Page 160

 1 1 1[| ,...,]n n nE X X X x  .

Thus, we can easily forecast the next instance of a time series with the observed
value of the previous one, as long as it is available. In particular:

 1,1: 1
ˆ
n n nX x  .

For the k -step forecast with 1k  , we need to repeatedly plug-in the model
equation, and use the fact that 1[| ,...,] 0n k nE E X X  for all 0k  .

,1: 1

1 1 1

1 1 1

1

ˆ [| ,...,]

[| ,...,]

[| ,...,]

...

n k n n k n

n k n k n

n k n

k
n

X E X X X

E X E X X

E X X X

x






 

  

 


 




Apparently, for any stationary (1)AR process, the k -step forecast beyond the end
of a series depends on the last observation nx only and goes to zero exponentially
quickly. Note that the value of zero also corresponds to the unconditional, global
mean of the process. For practical implementation with real data, we would just plug-
in the estimated model parameter 1̂ and can so produce a forecast for arbitrary
horizon. In case of a shifted (1)AR with non-zero mean, m is subtracted first so that
the forecast can be obtained on the pure process in the above manner, before m is
finally added again. As always, a prediction is much more useful in practice if one
knows how precise it is and for what kind of variability in the values that materialize
we have to prepare. Under the assumption of Gaussian innovations, a 95%
prediction interval can be derived from the conditional variance 1(| ,...,)n k nVar X X X

. For the special case of 1k  we obtain:

 1 1.96n Ex   ,

where 1.96 is the 97.5% quantile of the standard Normal distribution, which also
dictates how intervals with different level can be obtained. Again, for practical
implementation of the interval, we need to plug-in 1̂ and ˆE . However, the formula
does not account for the uncertainty that arises from plugging-in these estimates,
so the coverage of the interval will in practice be smaller than 95%. By how much
this is the case largely depends on the quality of the estimates, i.e. the series length
n . For a k -step forecast, the theoretical 95% prediction interval is:

  1 2
1 11

1.96 1
kk j

n Ej
x  


    .

For increasing prediction horizon k , the conditional variance goes to 2 2
1/ (1)E  ,

which is the process variance 2
X . Thus, for the 1-step forecast, the uncertainty in

the prediction is given by the innovation variance E alone, while for increasing
horizon k the prognosis interval gets wider is finally determined by the unconditional
process variance.

ATSA 8 Forecasting

 Page 161

Simulation Study

As we have argued above, the 95% prediction interval does not account for the
uncertainty in the parameter estimates, the choice of the model or the continuity of
the data generating process. We run a small simulation study for pointing out the
effect of plugging-in the parameter estimates. It consists of generating a length
(1)n  realization from an (1)AR process with 1 0.5  and Gaussian innovations
where 1E  . From the first n data points, an (1)AR model, respectively the
parameters 1ˆ ˆ, E  , are estimated by MLE and the point forecast along with the
prediction interval is determined. Finally, it was checked whether the next instance
of the time series fell within the interval, from which an empirical coverage level
could be determined. The values were:

20n  50n  100n  200n 

91.01% 93.18% 94.48% 94.73%

As we notice, the coverage is clearly too small in case of 20n  . However, already
for a series with length 100n  , it reaches a reasonable level. Please note the
undercoverage here arises simply from parameter estimation in a benign setting. In
real-world examples, the undercoverage is often worse since additional uncertainty
arises from model misspecification or potential disruption in the data-generating
process.

Practical Example

We now apply the R functions that implement the above theory on the Beaver data
from section 4.4.3. An (1)AR seems appropriate for this series. In order to compare
the forecast with true values that materialized, we retain the last 14 observations of
the series from the fitting process. These will then be predicted, and the true values
will be used for verifying the prediction. The R commands for fitting the model on the
training data and producing the 14-step prediction are simple and straightforward.

> btrain <- window(beaver, 1, 100)
> btest <- window(beaver, 101, 114)
> fit <- ar.burg(btrain, order=1)
> forecast <- predict(fit, n.ahead=14)

The forecast object is a list that has two components, pred and se, which contain
the point predictions and the predictions’ standard errors, respectively. We now turn
our attention to how the forecast can be visualized:

> plot(beaver, col="blue", lwd=2, type="n")
> rect(100.5, 35, 120 ,40, col="grey90", border=NA)
> lines(btrain, lwd=2)
> lines(btest, lwd=2, col="red")
> lines(pred$pred, lwd=2, col="blue")

ATSA 8 Forecasting

 Page 162

> lines(pred$pred+pred$se*1.96, col="blue")
> lines(pred$pred-pred$se*1.96, col="blue")
> abline(h=mean(btrain), lty=3)
> box()

A simpler alternative to the self-construction of the above plot lies in relying on the
plot.forecast() function. This only requires the following code:

> plot(forecast(fit, h=14), main="Beaver Data: …")
> lines(btest, lwd=2, col="red")
> abline(h=mean(btrain), lty=3)

The shaded regions are 80% (darker/smaller) and 95% prediction intervals.

Time

b
ea

ve
r

0 20 40 60 80 100

3
6.

4
3

6.
6

3
6

.8
37

.0
37

.2
3

7.
4

Beaver Data: 14-Step Prediction Based on AR(1)

True
Forecast
Insample Mean

Beaver Data: 14-Step Prediction Based on AR(1)

0 20 40 60 80 100

3
6.

4
3

6.
6

3
6

.8
37

.0
37

.2
3

7.
4

True
Forecast
Insample Mean

ATSA 8 Forecasting

 Page 163

One more issue requires some attention here: for the Beaver data, a pure (1)AR
process is not appropriate, because the global series mean is clearly different from
zero. The way out is to de-mean the series, then fit the model and produce forecasts,
and finally re-adding the global mean. R does all this automatically. We conclude by
summarizing what we observe in the example: the forecast is based on the last
observed value 100 36.76x  , and from there approaches the global series mean
ˆ 36.86  exponentially quickly. Because the estimated coefficient is 1

ˆ 0.87  , and
thus relatively close to one, the convergence to the global mean takes some time.
On the other hand, from a practical viewpoint the forecast seems rather dull, as it
does not track the future evolution of the series. But again, we have to be aware of
the situation in these data: our forecast shows the conditional mean, whereas the
observed values are to a large extent driven by the unpredictable innovation terms.
The point forecast quickly converging point forecast along with a large prediction
interval clearly explains that one has to be prepared to major fluctuations in the
beaver body temperature. This is the message that a time series forecast can deliver
– expecting more is unrealistic.

Measuring Forecasting Error

Often one wishes to express the forecasting error for a time series model for
understanding the magnitude of the deviations that we need to expect. Moreover,
correctly implemented, forecasting errors can also serve for model choice. For truly
evaluating the performance of a model, it is important to study the out-of-sample
performance. This means that as above, the last part of the data need to be withheld
from the fitting process. These values can then be forecasted and compared against
the observed ones. Please note that we cannot rely on the insample resp. training
error for such considerations. A good or even perfect training data fit can be
achieved by overparametrizing a model, but this does not imply good forecasting
performance, yet in fact overfitting is usually detrimental to the out-of-sample results.

For a correct assessment of the accuracy, a suitable measure has to be found. The
choice depends on whether absolute or relative errors are considered. For time
series that did not require a transformation, one usually relies on the following
absolute error measures:

1

1
ˆ ()

n h

t t t
t n

MAE x x mean e
h



 

   

 2

1

1
ˆ() ()

n h

t t t
t n

RMSE x x mean e
h



 

   

In the above formulae, h is the forecasting horizon, ˆtx the forecasted value for time
t and te the difference between observation and forecast. Both error measures tell
us how "big the difference between the observed and forecasted value on average
is". Fundamentally, the RMSE is usually better suited, as all unbiased prediction
methods aim for minimizing RMSE rather than MAE .

ATSA 8 Forecasting

 Page 164

We compute the forecasting errors for the Beaver test data:

> mae <- mean(abs(btest-pred$pred)); mae
[1] 0.07202408
> rmse <- sqrt(mean((btest-pred$pred)^2)); rmse
[1] 0.1044069

They tell us that "on average", we miss the correct temperature by about 0.1 degrees
Celsius. The RMSE takes the larger value, because big deviations (as they exist in
the last observations) count more. An alternative to the self-coded error computation
lies in using the accuracy() function from library(forecast). It outputs a
wealth of error measures and it is important to understand their meaning and
suitability. The numerical results for MAE and RMSE are identical to above. Some
of the other error measures are explained in later sections where they are
appropriate for the respective examples, details about the further ones can be
accessed in Hyndmans "Forecasting: principles and practice", section 3.4,
accessible at: https://otexts.com/fpp2/accuracy.html.

