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1 Introduction 
This course is about the statistical analysis of financial time series. These can, 
among other sources, stem from individual stocks’ prices or stock indices, from 
foreign exchange rates or interest rates. All these series are subject to random 
variation. While this offers opportunities for profit, it also bears a serious risk of 
losing capital. 

The aim of this document is to present some basics for dealing with financial time 
series. We first introduce a statistical notion of financial time series and point out 
some of their characteristic properties that require special attention. Later, we 
provide several statistical models for financial data, with a focus on how to fit them 
and what their implications to everyday practice are. Finally, we lay our attention to 
measuring the risk of serious loss with an investment. 

1.1 Examples 

We start out by presenting some financial data. There are various sources from 
which they can be obtained. While some built-in R datasets will be used 
throughout this course, others were acquired from non-commercial websites.  

1.1.1 Swiss Market Index 

First, we present the SMI series: this is the blue chip index of the Swiss stock 
market. It summarizes the value of the shares of the 20 most important 
companies, and contains around 85% of the total capitalization. Daily closing data 
for 1860 consecutive days from 1991-1998 are available in R: 

> data(EuStockMarkets) 
> EuStockMarkets 
Time Series: 
Start = c(1991, 130)  
End = c(1998, 169)  
Frequency = 260  
             DAX    SMI    CAC   FTSE 
1991.496 1628.75 1678.1 1772.8 2443.6 
1991.500 1613.63 1688.5 1750.5 2460.2 
1991.504 1606.51 1678.6 1718.0 2448.2 
1991.508 1621.04 1684.1 1708.1 2470.4 
1991.512 1618.16 1686.6 1723.1 2484.7 
1991.515 1610.61 1671.6 1714.3 2466.8 

As we can see, EuStockMarkets is a multiple time series object, which also 
contains data from the German DAX, the French CAC and UK’s FTSE. We will 
focus on the SMI and thus extract and plot the series: 
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esm <- EuStockMarkets 
tmp <- EuStockMarkets[,2] 
smi <- ts(tmp, start=start(esm), freq=frequency(esm)) 
plot(smi, main="SMI Daily Closing Value") 

 

We observe that the series has a trend, i.e. the mean is obviously non-constant 
over time. This is typical for financial time series. As we will see, such trends in 
financial time series are nearly impossible to predict, and difficult to characterize 
mathematically. We will not much embark in this, but try to understand other 
important aspects of financial time series. 

1.1.2 CHF/USD Exchange Rate 

The R package Ecdat holds examples of many financial and economic time 
series. Among these, we find the exchange rate between US Dollars and the 
Swiss Franc for all working days from January 2, 1980 through to May 21, 1987. 
We choose to display the (for us more familiar) cost of 1 US Dollar in Swiss 
Francs. For doing so, we need to juggle around the data for a bit: 

> library(Ecdat) 
> data(Garch) 
> dat  <- as.Date(as.character(Garch$date), format="%y%m%d") 
> chf.usd <- ts(1/Garch$sf) 
> plot(dat, chf.usd, type="l", ...) 

As can be seen on the next page, the mean of this series is obviously non-
constant over time; hence it is to be considered as a non-stationary time series. 
Again, the evolution of the trend will be near-impossible to predict. The best we 
can do in that situation is to understand the conditional variability of the series, i.e. 
the day-to-day changes in the CHF/USD rates. 
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1.1.3 The Google Stock 

Finally, we present the daily closing values from each trading day for the Google 
stock. The data range from the initial public offering (IPO) on August 19, 2004 to 
December 31, 2012 and include 2107 records. The data are publicly available 
from the Nasdaq at http://www.nasdaq.com/symbol/goog/historical. After some 
preprocessing of the Excel sheet by the author, a flat table with the closing prices 
was generated, which can be plotted in R 

> plot(google, ylab="Price in USD", ...) 

 

As easily visible, an investment in the Google stock at IPO paid off very well. 
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1.2 What is a Time Series? 

1.2.1 The Definition 

Throughout this document a time series will be a set of observations that has been 
collected over a fixed sampling interval. Following a statistical approach, we 
consider such a series as a realization of a sequence of random variables. A 
sequence of random variables, defined at such fixed sampling intervals, is 
sometimes referred to as a discrete-time stochastic process, though the shorter 
names time series model or time series process are more popular and will mostly 
be used in this document. It is very important to make the distinction between a 
time series, i.e. observed values, and a process, i.e. a probabilistic construct. 

Definition: A time series process is a set of random variables  ,tX t T , where T  
is the set of times at which the process was, will or can be observed. We assume 
that each random variable tX  is distributed according some univariate distribution 
function tF . Please note that for this document, we exclusively consider time 
series processes with equidistant time intervals, as well as real-valued random 
variables tX . This allows us to enumerate the set of times, so that we can write 

{1,2,3, }T   . 

An observed time series, on the other hand, is seen as a realization of the random 
vector 1 2( , , , )nX X X X  , and is denoted with small letters 1 2( , , ), nx x x x  . It is 
important to note that in a multivariate sense, a time series is only one single 
realization of the n-dimensional random variable X , with its multivariate, n-
dimensional distribution function F . As we all know, we cannot do statistics with a 
single observation. As a way out of this situation, we need to impose some 
conditions on the joint distribution function F . 

1.2.2 Stationarity 

The aforementioned condition on the joint distribution F  is the concept of 
stationarity. In colloquial language this means that the probabilistic character of the 
series must not change over time, i.e. that any section of the time series is “typical” 
for every other section with the same length. More mathematically, we require that 
for any ,s t  and k , the observations , ,t t kx x   could have just as easily occurred at 
times , ,s s k  . 

Imposing even more mathematical rigor, we introduce the concept of strict 
stationarity. A time series is said to be strictly stationary if and only if the (k+1)-
dimensional joint distribution of , ,t t kX X   coincides with the joint distribution of 

, ,s s kX X   for any combination of indices t , s  and k . For the special case of 0k   
and t s , this means that the univariate distributions tF  of all tX  are equal. For 
strictly stationary time series, we can thus leave off the index t  on the distribution. 
As the next step, we will define the moments: 
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 Expectation t   [ ]tE X ,  for stationary series: t  . 
 Variance  2

t   ( )tVar X ,  for stationary series: 2 2
t  . 

 Covariance 1 2( , )t t   
1 2

( , )t tCov X X , for stationary series: ( , ) ( )t t hCov X X h  . 

In other words, strictly stationary series have constant expectation, constant 
variance , and the covariance, i.e. the dependency structure, depends only on the 
lag h , which is the time difference between the two observations. However, the 
covariance terms are generally different from 0, and thus, the tX  are usually 
dependent. 

In practice, except for simulation studies, we usually have no explicit knowledge of 
the latent time series process. Since strict stationarity is defined as a property of 
the process’ joint distributions (all of them), it is impossible to verify from a single 
realization, i.e. an observed time series. We can, however, always check whether 
a time series process shows constant mean and variance, and whether the 
dependency only depends on the lag h . This much less rigorous property is known 
as weak stationarity. 

In order to do well-founded statistical analyses with time series, weak stationarity 
is a necessary condition. It’s obvious that if a series’ observations do not have 
common properties such as constant mean/variance and a stable dependency 
structure, it will be impossible to statistically learn from it. Unfortunately, asset 
prices are often non-stationary. The way out is to study the log-returns, an 
approximation to the relative changes in the series. 

1.3 Simple Returns and Log Returns 

As we had seen and argued above, financial time series are often non-stationary. 
Hence, it is difficult to perform statistical analysis on the prices (or index values, 
exchange rates, interest rates), which we will denote by tP . For a number of 
reasons (explained below), it is more attractive to study the relative changes in the 
prices. The natural definition is: 

 1

1

t t
t

t

P P
R

P





 . 

tR  is called the simple return of the asset with price series tP . However, in 
statistical analysis of financial data, we usually consider log returns tr , which are 
defined as: 

 1
1

log log( ) log( ) log(1 )t
t t t t

t

P
r P P R

P 


 
     

 
 

Simple and log returns are not one and the same, although for small relative 
changes in the price series tP , they do not differ much. For example, if 0.00%tR  , 
then 0.00%tr  , if 1.00%tR  , then 0.995%tr   and if 5.00%tR  , then 4.88%tR  . 
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But what is the rationale for working with log-returns?  

 Empirical Experience: price series typically are non-stationary and right-
skewed, i.e. have positive spikes larger than negative spikes. In that 
situation, empirical experience from time series analysis tells us that we 
should log-transform the series and take first-order differences at lag 1. 
What we obtain is tr . 

 Limited Liability: for many financial assets, the maximum that one can 
lose is the amount that was put into them. I.e., if one holds a stock that is 
49$ worth, the most one can lose is 49$. This is also called limited liability. 
In that case, the simple return would be min 100%R   . On the other hand, 
the maximum possible simple return is maxR   . This asymmetry does not 
exist with log returns: a complete loss yields minr   , and the maximum is 

maxr   . 

 Compounding: to get the simple return of an asset over two periods, a 
rather complicated and non-intuitive computation is required: 

2
2, 1, 1, 1

2

(1 )(1 ) 1t t
t t t

t

P P
R R R

P






      

Please note that the first subscript is for the horizon of the return 
computation, and the second is for time. With log returns, calculating multi-
period returns is much simpler: 

2, 1, 1, 1t t tr r r   , 

i.e. log returns are additive, while simple returns are not. 

