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Current-induced spin–orbit torques
BY PIETRO GAMBARDELLA1,2,* and IOAN MIHAI MIRON1
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i Nanotecnologia (ICN-CIN2), UAB Campus, 08193 Barcelona, Spain

2Institució Catalana de Recerca i Estudis Avançats (ICREA),
08100 Barcelona, Spain

The ability to reverse the magnetization of nanomagnets by current injection has
attracted increased attention ever since the spin-transfer torque mechanism was predicted
in 1996. In this paper, we review the basic theoretical and experimental arguments
supporting a novel current-induced spin torque mechanism taking place in ferromagnetic
(FM) materials. This effect, hereafter named spin–orbit (SO) torque, is produced by the
flow of an electric current in a crystalline structure lacking inversion symmetry, which
transfers orbital angular momentum from the lattice to the spin system owing to the
combined action of SO and exchange coupling. SO torques are found to be prominent in
both FM metal and semiconducting systems, allowing for great flexibility in adjusting
their orientation and magnitude by proper material engineering. Further directions of
research in this field are briefly outlined.

Keywords: spin torque; spin–orbit coupling; Rashba effect; Dresselhaus effect; spintronics

1. Introduction

Methods to manipulate the magnetization of ferromagnets alternative to the
external magnetic field open a wide spectrum of opportunities to integrate
magnetic functionalities into electronic circuits. In recent years, much effort has
been devoted to physical processes that take place either in close proximity to or
within the core magnetic element of a device, with the multiple aim of reducing its
dimensions and energy consumption and eliminating concerns related to the stray
field extension typical of write heads. In the following, we briefly review different
approaches to this problem, focusing on the generation of spin–orbit (SO) effective
magnetic fields in ferromagnets owing to the combined action of an electric current
and an asymmetric crystal field intrinsic to materials lacking inversion symmetry.

The possibility to use a spin-polarized current to induce a local torque on
magnetization dates back to the seminal work of Slonczewski [1] and Berger
[2], and since then it has been investigated extensively both theoretically and
experimentally [3]. The physical principle behind this effect is called spin-transfer
torque (STT) and requires the flow of an electric current between non-collinear
*Author for correspondence (pietro.gambardella@icrea.es).
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magnetic structures to transfer spin angular momentum from one to another.
The latter can be realized in two ferromagnetic (FM) layers separated by a non-
magnetic metal spacer (spin valve) or insulator (magnetic tunnel junction), as well
as in domain walls (DWs). Typical current density values required to induce the
switching of one magnetic configuration with respect to the other range around
107 A cm−2. Despite its great fundamental and practical interest, the exploitation
of STT to write information in, for example, magnetic tunnel junctions (MTJs)
still suffers from the need to compromise between large current density (requiring
low junction resistance to avoid damage) and readability (requiring large
magnetoresistance). Moreover, optimization of the spin polarization across the
junction, stabilization of the ‘fixed’ layer magnetization, and minimization of
stray fields often result in complex stacking structures involving more than 10
different layers.

Alternative to STT, actuation methods based on the application of static
electric fields across a magnetic layer have been demonstrated in gated dilute
magnetic semiconductor devices through control of the charge carrier density
mediating ferromagnetism [4], as well as multi-ferroic/FM heterostructures
through the combined effects of magnetoelectric and exchange coupling [5,6].
Voltage-induced changes of magnetic anisotropy and coercivity have been also
evidenced in ultrathin FM metal films owing to charge-induced band-structure
modifications [7,8]. These effects have great fundamental and applied interest,
but temperature and/or magnitude considerations still limit their practical use
to prototype demonstrations.