> round(accuracy(forecast(fit, h=14), btest),3)
 ME RMSE MAE MPE MAPE MASE ACF1 Theils U
Training 0.004 0.096 0.062 0.012 0.168 0.939 -0.068 NA
Test set 0.049 0.104 0.072 0.132 0.195 1.092 0.337 1.333

8.1.2 Forecasting AR(p)

Forecasting from ()AR p processes works with the same concepts as explained
above for (1)AR , i.e. we use the conditional expectation as a basis. The algebra for
writing the forecasting formulae is somewhat more laborious, but not really more
difficult. Thus, we do without displaying it here, and directly present the formula for
the 1-step-forecast:

 1,1: 1 2 1
ˆ ...n n n n p n pX x x x       

The question is, what do we do for longer forecasting horizons? There, the forecast
is again based on the linear combination of the p past instances. For the ones with
an index between 1 and n , the observed value tx is used. Else, if the index exceeds
n , we just plug-in the forecasted values ,1:ˆt nx . Thus, the general formula is:

 () ()
,1: 1 1,1: ,1: 1

ˆ ˆ ˆ... ...k k
n k n n k n p n k p n n p n pX X X x x             ,

where ,1:
ˆ
t n tX x in all cases where t n , i.e. an observed value is available. All

forecasted values ,1:
ˆ
t n tX x for ;1:

ˆ
n k nX  for all k will ultimately only depend on

1,...,n p nx x  , i.e. we have a Markov property for ()AR p forecasts. We can even
rewrite an ()AR p forecast as a linear combination of the p last observed instances
with some set of coefficients () ()

1 ,...,k k
p  that depend on the forecasting horizon k .

It is generally difficult to present formulae for the ()k
i and the iterative plug-in

approach from above is more fruitful. In R, we do not need to worry much about
these details anyway, as we have access to the predict() function.

ATSA 8 Forecasting

 Page 165

Practical Example

We consider the logged lynx data for which we had identified an (11)AR as a suitable
model. Again, we use the first 100 observations for fitting the model and lay aside
the last 14, which are in turn used for verifying the result. We display the result again
using the plot.forecast() function where we also add the true evolution of the series.
For not cluttering the plot we restrict to displaying the 95% prediction interval.

> plot(forecast(fit.ar11, h=14, level=95), main="…")
> lines(test, col="red", lwd=2)
> abline(h=mean(train), lty=3)

We observe that the forecast tracks the general behavior of the series pretty well,
though the level of the series is underestimated in some years. This is, however, not
due to an “error” of ours, it is just that the values were higher than our forecasting
model resp. the conditional mean suggested. We also notice that the convergence
of the forecast towards the global mean is much slower here than for the Beaver
data. This is due to a much stronger signal-to-noise ration in the logged lynx data.
However, for longer forecasting horizon k (resp. with increasing h in the R function),
the predicted values would also converge to the global mean.

Another absolutely crucial point is that in practice, we won't be interested in the
logged number of lynx shot, but our focus lies in the original scale. Hence, we have
to back-transform the forecast. The inverse of log() is exp() , but this basic back-
transformation requires prudence. We here reiterate our statement from chapter
4.2.3: By simply using exp() , the back-transformed point forecast will not be the
mean, but only the median of the forecast distribution. Fundamentally, the median
may be a very reasonable summary statistic for a skewed distribution. Nevertheless,
there are applications where unbiased predictions are a must, in which case a
corrected back-transformation has to be applied. It is given by:

Logged Lynx Data: 14-Step Prediction Based on AR(11)

1820 1840 1860 1880 1900 1920

4
5

6
7

8
9

1
0

True
Forecast
Insample Mean

ATSA 8 Forecasting

 Page 166

2ˆ

ˆexp() 1
2
h

tx
 

  
 

, with 2ˆh  estimated h -step forecast variance

The easiest way of obtaining results from this formula is to rely on the forecast()
function with arguments lambda=0 for indicating that the model was fitted on log-
transformed data and biasadj=TRUE for requiring an unbiased forecast i.e.:

> forecast(fit.ar11, h=14, lambda=0, biasadj=TRUE)$mean
Time Series:
Start = 1921
End = 1934
Frequency = 1
 [1] 252.4828 871.7136 1703.2313 2270.0263 2640.0801
 [6] 2191.1800 717.0368 232.5009 215.4718 328.9176
[11] 734.6918 1957.1592 3409.2451 4006.8297

We continue with plot that shows the lynx data on the original scale (red) with both
a mean (purple) and a median (blue) forecast. The mean will of course always be
at a higher value than the median. Also, the mean is the average value of all future
realizations that we might obtain, whereas for the median, 50% of the realizations
will lie above and 50% below.

> plot(forecast(fit.ar11, h=14, lambda=0, level=95), main="…")
> lines(forecast(fit.ar11, h=14, lambda=0, biasadj=TRUE)$mean,
 col="purple", lwd=2)
> lines(exp(test), col="red", lwd=2)

We notice that especially the interval forecast is getting huge and takes values that
were never observed in the past. The point forecast produces peaks similar to the
ones observed in the past. However, since it relies on the last 11 observed values
only, it won't be able to reproduce the "superhigh" that appears every 40 years.

Logged Lynx Data: 14-Step Prediction Based on AR(11)

1820 1840 1860 1880 1900 1920

0
5

00
0

10
00

0
1

50
00

True
Forecast Median
Forecast Mean

ATSA 8 Forecasting

 Page 167

Usually after forecasting, we want to understand their quality and provide an error
measure. As long as we do so on the log-scale, we could again use MAE or RMSE
that were presented in the Beaver example. However, there is normally more
interest in an error measure for the original scale. Then, due to the fact that errors
are relative, we have to use the mean absolut percentage error (MAPE).

1

ˆ()100 n h
t t

t n t

x x
MAPE

h x



 


 

Please note that the MAPE is not defined if a time series takes zero values. We
compute the error measure for the (11)AR as well as for an (2)AR forecast, as we
had considered the latter model in the early stages but rejected it due to the
residuals not looking like White Noise.

> f11 <- forecast(fit.ar11, h=14, lambda=0, biasadj=TRUE)
> f02 <- forecast(fit.ar02, h=14, lambda=0, biasadj=TRUE)
> mean(100*abs((exp(test)-f11$mean)/exp(test)))
[1] 39.1808
> mean(100*abs((exp(test)-f02$mean)/exp(test)))
[1] 54.98648

The output means that with the (11)AR , we miss the true number of shot lynx on
average by around 39%. The figure for the (2)AR is clearly worse at 55%, indicating
that this model performs more poorly. With respect to R, it is also possible to use
the accuracy() function for computing MAPE .

> round(accuracy(f11, exp(test)),2)
 ME RMSE MAE MPE MAPE MASE ACF1
Training set 32.98 693.28 444.06 -12.66 39.70 0.52 -0.22
Test set 73.32 540.51 472.98 3.67 39.18 0.55 0.66

As mentioned previously, it is crucial to pick a suitable error measure and to be
aware that most of the numbers reported by accuracy() are not sensible for use
in a particular time series example.

[SCRIPT HAS ONLY BEEN UPDATED UP TO HERE, MORE UPDATES ON THE
REMAINING FORECASTING TOPICS WILL FOLLOW]

8.1.3 Forecasting MA(1)

We here consider a pure, invertible (1)MA process with mean zero:

 1 1t t tX E E  

tE is an innovation with expectation zero and constant variance. As above, the
forecast ,1:

ˆ
n k nX  will again be based on the conditional expectation 1[| ,...,]n k nE X X X

. We get to a solution if we plug-in the model equation. First, we assume that 2k 
, i.e. predict at least 2 time steps ahead.

ATSA 8 Forecasting

 Page 168

,1: 1

1 1 1

1 1 1 1

ˆ [| ,...,]

[| ,...,]

[| ,...,] [| ,...,]

0

n k n n k n

n k n k n

n k n n k n

X E X X X

E E E X X

E E X X E E X X




 

  

  


 
 


The best (1)MA forecast for horizons 2 and up is thus zero. Remember that we
require tE being an innovation, and thus independent from previous instances

,sX s t of the time series process. Next, we address the 1-step forecast. This is
more problematic, because the above derivation leads to:

1,1:

1 1

ˆ ...