Another very important reason to use log returns is the compatibility with the 
Random Walk model. This will be discussed in section 2, but first, we study goals 
and purpose of the statistical analysis of financial data. 

1.4 Goals in SAFD 

The ultimate dream in the analysis of financial data is an accurate prediction of 
future prices or returns. This is difficult to realize. Empirical evidence and several 
economic theories, suggest that: 

1 1 1[ | , ,...] [ ] 0t t t tE r r r E r      . 

The previous returns do not contain much (if any) information about tomorrow’s 
expected market movements. Thus, we expect a time- and history-independent 
return of  . This can be a very small positive value, e.g. due to general economic 
growth and/or inflation, but it does not tell us whether it is a good time to invest in 
that financial instrument or not. 
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What else remains to do for statisticians in the analysis of financial data? Well, 
future log returns t kr   are random variables. Their expectation does not depend 
(much) on previous returns, but we still need to understand their distribution. That 
includes location, scale and shape. The purpose of doing so is specifying which 
profits and losses will appear, i.e. to attribute scenarios with probabilities. This will 
make for much of the content of chapters 2 and 3 on Random Walk models. 

Finally, it will turn out that while there is hardly any difference between the 
expectation of the unconditional distribution t kr   and its conditional counterpart

1 2| , ,...t k t tr r r   , other aspects of these two distributions will not be identical. 
Namely, this is the scale parameter. Financial data exhibit periods of high and low 
volatility, i.e. the conditional log return distribution can be less or more dispersed, 
meaning that previous log returns predict how wide the actual distribution needs 
be. Thus, we discuss different volatility models in section 4. 

In summary, the goal in the statistical analysis of financial data is to understand 
the (time-dependent conditional) distribution of log returns. Practitioners mostly 
focus on a key indicator characterizing that distribution, i.e. the associated current 
risk of substantial losses. Two such indicators, in particular Value-at-Risk and 
Expected Shortfall, will be discussed in chapter 5. 

The scope of this document solely encompasses univariate financial time series, 
i.e. considers individual assets. When analyzing portfolios with several 
instruments, several novel aspects will come into play. 
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2 Basic Models 
In this section, we will present some basic models for the analysis of financial 
data. Historically, the Random Walk plays a special role, as in 1905, it was 
introduced as the first stochastic model for representing stock prices. 

2.1 The Random Walk 

The Random Walk model is based on the notion that single-period log returns 1,tr  
are independent and normally distributed. Applying the compounding property 
from 1.3 repeatedly, multi-period returns can be expressed as follows: 

 , 1, 1, 1...k t t t kr r r     .  

In verbatim: the k -period return at time t  is the sum of all single-period returns 
back to time 1t k  . If one (conveniently) further assumes that the log returns 
follow a Gaussian distribution, we have 2

1, ~ ( , )tr N   . Because sums of 
independent normal random variables are themselves normal, it is obvious that 

2
, ~ ( , )k tr N k k   

It is now relatively simple to rearrange terms and formulate the random walk model 
for the price process. It is: 

 1, 1, 1exp( ... )t
t t k

t k

P
r r

P  


   . 

By going back to an arbitrary starting point 0t  , we have: 

 0 1, 1,1exp( ... )t tP P r r     

Such a process whose logarithm is a random walk is called a Geometric Random 
Walk. Under the assumption that 1,1 1,,..., tr r  are iid normal, then the price process tP  
follows a lognormal distribution at all times t .  

2.1.1 Simulation Example 

For illustrating the Random Walk model, we here consider a simulation example. 
We assume the asset’s initial price to be 0 100P  , and 2 2

1, ~ ( 0, 0.03 )tr N    . 
The random variables are drawn in R, and the price process is derived with the 
following code: 

> set.seed(23) 
> lret  <- rnorm(1000, 0, 0.03) 
> price <- 100*exp(cumsum(lret)) 
> plot(price, type="l", xlab="Time", main="...") 
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As an exercise, using many realizations, one can show that the k -period return is 
indeed Gaussian with (here) expectation zero and variance 21000 0.03 , or that the 
price at time 1000t   follows a lognormal distribution. 

2.1.2 Implications to Practice 

To conclude this section, we state if the two key assumptions for the Random 
Walk model, namely independence and normality of the single-period log returns 

1,tr  are met, most of the issues for the statistical analysis of financial data were 
nearly solved. Unfortunately, as the next section shows, the real world financial 
data are usually generated by more complex models than the Random Walk. 

2.2 Descriptive Analysis of Log Returns 

We will now study the empirical properties of single-period log returns, with a 
special focus on their distribution and potential independence. The standard 
visualization for log returns is a time series plot. The next page shows these for 
our three example series. The easiest way to generate the log returns in R is to 
apply the diff() function to the logged series. If the prices are appropriately 
defined as time series objects, R also sets the starting times correctly. 

> lr.smi    <- diff(log(smi)) 
> lr.fex    <- diff(log(chf.usd)) 
> lr.google <- diff(log(google)) 

Please note that the log return series have one record less than the original price 
series. In particular, 1r  is not available, since we cannot compare to 0P . Often, it 
proves beneficial to enhance the time series plot with a horizontal line indicating 
zero. Moreover, because log returns are by construction symmetrical, it makes 
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sense to force the y -range to be symmetrical around zero. The code for the SMI 
log returns is: 

> plot(lr.smi, ylim=c(-0.085, 0.085), ...) 
> abline(h=0, col="grey") 

 

The biggest loss occurred on August 19, 1991, which is the date of the Soviet 
August Coup, where a group of communist hardliners tried to take control of the 
government from the reform-friendly Mikhail Gorbachev. Next, we display the log 
returns of the CHF/USD exchange rate. 

> plot(lr.fex, ylim=c(-0.06, 0.06), ...) 
> abline(h=0, col="grey") 
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> plot(lr.google, ylim=c(-0.18, 0.18), ...) 
> abline(h=0, col="grey") 

 

In absolute value, the Google returns show more extreme behavior than the index 
or the exchange rate. That does not come as a surprise due to the nature of 
Google, a single (though big) company operating in the rather volatile ICT 
business. Despite some differences, the three plots show some common features 
that are very typical for financial data. While perhaps not extremely obvious to a 
non-expert, a skilled eye clearly detects: 

 Nearly uncorrelated log-returns with a mean close to zero. 

 Clusters of volatility, i.e. periods where log returns are either big or small 

 Some extreme spikes, i.e. outliers that correspond to very big/small returns 

We try to better visualize these points by some dedicated plots. First, the 
autocorrelation function (ACF) of the log returns addresses the issue of 
uncorrelatedness. Second, the dependency in the conditional variance of the 
process can be captured by showing the ACF of the squared log returns. In 
particular, whenever volatility clusters do exist, the squared log returns will show 
autocorrelation. Finally, histograms and normal quantile-quantile plots serve for 
verifying the (Gaussian) distributional assumption.  

Due to space constraints, we restrict the visualization to the Google shares: 

> acf(lr.google) 
> acf(lr.google^2) 
> qqnorm(lr.google) 
> qqline(lr.google) 
> hist(lr.google, freq=FALSE) 
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We observe that there is hardly any autocorrelation in the log returns. But since 
the squared instances show clearly significant ACF estimates, the log returns are 
not independent, which is principally due to volatility clustering. Furthermore, the 
normal plot clearly shows that the assumption of a Gaussian distribution is off the 
mark. The log returns are prominently long-tailed – a property which needs to be 
taken into account for proper modeling of financial time series. Hence, the 
Gaussian Random Walk cannot be considered as a good model for the type of 
financial data that we consider. 

Another important issue is stationarity: for the prices, it is clearly rejected, but what 
about the log-returns? In this regard, the long-tailed distribution does not bother; 
the series’ mean seems constant but what about the variance? We will see later 
that the most powerful notion is to regard log returns as stationary, and employ 
GARCH type models that allow for dependence in the conditional variance of the 
series.  
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3 Distributions for Financial Data 
Under the Random Walk model from section 2, by assuming independent 
Gaussian single-period returns, the distribution of both multi-period returns and the 
prices could be derived. However, log returns are typically heavy tailed and thus, 
these results are in question. In this chapter, we will discuss some leptokurtic 
distributions that are better suited for financial data. Finally, we will also study the 
Random Walk with heavy-tailed innovations. 

3.1 Skewness and Kurtosis 

In basic statistics and probability theory, we almost exclusively deal with the first 
and second central moment of a random variable, namely expectation and 
variance. The definitions are as follows: 

 thk  moment of X : [ ]k
km E X , e.g. expectation [ ]E X   

 thk  central moment of X : [( ) ]k
k E X   , e.g. variance 2( ) [( ) ]Var X E X    

In the statistical analysis of financial data, or better, in risk management, one is 
often also interested in the third and fourth central moments, which are the basis 
for skewness and kurtosis. 

3.1.1 Skewness 

The third central moment tells us how symmetrical a distribution gathers around its 
mean. Rather than working with the third central moment directly, it is, by 
convention, standardized. The definition of skewness is as follows: 

 
3

3

[( ) ]E X
Skew





 . 

Any random variable with a symmetric distribution will have 0Skew  . Values 
greater than zero indicate positive skewness, i.e. distributions that have a heavy 
tail on the right hand side. Conversely, 0Skew   indicates a left-skewed 
distribution. 

