Bringing (Semiconducting) Polymers to Order

Mohammed Baklar, Avinesh Kumar, Theo Kreouzis

Martin Heeney, Natalie Stingelin

Imperial College London

Christian Müller, Nikolai Zhigadlo, Felix Koch

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich • background

poly(3-hexylthiophene), P3HT

- routes to high(er) order
- conclusions today
- outlook tomorrow & beyond

	material order matters	
~ ~ \		

property	unit	unordered	perfectly ordered
Young's modulus (stiffness)	GPa	0.001	>100
tensile strength (stress at break)	GPa	0.001	10
thermal conductivity	mW cm ⁻¹ deg ⁻¹	10	>100
electrical conductivity	S cm ⁻¹	100	100'000
non-linear optical coefficient	esu	10 ⁻¹⁰	10 ⁻⁹

examples: polyethylene, polyacetylene

factors influencing "order"

- **molecular architecture** (chain "regularity", stiffness)
- molecular length ("weight")
- processing schemes
- synthesis ("physico-chemical conditions")

PRINCIPLES OF

POLYMER CHEMISTRY

By Paul J. Flory

Professor of Chemistry, Stanford University

CHAPTER I

Historical Introduction

THE hypothesis that high **polymers** are composed of covalent structures **many times greater in extent** than those occurring in simple compounds, and that **this feature alone accounts for the characteristic properties which set them apart from other forms of matter**, is in large measure responsible for the rapid advances in the chemistry and physics of these substances witnessed in recent years.

P. J. Flory, *Principles of Polymer Chemistry*, Cornell University Press, 1953, p 3

L = long period

Order

Properties

log Molecular Length

Order

Properties

log Molecular Length

poly(3-hexylthiophene)

a semi-**flexible** polymer persistence length = **2.4 nm**

sharp fold with 6 repeat units

M_w -Dependence μ_{FET} P3HT

R. McCullough *et al.*, *JACS* 2006, 128, 3480
R. J. Kline *et al.*, *Macromolecules* 2005, 38, 3312
D. Neher *et al.*, *Macromolecules* 2006, 39, 2162

□ A. Pron *et al.*, *Phys. Chem. B* **2006**, 110, 13305 ■ H. Sirringhaus *et al.*, *Phys. Rev. B* **2006**, 74, 1098

M_w -Dependence μ_{FET} P3HT

R. McCullough et al., JACS 2006, 128, 3480 R. J. Kline et al., Macromolecules 2005, 38, 3312 D. Neher et al., Macromolecules 2006, 39, 2162

□ A. Pron *et al.*, *Phys. Chem. B* **2006**, 110, 13305

■ H. Sirringhaus et al., Phys. Rev. B 2006, 74, 1098

M_w -Dependence μ_{TOF} P3HT

♦ A. M. Ballantyne et al., Adv. Funct. Mater. 2008, 18, 2373

M_w -Dependence μ_{TOF} P3HT

♦ A. M. Ballantyne et al., Adv. Funct. Mater. 2008, 18, 2373

Routes to High(er) Order

2 mm

P3HT M_w = 344 kg/mol

 T_{c} ~300 °C at 5'000 bar

High-Pressure Solidification

♦ A. M. Ballantyne *et al.*, *Adv. Funct. Mater.* **2008**, 18, 2373

High-Pressure Solidification

♦ A. M. Ballantyne *et al.*, *Adv. Funct. Mater.* **2008**, 18, 2373

examples

• poly(tetrafluoroethylene) PTFE

• ultra-high molecular weight polyethylene UHMW PE

characteristics

• high melting temperature

• high degree of crystallinity

low entanglement density, if any

• irriversible first melting

low entanglement density in "virgin" polymers permits flow in the **solid state** allowing manufaturing of *mechanically coherent* objects below T_m

P3HT (344 kg/mol)

 $T_p = room temperature; i.e. T_m - 225 °C$

high order in "virgin" polymers is retained

when processed **below** the melting temperature

reflected light

crossed polarizers

dubbeltje

"Virgin Polymers"

Solid-State Processing

"Virgin Polymers"

M_w -Dependence μ_{TOF} P3HT

♦ A. M. Ballantyne *et al.*, *Adv. Funct. Mater.* **2008**, 18, 2373

P3HT exhibits classical MW / solid-state structure correlations of flexible chain polymers

order can be improved by classical methods

improved physico-chemical conditions during synthesis yields material of higher order

solid-state processing of "virgin" polymers may not require solubilizing (diluting) side-chains

Outlook Tomorrow

R. McCullough *et al.*, *JACS* 2006, 128, 3480
R. J. Kline *et al.*, *Macromolecules* 2005, 38, 3312
D. Neher *et al.*, *Macromolecules* 2006, 39, 2162

□ A. Pron *et al.*, *Phys. Chem. B* **2006**, 110, 13305

■ H. Sirringhaus *et al.*, *Phys. Rev. B* **2006**, 74, 1098