[| ,...,]

0 ()

n n

n n

X

E E X X

generally


 




The 1-step forecast is generally different from zero. The term 1[| ,...,]n nE E X X is
difficult to determine. Using some mathematical trickery, we can at least propose an
approximate value. This trick is to move the point of reference into the infinite past,
i.e. conditioning on all previous instances of the (1)MA process. We denote

 : [|]n
n ne E E X  .

By successive substitution, we then write the (1)MA as an ()AR  . This yields

 1
0

() j
n n j

j

E X





  .

If we condition the expectation of nE on the infinite past of the series tX , we can
plug-in the realizations tx and obtain:

 1
0

[|] ()n j
n n n j

j

E E X e x


 


   .

This is of course somewhat problematic for practical implementation, because we
only have realizations for 1,..., nx x . However, because for invertible (1)MA processes,

1 1  , the impact of early observations dies out exponentially quickly. Thus, we let
0tx  for 1t  , and thus also have that 0te  for 1t  . Also, we plug-in the estimated

model parameter 1̂ , and thus, the 1-step forecast for an (1)MA is:

1

1,1: 1 1
0

ˆ ˆˆ ()
n

j
n n n j

j

X x 


 


 

This is a sum of all observed values, with exponentially decaying weights.

ATSA 8 Forecasting

 Page 169

8.1.4 Forecasting MA(q)

When forecasting from ()MA q processes, we encounter the same difficulties as
above. The prediction for horizons exceeding q are all zero, but anything below
contains terms for which the considerations in section 8.1.3 are again necessary.
We do without displaying this, and proceed to giving the formulae for (,)ARMA p q
forecasting, from which the ones for ()MA q can be learned.

8.1.5 Forecasting ARMA(p,q)

We are considering stationary and invertible (,)ARMA p q processes. The model
equation for 1nX  then is:

1 1 1 1 1 1n n p n p n n q n qX X X E E E            

As this model equation contains past innovations, we face the same problems as in
section 8.1.3 when trying to derive the forecast for horizons q . These can be
mitigated, if we again condition on the infinite past of the process.

 1 1 1
1 1

1
1 1

1,1: 1

1

ˆ [|]

]]]

[]

[| [| [|

|

p q
n n n

i n i n j n j

n
n n n

q

j

i j

p
n

i n i
i

n j
i

X E X X

E X X E E X E E X

x XE E

 

 

       
 

  

  




 


 









 

 

If we are aiming for k -step forecasting, we can use a recursive prediction scheme:

 ,1:
1 1

ˆ]][| [|
p q

n n
i n kn k n i j n k j

i j

E X X E EX X      





   ,

where for the AR - and MA -part the conditional expectations are:

,1:

,
[|] ˆ ,

tn
t

t n

x if t n
E X X

X if t n

 


, 0

[|]
0,
tn

t

e if t n
E E X

if t n

 
  

The terms te are then determined as outlined above in section 8.1.3, and for the
model parameters, we are plugging-in the estimates. This allows us to generate any
forecast from an (,)ARMA p q model that we wish. The procedure is also known as
Box-Jenkins procedure, after the two researchers who first introduced it. Next, we
illustrate this with a practical example, though in R, things are quite unspectacular.
It is again the predict() procedure that is applied to a fit from arima(), the Box-
Jenkins scheme that is employed runs in the background.

ATSA 8 Forecasting

 Page 170

Practical Example

We here consider the Douglas Fir data which show the width of a tree’s year rings
over a period from 1107 to 1964. We choose to model the data without taking
differences first. The auto.arima() solution with the lowest AIC value turned out
to be an (4,1)ARMA which will be used for generating the forecasts. For illustrative
purpose, we choose to put the last 64 observations of the series aside so that we
can verify our predictions. Then, the model is fitted and the Box-Jenkins forecasts
are obtained. The result, including a 95% prognosis interval, is shown below. The R
code used for producing the results, follows thereafter.

> train <- window(douglasfir, start=1107, end=1900)
> fit <- arima(train, order=c(4,0,1))
> fc <- predict(fit, n.ahead=64)
> plot(window(douglasfir, 1800, 1964), lty=3, ylab="")
> lines(train, lwd=1)
> lines(fc$pred, lwd=2, col="red")
> lines(fc$pred+fc$se*1.96, col="red")
> lines(fc$pred-fc$se*1.96, col="red")
> title("Douglas Fir Data: 64-Step Prediction Based on …")

We observe that the forecast approaches the global mean of the series very quickly,
in fact in an exponential decay. However, because there is an AR part in the model,
all forecasts will be different from the global mean (but only slightly so for larger
horizons). Then, since there is also a MA term in the model, all time series
observations down to the first one from 1107 have some influence on the forecast.
Again, the ARMA model combines the properties from pure AR and MA processes.
Regarding the quality of the forecast, we notice that it does not really provide much
value for the true evolution of the series. Furthermore, the prediction intervals seem
rather small. As it turns out, 12 out of 64 predictions (18.75%) violate the 95%

Time

1800 1850 1900 1950

5
0

1
0

0
1

5
0

2
0

0

Douglas Fir Data: 64-Step Prediction Based on ARMA(4,1)

ATSA 8 Forecasting

 Page 171

prediction interval. Is it bad luck or a problem with the model? We will reconsider
this in the discussion about ARIMA forecasting.

8.2 Series with Trend and Season

It is also possible and very important for practical purposes to produce forecasts for
time series which have a trend, a seasonal effect or both. In this chapter, we present
two different approaches, namely the one based on ARIMA and SARIMA models,
and the other based on decomposing the series into trend, seasonal effect and
stationary remainder.

8.2.1 Forecasting ARIMA and SARIMA

We here assume that we are given a series tX which follows an (,1,)ARIMA p q .
After taking differences at lag 1, we remain with 1t t tY X X   which is stationary and
follows an (,)ARMA p q . Hence for tY , we know how to generate forecasts according
to the recipe given in the previous section, and obtain 1;1: ;1:

ˆ ˆ,...,n n n k nY Y  . We are now
seeking the k -step forecast for the original series tX that has a trend. These are
based on the notion of 1;1: 1;1:

ˆ ˆ
n n n n nX Y X   and for obtaining arbitrary forecasts

;1:
ˆ
n k nX  , we have to integrate and hence:

1;1: 1;1:

2;1: 2;1: 1;1: 1;1: 2;1:

;1: 1;1: ;1:

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ...

n n n n n

n n n n n n n n n n n

n k n n n n n k n

X Y X

X Y X X Y Y

X X Y Y

 

    

  

 

    

   



As we can see, the k -step forecast for the original data is the cumulative sum of all
forecasted terms of the differenced data. The formulae for the prediction intervals in
an (,1,)ARIMA p q forecast are difficult to derive and are beyond the scope of this
script. All we say at this moment is that the width of the prediction interval does not
converge as for an (,)ARMA p q but is growing indefinitely with increasing forecasting
horizon k . We illustrate this with a forecast for the Douglas Fir data using the non-
stationary (1,1,1)ARIMA model (red) and compare it to what we had obtained when
a stationary (4,1)ARMA was used (blue).

ATSA 8 Forecasting

 Page 172

In this particular example, the (4,1)ARMA forecast is more accurate and even the
empirical coverage of its prediction interval is closer to the 95% that are are required
by construction. However, this is an observation on one single dataset, it would be
plain wrong to conclude that ARIMA forecasts are generally less accurate than the
ones which are obtained from stationary models.

However, it is crucial to understand what ARIMA forecasts can do and what they
cannot do. Despite the fact that ARIMA models are for non-stationary time series,
the forecast will converge to a constant if 1d  . So in case of a series with a
deterministic, linear trend, a default ARIMA forecast will miserably fail, see the
example below. To be fair however, we need to point out that default ARIMA
processes feature a unit root and are non-stationary, but are not compatible with a
deterministic linear trend.

To underline the issue, we present an artificial example, where an (1,1)ARMA
process was superimposed with a linear trend. The resulting series is non-
stationary, and as differencing can make it stationary (though with non-zero mean),
a (1,1,1)ARIMA was used for modelling and generating forecasts. As the output
shows, the forecast generated with the R function arima() fails to pick up the
obvious trend and hence is of poor quality. The alternatives consist in enhancing the
ARIMA models or using the method presented in section 8.2.2.