Let us consider a situation where two investments’ return distributions have 
identical mean and variance, but different skewness parameters. Which one is to 
prefer? Typically, risk managers are wary of negative skew: in that situation, small 
gains are the norm, but big losses can occur, carrying the risk of going bankrupt. 
The sample skewness is usually estimated as follows: 

 
3

1

1ˆ
ˆ

n
i

i

x x
Skew

n 

   
 

  
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In R, several extension packages (e.g. e1071, timeDate, TSA) hold functions for 
estimating the skewness. We here rely on the one from timeDate and use (the 
default) method="moment" for correspondence to the formula given above: 

> skewness(lr.google) 
[1] 0.4340404 
attr(,"method") 
[1] "moment" 
> skewness(lr.smi) 
[1] -0.6316853 
attr(,"method") 
[1] "moment" 
> skewness(lr.fex) 
[1] -0.3421189 
attr(,"method") 
[1] "moment" 

The results confirm what is visible in the plots from section 2.2: the Google log 
returns are right skewed, the ones of SMI and the CHF/USD exchange rate are 
left-skewed – though all of them only moderately so. However, it is important to 
keep in mind that the skewness estimator is (and needs to be) very sensitive to 
outliers. That is fine as long as the outliers are not “bad” (i.e. wrong) data. 

3.1.2 Kurtosis 

The kurtosis is the standardized fourth central moment. Similar to the variance it 
measures how spread out a distribution is, but it puts more weight on the tails. The 
exact definition is: 

 
4

4

[( ) ]E X
Kurt





  

It is important to note that the kurtosis is not very meaningful for skewed 
distributions, because it will measure both asymmetry and tail weight. Hence, it is 
an indicator that is aimed at symmetric distributions. Its minimal value is 1, and is 
achieved for any random variable that only takes two distinct values with 
probability 1 / 2 . The normal distribution has 3Kurt  ; that value is independent of 
the location and scale parameters   and 2 . Due to the popularity of the 
Gaussian, it is common to compute the excess kurtosis, which is simply: 

 3ExKurt Kurt  . 

Distributions with heavier tails than the Gaussian, and thus 0ExKurt   are called 
leptokurtic. An important example falling into this class is all t -distributions. Their 
kurtosis depends on the shape parameter, the degrees of freedom  , i.e.: 

 
6

( ) 3
4

Kurt 


 
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This also shows that the maximum value that the kurtosis can take is  . In 
financial analysis, an asset with leptokurtic log returns needs to be taken seriously. 
It means that big losses (as well as big gains) can occur, and one should be 
prepared for it. Estimation of the kurtosis happens by: 

 
4

1

1 ( )ˆ
n

i

i

x x
Kurt

n 

   
 

  

Implementations for kurtosis estimation can again be found in several extension 
packages (e.g. e1071, timeDate, TSA). We are using the one from timeDate, 
which by default computes the excess kurtosis: 

> kurtosis(lr.google) 
[1] 7.518994 
attr(,"method") 
[1] "excess" 
> kurtosis(lr.smi) 
[1] 5.72665 
attr(,"method") 
[1] "excess" 
> kurtosis(lr.fex) 
[1] 1.683527 
attr(,"method") 
[1] "excess" 

Again, the estimate is (and needs to be) very sensitive to outliers. That is not 
problematic as long as they are correct, but false values can have a big impact. 
We observe that Google has the most heavy tailed log returns, while the changes 
in the CHF/USD rate show a relatively mild behavior with not much more heavy 
tails than the Gaussian. 

3.2 Testing Normality 

The question whether log returns are Gaussian or not is central to the practice of 
financial data analysis. If yes, and if the log returns are independent, then the 
Random Walk model from section 2 applies. In that case, understanding the risk 
that an investment holds is straightforward, and we even know the distributions of 
the price process. This underlines the importance of verifying if normality holds on 
financial data. 

So far, and usually, normality was/is tested visually, by inspecting time series plots 
(or much more powerfully) using the normal plot. Also, the above introduced 
measures skewness and kurtosis can help. In some cases, it may be desirable 
though to formally test the hypothesis that the data stem from a Gaussian 
distribution. There is a battery of tests available for this task. We cannot present all 
of these here, but focus on the Jarque-Bera test, that is based on the skewness 
and kurtosis estimates. 
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3.2.1 Jarque-Bera Test 

The Jarque-Bera test of normality compares the sample skewness and kurtosis to 
0 and 3, their values under normality. The test statistic is: 

  2 2 2
2

ˆ ˆ4 ~
24 Ex

n
JB Skew Kurt     

In R, library tseries holds an implementation of this test in function 
jarque.bera.test(). We apply it to our 3 example series: 

> jarque.bera.test(lr.google) 
data:  lr.google  
X-squared = 5040.39, df = 2, p-value < 2.2e-16 
 
> jarque.bera.test(lr.smi) 
data:  lr.smi  
X-squared = 2672.383, df = 2, p-value < 2.2e-16 
 
> jarque.bera.test(lr.fex) 
data:  lr.fex  
X-squared = 258.1409, df = 2, p-value < 2.2e-16 

Not surprisingly, the null hypothesis of a Gaussian distribution is rejected in all 
cases. Thus, the Random Walk model with normal increments does not apply 
here, and risk management decisions based on that approach will be flawed. 

3.2.2 Alternative Tests 

As mentioned above, there is a number of alternative tests for evaluating 
normality. We will not discuss any further tests here, but refer to the Kolmogorov-
Smirnov test, respectively its adaptation, the Lilliefors test, and the Shapiro-Wilk 
test. Instructions on how to apply these are found in many textbooks, R 
implementations are also readily available. 

3.3 Heavy Tailed Distributions 

We have acquired lots of empirical evidence that the normal distribution is not 
appropriate for financial returns, because their tails are just too heavy. A closer 
look shows that the Gaussian probability density function decays with 2exp( )x  as 
x   . That is very quickly, and the question is if there are other distributions with 
different behavior. Not surprisingly, the answer is yes.  

We will here consider the t -distribution. It is well familiar to the experienced 
statistician because of its very important role in statistical testing and with 
confidence intervals. On the other hand it is a popular model for financial data 
analysis due to its heavy tails, which decay more slowly, with a polynomial rate. 
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3.3.1 t-Distributions 

To construct t -distributed random variables, we need a ~ (0,1)Z N  and a 2~W  . 
Then, if we take the standardized quotient of the two, the result follows a t -
distribution with   degrees of freedom. 

 ~
Z

T t
W   . 

The degrees of freedom   are a shape parameter. The lower they are, the heavier 
tails result. While in classical statistics   is a positive integer, it can take any 
positive value in financial data analysis. The density function of the t -distribution 
is defined as: 

 2 ( 1)/2

(( 1) / 2) 1
( )

(1 ( / ))( / 2)
tf x

x 


  

 
 


 

The first term is just a normalizing constant, though quite a complicated one. The 
symbol ( )   stands for the Gamma function which is defined as: 

 1

0
( ) t xt x e dx

      for 0t  . 

From a naïve point of view, i.e. just visually, the difference to the Gaussian bell 
curve does not seem that big. However, that is deceptive: the variance only exists 
if 2  . In that case, it equals / ( 2)   . The mean only exists if 1  , and then 
takes the value 0. The higher moments require more degrees of freedom for 
existence, i.e. for the skewness we need 3   and for the kurtosis 4  .  

 

The plot shows that the higher  , the closer to the Gaussian the t -distribution is. 
In fact, we have convergence (0,1)t N   for    , which is also apparent from 
the probability density function. 
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While it seems as if the t -distributions could be very useful for financial analysis 
because we can adapt to the tail behavior of the data, it is, in its pure form, not a 
very flexible model. The reason is the absence of a location and/or scale 
parameter. It is thus attractive and popular to enhance the definition: 

 If ~T t , then S T    is said to have a 2( , )vt   -distribution. 

Apparently,   is the location parameter with [ ]E S  , and   is the scale 
parameter with 2( ) / ( 2)Var S v    . The conditions for existence of the moments 
remain as explained above. No matter whether using the t -distribution in pure or 
enhanced form, the tail decay is polynomial: more precisely, the density function 
goes to zero proportional to ( 1)x    for x   . Which is, for low  , a much slower 
rate than for the Gaussian. 

3.3.2 Mixture Distributions 

Another class of heavy-tailed models is the set of mixture distributions. We here 
consider a simple example made up of 90% (0,1)N  and 10% (0,25)N . The 
density function of such a construct can be written as: 

 (0,1) (0,25)( ) 0.9 ( ) 0.1 ( )mix N Nf x f x f x    . 

If we need to generate a random variable according to that distribution, we can do 
that by a two-step process. First, we draw from a [0,1]  Uniform distribution. 
Whenever the result is 0.9 , we use the standard normal, else we draw our final 
result from the (0,25)N . Note that this model could be appropriate for a stock that 
for most of the time shows little variability, but occasionally, e.g. after some 
earnings announcement or other events, makes much bigger movements. 

What are the consequences for the moments of such a mixture distribution? Due 
to symmetry, the mean is still zero. For the variance of such a random variable M , 
we have a linear combination: 

 ( ) 0.9 1 0.1 25 3.4Var M       

However, and that is very important to comprehend, the mixture distribution is 
fundamentally different from a (0,3.4)N . It has much more mass in the tails, as 
can easily be seen from the plot of the density function on the next page. 

