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Topics of the Course
Session 01:

Financial data and their properties
Random Walk model with various distributions

Session 02:

The GARCH model for conditional heteroskedasticity
Risk measures for dealing with financial loss

Sessions 03/04/05:

Multivariate Analysis: CAPM, Copulas, Factor Models 
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Resources
There is a book which is predominantly used as a guideline 
for the topics covered during the course:

Session 01: Chapters 2/4/5

Session 02: Chapters 18/19

Session 03: Chapters 11/7/8 ???

Session 04: Chapters 16/17  ???

Session 05: Chapters ???

 There is no urgent need to buy this
book, notes/slides are sufficient.
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Example 1: Swiss Market Index
In R, we have daily values of the SMI over 8 years:

> data(EuStockMarkets)
> EuStockMarkets
Time Series:
Start = c(1991, 130) 
End = c(1998, 169) 
Frequency = 260 

DAX    SMI    CAC   FTSE
1991.496 1628.75 1678.1 1772.8 2443.6
1991.500 1613.63 1688.5 1750.5 2460.2
1991.504 1606.51 1678.6 1718.0 2448.2
1991.508 1621.04 1684.1 1708.1 2470.4
1991.512 1618.16 1686.6 1723.1 2484.7
1991.515 1610.61 1671.6 1714.3 2466.8
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Example 1: Swiss Market Index
> smi <- ts(tmp, start=start(esm), freq=frequency(esm))
> plot(smi, main="SMI Daily Closing Value")
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Example 2: CHF/USD Exchange Rate
> library(Ecdat)
> data(Garch); chf.usd <- ts(1/Garch$sf)
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Example 3: Google Stock
Data taken from NASDAQ: 
http://www.nasdaq.com/symbol/goog/historical
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Introduction: What is a Time Series?
Time series process:

A set of random variables                    , where is the set of time 
at which the process was (or can be) observed. We restrict our-
selves cases where the set of times is discrete and finite. Also, 
the observations were made at fixed time intervals.

Observed time series: 

An observed time series is one single realization of
the time series process. If we want to do statistics with it, there is
no alternative than to assume additional structure.

 ,tX t T T

 ,tx t T
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Stationarity
For being able to do statistics with time series, we require that the 
series “doesn’t change its probabilistic character” over time. This is 
mathematically formulated by strict stationarity.

Def: A time series                  is strictly stationary, if the joint 
distribution of the random vector                       is equal to 
the one of                        for all combinations of t, s and k.

 all     are identically distributed
all     have identical expected value
all have identical variance
the autocov depends only on the lag 

 ,tX t
( , , )t t kX X 

( , , )s s kX X 

tX
tX
tX

h

~tX F
[ ]tE X 

2( )tVar X 
( , )t t h hCov X X  
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Simple Returns and Log Returns
 Asset price time series are typically non-stationary!

If is the price of an asset, we could consider simple returns: 

But instead, we prefer to work with log returns:

Example: see next slide...
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Example: Log Returns of SMI
> lr.smi <- diff(log(smi))
> plot(lr.smi, main="SMI Log-Returns")
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Why Log Returns?
What is the rationale for working with log-returns?

•   SOP: The prices are right-skewed and have a trend. Thus, we
must log-transform and then take differences at lag 1.

• Symmetry: The minimum simple return is -100%, while the
maximum increase is infinite. Log returns are symmetric.

• Compounding: The multi-period log returns are additive, i.e.
are the sum over the single period log returns in that period.

• Compatibility: With the Random Walk model, see below. 



14Marcel Dettling, Zurich University of Applied Sciences

Statistical Analysis of Financial Data
January 2017 – Session 01

Goals in Financial Data Analysis
What can we do and what can't we do?

• The prices are non-stationary and thus usually not suitable
for statistical analysis. That is why we lay focus on log returns.

• Empirical evidence and several economic theories suggest: 

It is not realistic to make statements whether tomorrows return
will be positive or negative, whether it is a good moment to
invest in an asset, et cetera.

• There are aspects of the distributions of      and
which are interesting to study: shape, scale, skewness, 
kurtosis, quantiles, tail distributions, et cetera.

tP

1 2[ ] [ | , ,...] 0t t t tE r E r r r    

tr 1 2| , ,...t t tr r r 
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Goals in Financial Data Analysis
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The Random Walk Model
From the compunding property of log returns, we derive:

, where horizon and time  

Assuming normal returns and independence:

And the risk management problem would be solved. We can
even derive the price process and its distribution:

This is a Geometric Random Walk. The prices have a lognormal 
distribution at all times . 

2
, ~ ( , )k tr N k k 

2
1, ~ ( , )tr N  

, 1, 1, 1...k t t t kr r r    

0 1, 1,1exp( ... )t tP P r r   

t

k  t 
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Simulation Example
Let and : Realistic?!?  0 100P  2 2

1, ~ ( 0, 0.03 )tr N   
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Analyzing Log Returns: Google
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Analyzing Log Returns: Google
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Analyzing Log Returns: Simulation
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Properties of Log Returns
Practice shows that the following are always present:

• A mean close to zero
• Hardly any direct autocorrelation
• Clusters of volatility (high/low changes)
• Correlations among the squared returns
• Some extreme returns, longer tails than normal
• Stationarity! At least we will operate under this assertion

 Log returns are not Gaussian. And while they are not directly 
correlated, they are still not independent / White Noise. Good 
models need to take that into account! The RanWalk does not!
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Skewness and Kurtosis
In regular statistics, we seldom go beyond mean and variance. In 
financial statistics, there is interest in the third and fourth moment:

Skewness:

, resp.

In R:

> library(timeDate)
> skewness(lr.google)
[1] 0.4340404
attr(,"method")
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Skewness and Kurtosis
In regular statistics, we seldom go beyond mean and variance. In 
financial statistics, there is interest in the third and fourth moment:

Kurtosis:

, resp.

In R:
> library(timeDate)
> kurtosis(lr.google)
[1] 7.518994
attr(,"method")
[1] "excess"

4

4

[( ) ]E XKurt 




4

1

1 ( )ˆ 3
n

i
Ex

i

x xKurt
n 

     
 





24Marcel Dettling, Zurich University of Applied Sciences

Statistical Analysis of Financial Data
January 2017 – Session 01

Testing Normality
It is usual to evaluate the log return distribution de visu using a 
Normal Plot. An experienced eye detects non-normality easily.

Jarque-Bera Test:

Tests the null hypothesis of a Gaussian distribution by comparing 
skewness and kurtosis to 0 and 3, respectively:

In R: > library(tseries)
> jarque.bera.test(lr.google)
> X-squared = 5040.39, p-value < 2.2e-16

 2 2 2
2

ˆ ˆ4 ~
24 Ex
nJB Skew Kurt   
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Heavy-Tailed Distributions
Idea: Use a heavy tailed distribution for the Random Walk model

Most popular choice:     - distribution

Take                      and               :   

The parameter     is called degrees of freedom and controls the 
shape of the distribution. It can take any positive real value. The 
smaller it is, the heavier the tails of the distribution are.

Also:                , exists if
, exists if

The third, fourth, fifth, … moment exist if  

~ZT t
W  

t
2~W ~ (0,1)Z N



[ ] 0E T  1 
( ) / ( 2)Var T    2 

3,4,5,... 
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The t-distribution

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

D
en

si
ty

N(0,1)
t1
t2
t4

The Gaussian and t-Distributions with df=1,2,4



27Marcel Dettling, Zurich University of Applied Sciences

Statistical Analysis of Financial Data
January 2017 – Session 01

Enhancing with Location and Scale
While it seems that a    -distribution can adapt well to financial log 
returns, that won't work well without location/scale parameters.

has a                 -distribution with:
and

Important:

The tail behaviour remains the same, even if we add a location 
and a scale parameter. The decay is of polynomial order:

goes to zero like             if

Note: The Gaussian tail decays exponentially with                 .  

[ ]E S 

t

2( , )vt  S T  
2( ) / ( 2)Var S v   
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f x
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Mixture Distributions
Goal: Mixture between 90%               and 10%

The probability density function can be written as:

We can draw random variates of this distribution using a two-step 
approach, where we first determine from which Gaussian we have 
to simulate. While the mean of the mixture will remain at zero, the 
variance is:

However, the mixture has more tail mass than a                  !!! 

(0,1)N (0,25)N

(0,1) (0,25)( ) 0.9 ( ) 0.1 ( )mix N Nf x f x f x   

( ) 0.9 1 0.1 25 3.4Var M     
(0,3.4)N
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Mixture Distributions: Example
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Mixture Distributions: Results
Comparing the ratio of extreme events:

> gauss <- 2*pnorm(-3*sd, 0, sd)
> mixt  <- 2*0.9*pnorm(-3*sd)+2*0.1*pnorm(-3*sd,0,5)
> mixt/gauss
[1] 9.948061

An extreme event is 10x more likely with the mixture distribution, 
and the kurtosis is 16.45. Does it mean that is a good approach?

Not necessarily! Empirical evidence shows that the extreme 
events in real data come in clusters. Our mixture approach 
does not offer that. The GARCH model will…
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Random Walk with Heavy Tails
For obtaining a model that reflects the stylized facts of financial 
data more genuinely, we could use a Random Walk with heavy-
tailed increments. The distributional choice is                 .

• We require a routine for fitting the distribution to a set of 
observed one-day log returns. 

• Multi-period risk management will no longer be as easy:
the sum of independent heavy-tailed log-returns is no longer
in the same distributional family and we urgently require a
Monte Carlo simulation procedure.

 See next slides…

2( , )vt  
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Fitting t-Distributions to Data
We can use a maximum likelihood approach to fit a
to financial data. Numerical optimization is required. 

In R:

> library(MASS)
> fitdistr(lr.google, "t")

m              s              df
0.0009455952   0.0133499234   2.9431358498 
(0.0003562337) (0.0003839158) (0.2159852731)

MLE theory says the estimates are asymptotically normal. Thus, 
we can construct approximate 95%-CI using the provided SEs.

2( , )vt  
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Evaluating a t-Distribution
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Risk Management with Heavy Tails
The 5%-quantile of the log return distribution turns out to be:. 

> 0.000945595+0.0133499234*qt(0.05,2.9431358498)
[1] -0.03072064

If we aim for the 5%-quantile of the 20-day log return distribution, 
we have to resort to a simulation approach. It involves drawing 
many (i.e. 100’000x) sets of 20 single-day returns, before these 
are summed up and their empirical 5%-quantile is obtained:

> quantile(res, 0.05) 
5%

-0.1454524
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Random Walk with Heavy Tails
Goal is computing the 1-day Value-at-Risk, i.e. the loss which is 
not exceeded with 95% probability:

If we are interested in a 20-day horizon, things are easy for the 
Gaussian distribution, but for the t-distribution…?

Method 95%-VaR 99%-VaR
Gauss -3.47% -4.94%
T with 2.94 df -3.07% -6.06%
Empirical -3.13% -5.97%

Method 95%-VaR 99%-VaR
Gauss -14.07% -20.67%
T with 2.94 df -14.55% -23.71%