> dat <- arima.sim(list(ar=0.5,ma=0.5), n=200) + (1:200)*0.03
> fit <- arima(dat, order=c(1,1,1))
> plot(dat, xlim=c(0,250), ylim=c(-10,15), main="…")
> pred <- predict(fit, n.ahead=50)
> lines(pred$pred, col="red")
> lines(pred$pred + 1.96*pred$se, col="red", lty=3)
> lines(pred$pred - 1.96*pred$se, col="red", lty=3)

Time

1800 1850 1900 1950

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Douglas Fir Data: 64-Step Prediction Based on ARIMA(1,1,1)

ATSA 8 Forecasting

 Page 173

As mentioned above, a default (1,1,1)ARIMA model is misspecified in a situation with
linear trend, as it assumes an (1,1)ARMA with zero mean after differencing, which
is not the case. To act correctly, we need to add a so-called drift term (i.e. a non-
trivial global mean for the (1,1)ARMA) to the model which leads to a forecast that
(due to reintegration of the constant) has a linear increase and much better reflects
reality. In R function arima(), adding such a term is possible, but not that obvious
as the xreg argument needs being used, see the code below.

> fitd <- arima(dat, order=c(1,1,1), xreg=1:200)
> predd <- predict(fitd, n.ahead=50, newxreg=201:250)
> lines(predd$pred, col="blue")
> lines(predd$pred + 1.96*pred$se, col="blue", lty=3)
> lines(predd$pred - 1.96*pred$se, col="blue", lty=3)

Two things need to be emphasized. First, function auto.arima() does consider
adding drift terms automatically if the arguments are set accordingly. In the example
presented here, the method identifies an (3,1, 2)ARIMA with drift term as the best
fitting model and produces a forecast that is linearly increasing. Nevertheless, in
practice, where we do not have intimate knowledge about the data generating
process, careful modelling with ARIMA (and potentially adding drift terms) is
important for producing successful forecasts. In many cases, it may seem easier to
decompose a series into trend, (season) and remainder as it is easier to take care
of each component on its own.

We continue with presenting an example of a SARIMA forecast. We do without
giving much detail here, but only remark that these are also based on producing
forecasts for the differenced, stationary series and subsequent integration. Again,
careful modelling is generally required to get the trend extrapolation right. As we see
in our example for the Air Pax data, we also undershoot the trend development
somewhat. Again, adding a drift term may be successful here.

ARIMA(1,1,1) Forecast for ARMA(1,1) with Linear Trend

Time

d
a

t

0 50 100 150 200 250

-1
0

-5
0

5
1

0
1

5

ATSA 8 Forecasting

 Page 174

> fit <- arima(shlap, order=c(0,1,1), seasonal=c(0,1,1))
> pred <- predict(fit, n.ahead=24)
> plot(…)

8.2.2 Forecasting Decomposed Series

Another approach for forecasting series with deterministic trend and/or seasonality
is based on the descriptive decomposition. The paradigm is as follows:

 Trend

We assume a smooth trend for which we recommend linear extrapolation.

 Seasonal Effect

We extrapolate the seasonal effect according to the last observed period.

 Stationary Remainder

We fit an (,)ARMA p q and determine the forecast as discussed above.

We illustrate the procedure on the Maine unemployment data. We will work with the
log-transformed data, for which an STL decomposition under assuming a constant
seasonal effect was performed.

> fit <- stl(log(tsd), s.window="periodic")
> plot(fit, main="…")

Time

lo
g

(A
P

)

1955 1956 1957 1958 1959 1960 1961

5
.4

5
.6

5
.8

6
.0

6
.2

6
.4

6
.6

Forecast of log(AP) with SARIMA(0,1,1)(0,1,1)

ATSA 8 Forecasting

 Page 175

We first focus on the central issue which is the trend extrapolation. We recommend
the following procedure:

Fit a least squares regression line into the past trend values. The window on
which this fit happens is chosen such that is has the same length as the
forecasting horizon. In our particular example, where we want to forecast the
upcoming two years of the series, these are the last 24 data points. Or in
other words: for the trend forecast, we use the last observation as an anchor
point and predict with the average slope from the last two years.

Please note that the so-produced trend forecast is a recommendation, but not
necessarily the best solution. If some expert knowledge from the application field
suggests another trend extrapolation, then it may well be used. It is however
important, to clearly declare how the trend forecast was determined. The following
code does the job, see next page for the result:

> ## STL decomposition
> fit <- stl(log(tsd), s.window="periodic")
>
> ## Trend Forecast by Linear Extrapolation
> plot(fit$time.series[,2], xlim=c(1996, 2008+9/12))
> rect(2004+8/12, 1 , 2006+7/12, 2, col="grey93", border=NA)
> rect(2006+7/12, 1, 2008+6/12, 2, col="grey83", border=NA)
> title("Trend Forecast by Linear Extrapolation")
> xx <- time(fit$time.series[,2])[105:128]
> yy <- fit$time.series[105:128,2]
> fit.regr <- lm(yy~xx)
> t.fore <- 1.494 + (0:23)/12 * coef(fit.regr)[2])
> lines(xx, fitted(fit.regr), col="blue")
> lines(xx[1]+(23:46)/12, t.fore, col="red")
> lines(fit$time.series[,2])
> box()

STL-Decomposition of Logged Maine Unemployment Series

1.
0

1.
4

1.
8

d
a

ta

-0
.2

0.
0

0.
2

se
a

so
n

a
l

1.
2

1.
5

tr
e

n
d

-0
.0

5
0.

05

1996 1998 2000 2002 2004 2006

re
m

a
in

d
e

r

time

ATSA 8 Forecasting

 Page 176

The blue line in the light grey window indicates the average trend over the last two
years of observations. For the trend extrapolation, we use the last observed trend
value as the anchor, and then continue using the determined slope. Please note
that generally (though not in the stl() context), function loess() in R allows for
extrapolation if argument surface= "direct ". However, according to the
author’s experience, such trend extrapolations are often extreme and perform worse
than the linear extrapolation that is suggested here. As we have now solved the
issue with the trend, we remain with forecasting the seasonal effect and the
remainder term. For the former, things are trivial, as we assume that it stays as it
was last. The R code for producing the forecast of the seasonal component is:

Seasonal Forecast Using Last Values
season <- fit$time.series[,1]
l2y <- window(season,start=c(2004,9),end=c(2006,8))
s.fore <- ts(l2y, start=c(2006,9), end=c(2008,8), freq=12)

Hence, we only need to take care of the stationary remainder. Generally, this is a
stationary series that will be described with an (,)ARMA p q , for which the forecasting
method has already been presented in chapter 8.1. Hence, we here focus on the
particular case at hand, where a simple solution is to recognize an exponential
decay in the ACF and a cut-off at lag 4 in the PACF, so that an (4)AR model (here
without using a global mean!) will be fitted. Residual analysis (not shown here)
indicates that the White Noise assumption for the estimated innovation terms is
justified in this case. Using the predict() command, we then produce a 24-step
forecast from the (4)AR for the stationary remainder.

> rmndr <- fit$time.series[,3]
> fit.rmndr <- arima(rmndr, order=c(4,0,0), include.mean=F)
> r.fore <- predict(fit.rmndr, n.ahead=24)$pred

Time

fit
$

tim
e

.s
e

ri
e

s[
,

2
]

1996 1998 2000 2002 2004 2006 2008

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

Trend Forecast by Linear Extrapolation

ATSA 8 Forecasting

 Page 177

The final task is then to couple the forecasts for all three parts (trend, seasonal
component and remainder) to produce a 2-year-forecast for the original series with
the logged unemployment figures from the state of Maine. This is based on a simple
addition of the three components.

> ## Adding the 3 Components
> fore <- t.fore + s.fore + r.fore
> ## Displaying the Output
> plot(log(tsd), xlim=c(1996, 2008.75), ylab="log(%)")
> rect(2006+8/12, 0, 2008+9/12, 2, col="grey90", border=NA)
> lines(fore, col="red")
> box()

0.0 0.5 1.0 1.5

-0
.4

0
.0

0
.4

0
.8

Lag

A
C

F
ACF of Remainder Series

0.5 1.0 1.5

-0
.2

0
.0

0
.2

0
.4

Lag
P

a
rt

ia
l A

C
F

PACF of Remainder Series

Time

fit
$

tim
e

.s
e

ri
e

s[
,

3
]

1996 1998 2000 2002 2004 2006 2008

-0
.0

5
0

.0
0

0
.0

5

AR(4) Forecast for Remainder Series

ATSA 8 Forecasting

 Page 178

This procedure is a practical way for forecasting decomposed series. It is especially
attractive if one wants to have a second thought on the predicted trend, and maybe
correct it manually, based on deeper insight e.g. into the corporate plans about
increasing or decreasing the market share, upcoming competitors, et cetera. On the
downside, the procedure requires somewhat more effort for coming up with the
forecasts, when compared to the SARIMA model and exponential smoothing. The
choice of the right method however, depends on the use case. Another
disadvantage is the lack of prediction intervals here – most of the uncertainty in the
prediction comes from the trend extrapolation, for which it is not possible to give a
reasonable interval. While the other methods for forecasting non-stationary series
technically do provide prediction intervals, they are according to the opinion of the
author, often too small as they do not reflect the uncertainties that come from trend
extrapolation. Hence it may be more genuine not to provide an interval at all, rather
than a flawed one.