> xx <- seq(-9,9,length=701) 
> yy <- dnorm(xx, 0, sqrt(3.4)) 
> mm <- 0.9*dnorm(xx,0,1) + 0.1*dnorm(xx,0,5) 
> plot(xx, yy, type="l", ylim=c(0,0.4)) 
> lines(xx, mm, col="red") 
> title("Gaussian...") 
> box() 



SAFD  Distributions for Financial Data 
 

 Page 19 

 

Strikingly, the mixture also has more mass in the center. But since both 
distributions have equal variance, there must be a much higher chance for outliers, 
i.e. more mass in the extreme tails, too. Indeed, we can compute the ratio of 
extreme events by comparing the probability for observations that are further than 
three standard deviations away from the mean: 

> sdev  <- sqrt(3.4) 
> gauss <- 2*pnorm(-3*sdev,0,sdev) 
> mixt  <- 2*0.9*pnorm(-3*sdev,0,1)+2*0.1*pnorm(-3*sdev,0,5) 
> mixt/gauss 
[1] 9.948061 

We learn that the mixture distribution produces 10 times more extreme events. 
This also translates to the kurtosis of M , which takes the value 16.45. Thus, there 
is a lot of mass in the tails. However, the downside of this relatively simple mixture 
model is that the large values do not come in sequence, but independently. That is 
not fully appropriate for real-world financial time series, where extreme returns 
seem to cluster. We can expect a more realistic behavior from the GARCH models 
that will be discussed later. 

3.4 Random Walk with Heavy Tails 

For obtaining a model that reflects the stylized facts of financial data more 
genuinely, we might be tempted to use a Random Walk with heavy-tailed 
increments. The natural distributional candidate is the 2( , )t   .  

In R, library(MASS) has function fitdistr(): it offers maximum likelihood 
estimation for a number of distributions. Among them is the 2( , )t   , thus we can 
use it for determining the appropriate location, scale and shape parameters of the 
log returns in our examples. In particular, this works as follows: 
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> fitdistr(lr.google, "t") 
        m              s              df      
  0.0009455952   0.0133499234   2.9431358498  
 (0.0003562337) (0.0003839158) (0.2159852731) 
> fitdistr(lr.smi, "t") 
        m              s              df      
  0.0010642582   0.0069097689   4.5325087792  
 (0.0001872645) (0.0001935879) (0.5016358966) 
> fitdistr(lr.fex, "t") 
        m              s              df      
  0.0001331319   0.0071590641   7.1829446212  
 (0.0001853914) (0.0001981779) (1.2208518745) 

The output shows ,   and  . The numbers in parentheses below are standard 
errors that were obtained from the maximum likelihood approach. Mathematical 
statistics tells us the estimates are asymptotically normal, and thus we can 
construct approximate 95% confidence intervals for the parameters by taking the 
estimate plus/minus twice the standard error. For evaluating how well the model 
fits to the data, we can do a quantile-quantile plot vs. the estimated distribution. 
This is more laborious than the normal plot for which the R code already exists.  

> ## Determine theoretical quantiles 
> th.q <- qt(seq(0,1,length=2106+2),2.9431358498)[2:2107] 
> th.q <- 0.0009455952+0.0133499234*th.q 
> ## Do the QQ-Plot 
> plot(th.q, sort(lr.google), ylim=c(-0.2,0.2)) 
> ## Adding the line 
> th.q.75 <- 0.0009455952+0.0133499234*qt(.75,2.9431358498) 
> vdiff <- quantile(lr.google,3/4)-quantile(lr.google,1/4) 
> slope <- vdiff/(2*th.q.75) 
> inter <- quantile(lr.google,3/4)-slope*th.q.75 
> abline(inter, slope, col="blue") 

 

-0.2 -0.1 0.0 0.1 0.2

-0
.2

-0
.1

0
.0

0
.1

0
.2

th.q

so
rt

(l
r.

g
o

o
g

le
)

Quantile-Quantile Plot for Google



SAFD  Distributions for Financial Data 
 

 Page 21 

We observe that the fit is really good, especially in the upper tail. On the left hand 
side, the smallest true negative returns are not quite as extreme as the model 
suggests. But still, we judge the model as adequate. 

For Gaussian Random Walks, assuming independence of the increments, using 
the continuous compounding property and the fact that the sum of independent 
Gaussian random variables still have a normal distribution, it was straightforward 
to perform multi-period risk management. That is no longer the case if we work 
with heavy-tailed distributions. Unfortunately, the sum of (even independent) 

2( , )t    random variables belongs to a different distributional family. Thus, there 
is no alternative than to run Monte Carlo simulations. 

Example: 

The 5%-quantile of the log return distribution turns out to be: 

> 0.0009455952+0.0133499234*qt(0.05,2.9431358498) 
[1] -0.03072064 

Thus until tomorrow, with a probability of 95%, we will not lose more than 3.07% of 
our money if we invest in the Google stock today. What is the respective value for 
a horizon of the next 20 trading days? There is no closed form solution for that, 
and we can only resort to computations in R: 

> set.seed(23) 
> res <- c() 
> for (i in 1:100000) 
+ { 
+ lretr  <- rt(20,2.9431358498) 
+ lret   <- 0.0009455952+0.0133499234*lretr 
+ res[i] <- sum(lret) 
+ } 

What we did is 100’000 runs where for each of the next 20 trading days, a log 
return was drawn independently from the respective t -distribution. The continuous 
compounding property can then be used to determine the net return over the next 
20 trading days. Finally, we just compute the empirical 5%-quantile of these 
100’000 results: 

> quantile(res, 0.05) 
        5%  
-0.1454524 

It turns out that with a probability of 95%, we will not lose more than 14.54% of our 
money if we invest in the Google stock today. With respect to the distribution that 
was used, this result is trustworthy. However, it also includes the assumption of 
independence, which is clearly violated. There are apparent periods of high and 
low volatility, and we could certainly produce a more exact result if we managed to 
incorporate these into our model. The volatility models will do so.
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4 Volatility Models 
Throughout this document, we have collected quite a bit of empirical evidence that 
financial log returns feature volatility clustering: there are periods where the prices 
change more substantially, and others where the market is more quiet and the 
movements are relatively little. Hence, the magnitude of financial log-returns is 
usually serially correlated. The Random Walk model cannot accommodate for 
time-varying volatility, neither in its Gaussian formulation nor with heavy-tailed 
increments. Hence, there is a need for novel approaches. Here, we will present 
the GARCH class of models. 

4.1 Estimating Conditional Mean and Variance 

The usual notion of a time series in statistical analysis is: 

 t t tX E  . 

Hereby, t  is the conditional mean of the series, i.e. 1 2[ | , ,...]t t t tE X X X    and tE  
is a disturbance term. In traditional time series analysis, e.g. ( )AR p -modeling, the 
disturbance term is usually assumed to be a White Noise innovation, and the 
conditional mean is expressed as a function of past observations: 

 0 1 1 ...t t p t p tX X X E        , where tE  is a White Noise innovation. 

Under these assumptions, the conditional mean of tX  is non-constant and time-
dependent, but the conditional variance is a fixed quantity and equal to the 
marginal variance. In other words, there is some short-term memory in the mean, 
but not in the variance. 

2
1 2( | , ,...) ( )t t t t EVar X X X Var E const      

As a conjecture, ( )AR p -models cannot deal with volatility clustering. Thus, we are 
seeking an enhanced formulation that allows for non-constant conditional 
variance. One possibility is to decompose the disturbance term into t t tE W : 

 t t t tX W   , with 1 2[ | , ,...]t t t tE X X X    and 2
1 2( | , ,...)t t t tVar X X X    

Here, t  is still the conditional mean, t  is the conditional standard deviation and 

tW  is a White Noise innovation. If we assume that t  is a function of previous 
instances, we obtain a process that also has short-term memory in the variance 
and hence can be used for volatility modeling. Because t  is a (conditional) 
standard deviation, we need to make sure that the function of previous instances 
is non-negative. That is cumbersome to achieve with linear combinations, because 
coefficients restrictions are always awkward. Instead, it is more popular to work 
with non-linear variance function models. Examples include the ARCH/GARCH 
class discussed below. 
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4.2 ARCH Models 

ARCH is an acronym meaning autoregressive conditional heteroskedastic and 
stands for models where the conditional variance of a time series is modeled with 
an autoregressive approach. We assume that we are dealing with a series 

 t t tX W   . 

tX  has time-dependent conditional variance, but the conditional mean 

1 2[ | , ,...]t t t tE X X X    equals a constant  . This reflects the situation of financial 
log returns well, as we have seen that they usually have little (or better: no 
significant) direct correlation. Extensions to models that address both conditional 
mean and variance will be discussed in 4.3.2.  

4.2.1 Definition and Properties of ARCH(1) 

For simplicity, the formulation of ARCH models is for the disturbance term tE  only. 
Of course, we can always center a (log return) series t tr X  to get rid of a non-
zero mean and obtain the disturbance term: 

 t tE X    for which we assume t t tE W . 

Definition: A series tE  is said to follow a first-order autoregressive conditional 
heteroskedastic process, or short, is (1)ARCH , if: 

t t tE W  with 2 2
0 1 1t tE     . 

tW  is a White Noise innovation process, with mean zero and unit variance. The 
two parameters 0 1,   are the model coefficients. By construction, the conditional 
variance of an (1)ARCH  process behaves just like an (1)AR  model. Later, we will 
exploit the ACF of squared log returns for deciding the order of ARCH models. 