Very recently, a third way has emerged to control the magnetic state of
an FM layer, which we refer to as current-induced SO torque. Although it
exploits both the flow of a spin-polarized current and static electric fields, such
a torque is fundamentally different from the processes described above, relying
on the presence of strong SO coupling intrinsic to the nuclear composition and
atomic structure of a material. The correlation between charge current and
spin polarization arising from the SO interaction has been extensively studied
in non-magnetic semiconductors since the 1970s [9–11] and recently reviewed
by Ganichev & Prettl [12], Silsbee [13] and Awschalom & Samarth [14]. It is
only in the last 2 years, however, that current-induced SO-effective magnetic
fields have been predicted to occur in ferromagnets [15–17] and their existence
demonstrated in dilute magnetic semiconductors [18] and ultrathin metal films
[19]. Such investigations bridge two of the main research areas in spintronics, the
one based on magnetic multi-layer devices [20] and the one ‘without magnetism’
based on the manipulation of the electron spin in non-magnetic conductors [14].
The observation of strong SO torques at room temperature combined with the
simple layer structure and robust FM properties of metal films [19] open a
promising new avenue to manipulate the magnetization of spintronic devices by
means of electric currents.

This paper is organized as follows. In §2 we review the spin-splitting of
the conduction states in non-magnetic materials lacking inversion symmetry,
resulting in the coupling of electron wavevector and spin mediated by the SO
interaction. Relevant examples and material issues are discussed for the Rashba
and linear Dresselhaus Hamiltonians. In §3, we show how SO coupling induces
a net spin polarization of the conduction electrons in the presence of an electric
current, analogously to a wavevector-dependent magnetic field. The joint action
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of SO and exchange interactions in FM materials is discussed in §4a, where
SO torques are introduced and compared with STT (§4b). Finally, we review
the experimental evidence and quantitative measurements of SO torques in
dilute magnetic semiconductors (§4c) and FM metal films (§4d), comparing
the two cases and discussing other experiments in light of recent progress in
this field.

2. Spin–orbit coupling in materials lacking inversion symmetry

Time-reversal symmetry and inversion symmetry in a crystal structure require
that the energy eigenvalues of the electron states satisfy the relationship E↑↓,k =
E↓↑,k, where ↓↑ denotes up/down spin and k the electron wavevector. This is
the usual spin degeneracy of single electron states in the absence of external
or internal magnetic fields. In the absence of inversion symmetry, however, only
E↑↓,k = E↓↑,−k needs to be satisfied, leading to a k-dependent spin-splitting of the
electron bands [21]. Although in non-magnetic materials the number of occupied
spin-up and spin-down states at equilibrium is equal, such a correlation between
electron wavevector and spin can lead to a net out-of-equilibrium spin polarization
in the presence of an electric current.

Dresselhaus [22] has shown that bulk inversion asymmetry (BIA) in non-
centrosymmetric crystals with zinc blende structure leads to spin splitting both
linear and cubic in k for the heavy/light hole and conduction bands, respectively.
Symmetry reduction owing to uniaxial strain allows SO terms linear in k to appear
as well in the conduction band [23]. Moreover, Rashba [24] has shown that a
crystal with a single high-symmetry axis and an invariant vector oriented along
this axis also lead to spin splitting linear in k. The latter situation is realized
in wurtzite-type crystals [24,25] as well as in layered heterostructures [26,27],
which present structure inversion asymmetry (SIA) along the surface normal. As
this review focuses on SO torques in thin films, it is convenient to summarize
different forms of the SO Hamiltonian that include both linear SIA and BIA
effects for electrons confined in the plane of (100), (110) and (111) layers with
zinc blende structure. Following Cartoixà et al. [28] and Matos-Abiague & Fabian
[17], one has

(100) layers: HSO = a(kysx − kxsy) + g(kxsx − kysy), (2.1)

(110) layers: HSO = akysx + bkxsy + lkxsz (2.2)

and (111) layers: HSO = (a + g)(kysx − kxsy). (2.3)

Here, a, g, b and l denote material-dependent constants that scale with the
strength of the SO interaction (table 1), and sx ,y,z are the usual Pauli matrices for
the spin. The notation is such that x̂ ‖ [100], ŷ ‖ [110] for a (100) layer, x̂ ‖ [11̄0],
ŷ ‖ [001] for a (110) layer and x̂ ‖ [112̄], ŷ ‖ [1̄10] for a (111) layer. Note that other
works use a rotated reference frame that leads to formally different expressions for
HSO [12]. Equations (2.1)–(2.3) are relevant not only for quantum well structures
in zinc blende semiconductors [21,29,30], but also for (Ga,Mn)As films [18] and
metal/semiconductor layers such as Fe/GaAs [31]. In the case of metal surfaces
[32,33] and metal layers deposited between asymmetric cubic and amorphous
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Table 1. Values of the Rashba and linear Dresselhaus SO constants (a, g) for semiconducting and
metallic systems, energy difference between the SO-split subbands at the Fermi level D3 = 3+,kF+− 3+,kF−, saturation magnetization (m0Ms) and SO torque efficiency in FM systems (BSO/j).