8.3 Exponential Smoothing

8.3.1 Simple Exponential Smoothing

The objective in this section is to predict some future values n kX  given an observed
series 1{ ,..., }nX X , and thus no different than before. We first assume that the data
do not exhibit any deterministic trend or seasonality, or that these have been
identified and removed. The (conditional) expected value of the process can change
from one time step to the next, but we do not have any information about the
direction of this change. A typical application is forecasting sales of a well-
established product in a stable market. The model is:

 t t tX E  ,

Forecast of Logged Unemployment in Maine

Time

lo
g

(%
)

1996 1998 2000 2002 2004 2006 2008

1
.0

1
.2

1
.4

1
.6

1
.8

ATSA 8 Forecasting

 Page 179

where t is the non-stationary mean of the process at time t , and tE are
independent random innovations with expectation zero and constant variance 2

E .
We will here use the same notation as R does, and let ta , called level of the series,
be our estimate of t . By assuming that there is no deterministic trend, an intuitive
estimate for the level at time t is to take a weighted average of the current time
series observation and the previous level:

 1(1)t t ta x a     , with 0 1  .

Apparently, the value of  determines the amount of smoothing: if it is near 1, there
is little smoothing and the level ta closely tracks the series tx . This would be
appropriate if the changes in the mean of the series are large compared to the
innovation variance 2

E . At the other extreme, an  -value near 0 gives highly
smoothed estimates of the current mean which take little account of the most recent
observation. This would be the way to go for series with a large amount of noise
compared to the signal size. A typical default value is 0.2  , chosen in the light
that for most series, the change in the mean between t and 1t  is smaller than 2

E
. Alternatively, it is (with R) also possible to estimate  , see below.

Because we assume absence of deterministic trend and seasonality, the best
forecast at time n for the future level of the series, no matter what horizon we are
aiming for, is given by the level estimate at time n , i.e.

 ,1:
ˆ
n k n nX a  , for all 1, 2,...k  .

We can rewrite the weighted average equation in two further ways, which yields
insight into how exponential smoothing works. Firstly, we can write the level at time
t as the sum of 1ta  and the 1-step forecasting error and obtain the update formula:

 1 1()t t t ta x a a    

Now, if we repeatedly apply back substitution, we obtain:

 2
1 2(1) (1) ...t t t ta x x x          

When written in this form, we see that the level ta is a linear combination of the
current and all past observations with more weight given to recent observations. The
restriction 0 1  ensures that the weights (1)i  become smaller as i
increases. In fact, they are exponentially decaying and form a geometric series.
When the sum over these terms is taken to infinity, the result is 1. In practice, the
infinite sum is not feasible, but can be avoided by specifying 1 1a x .

For any given smoothing parameter  , the update formula plus the choice of 1 1a x
as a starting value can be used to determine the level ta for all times 2,3,...t  . The
1-step prediction errors te are given by:

 ,1:(1) 1ˆt t t t t te x x x a     .

ATSA 8 Forecasting

 Page 180

By default, R obtains a value for the smoothing parameter  by minimizing the sum
of squared 1-step prediction errors, called 1SS PE :

 2

2

1
n

t
t

SS PE e


 .

There is some mathematical theory that examines the quality of the 1SS PE -
minimizing  . Not surprisingly, this depends very much on the true, underlying
process. However in practice, this value is reasonable and allows for good
predictions.

Practical Example

We here consider a time series that shows the number of complaint letters that were
submitted to a motoring organization over the four years 1996-1999. At the
beginning of year 2000, the organization wishes to estimate the current level of
complaints and investigate whether there was any trend in the past. We import the
data and do a time series plot:

> www <- "http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/"
> dat <- read.table(paste(www,"motororg.dat",sep="", head=T)
> cmpl <- ts(dat$complaints, start=c(1996,1), freq=12)
> plot(cmpl, ylab="", main="Complaints ...")

The series is rather short, and there is no clear evidence for a deterministic trend
and/or seasonality. Thus, it seems sensible to use exponential smoothing here. The
algorithm that was described above is implemented in R’s HoltWinters()
procedure. Please note that HoltWinters() can do more than plain exponential
smoothing, and thus we have to set arguments beta=FALSE and gamma=FALSE.
If we do not specify a value for the smoothing parameter  with argument alpha,
it will be estimated using the 1SS PE criterion.

Complaints to a Motorizing Organization

Time

1996 1997 1998 1999 2000

5
1

0
1

5
2

0
2

5
3

0
3

5

ATSA 8 Forecasting

 Page 181

> fit <- HoltWinters(cmpl, beta=FALSE, gamma=FALSE); fit
Call: HoltWinters(x = cmpl, beta = FALSE, gamma = FALSE)
Smoothing parameters:
 alpha: 0.1429622
 beta : FALSE
 gamma: FALSE
Coefficients:
 [,1]
a 17.70343
> plot(fit)

The output shows that the level in December 1999, this is 48a , is estimated as 17.70.
The optimal value for  according to the 1SS PE criterion is 0.143, and the sum of
squared prediction errors was 2502. Any other value for  will yield a worse result,
thus we proceed and display the result visually.

8.3.2 The Holt-Winters Method

The simple exponential smoothing approach from above can be generalized for
series which exhibit deterministic trend and/or seasonality. As we have seen in
many examples, such series are the norm rather than the exception and thus, such
a method comes in handy. It is based on these formulae:

1 1

1 1

() (1)()

() (1)

() (1)

t t t p t t

t t t t

t t t t p

a x s a b

b a a b

s x a s

 
 
 

  

 



    
   
   

In the above equations, ta is again the level at time t , tb is called the slope and ts
is the seasonal effect. There are three smoothing parameters , ,   which are
aimed at level, slope and season. The explanation of the equations is as follows:

Holt-Winters filtering

Time

O
b

se
rv

e
d

 /
 F

itt
e

d

1996 1997 1998 1999 2000

5
1

0
1

5
2

0
2

5
3

0
3

5

ATSA 8 Forecasting

 Page 182

 The first updating equation for the level takes a weighted average of the most
recent observation with the existing estimate of the previous’ period seasonal
effect term subtracted, and the 1-step level forecast at 1t  , which is given
by level plus slope.

 The second updating equation takes a weighted average of the difference
between the current and the previous level with the estimated slope at time

1t  . Note that this can only be computed if ta is available.

 Finally, we obtain another estimate for the respective seasonal term by taking
a weighted average of the difference between observation and level with the
previous estimate of the seasonal term for the same unit, which was made at
time t p .

If nothing else is known, the typical choice for the smoothing parameters is
0.2     . Moreover, starting values for the updating equations are required.

Mostly, one chooses 1 1a x , the slope 1 0b  and the seasonal effects 1,..., ps s are
either also set to zero or to the mean over the observations of a particular season.
When applying the R function HoltWinters(), the starting values are obtained
from the decompose() procedure, and it is possible to estimate the smoothing
parameters through 1SS PE minimization. The most interesting aspect are the
predictions, though: the k -step forecasting equation for n kX  at time n is:

 ,1:
ˆ
n k n n n n k pX a kb s     ,

i.e. the current level with linear trend extrapolation plus the appropriate seasonal
effect term. The following practical example nicely illustrates the method.

Practical Example

We here discuss the series of monthly sales (in thousands of litres) of Australian
white wine from January 1980 to July 1995. This series features a deterministic
trend, the most striking feature is the sharp increase in the mid-80ies, followed by a
reduction to a distinctly lower level again. The magnitude of both the seasonal effect
and the errors seem to be increasing with the level of the series, and are thus
multiplicative rather than additive. We will cure this by a log-transformation of the
series, even though there exists a multiplicative formulation of the Holt-Winters
algorithm, too.