The practical interpretation of an (1)ARCH  is straightforward: if a return 1tr  was 
unusually large (in absolute value), then t  is larger than usual and thus we also 
expect a larger-than-usual return tr . And conversely, unusually small absolute 
return 1tr  implies low t  and hence also smaller-than-usual tr . That way, it is 
obvious that high/low volatility propagates to 1 2, ,...t tr r  . However, persistence of 
the volatility is not forever if the stationarity condition of 1 1   is met. In that case, 
the process can always revert back from high to low and from low to high volatility. 
The unconditional (marginal) variance of tE  turns out to be: 

 0

1

( )
1tVar E






. 

Also, the conditional mean and all autocorrelations of (1)ARCH  models are zero: 

 1 2[ | , ,...] 0t t tE E E E    and ( , ) 0h t t hCor E E   . 
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Thus, an (1)ARCH  is completely useless for prediction whether a stocks’ value will 
in- or decrease on the following day. It just allows for a more precise 
understanding of the width (i.e. the dispersion parameter) of the return distribution, 
and thus for locally adaptive risk management, i.e. better control of the exposition 
to big losses. If such predictions are accurate, institutional investors are able to 
make profit from the size of the expected market movements. 

4.2.2 Simulation Example 

For a deeper comprehension of what (1)ARCH  processes are like, we run a 
simulation study. Therefore, we draw 1100 instances of White Noise with standard 
normal distribution, i.e. tW  for 1,...,1100t  . We set 0 0E  and then determine: 

 2
10.0001 0.9t tE     

 t t tE W , 

again for all 1,...,1100t  . We treat the first 100 observations as a burn-in period 
into this simulation due to the arbitrary (but realistic) choice of the initial value 

0 0E  . Thus, we discard them, so that we are left with a series that has 1000 
instances. The goal was to generate a result that coincides with the properties of 
true log returns. The simulation code is: 

> set.seed(4659346) 
> wn    <- rnorm(1101, 0, 1)  
> et    <- st <- c() 
> et[1] <- 0 
> for (i in 2:1101) 
+ { 
+   st[i] <- sqrt(0.0001+0.9*et[i-1]^2) 
+   et[i] <- st[i]*wn[i] 
+ } 

The results for the (1)ARCH  simulated log returns tE  and the conditional standard 
deviation t  are displayed in two time series plots, see next page. We observe 
that the simulated log returns reflect some of the typical features of real world 
financial log returns: there are some outliers, and there is volatility, though it does 
not seem to persist very long after a burst, i.e. the market returns to its normal 
state in short time. But still, the (1)ARCH  process seems like a pretty good 
generator for log returns. It is also apparent that the conditional standard deviation 
of the process shows some huge fluctuations. From the setup, it is clear that the 
minimal value of t  is 0.01, but the most extreme value is close to 0.15. On 
average, as an estimate of the marginal standard deviation, we have: 

> mean(st[102:1101]) 
[1] 0.01742821 

This is a value that well matches with true data, e.g. 0.0216 for Google. 



SAFD  Volatility Models 
 

 Page 25 

 

We will now put some more emphasis on the marginal distribution of the (1)ARCH  
process tE . From the time series plot, we can guess that it is heavy-tailed, but a 
normal plot is more instructive: 

> qqnorm(et[102:1101], pch=20, ylim=c(-.15,.15), ...)  
> qqline(et[102:1101], col="blue") 

 

This confirms that despite the use of Gaussian White Noise for the innovation 
term, the resulting (1)ARCH  is heavy-tailed. After some deeper mathematical 
study, this does not come as a surprise: the marginal distribution of tE  is a mixture 
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of Gaussian distributions. It is not just two components with fixed coefficients that 
play a role here, but the mixture is continuous. Nevertheless, what happens is the 
very same as in the illustrative example from section 3.3.2: we obtain heavy tails.  

We can of course use the (1)ARCH  simulated log returns to reconstruct the 
associated price process. We assume an initial value of 0 100P   and display the 
prices over the following 1000 time units: 

> price <- ts(100*exp(cumsum(et[102:1101]))) 
> plot(price, main="...") 

 

Certainly, we could not dismiss the price trajectory as being totally unrealistic for 
true data. It is eye-catching though that even after some very big losses or profits, 
the price adjustments seem to be fairly little. As we will see later, such behavior 
can better be captured by ARCH models of higher order, or with the Generalized 
ARCH approach from section 4.3. 

However, as a next step, we will verify that the theoretically claimed dependency 
structure is indeed present on the simulated data and matches what we observed 
on true log returns. Therefore, we show ACF/PACF for both the straight and 
squared tE : 

> par(mfcol=c(2,2), mar=c(4,4,3.8,2)+0.1) 
> acf(et[102:1101], ylim=c(-0.2,1), main="ACF...") 
> pacf(et[102:1101], ylim=c(-0.2,1), main="PACF...") 
> acf(et[102:1101]^2, ylim=c(-0.2,1), main="ACF...") 
> pacf(et[102:1101]^2, ylim=c(-0.2,1), main="PACF...") 

The result can be seen on the next page and shows that there is hardly any 
correlation in the straight tE . Theory says it is exactly nil, the sample estimates of 
course are not, but mostly fall within the confidence bounds. The situation is 
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different for 2
tE : we have an exponential decay in the ACF and a clear cut-off at 

lag 1 in the PACF, which is a typical (1)AR  structure. 

 

 

4.2.3 ARCH(p) 

We could now ask the question “what do we do if squared financial log returns 
show an ACF that resembles the one from an ( )AR p  with 1p  ?”. In fact, we don’t 
know yet, but the answer is very obvious. When fitting an ( )ARCH p , the 
conditional variance follows an autoregressive structure with order p . The 
definition is: 

 t t tE W  with 2 2 2
0 1 1 ...t t p t pE E         

Again, tW  is a (typically Gaussian) White Noise innovation with zero mean and unit 
variance. The process tE  has mean zero and no correlation, but shows volatility 
and a heavy-tailed marginal distribution, very much like the (1)ARCH  process. The 
difference is that ( )ARCH p  can reflect more complex dependency in the 
conditional variance and by including more terms from the past, also achieves 
somewhat higher volatility persistence. However, accurate modeling of real-world 
data usually requires quite large p  and thus, many parameters need to be 
estimated. Often, the ( , )GARCH p q  models discussed below allow for a more 
parsimonious representation. However, we will first shed some light on how to fit 

( )ARCH p  models to financial data. 
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4.2.4 Fitting ARCH Models to Data 

The first step with fitting ARCH models is to verify that the ACF and PACF of the 
squared log returns meet the structure that we would expect from an 
autoregressive process, i.e. exponential decay in the ACF, and a cut-off in the 
PACF. If that is plausible, we can determine the order from the cut-off lag p  in the 
partial autocorrelation function. 

> acf(lr.smi^2, ylim=c(-0.1,1), main="ACF...") 
> pacf(lr.smi^2, ylim=c(-0.1,1),main="PACF...") 

 

For the squared SMI log returns, up to some random variation, the ACF shows a 
behavior that is compatible with the exponential decay that theory suggests. The 
PACF has significant values at lags 1 and 2 but none thereafter, thus a cut-off 
seems plausible. As a conclusion, fitting an (2)ARCH  to these data is a valid 
choice. 

A fitting routine is available with function garch() in library(tseries). It 
works based on the assumption that we have a pure ARCH process t t tE W  with 
Gaussian White Noise innovations tW  and mean zero, 0  . If the latter is not the 
case, i.e. if the data are non-centered, we need to estimate and subtract   from 
the log returns first. As an alternative to this hand-weaved iterative approach, we 
can use function garchFit() from the fGarch package. It allows for 
simultaneous estimation of the mean and the model parameters. And in-depth 
discussion of garchFit() can be found in section 4.3.1. 

The garch() function estimates the coefficients 0 ,..., p   by maximizing the 
likelihood. This requires numerical optimization, it is thus important to verify that 
the algorithm converged and not just dismiss potential warning messages. It is 
also very important to note that the order p  stands at second position in the 
order= argument. Hence the command, and the (slighty shortened) output are: 
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> fit <- garch(lr.smi-mean(lr.smi), order=c(0,2), trac=FALSE) 
> summary(fit) 
 
Model: 
GARCH(0,2) 
 
Residuals: 
      Min        1Q    Median        3Q       Max 
-9.867029 -0.518727  0.006919  0.584446  5.697691 
 
Coefficient(s): 
a0 6.326e-05   1.862e-06   33.976  < 2e-16 *** 
a1 1.441e-01   2.392e-02    6.021 1.73e-09 *** 
a2 1.203e-01   2.200e-02    5.471 4.48e-08 *** 
--- 
Diagnostic Tests: 
 
Jarque Bera Test 
data:  Residuals  
X-squared = 3536.448, df = 2, p-value < 2.2e-16 
 
Box-Ljung test 
data:  Squared.Residuals  
X-squared = 0.183, df = 1, p-value = 0.6688 

The summary provides the point estimates for 0 1,   and 2 , along with 
asymptotic standard errors. All coefficients are significantly different from zero, but 
from that alone it is not clear that the model provides a good fit. The diagnostic 
tests in the second half of the summary aim for answering that latter question. 
Both these tests are based on examining the residuals. Remember that the ARCH 
residuals are estimates of the White Noise innovation tW . Thus, they should 
neither show dependence, nor volatility nor (here, because garch() works under 
the normal assumption) heavy tails. 