a g D3 m0Ms BSO/j
system (eV Å) (eV Å) (me V) (T) (T cm2 A−1)

GaAs(001)/AlGaAsa 0.07 n.d. 1.4 0 —
InGaAs(001)/InAlAsb 0.06–0.1 n.d. 5–6 0 —
GaAs(001)/InGaAsc 0.0015 0.0014 n.d. 0 —
Au(111)d,e 0.33 0 110 0 —
Ag(111)e,f 0.04g 0 � 2g 0 —
Ag(111)/Bi(

√
3 × √

3)R30◦h 3.05 0 — 0 —
Gd(0001)i,j 0.05g 0 15 2.4 —
Gd(0001)/Op(1 × 1)i 0.25g 0 100 n.d. —
GaAs(001)/Ga1−xMnxAsk 0 0.002 n.d. � 0.1g 2–5 × 10−10

Pt(poly)/Co/AlOx
l 1g 0 n.d. 1.37 1 × 10−8

aStormer et al. [35].
bNitta et al. [36].
cMeier et al. [30].
dLaShell et al. [32].
eCercellier et al. [37].
fPopović et al. [38].
gEstimated.
hAst et al. [39].
iKrupin et al. [34].
jElliott et al. [40].
kChernyshov et al. [18].
lMiron et al. [19].

interfaces [19,34], g = b = l = 0, i.e. only the Rashba interaction survives. The
latter can be written in vector form as

HSO = a(k × ẑ) · s, (2.4)

where s = (sx , sy , sz) and ẑ is a unitary vector perpendicular to the layer surface.
Equations (2.1)–(2.3) formally correspond to the interaction of an effective

k-dependent magnetic field with the electron spin; this can be seen by writing
the SO Hamiltonian as

HSO = −m · BSO = mBs · BSO, (2.5)

where m = −gmBs ≈ −mBs is the electron magnetic moment operator, s the spin,
and mB = eh̄/(2me). The orientation of BSO(k) in four particular cases is shown
in figure 1. Note that, in the presence of an external magnetic field [41] or
exchange splitting [34,42,43], both time-reversal and inversion symmetry may be
broken, leading to a more complex relationship between k and spin depending
on the relative strength of the SO relative to exchange splitting (§4a). In
real two-dimensional systems, the point-group symmetry of the surface lattice
and the presence of in-plane electric field gradients between dissimilar atomic
species may further lead to out-of-plane components of the k-dependent spin
polarization [39,44].
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Figure 1. Orientation of the SO-induced magnetic field (arrows) as a function of current direction
(solid lines). (a) Rashba field originating from the Hamiltonian (2.1) with g = 0, or, equivalently,
from equation (2.3). (b) Linear Dresselhaus field from equation (2.1) with a = 0. (c) Coexisting
Rashba and Dresselhaus fields in equation (2.1) for the special case a = g. (d) Field corresponding
to equation (2.2) for a = l = −b. (Online version in colour.)

It is easy to understand how either BIA or SIA result in magnetic field-like
interactions by considering the motion of electrons in an asymmetric crystal field
potential (V ). At non-relativistic speed (v), the net electric field originating from
such a potential E = −VV transforms into a magnetic field −(v × E)/c2 in the
electron’s rest frame. When transforming back into the laboratory’s reference
frame, the magnetic induction field experienced by the electron is corrected
by a factor 2, giving BSO = −(v × E)/(2c2) = (h̄k × VV )/(2mec2) [45]. The SO
Hamiltonian is then given by −m · BSO. One shall notice that, in the case of SIA,
the conduction electrons feel at the same time the electrostatic potential of the
nuclear charge, Vnuc, as well as the ‘macroscopic’ interface potential, Vint. This
is because the electron wave function can be decomposed into the sum of quickly
oscillating lattice-periodic Bloch waves times an envelope function, which feel the
microscopic electric field from the atomic cores and the macroscopic field of the
SIA environment, respectively [21]. The SO Hamiltonian can then be written as
the sum of two terms [46]:

HSO = eh̄2

4mec2
s · [k × V(Vnuc + Vint)]. (2.6)

A simple tight-binding model shows that the effective Rashba constant a is
proportional to the product of the atomic SO parameter times the hopping
matrix element between orbitals with in-plane and out-of-plane symmetry,
representing the interface potential gradient [47]. In BIA crystals, on the other
hand, only the nuclear term survives. In the central field approximation, one
has Vnuc(r) ≈ Ze/(4p30r), where Z denotes the atomic charge, r the distance
from the nucleus and 30 the vacuum permittivity. Calculating the gradient VV =
(�r/r)(dV (r)/dr) = −(Ze/4p30)(�r/r3) gives the SO interaction term familiar from
atomic physics

HSO
nuc = Ze2h̄2

8p30m2
e c2r3

s

2
· l = x(r)

s

2
· l, (2.7)

where h̄l = (r × h̄k) is the orbital angular momentum of the electron, and
x = 〈x(r)〉 the SO parameter of the shell to which the electron belongs.
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By including the Z -dependence of the average 1/r3 contribution in equation (2.5),
one has x ∼ Z 4, which explains the need to include heavy atoms to obtain sizeable
Rashba or Dresselhaus coupling constants.

3. Current-induced spin polarization

SO coupling has well-known consequences on the transport properties of
both magnetic and non-magnetic conductors, contributing to the anisotropic
magnetoresistance [48], anomalous Hall effect (AHE) [49,50], and extrinsic [9,51]
and intrinsic [52] spin Hall effect. These phenomena originate from asymmetric
scattering from impurities as well as intrinsic band-structure properties [50].
Both the anomalous and spin Hall effects create spin accumulation of opposite
sign localized at the edges of the conductor. In contrast to such spatially non-
uniform phenomena, several authors have pointed out the possibility to induce
a homogeneous net spin polarization by passing an electric current through non-
magnetic semiconductors lacking inversion symmetry [10,11,53–55]. This type
of spin accumulation is due to the uneven occupation of k and −k states in
the presence of a charge current, which produces a non-zero average effective
field acting on the spin density of the conduction electrons, with the symmetry
described in §2. Such phenomenon is also described as an inverse spin galvanic
effect, which has been experimentally detected in strained bulk semiconductors
[51,56] and heterogeneous quantum well structures [57,58]. The conduction
electron spin-polarization mechanism turns out to be critical for the generation
of SO torques in magnetic materials [15,16,59] and shall therefore be analysed
in some detail. For simplicity, we follow here a simple model for a non-magnetic
SIA conductor presented by Silsbee [60], which can then be extended, at least
qualitatively, to the case of an FM conductor. Keeping into account the Rashba
SO interaction of equation (2.4), the total Hamiltonian of a two-dimensional
electron gas is

H = h̄2k2

2m∗
e

+ a(k × ẑ) · s, (3.1)

where m∗
e represents the effective electron mass. Straightforward diagonalization

of this Hamiltonian gives the eigenvalues

3±,k = h̄2k2

2m∗
e

± a|k| (3.2)

and eigenvectors

j±,k = eik·r
√

2A

(
1

∓ieixk

)
, (3.3)

where k = k(cos x, sin x, 0) and A is the area of the layer. The coupling between
orbital and spin degrees of freedom is evident from the spinor expression in
equation (3.3), and is also a general feature of more realistic models that use Bloch
states to describe the electronic states in a periodic lattice. The spin expectation
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(a) (b)

(d) (e) ( f ) (g)

(c)
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Figure 2. Two-dimensional energy dispersion 3±,k of a Rashba system calculated from equation (4.2)
for the non-magnetic case ((a) J = 0), weak exchange interaction ((b) J /akF = 0.1) and strong
exchange ((c) J /akF = 2.5). The magnetization in (b) and (c) is assumed to be parallel to the
ŷ-axis (q = f = p/2). (d) Fermi contours and spin quantization direction of the bands depicted in
(a) at equilibrium and (e) in response to an applied current parallel to x̂. (f , g) Same for the bands
depicted in (c). (Online version in colour.)