> www <- "http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/"
> dat <- read.table(paste(www,"wine.dat",sep="", header=T)
> aww <- ts(dat$sweetw, start=c(1980,1), freq=12)
> plot(aww, ylab="", main="Sales of Australian White Wine")
> plot(log(aww), ylab="", main="Logged Sales ...")

ATSA 8 Forecasting

 Page 183

The transformation seems successful, thus we proceed to the Holt-Winters
modeling. When we apply parameter estimation by 1SS PE , this is straightforward.
The fit contains the current estimates for level, trend and seasonality. Note that
these are only valid for time n , and not for the entire series. Anyhow, it is much
better to visualize the sequence of ,t ta b and t graphically. Moreover, plotting the
fitted values along with the time series is informative, too.

> fit
Call: HoltWinters(x = log(aww))
Smoothing parameters:
 alpha: 0.4148028
 beta : 0
 gamma: 0.4741967

Sales of Australian White Wine

Time

1980 1985 1990 1995

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

Logged Sales of Australian White Wine

Time

1980 1985 1990 1995

4
.5

5
.0

5
.5

6
.0

6
.5

ATSA 8 Forecasting

 Page 184

Coefficients:
a 5.62591329 s4 0.20894897 s9 -0.17107682
b 0.01148402 s5 0.45515787 s10 -0.29304652
s1 -0.01230437 s6 -0.37315236 s11 -0.26986816
s2 0.01344762 s7 -0.09709593 s12 -0.01984965
s3 0.06000025 s8 -0.25718994

The coefficient values (at time n) are also the ones which are used for forecasting
from that series with the formula given above. We produce a prediction up until the
end of 1998, which is a 29-step forecast. The R commands are:

> plot(fit, xlim=c(1980, 1998))
> lines(predict(fit, n.ahead=29), col="blue", lty=3)

> plot(fit$fitted, main="Holt-Winters-Fit")

Holt-Winters filtering

Time

O
b

se
rv

e
d

 /
 F

itt
e

d

1980 1985 1990 1995

4
.5

5
.0

5
.5

6
.0

6
.5

4.
5

5.
5

xh
a

t
4.

8
5.

4
6.

0

le
ve

l
0.

00
8

0.
01

4

tr
e

n
d

-0
.2

0.
2

1985 1990 1995

se
a

so
n

Time

Holt-Winters-Fit

ATSA 8 Forecasting

 Page 185

The last plot on the previous page shows how level, trend and seasonality evolved
over time. However, since we are usually more interested in the prediction on the
original scale, i.e. in liters rather than log-liters of wine, we just re-exponentiate the
values. Please note that the result is an estimate of the median rather than the mean
of the series. There are methods for correction, but the difference is usually only
small.

> plot(aww, xlim=c(1980, 1998))
> lines(exp(fit$fitted[,1]), col="red")
> lines(exp(predict(fit, n.ahead=29)), col="blue", lty=3)

Also, we note that the (insample) 1-step prediction error is equal to 50.04, which is
quite a reduction when compared to the series’ standard deviation which is 121.4.
Thus, the Holt-Winters fit has substantial explanatory power. Of course, it would now
be interesting to test the accuracy of the predictions. We recommend that you, as
an exercise, put aside the last 24 observations of the Australian white wine data,
and run a forecasting evaluation where all the methods (SARIMA, decomposition
approaches, Holt-Winters) compete against each other.

Time

a
w

w

1980 1985 1990 1995

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

Holt-Winters-Forecast for the Original Series

ATSA 9 Multivariate Time Series Analysis

 Page 187

9 Multivariate Time Series Analysis
While the header of this section says multivariate time series analysis, we will here
restrict to two series series 1 1,()tX X and 2 2,()tX X , and thus bivariate time series
analysis, because an extension to more than two series is essentially analogous.
Please note that a prerequisite for all the theory in this section is that the series 1X
and 2X are stationary.

Generally speaking, the goal of this section is to describe and understand the
(inter)dependency between two series. We introduce the basic concepts of cross
correlation and transfer function models, warn of arising difficulties in interpretation
and show how these can be mitigated.

9.1 Practical Example

We will illustrate the theory on multivariate time series analysis with a practical
example. The data were obtained in the context of the diploma thesis of Evelyn
Zenklusen Mutter, a former WBL student who works for the Swiss Institute for Snow
and Avalanche Research SLF. The topic is how the ground temperature in
permafrost terrain depends on the ambient air temperature. The following section
gives a few more details.

Ambient air temperatures influence ground temperatures with a certain temporal
delay. Borehole temperatures measured at 0.5m depth in alpine permafrost terrain,
as well as air temperatures measured at or nearby the boreholes will be used to
model this dependency. The reaction of the ground on the air temperature is
influenced by various factors such as ground surface cover, snow depth, water or
ground ice content. To avoid complications induced by the insulating properties of
the snow cover and by phase changes in the ground, only the snow-free summer
period when the ground at 0.5m is thawed will be considered.

We here consider only one single borehole, it is located near the famous Hörnli hut
at the base of Matterhorn near Zermatt/CH on 3295m above sea level. The air
temperature was recorded on the nearby Platthorn at 3345m of elevation and 9.2km
distance from the borehole. Data are available from beginning of July 2006 to the
end of September 2006. After the middle of the observation period, there is a period
of 23 days during which the ground was covered by snow, highlighted in grey color
in the time series plots on the next page.

Because the snow insulates the ground, we do not expect the soil to follow the air
temperature during that period. Hence, we set all values during that period equal to
NA. The time series plots, and especially the indexed plot where both series are
shown, clearly indicate that the soil reacts to the air temperature with a delay of a
few days. We now aim for analyzing this relationship on a more quantitative basis,
for which the methods of multivariate time series analysis will be employed.

ATSA 9 Multivariate Time Series Analysis

 Page 188

As we had stated above, multivariate time series analysis requires stationarity. Is
this met with our series? The time series plot does not give a very clear answer.
Science tells us that temperature has a seasonal pattern. Moreover, the correlogram
of the two series is enlightening.

Air Temperature
°

C
el

si
us

0 20 40 60 80

-5
0

5
10

Soil Temperature

°
C

el
si

us

0 20 40 60 80

0
2

4
6

8

%
 o

f K
el

vi
n

0 20 40 60 80

95
97

99
10

1

Indexed Comparison Air vs. Soil

0 5 10 15

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

ACF of Air Temperature

0 5 10 15

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

ACF of Soil Temperature

ATSA 9 Multivariate Time Series Analysis

 Page 189

The ACF exhibits a slow decay, especially for the soil temperature. Thus, we decide
to perform lag 1 differencing before analyzing the series. This has another
advantage: we are then exploring how changes in the air temperature are
associated with changes in the soil temperature and if so, what the time delay is.
These results are easier to interpret than a direct analysis of air and soil
temperatures. Next, we display the differenced series with their ACF and PACF. The
observations during the snow cover period are now omitted.

The differenced air temperature series seems stationary, but is clearly not iid. There
seems to be some strong negative correlation at lag 4. This may indicate the
properties of the meteorological weather patterns at that time of year in that part of
Switzerland. We now perform the same analysis for the changes in the soil
temperature.

Time

D
iff

e
re

n
ce

0 20 40 60 80

-4
-2

0
2

4

Changes in the Air Temperature

0 5 10 15

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF

5 10 15

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF

ATSA 9 Multivariate Time Series Analysis

 Page 190

In the course of our discussion of multivariate time series analysis, we will require
some (,)ARMA p q models fitted to the changes in air and soil temperature. For the
former series, model choice is not simple, as in both ACF and PACF, the coefficient
at lag 4 sticks out. A grid search shows that an (5)AR model yields the best AIC
value, and also, the residuals from this model do look as desired, i.e. it seems
plausible that they are White Noise.

For the changes in the soil temperature, model identification is easier. ACF and
PACF suggest either a (1)MA , an (2,1)ARMA or an (2)AR . From these three
models, the (1)MA shows both the lowest AIC value as well as the “best looking”
residuals. Furthermore, it is the parsimonious choice, and hence we got with it.