Volatility in the residuals would be present if the model was not powerful enough to 
capture all of what is present in the SMI log returns. The Box-Ljung test evaluates 
whether the autocorrelation at lag 1 of the squared residuals is significantly 
different from zero. With a p-value of 0.67, this is clearly not the case. However, 
the normality of the residuals is strongly rejected. The Jarque-Bera statistic takes a 
very large value and hence, the model that we fitted here is not fully appropriate. 
We try to illustrate this by showing QQ-plots versus the Gaussian distribution, and 
versus a 2( , )vt   -distribution with 4.81 degrees of freedom that was fitted to the 

(2)ARCH  residuals by the maximum likelihood based R function fitdistr() as 
discussed in section 3.3.1. 

> qqnorm(resid(fit)) 
> qqline(resid(fit)) 
> qqt(resid(fit)) 
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We observe that the residuals are heavy tailed. When doing a QQ-plot versus a 
2( , )vt   -distribution with, as it turns out, 4.81 degrees of freedom, things look 

better than when using the Gaussian. Nevertheless, there is an outlier that is far 
beyond the envelope of even the t -distribution and some left-skewness is also 
present. The question is if ARCH models can be adjusted to accommodate for 
that. The answer is yes, as will be shown in the following chapters. 

4.3 GARCH Models 

What is the difference between an ARCH and a GARCH model? We have seen 
that with ARCH models, the conditional variance has an ( )AR p  dependence. With 
GARCH models, that dependence is generalized to have ( , )ARMA p q  structure. 
The model equation for a pure ( , )GARCH p q  process tE  is thus: 

 t t tE W , where 2 2 2
0

1 1

p q

t i t i i t i
i i

E     
 

    . 

Again, we can also deal with shifted ( , )GARCH p q  where t tX E  . Because 
past values of t  are fed back into the present value, the conditional standard 
deviation can exhibit more persistent periods of high or low volatility than an ARCH 
process shows, by spending much fewer parameters, that is! Again, tW  is a White 
Noise process with zero mean and unit variance. It is standard to assume normal 
distribution for tW , but extensions to heavy-tailed and/or skewed situations exist. 

The properties of the ( , )GARCH p q  process tE  include much of which we already 
know, or correspond to a straightforward transfer from the theory of ARCH models: 

tE  is uncorrelated, but 2
tE  has ACF and PACF like an ( , )ARMA p q . Moreover, the 

marginal distribution of tE  is a mixture of normal distributions and thus heavy-
tailed, even if tW  is Gaussian. 
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4.3.1 Fitting GARCH Models to Data 

Our goal with this section is to show another example of GARCH fitting, and to 
point out an alternative fitting routine that also allows specifying models where the 
innovation term tW  is from a heavy-tailed, non-Gaussian distribution. Our example 
will be the Google log returns. We have already seen that they show volatility. The 
next step is to analyze ACF/PACF of the squared log returns: 

> par(mfrow=c(1,2)) 
> acf(lr.google^2, ylim=c(-0.1,1), main="...") 
> pacf(lr.google^2, ylim=c(-0.1,1), main="...") 

 

There is a clear dependence present. However, deciding for the correct model 
order is by no means easy here, because a relatively large number of coefficients 
significantly differ from zero. What ( , )ARMA p q  could have generated that ACF 
and PACF? As it is hard to give an educated guess from the plots, common sense 
says that we should start with a simple model. A reasonable standard choice is a 

(1,1)GARCH , for which we repeat the fitting process from section 4.2.4. 

> summary(garch(lr.google-mean(lr.google), order = c(1,1)) 
Coefficient(s): 
    Estimate  Std. Error  t value Pr(>|t|)     
a0 7.529e-06   8.914e-07    8.446   <2e-16 *** 
a1 4.111e-02   4.085e-03   10.065   <2e-16 *** 
b1 9.417e-01   5.293e-03  177.924   <2e-16 *** 
--- 
Diagnostic Tests:  
Jarque Bera Test of Residuals 
X-squared = 5167.979, df = 2, p-value < 2.2e-16 
 
Box-Ljung test of Squared Residuals 
X-squared = 0.2962, df = 1, p-value = 0.586 

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

ACF of Squared Log Returns

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF of Squared Log Returns



SAFD  Volatility Models 
 

 Page 32 

All coefficients are highly significant, suggesting that they are urgently required. 
The Box-Ljung test has a p-value of 0.586, indicating that there is no “underfit” of 
the (1,1)GARCH . On the other hand, the null hypothesis of Gaussian innovations is 
strongly rejected with the Jarque-Bera test. We display ACF and PACF of the 
estimated innovation terms, as well as a Normal Plot of the residuals, plus a QQ-
plot where we evaluate against 2( , )vt   -distribution with 3.88 degrees of freedom. 

 

None of the estimated autocorrelation coefficients exceeds the confidence bounds. 
This further emphasizes that the (1,1)GARCH  is capable of covering all the 
volatility there is in the data. However, we have problems with the distribution: 

 

Apparently, the innovations tW  follow a heavy-tailed distribution. With the 
garch() function from library(tseries) it is not possible to accommodate 
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for this. However, there is an alternative. R also offers library(fGarch) that 
has function garchFit(). It also allows evaluating models in which the 
innovation terms follow heavy-tailed distributions. Let’s try to do so: the command 
and the (slightly edited) output are as follows. 

> gfit.ht <- garchFit(~garch(1,1), lr.google, cond.dis="std") 
> summary(fit) 
 
Coefficient(s): 
        mu       omega      alpha1       beta1       shape 
1.1503e-03  2.5905e-06  3.7093e-02  9.5797e-01  3.9148e+00 
 
Std. Errors: based on Hessian  
Error Analysis: 
        Estimate  Std. Error  t value Pr(>|t|)     
mu     1.150e-03   3.288e-04    3.499 0.000467 *** 
omega  2.590e-06   1.186e-06    2.183 0.029014 *   
alpha1 3.709e-02   7.139e-03    5.196 2.04e-07 *** 
beta1  9.580e-01   7.442e-03  128.718  < 2e-16 *** 
shape  3.915e+00   3.330e-01   11.756  < 2e-16 *** 
--- 
Log Likelihood: 
5462.3    normalized:  2.593685 
 
Standardised Residuals Tests: 
                                Statistic p-Value   
 Jarque-Bera Test   R    Chi^2  6062.21   0         
 Shapiro-Wilk Test  R    W      0.9215834 0         
 Ljung-Box Test     R    Q(10)  13.07772  0.2193591 
 Ljung-Box Test     R    Q(15)  17.63791  0.2821800 
 Ljung-Box Test     R    Q(20)  24.48442  0.2218716 
 Ljung-Box Test     R^2  Q(10)  3.726359  0.9588483 
 Ljung-Box Test     R^2  Q(15)  5.358023  0.9886365 
 Ljung-Box Test     R^2  Q(20)  7.292896  0.9956080 
 LM Arch Test       R    TR^2   4.498502  0.9726726 
 
Information Criterion Statistics: 
      AIC       BIC       SIC      HQIC 
-5.182621 -5.169201 -5.182632 -5.177706 

The output is pretty overwhelming! First of all, we note that garchFit() allows 
for simultaneous estimation of  , of which we make use here. The result is given 
as mu in the output, with a result that is similar (but not equal) to the arithmetic 
mean in the Google log returns. As it turns out, also the other coefficient estimates 
are (except for 0 , which is termed omega in the output) not very much different 
from the first fit with the garch() procedure (that assumes Gaussian innovations). 
The shape parameter of the 2( , )t   -distribution is estimated as 3.92, and thus in 
the region of what we had found previously when we fitted a 2( , )t   -distribution 
to the residuals from a (1,1)GARCH  that was fitted under the assumption of 
Gaussian innovations. 
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Furthermore, a battery of tests is carried out, both on the residuals and squared 
residuals. The Box-Ljung tests show that there is neither autocorrelation nor 
volatility in the residuals. Thus, the (1,1)GARCH  model seems reasonable. Note 
that the Jarque-Bera still tests whether the innovations are Gaussian. They are 
not, a matter which we already incorporated into the model by specifying 
t -distributed innovations. There is no test (in the summary output) which evaluates 
the adequacy of the chosen distributional model. What we can do is comparing the 
AIC value under usage of the heavy-tailed innovations versus the use of Gaussian 
innovations. They are -4.98 and-5.18 for the Gaussian and the heavy-tailed. We 
take this as further evidence that the 2( , )vt   -innovations yield a better fit. 

4.3.2 GARCH Model Extensions 

There is a number of extensions of the GARCH model that can be fitted with 
procedure garchFit(). We will here give an overview, but keep the section 
short. First and foremost, a combination of ( , )ARMA p q  and ( , )GARCH p q  can be 
fitted. This is appropriate for time series (i.e. log returns) where we observe 
volatility, but also significant autocorrelation. The approach would be to let: 

 ( )t t t t tr X W     

Here, t  is the conditional expectation, which is not constant anymore. That part 
of the time dependence in the data is accounted for by an ( , )ARMA p q : 

 
1 1

p q

t i t i i t i
i i

r E    
 

    , where t t tE W . 