value reads

〈s〉±,k = 〈j±,k|s|j±,k〉 = 1
k

(±ky
∓kx
0

)
=

(± sin x
∓ cos x

0

)
. (3.4)

As shown in figure 2a, the energy dispersion corresponding to equation (3.2) is not
anymore a paraboloid of revolution as in the free-electron case, but the quadric
surface generated by the rotation of the two branches 3+,k>0, 3−,k>0 around the
energy axis intersecting the G point. The radius of the two Fermi discs, kF+ and
kF−, can be found by imposing that the total electron density of the system is the
same as in the free-electron case, i.e. by solving 3−, kF− = 3+, kF+ = 3F for kF±. This
gives, to first order in a,

kF± ≈ kF ∓ m∗
e a

h̄2 = kF(1 ∓ h), (3.5)

with h = m∗
e a/(h̄2kF). Although the total spin polarization in each branch

averages out, the direction of k and the spin orientation are related to each other
because of the quantization of the electron spin parallel or antiparallel to the SO
field. This, together with the fact that kF+ �= kF−, has important consequences
for the out-of-equilibrium transport properties of an SIA system, notably the
creation of a net spin polarization by a charge current. The comparison of
figure 2d and e readily shows how an external electric field E displaces the two
Fermi discs by an amount dk± = −eEt±/h̄, resulting in incomplete cancellation
of opposite spin-polarization contributions. Note that, since the scattering rate is
generally energy- and wavevector-dependent [61], the resistivity relaxation times
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t± of the two Fermi discs are different. To first order in a, one may assume,
for simplicity, that t± = t(1 ∓ h) [13], where t is the relaxation time of the
free-electron gas.

It is thus possible to calculate analytically the current contribution from each
subband using the Boltzmann equation and the approximations described above.
Omitting standard intermediate steps [61], one has

j± = −e
∫

v±, k f 1
±, k dk = 1

4p2

e2t±
h̄

∫
SF±

v±,k

v±,k
v±,k · E dSF, (3.6)

where f 1
±,k = (vf 0/v3)et±v±,k · E represents the deviation of the electron

distribution function from its equilibrium value f 0
±,k for the ± bands and SF±

denotes integration over the respective Fermi surfaces, which in this case are two
circles. By choosing E = Ex̂ and noting that the assumption of electron density
equal to the free-electron case implies vF± = vF, the expression for the current
density can be further simplified as

j±,x = e2t±E
4p2h̄

∫ 2p

0
vF cos2 x kF± dx = e2E

4ph̄
vFkF±t±. (3.7)

Thus the total current density is

j = j+ + j− = e2E
2ph̄

vFkFt(1 + h2). (3.8)

The partial non-equilibrium spin density can be calculated in an analogous way as

〈ds〉± =
∫
〈s〉±,k f 1

±,k dk = 1
4p2

−et±
h̄

∫
SF±

1
k

(±kx
∓ky
0

)
v±,k

v±,k
· E dSF

= −et±E
4p2h̄

∫ 2p

0

(± sin x
∓ cos x

0

)
cos xkF± dx = ± eE

4ph̄
t±kF±ŷ. (3.9)

Adding the partially compensating contributions from the ± subbands yields the
total non-equilibrium spin density

〈ds〉 = 〈ds〉+ + 〈ds〉− ≈ −eEt

ph̄
kFhŷ (3.10)

approximated to first order in a. By means of equation (3.8), the above expression
can be written as

〈ds〉 ≈ − m∗
e a

eh̄3F
j ŷ. (3.11)

This formula exemplifies the action of the effective SO field defined in
equation (2.5) on the conduction electrons that move with average wavevector
〈k〉 in response to an external electric field. Note that if j is expressed in units of
A m−1 (A m−2), 〈ds〉 has m−2 (m−3) units. The current-induced spin polarization
is then P = 2〈ds〉/(h̄n), where n is the charge carrier density.
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Although this is a simplified calculation, it turns out that the magnitude of
the current-induced spin accumulation is close to that of more complex estimates
and independent of the resistivity relaxation time [55], i.e. that equation (3.11)
applies to both the ‘dirty’ and ