State-Space Modeling of Electrochemical Processes

"Who uses up my battery power ?"

Michel Prestat

ETH-Zürich Institute for Nonmetallic Materials Head: Prof. L.J. Gauckler

Electrochemistry

Electrochemical Impedance Spectroscopy and State-Space Modeling

Oxygen reduction at solid oxide fuel cell cathodes

Comparison modeling – experiments

Summary

Electrochemistry

coloration of titanium

batteries, fuel cells

ETH - Ceramics

Electrochemistry and Materials

http://ceramics.ethz.ch

ETH - Ceramics

Electrochemical Impedance Spectroscopy (EIS)

EIS principle

Small amplitude (5-10 mV) input signal \rightarrow Linearization

Admittance Transfer Function

Z = impedance

complex ($j^2 = -1$)

frequency dependant (ω = 2 π f)

EIS spectra and equivalent circuits

experimental EIS spectra

How to interpret the experimental equivalent circuit ??

lm (Z) -////--R Re (Z) 1 f = lm (Z) 2π RC Re (Z) R R lm (Z) Re (Z) R_2 R₁ lm (Z) Re (Z) $R_2 + R_3$ R_1

ETH - Ceramics

Alternative approch: modeling the impedance

State-Space Modeling (SSM)

Oxygen Reduction

at

Solid Oxide Fuel Cell Cathodes

http://ceramics.ethz.ch

Dissociative adsorption:

Surface diffusion:

Charge transfer at the *tpb*:

s = adsorption site

ETH - Ceramics

Electrolyte = O^{2-} conductor (V_o^{-} and O_o^{x}) Typically YSZ ($Y_2O_3 - ZrO_2$)

 p_{O2} , $[O_0^x]$ and $[V_0]$ are constant

Model 1: surface diffusion negligible

Model 2: with surface diffusion

$$O_{ads} \rightarrow O_{ads} (tpb)$$

 $O_{ads} + 2e^{-}$

 \cap

 O_2

triple phase boundary (*tpb*)

Reaction Models

Dissociative adsorption:

$$O_{2(g)} + 2s \underset{K_{des}}{\overset{K_{ads}}{\leftarrow}} 2O_{ads}$$

Charge transfer:

$$O_{ads} + 2e^{-} \underset{K_{b}(E)}{\overset{K_{f}(E)}{\leftrightarrows}} O^{2-}$$

O₂

Model 1 (without surf. diffusion)

 \rightarrow consecutive reaction steps

 \rightarrow state variable θ_{ads} = scalar

ate-space model
$$\begin{cases} \frac{d\theta_{ads}}{dt} = K_{ads} \, \rho_{O2} (1 - \theta_{ads})^2 - K_{des} \theta_{ads}^2 - K_f(E) \, \theta_{ads} + K_b(E) \, (1 - \theta_{ads}) \\ I_F = K_i \left[- K_f(E) \, \theta_{ads} + K_b(E) \, (1 - \theta_{ads}) \right] \end{cases}$$

ETH - Ceramics

 $\rightarrow s$

Model Implementation in Simulink[®]

$$\frac{d\theta_{ads}}{dt} = K_{ads} p_{O2} (1 - \theta_{ads})^2 - K_{des} \theta_{ads}^2 - K_f(E) \theta_{ads} + K_b(E) (1 - \theta_{ads})^2$$
$$|I_F = K_i [-K_f(E) \theta_{ads} + K_b(E) (1 - \theta_{ads})]$$

ETH - Ceramics

Model 2 (with surf. diffusion)

$$O_{2(g)} + 2s \underset{K_{des}}{\overset{K_{ads}}{\leftarrow}} 2O_{ads}$$
$$O_{ads} \overset{K_{dif}}{\rightarrow} O_{ads}$$

 $O_{ads} + 2e^{-} \underset{K_{b}(E)}{\overset{K_{f}(E)}{\leftrightarrows}} O^{2-}$

Diffusion processes 2nd Fick's law: $\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial z^2}$

- → Finite difference approach to estimate time and space derivatives
- → state variable θ (θ_1 , θ_2 , θ_3) = vector $\theta_1 \le \theta_2 \le \theta_3$
- \rightarrow Parallel reaction pathways

ETH - Ceramics

Subsystems: as many as compartments

$$\frac{\partial \theta_i}{\partial t} = K_{ads} p_{O_2} (1 - \theta_i)^2 - K_{des} \theta_i^2 + \frac{K_{dif}}{2^{2i-2}} (\frac{2\theta_{i-1}}{3} - \theta_i + \frac{\theta_{i+1}}{3}) (+ chg transfer kinetics)$$

Model Implementation in Simulink®

Compartment n°2

$$\frac{\partial \theta_2}{\partial t} = \mathsf{K}_{ads} \mathsf{p}_{O_2} (1 - \theta_2)^2 - \mathsf{K}_{des} \theta_2^2 + \frac{\mathsf{K}_{dif}}{4} (\frac{2\theta_1}{3} - \theta_2 + \frac{\theta_3}{3})$$

Modeling results

charge transfer (model 1 = diffusion slow)

adsorption - charge transfer (model 1 = diffusion slow)

diffusion - charge transfer (model 2)

ads. – diff. - charge transfer (model 2)

ETH - Ceramics

Comparison Modeling - Experiments

Experimental

 C_{DL} may mask $Z_F \rightarrow$ Berthier's method in *Corrosion* <u>51</u> (1995) 105

ETH - Ceramics

Ongoing SOFC projects

Mixed ionic-electronic electrodes

Additional reaction pathway through the electrode bulk.

Intermediate T° SOFC (600-800°C).

Typical material: $La_xSr_{1-x}Co_yFe_{1-y}O_3$ (LSCF).

Modeling the whole SOFC

Oxygen reduction, fuel oxidation, transport in the electrolyte.

ETH - Ceramics

Summary

• electrochemical reactions yield sophisticated impedance behavior \Rightarrow necessity of a modeling approach (analytical or numerical).

• SSM (with modern computation tools) enables to simulate the faradaic impedance of such reactions.

 \Rightarrow "fingerprint" of reaction models.

• SSM approach applicable to any other field of electrochemistry.

Many thanks to ...

SOFC group

Prof. L.J. Gauckler

References

M. Prestat and L.J. Gauckler, Solid State Ionics, submitted (2003) Faradaic impedance of oxygen reduction at solid oxide fuel cell cathodes Part I: adsorption and charge transfer limited reactions

M. Prestat and L.J. Gauckler, Solid State Ionics, submitted (2003) Faradaic impedance of oxygen reduction at solid oxide fuel cell cathodes Part Ii: surface diffusion limited reactions

A. Bieberle and L.J. Gauckler, Solid State Ionics, <u>146</u> (2002) 23 State-Space Modeling of the anodic SOFC system Ni, H_2 - H_2O |YSZ

A. Mitterdorfer and L.J. Gauckler, Solid State Ionics, <u>117</u> (1999) 187 Identification of the reaction mechanism of the Pt, $O_2(g)$ |Yttria-Stabilized Zirconia system, Part I: general framework, modelling and structural investigation

A. Mitterdorfer and L.J. Gauckler, Solid State Ionics, <u>117</u> (1999) 203 Identification of the reaction mechanism of the Pt, $O_2(g)$ |Yttria-Stabilized Zirconia system, Part II: model implementation, parameter estimation and model validation

ETH - Ceramics