Since the data are also assumed to have volatility, t  is the conditional standard 
deviation of the data. It is not constant, and its fluctuations are addressed by a 

( , )GARCH p q  model, defined as: 

 2 2 2
0

1 1

p q

t i t i i t i
i i

E     
 

     

The typical assumption for financial log returns is (direct) uncorrelatedness and 
constant conditional mean. That is appropriate for all our examples. Just for 
illustration, we fit a combined (1,1) / (1,1)ARMA GARCH  to the Google log returns. 

> garchFit(~arma(1,1)+garch(1,1), lr.google, cond.dist=”std”) 
> summary(...) 
         Estimate  Std. Error  t value Pr(>|t|)     
mu      1.018e-03   3.663e-04    2.778  0.00547 **  
ar1     1.106e-01   1.741e-01    0.636  0.52510     
ma1    -8.080e-02   1.745e-01   -0.463  0.64323     
omega   2.691e-06   1.222e-06    2.202  0.02767 *   
alpha1  3.752e-02   7.306e-03    5.136  2.8e-07 *** 
beta1   9.573e-01   7.685e-03  124.556  < 2e-16 *** 
shape   3.933e+00   3.350e-01   11.741  < 2e-16 *** 
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The previous page shows the most important section from the lengthy summary 
output. It turns out that neither the AR -parameter 1  nor the MA -parameter 1  are 
significantly different from zero. That does not come as a surprise, because the 
tests on the residuals on the previous page had clearly indicated correlation-free 
residuals.  

Finally, garchFit() also allows to fit APARCH  models. They are based on the 
notion that large negative returns sometimes seem to increase volatility more than 
large positive returns of the same magnitude do. The issue is solved with 
asymmetric power ARCH  models, hence the name. We will not discuss these 
models here more deeply. 
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5 Risk Management 
One of the principal goals in the statistical analysis of financial data is to 
understand the risk that is associated with an investment. We had argued above 
that asset prices are non-stationary, so that we must base our considerations on 
their log returns. As it turned out, they hardly show dependence, thus it is 
generally considered as impossible to predict whether future returns will be 
positive or negative. However, there are other important aspects of the return 
distribution that need to be understood: 

 the form (and family) of the distribution 

 its location and scale, and also its quantiles 

 the timely evolution of the distribution, dependence 

For addressing the first two points, we introduced the Random Walk model which 
operates under assuming independent increments that are either Gaussian or 
heavy-tailed. In this setup, we can specify the return distribution either analytically 
(Gaussian case) or at least using Monte Carlo simulations (heavy-tailed case). 
Doing so opens the door to calculate arbitrary loss or profit quantiles. 

Unfortunately, true financial data mostly show volatility. Thus, they are not 
independent and the Random Walk model can at best be seen as a rough 
approximation to the truth. We addressed the issue by introducing the 

( , )GARCH p q -technique which allows for modeling the conditional variance. The 
output can be used to derive the return distribution at a specific time t , but it will 
change over time. Logically, also loss/profit-quantiles will evolve over time. Here, 
we take the opportunity to give some formal definitions of the risk management 
terms that are most widely used in financial analysis. Then, we will also discuss 
how they need to be implemented in the context of our examples. 

5.1 Value at Risk 

The most widely used risk measure in financial analysis is the value-at-risk (VaR). 
Without giving an explicit definition, we lived up to it already in previous chapters 
when we searched for the 5%-quantile of the log return distribution. We define:  

 , ;(1 )[ ]k t kP r VaR     

It could for example turn out that 1;0.95 0.038VaR   , which means that with 95% 
probability the 1-day log return will not be below -3.8%. Or in other words, with a 
chance of only 5%, we will face a loss that exceeds the 1;0.95VaR , i.e. -3.8%. As the 
definition shows, the VaR concept always requires a confidence level (1 ) , and 
a time horizon k . It is typical to set (1 ) 0.95   or 0.99 , as well as 1k  , but 
longer horizons are also common. The following examples illustrate the concept. 
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5.1.1 Empirical VaR 

The VaR can be computed in a model-free way from data alone: we simply take 
the respective empirical quantile of the data. In case of Google, the 1-day 
empirical 95%-VaR is: 

> quantile(lr.google, 0.05) 
         5%  
-0.03134189 

Thus, on our observed data, we did lose more than -3.13% on maximal 5% of the 
trading days since the IPO in 2004. While this model-free VaR computation can 
work quite well with enough data, the disadvantage is that we cannot account for 
volatility, and it is impossible to determine the VaR of a portfolio of assets. These 
two cases, which are realistic and important for practice, can only be dealt with 
when working with at least the Random Walk, or better, with GARCH models. 

5.1.2 VaR with the Random Walk Model 

The simplest model we discussed was the Gaussian Random Walk. We calculate 
the 1;0.95VaR  for the Google stock: 

> qnorm(0.05, mean(lr.google), sd(lr.google)) 
[1] -0.03468317 

We assume the log returns to be independent and Gaussian. Thus, we compute 
the 5%-quantile of the normal distribution with   equal to the average return, and 
  equal to the sample standard deviation. The 1-day 95%-VaR turns out to be 
-3.47%. On average, that loss will only be exceeded on every twentieth trading 
day. For longer horizons k , we derived that the return has a 2( , )N k k   
distribution. Thus, the 20-day 95%-VaR is computed as: 

> qnorm(0.05, 20*mean(lr.google), sqrt(20)*sd(lr.google)) 
[1] -0.1407081 

Because the Google log returns are clearly long-tailed, we introduced a heavy-
tailed random walk model later in section 3.4. The 1-day 95%-VaR according to 
that model turned out to be: 

> 0.0133499234*(qt(0.05,2.9431358498)+0.0009455952) 
[1] -0.03165361 

Thus, the heavy-tailed model is less conservative than the Gaussian Random 
Walk. That may seem surprising, but since the t -distribution has more mass in the 
tails, it has less in the center. As mentioned above, the VaR for longer horizons 
can only be computed using Monte Carlo simulations, because the sum of 
independent 2( , )t    random variables is no longer in the same family. We do not 
repeat the code here, the result was -16.41%. 
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5.1.3 VaR with GARCH Models 

With GARCH models, the VaR concept works almost identically. The exception is 
that time dependency in the scale parameter of the return distribution transfers to 
the concept, thus the value at risk obtains an index t , i.e. ; ;0.95t kVaR . The subscripts 
now indicate time of computation, horizon and confidence level. 

1-Day VaR for Gaussian Innovations 

Suppose we have n  observations of daily log returns 1,..., nr r  and want to compute 
the 95%-VaR for the next day. For Google, we have 2106n  . The current 
conditional standard deviation is n  and can be taken from the thn  fitted value of 
the GARCH model. However, we require the one for the next day, which is 1|ˆn n  . 
This can be obtained by a (time series) forecast, which is easy to produce from the 
garchFit() output. We just apply the predict() command to the fitted output:  

> predict(gfit.nd,1) 
  meanForecast  meanError standardDeviation 
1            0 0.01474702        0.01474702 

Thus, the predicted log return standard deviation for the next trading day is 
0.0147. That is comparably low to the marginal standard deviation of: 

> sd(lr.google) 
[1] 0.02164966 

However, a closer look at the data (not shown here) proves that at the end of 
2012, we are in a period of low volatility. The strong point of using GARCH models 
is that it can adapt to such behavior. The actual 2106;1;0.95tVaR   for the next trading 
day is computed as the 5%-quantile of the respective Gaussian distribution: 

> qnorm(0.05, mean=coef(gfit.nd)[1], sd=0.01474702) 
[1] -0.02314113 

We predict not to lose more than 2.314% tomorrow with 95% probability. That is 
much more optimistic than what we had computed above under independence. 
Please note that we here use the estimate from the garchFit() procedure as a 
mean for the log return distribution. 

k -Day VaR for Gaussian Innovations 

For longer VaR-horizon, we produce long-range forecasts of the conditional 
standard deviation. These are obtained by adjusting argument n.ahead= and 
eventually converge to the unconditional standard deviation of the log returns. The 
20-day-return distribution is again a Gaussian, obtained by addition of 20 
Gaussian random variables with individual standard deviations but identical mean: 

> csd <- predict(fit, n.ahead=20)$standardDeviation 
> qnorm(0.05, mean=20*coef(gfit.nd)[1], sd=sqrt(sum(csd^2))) 
[1] -0.09394989 
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The 2106; 20;0.95t kVaR    for a 20-day-horizon according to the Gaussian- (1,1)GARCH  is 
only -9.39%. This is quite a bit lower than the the -14.07% we had computed from 
the Gaussian Random Walk, owing to the fact that we are in a low volatility period. 

1-Day VaR for Heavy-Tailed Innovations 

As we had seen above, there is little credibility for a (1,1)GARCH  with Gaussian 
innovations. Instead, they seem long-tailed, and we should use that better model 
for risk management. The procedure is not too different, we again create a 
forecast of 1|ˆn n  . 

> predict(gfit.ht, n.ahead=1) 
  meanForecast  meanError standardDeviation 
1  0.001150291 0.01376373        0.01376373 

We have to convert that result to a forecast for the conditional scale parameter of 
the 2( , )t   -distribution via: 

 1| 1|
ˆ ˆ ˆ ˆ( 2) / 0.00963n n n n         

The degrees of freedom can be taken from the (1,1)GARCH  output and are 3.915. 
Thus, tomorrows return follows a 2

3.915(0.0012,0.00963 )t -distribution. The mean was 
again taken from the garchFit() procedure. The 1-day 95%-VaR is: 

> 0.0012+0.00963*qt(0.05,3.915) 
[1] -0.01945842 

The numerical result is -1.95%, which is less conservative than the (1,1)GARCH  
results of -2.31% under Gaussian distribution. We made a very similar observation 
when comparing the Random Walk results. Again, the reason is that the 
leptokurtic distribution has heavier tails and thus more (very) extreme events. In 
contrast, this also means that there is more mass in the center of the distribution, 
which leads to a less negative 5%-quantile of the distribution. 

k -Day VaR for Heavy-Tailed Innovations 

For computing a multi-period VaR from the (1,1)GARCH  model with heavy-tailed 
innovations, we again need to run Monte Carlo simulations. The basis is to 
determine the (conditional) return distribution, very much like above, for each of 
the next 20 trading days. However, since the sum of these distributions is no 
longer a 2( , )t   , there is no way around drawing random variates of the 
respective distributions and determine the resulting 20-day-return.  

> res  <- c() 
> lamb <- sqrt((cf[5]-2)/cf[5])*predict(gfit.ht,20)[,3] 
> for (i in 1:100000){ 
+   lretr   <- rt(20,cf[5]) 
+   lret    <- cf[1]+(lamb*lretr) 
+   res[i]  <- sum(lret) 
+ } 
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The process is repeated many times, and so the Monte Carlo distribution of the 
20-day-return is obtained. Its 5%-quantile is the VaR that we are looking for. The 
result lies in the range of -8.1% and is again less conservative than the result 
under the assumption of Gaussian innovations. 

5.2 Expected Shortfall 

The VaR is an intuitive way of measuring the risk associated with an investment. 
However, there are other risk measures, too. To clarify the concept, theoreticians 
have described a number of properties that a risk measure might or might not 
have. These include monotonicity, sub-additivity, homogeneity and translational 
invariance. As it turns out, the VaR is not sub-additive and hence one can show 
that it discourages diversification when portfolios of several assets are 
constructed. To overcome this drawback, better risk measures have been 
suggested. We here only discuss one alternative, and that is the expected 
shortfall, abbreviated as ES. It is defined as: 

 ; ;(1 ) , , ; ;(1 )[ | ]t k a k t k t t kES E r r VaR     

In words, it is the expected loss given that the return violates the VaR. Of course, 
this typically depends on the time t , the horizon k  and the level (1 ) . Again, the 
most typical case is the 1-day 95%-ES. 

5.2.1 Empirical Computation 

Computing the ES in a model-free environment is straightforward. For a 1-day 
horizon 1k  , we take all returns that are below the VaR and average these: 

> mean(lr.google[lr.google<quantile(lr.google,0.05)]) 
[1] -0.04978501 

As it turns out, 106 of the 2106 log returns are below the empirical 95%-VaR. The 
average of these is -4.98% - that is our empirical estimate of the 1-day 95%-ES. 
While this is by no means required, one can also use a pre-existing R function 
from library(PerformanceAnalytics): 

> ES(lr.google, p=0.95, method="historical") 
          [,1] 
ES -0.04978501 

Empirical computation of the 20-day ES is possible, but requires attention. When 
we use empirical 20-day returns, we have to make sure that they are not 
overlapping. This reduces the number of observations, so that only 100 are left: 

> lr20.tmp <- diff(log(google), lag=20) 
> lr20     <- lr20.tmp[seq(1,2087,by=21)] 
> mean(lr20[lr20<=quantile(lr20,0.05)]) 
[1] -0.1866832 
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5.2.2 Random Walk Computation 

The basis for model-based estimation of the ES is two formulae that show how it is 
computed in case of 2( , )N    and 2( , )t   -distribution. In case of the normal 
distribution, the general formula for the (1 )% -ES is: 

 
1( ( ))f

ES
 




   , 

where 0.05  , ( )f   is the density and 1( )   is the quantile function of the 
standard normal distribution. For example, when computing the 95%-ES 

 
1( (0.05))

2.063
0.05

f 
 . 

Thus, the ES is always a bit more than two standard deviations below the mean. 
Please also note that the 95%-VaR is at -1.645 standard deviations below the 
mean. Thus, when working with the Gaussian distribution, it does not make a 
difference which of the two risk measures is employed. However, that is not the 
case for all distributional models. Of course, the mean   and the standard 
deviation   need to be determined accordingly with respect to the the horizon k . 
By assuming the Random Walk model, there is no volatility, and hence the ES will 
be time-invariant. For the 1-day 95%-ES in case of Google, we obtain: 

> mean(lr.google)-sd(lr.google)*dnorm(qnorm(0.05))/0.05 
[1] -0.04372968 

Again, there is a dedicated R function that does the job. It is again ES(), only the 
method="gaussian" needs to be set. 

> ES(lr.google, p=0.95, method="gaussian") 
          [,1] 
ES -0.04371908 

There is a slight, practically irrelevant difference in the numerical result which is 
due to some rounding errors. When assuming the Gaussian Random Walk model, 
computing the ES for a multi-period horizon is straightforward, since we can make 
use of the compounding property: 

> 20*mean(lr.google)-sqrt(20)*sd(lr.google)*2.063 
[1] -0.1811931 

The result turns out to be very similar to what we had computed empirically. The 
downside of the 20-day empirical computation is that it is based on relatively few 
observations, but it is methodologically sound. Here, we have a sound estimate of 
more than 2000 observations for estimating mean and standard deviation. 
However, the computations are based on assuming a Gaussian Random Walk 
and there is plenty of evidence in the data, that this model is not 100% accurate. 
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For the 2( , )t   -distribution, a similar formula for computing the ES exists: 

 
1 1 2( ( )) ( ( ))

1

f F F
ES      

 

 
   


 

Not surprisingly, the multiplier for the scale parameter depends on the degrees of 
freedom. The heavier the tails of the distribution are, the further away from the 
mean the ES is. The diagram below shows the relation between the multiplier and 
the degrees of freedom by assuming 0.05  .  

> mm <- function(nü, aa=0.05){ 
+     dt(qt(aa,nü),nü)/aa * (nü+qt(aa,nü)^2)/(nü-1) 
+ } 
> plot(seq(2,20,by=0.1),mm(seq(2,20,by=0.1)), ...) 
> abline(h=dnorm(qnorm(0.05))/0.05, col="grey") 

 

The function converges to 2.063, the multiplier value for the Gaussian. The grey 
line corresponds to the multiplier for the 95%-VaR for the respective distribution. 
We observe that the ratio between ES and VaR is not constant, but depends on 
the shape parameter  . Let us now implement the ES computation for the case of 
Google. We had estimated 2.943 degrees of freedom for the log returns. Hence: 

> out <- fitdistr(lr.google, "t")$estimate 
> out[1]-out[2]*mm(out[3]) 
-0.05159754 

Under this model, the ES is estimated as -5.16%. This is now more conservative 
than for the Gaussian Random Walk, owing to the fact that the heavy tail has more 
effect in computing the ES than in computing the VaR. We conclude this section 
by noting that for multi-period ES under heavy tails, Monte Carlo simulations are 
again required for determining the multi-period log return distribution. 
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5.2.3 GARCH Computation 

When working with a GARCH model that assumes Gaussian innovations, the time 
series forecast for the conditional standard deviation is obtained in exactly the 
same manner as we had demonstrated for the VaR in section 5.1.3. The result can 
be plugged into the formula from 5.2.2 and directly yields the GARCH-ES: 

> gfit.nd <- garchFit(~garch(1,1), lr.google) 
> pred.sd <- predict(gfit.nd, n.ahead=1)[3] 
> coef(gfit.nd)[1]-pred.sd*2.063 
-0.02926222 

The empirical result was -4.98%, the Gaussian Random Walk yielded -4.37% and 
here, we only have -2.93%. The reason is again the fact that at the end of 2012, 
we are in a very low volatility period. If computing multi-period ES is the goal, this 
works analogously to what we had shown for the VaR in section 5.1.3. A multi-step 
prediction of the conditional standard deviation is produced and these are 
converted into a scale parameter for the multi-period log return. 

> pred.sd <- predict(gfit.nd, n.ahead=20)[,3] 
> 20*coef(gfit.nd)[1]-sqrt(sum(pred.sd^2))*2.063 
-0.1235052 

The result is -12.35%. The final task which remains to do is to implement ES 
computation using a GARCH model with heavy tails. For a 1-day horizon, this is 
straightforward: we generate a 1-step time series forecast of the conditional 
standard deviation, convert it to the conditional scale parameter, determine the 
multiplier according to the degrees of freedom, et voilà: 

> gfit.ht <- garchFit(~garch(1,1), lr.google, cond.dis="std") 
> cf      <- coef(gfit.ht) 
> lpred   <- sqrt((cf[5]-2)/cf[5])*predict(gfit.ht, 1)[3] 
> cf[1]-lpred*mm(cf[5]) 
-0.03004255 

The result is -3.00%. As usual, when we want multi-period risk measures from the 
heavy-tailed approach, we have to employ Monte Carlo. This works exactly the 
same as demonstrated in the VaR chapter, except that we do not determine the 
5%-quantile of the Monte Carlo distribution, but instead compute its empirical ES. 
The result turns out to be -11.13%. 


