Guided Simulations for Bridging the Gap in Time Scales

Hans Christian Öttinger

Department of Materials Science, ETH Zürich

The Challenge

(LDPE at $T = 150^{\circ}$ C)

A Beyond-Equilibrium Ensemble

Ensemble after integrating out momentum variables:

$$\propto \exp\left\{-\frac{p}{kT}V(\boldsymbol{r}_1...\boldsymbol{r}_N) - \frac{1}{kT}\phi(\boldsymbol{r}_1...\boldsymbol{r}_N) - \lambda_c: \sum_{k=1}^{N_p} \boldsymbol{Q}'_k \boldsymbol{Q}'_k\right\}$$

Slowest vibration mode:

$$\mathbf{Q}'_{k} = \sqrt{\frac{2}{N_{k}}} \sum_{j=1}^{N_{k}-1} (\mathbf{r}_{j+1} - \mathbf{r}_{j}) \sin \frac{j\pi}{N_{k}}$$

Systematic coarse-graining instead of computer experiments!

(Stress-Optical Rule)

Polyethylene, C₇₈

Elongational Viscosity

Polyethylene, C₇₈

(Polymer Melts: Smoothed Chain)

Polymer Melts: Smoothing)

Thermodynamics and Anisotropic Tube Cross Sections

Pino Marrucci: stress tensor ⇒ Thermodynamics: time-evolution

stress tensor in shear flow:
$$\begin{bmatrix} p_{11} & p_{12} & 0 \\ p_{12} & p_{22} & 0 \\ 0 & 0 & p_{33} \end{bmatrix} \qquad \Phi = \frac{p_{22} - p_{33}}{p_{11} - p_{22}}$$

famous values for Φ : 0.28, 0.14, 0.25 simulations based on the theory of coarse-graining: 0.17 ... 0.21

- How to complete and clarify a picture?
 (From Turner to high-resolution graphics)
- How to get maximum results from minimum simulation efforts?
 (From Italian/Dutch to German soccer)

Polymer Melts: Diffusion

Vlasis Mavrantzas