Time

D
iff

e
re

n
ce

0 20 40 60 80

-2
-1

0
1

2

Changes in the Soil Temperature

0 5 10 15

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF

5 10 15

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF

ATSA 9 Multivariate Time Series Analysis

 Page 191

9.2 Cross Correlation

To begin with, we consider the (theoretical) cross covariance, the measure that
describes the amount of linear dependence between the two time series processes.
Firstly, we recall the definition of the within-series autocovariances, denoted by

11()k and 22()k :

 11 1, 1,() (,) t k tk Cov X X  , 22 2, 2,() (,) t k tk Cov X X 

The cross covariances between the two processes 1X and 2X are given by:

12 1, 2,() (,)t k tk Cov X X  , 21 2, 1,() (,)t k tk Cov X X 

Note that owing to the stationarity of the two series, the cross covariances 12()k
and 21()k both do not depend on the time t . Moreover, there is some obvious
symmetry in the cross covariance:

12 1, 2, 1, 2, 21() (,) (,) ()t k t t t kk Cov X X Cov X X k     

Thus, for practical purposes, it suffices to consider 12()k for positive and negative
values of k . Note that we will preferably work with correlations rather than
covariances, because they are scale-free and thus easier to interpret. We can obtain
the cross correlations by standardizing the cross covariances:

12
12

11 22

()
()

(0) (0)

k
k


 

 , 21
21

11 22

()
()

(0) (0)

k
k


 

 .

Not surprisingly, we also have symmetry here, i.e. 12 21() ()k k   . Additionally, the
cross correlations are limited to the interval between -1 and +1, i.e. 12| () | 1k  . As
for the interpretation, 12()k measures the linear association between two values of

1X and 2,X if the value of the first time series is k steps ahead. Concerning
estimation of cross covariances and cross correlations, we apply the usual sample
estimators:

 12 1, 1 2, 2

1
ˆ () ()()t k t

t

k x x x x
n

    and 21 2, 2 1, 1

1
ˆ () ()()t k t

t

k x x x x
n

    ,

where the summation index t for 0k  goes from 1 to n k and for 0k  goes from
1 k to n . With 1x and 2x we denote the mean values of 1,tx and 2,tx , respectively.
We define the estimation of the cross-correlations as

 12
12

11 22

ˆ ()
ˆ ()

ˆ ˆ(0) (0)

k
k


 

 , 21
21

11 22

ˆ ()
ˆ ()

ˆ ˆ(0) (0)

k
k


 

 .

The plot of 12ˆ ()k against k is called the cross-correlogram. Note that this must be
viewed for both positive and negative k . In R, we the job is done by the acf() function,
applied to a multiple time series object.

ATSA 9 Multivariate Time Series Analysis

 Page 192

> both <- ts.union(diff(air.na), diff(soil.na))
> acf(both, na.action=na.pass, ylim=c(-1,1))

The top left panel shows the ACF of the differenced air temperature, the bottom right
one holds the pure autocorrelations of the differenced soil temperature. The two off-
diagonal plots contains estimates of the cross correlations: The top right panel has

12
ˆ ()k for positive values of k , and thus shows how changes in the air temperature

depend on changes in the soil temperature.

Note that we do not expect any significant correlation coefficients here, because the
ground temperature has hardly any influence on the future air temperature at all.
Conversely, the bottom left panel shows 12

ˆ ()k for negative values of k , and thus
how the changes in the soil temperature depend on changes in the air temperature.
Here, we expect to see significant correlation.

9.2.1 Interpreting the Cross Correlogram

Interpreting the cross correlogram is tricky, because the within-series dependency
results in a mixing of the correlations. It is very important to note that the confidence
bounds shown in the above plots are usually wrong and can thus be strongly
misleading. If not the additional steps to be discussed below are taken, interpreting
the raw cross correlograms will lead to false conclusions.

The reason for these problems is that the variances and covariances of the 12ˆ ()k
are very complicated functions of 11 22(), ()j j  and 12(),j j  . For illustrative
purposes, we will treat some special cases explicitly.

0 5 10 15

-1
.0

0.
0

1.
0

Lag

A
C

F

air.changes

0 5 10 15

-1
.0

0.
0

1.
0

Lag

air.changes & soil.changes

-15 -10 -5 0

-1
.0

0.
0

1.
0

Lag

A
C

F

soil.changes & air.changes

0 5 10 15

-1
.0

0.
0

1.
0

Lag

soil.changes

ATSA 9 Multivariate Time Series Analysis

 Page 193

Case 1: No correlation between the two series for large lags

In the case where the cross correlation 12() 0j  for | |j m , we have for | |k m :

 12 11 22 12 12

1
ˆ(()) { () () () ()}

j

Var k j j j k j k
n

    




    .

Thus, the variance of the estimated cross correlation coefficients goes to zero for
$n \rightarrow \infty$, but for a deeper understanding with finite sample size, we
must know all true auto and cross-correlations, which is of course impossible in
practice.

Case 2: No correlation between the series for all lags

If the two processes 1X and 2X are independent, i.e. 12() 0j  for all j , then the
variance of the cross correlation estimator simplifies to:

 12 11 22

1
ˆ(()) () ()

j

Var k j j
n

  




  .

If, for example, 1X and 2X are two independent (1)AR processes with parameters

1 and 2 , then | | | |
11 1 22 2() , ()j jj j     and 12() 0j  . For the variance of 12ˆ ()k

we have, because the autocorrelations form a geometric series:

| | 1 2
12 1 2

1 2

1 1 1
ˆ(()) () ·

1
j

j

Var k
n n

   
 






 

 .

For 1 1  and 2 1  this expression goes to  , i.e. the estimator 12ˆ ()k can, for
a finite time series, differ greatly from the true value 0 . We would like to illustrate
this with two simulated (1)AR processes with 1 2 0.9   . According to theory all
cross-correlations are 0. However, as we can see in the figure on the next page, the
estimated cross correlations differ greatly from 0, even though the length of the
estimated series is 200. In fact, 12ˆ2 (()) 0.44Var k  , i.e. the 95% confidence
interval is ± 0.44. Thus even with an estimated cross-correlation of 0.4 the null
hypothesis “true cross-correlation is equal to 0” cannot be rejected.

Case 3: No cross correlations for all lags and one series uncorrelated

Only now, in this special case, the variance of the cross correlation estimator is
significantly simplified. In particular, if 1X is a White Noise process which is
independent of 2X , we have, for large n and small k :

 12

1
ˆ(())Var k

n
  .

Thus, in this special case, the rule of thumb 2 / n yields a valid approximation to
a 95% confidence interval for the cross correlations and can help to decide whether
they are significantly or just randomly different from zero.

ATSA 9 Multivariate Time Series Analysis

 Page 194

In most practical examples, however, the data will be auto- and also cross
correlated. Thus, the question arises whether it is at all possible to do something
here. Fortunately, the answer is yes: with the method of prewhitening, described in
the next chapter, we do obtain a theoretically sound and practically useful cross
correlation analysis.

9.3 Prewhitening

The idea behind prewhitening is to transform one of the two series such that it is
uncorrelated, i.e. a White Noise series, which also explains the name of the
approach. Formally, we assume that the two stationary processes 1X and 2X can
be transformed as follows:

1,
0

t i t i
i

U a X







2,
0

 t i t i
i

V b X







Thus, we are after coefficients ia and ib such that an infinite linear combination of
past terms leads to White Noise. We know from previous theory that such a
representation exists for all stationary and invertible (,)ARMA p q processes, it is the

()AR  representation. For the cross-correlations between tU and tV and between

tX and tY , the following relation holds:

0 5 10 15 20 25

-1
.0

0.
0

1.
0

Lag

A
C

F
X1

0 5 10 15 20 25

-1
.0

0.
0

1.
0

Lag

X1 & X2

-25 -20 -15 -10 -5 0

-1
.0

0.
0

1.
0

Lag

A
C

F

X2 & X1

0 5 10 15 20 25
-1

.0
0.

0
1.

0

Lag

X2

ATSA 9 Multivariate Time Series Analysis

 Page 195

1 2

0 0

() ()UV i j X X
i j

k a b k i j 
 

 

  

We conjecture that for two independent processes 1X and 2X , where all cross
correlation coefficients

1 2
() 0X X k  , also all () 0UV k  . Additionally, the converse is

also true, i.e. it follows from “ tU and tV uncorrelated” that the original processes 1X
and 2X are uncorrelated, too. Since tU and tV are White Noise processes, we are
in the above explained case 3, and thus the confidence bounds in the cross
correlograms are valid. Hence, any cross correlation analysis on “real” time series
starts with representing them in terms of tu and tv .

Example: (1)AR Simulations

For our example with the two simulated (1)AR processes, we can estimate the AR
model coefficients with the Burg method and plug them in for prewhitening the
series. Note that this amounts considering the residuals from the two fitted models!

1, 1 1, 1ˆt t txu x   , where 1ˆ 0.889  , and

2, 2 2, 1ˆt t txv x   , where 2ˆ 0.917  .

The figure on the previous page shows both the auto and cross correlations of the
prewhitened series. We emphasize again that we here consider the residuals from
the (1)AR models that were fitted to series 1X and 2X . We observe that, as we
expect, there are no significant autocorrelations, and there is just one cross

0 5 10 15 20

-1
.0

0.
0

1.
0

Lag

A
C

F

U

0 5 10 15 20

-1
.0

0.
0

1.
0

Lag

U & V

-20 -15 -10 -5 0

-1
.0

0.
0

1.
0

Lag

A
C

F

V & U

0 5 10 15 20

-1
.0

0.
0

1.
0

Lag

V

ATSA 9 Multivariate Time Series Analysis

 Page 196

correlation coefficient that exceeds the 95% confidence bounds. We can attribute
this to random variation.

The theory suggests, because tU and tV are uncorrelated, that also 1X and 2X do
not show any linear dependence. Well, owing to how we set up the simulation, we
know this for a fact, and take the result as evidence that the prewhitening approach
works in practice.

Example: Air and Soil Temperatures

For verifying whether there is any cross correlation between the changes in air and
soil temperatures, we have to perform prewhitening also for the two differenced
series. Previously, we had identified an (5)AR and a (1)MA model as. We can now
just take their residuals and perform a cross correlation analysis:

> fit.air <- arima(diff(air.na), order=c(5,0,0))
> fit.soil <- arima(diff(soil.na), order=c(0,0,1))
> u.air <- resid(fit.air); v.soil <- resid(fit.soil)
> acf(ts.union(u.air, v.soil), na.action=na.pass)

The bottom left panel shows some significant cross correlations. A change in the air
temperature seems to induce a change in the ground with a lag of 1 or 2 days.

9.4 Transfer Function Models

In the previous section we had observed significant cross correlations between the
prewhitened air and soil temperature changes. This means that the cross

0 5 10 15

-1
.0

0.
0

1.
0

Lag

A
C

F

u.air

0 5 10 15

-1
.0

0.
0

1.
0

Lag

u.air & v.soil

-15 -10 -5 0

-1
.0

0.
0

1.
0

Lag

A
C

F

v.soil & u.air

0 5 10 15

-1
.0

0.
0

1.
0

Lag

v.soil

ATSA 9 Multivariate Time Series Analysis

 Page 197

correlations between the original air and soil temperature changes will also be
different from zero. However, due to the prewhitening, inferring the magnitude of the
linear association is different. The aim of this section is to clarify this issue.

The transfer function models are a possible way to capture the dependency between
two time series. We must assume that the first series influences the second, but the
second does not influence the first. Furthermore, the influence occurs only at
simultaneously or in the future, but not on past values. Both assumptions are met in
our example. The transfer function model is:

2, 2 1, 1
0

()t j t j t
j

X X E  





   

We call 1X the input and correspondingly, 2X is named the output. For the error
term tE we require zero expectation and that they are independent from the input
series, in particular:

[] 0tE E  and 1,,() 0t sCov E X  for all t and s .

However, the errors tE are usually autocorrelated. Note that this model is very
similar to the time series regression model. However, here we have infinitely many
unknown coefficients j , i.e. we do not know (a priori) on which lags to regress the
input for obtaining the output. For the following theory, we assume (w.l.o.g.) that

1 2 0   , i.e. the two series were adjusted for their means. In this case the cross
covariances 21()k are given by:

21 2, 1, 1, 1, 11
0 0

() (,) (,) ()t k t j t k j t j
j j

k Cov X X Cov X X k j   
 

  
 

     .

In cases where the transfer function model has a finite number of coefficients j
only, i.e. 0j  for j K , then the above formula turns into a linear system of 1K 
equations that we could theoretically solve for the unknowns , 0, ,j j K   .

If we replaced the theoretical 11 and 21 by the empirical covariances 11̂ and 21̂ ,
this would yield, estimates ˆ j . However, this method is statistically inefficient and
the choice of K proves to be difficult in practice. We again resort to some special
case, for which the relation between cross covariance and transfer function model
coefficients simplifies drastically.

Special Case: Uncorrelated input series 1X

In this case, 11() 0k  for 0k  and we have 21 11() (0)kk   . For the coefficients k

this results in the simplified transfer function model:

21 22
21

11 11

() (0)

(0) (0)k

k  
 

  , for 0k  .

ATSA 9 Multivariate Time Series Analysis

 Page 198

However, 1X generally is not a White Noise process. We can resort to prewhitening
the input series. As we will show below, we can obtain an equivalent transfer
function model with identical coefficients if a smart transformation is applied to the
output series. Namely, we have to filter the output with the model coefficients from
the input series.

1, 1, 1 1, 2 1, 3 1, 4 1, 50.296· 0.242· 0.119· 0.497· 0.216·t t t t t t tX X X X X X D          ,

where tD is the innovation, i.e. a White Noise process, for which we estimate the
variance to be 2ˆ 2.392D  . We now solve this equation for tD and get:

1, 1, 1 1, 2 1, 3 1, 4 1, 5
2 3 4 5

1,

0.296· 0.242· 0.119· 0.497· 0.216·

(1 0.296 0.242 0.119 0.497 0.216)
t

t

t t t t t tX X X X X X

B B B B B X

D         
    




We now apply this same transformation, i.e. the characteristic polynomial of the
AR(5) also on the output series 2X and the transfer function model errors tE :

 2 3 4 5
2,(1 0.296 0.242 0.119 0.497 0.216)t tZ B B B B B X     

 2 3 4 5(1 0.296 0.242 0.119 0.497 0.216) tt BU B B B B E     .

We can now equivalently write the transfer function model with the new processes

tD , tZ and tU . It takes the form:

0

t j t j t
j

Z D U





  ,

where the coefficients j are identical than for the previous formulation of the model.
The advantage of this latest formulation, however, is that the input series tD is now
White Noise, such that the above special case applies, and the transfer function
model coefficients can be obtained by a straightforward computation from the cross
correlations:

 21
212

ˆ ˆ()
ˆ ˆ ()

ˆ ˆ
Z

k
D D

k
k

  
 

  , where 0k  .

where 21̂ and 21̂ denote the empirical cross covariances and cross correlations of

tD and tZ . However, keep in mind that tZ and tU are generally correlated. Thus,
the outlined method is not a statistically efficient estimator either. While efficient
approaches exist, we will not discuss them in this course and scriptum. Furthermore,
for practical application the outlined procedure usually yields reliable results. We
conclude this section by showing the results for the permafrost example: the
transfer function model coefficients in the example are based on the cross
correlation between the (5)AR residuals of the air changes and the ground changes
that had been filtered with these (5)AR coefficients.

> dd.air <- resid(fit.air)

ATSA 9 Multivariate Time Series Analysis

 Page 199

> coefs <- coef(fit.air)[1:5])
> zz.soil <- filter(diff(soil.na), c(1, -coefs, sides=1)
> as.int <- ts.intersect(dd.air, zz.soil)
> acf.val <- acf(as.int, na.action=na.pass)

Again, in all except for the bottom left panel, the correlation coefficients are mostly
zero, respectively only insignificantly or by chance different from that value. This is
different in the bottom left panel. Here, we have substantial cross correlation at lags
1 and 2. Also, these values are proportional to the transfer function model
coefficients. We can extract these as follows:

> multip <- sd(zz.soil, na.rm=TRUE)/sd(dd.air, na.rm=TRUE)
> multip*acf.val$acf[,2,1]
 [1] 0.054305137 0.165729551 0.250648114 0.008416697
 [5] 0.036091971 0.042582917 -0.014780751 0.065008411
 [9] -0.002900099 -0.001487220 -0.062670672 0.073479065
[13] -0.049352348 -0.060899602 -0.032943583 -0.025975790

Thus, the soil temperature in the permafrost boreholes reacts to air temperature
changes with a delay of 1-2 days. An analysis of further boreholes has suggested
that the delay depends on the type of terrain in which the measurements were made.
Fastest response times are found for a very coarse-blocky rock glacier site, whereas
slower response times are revealed for blocky scree slopes with smaller grain sizes.

0 5 10 15

-1
.0

0.
0

1.
0

Lag

A
C

F

dd.air

0 5 10 15

-1
.0

0.
0

1.
0

Lag

dd.air & zz.soil

-15 -10 -5 0

-1
.0

0.
0

1.
0

Lag

A
C

F

zz.soil & dd.air

0 5 10 15

-1
.0

0.
0

1.
0

Lag

zz.soil

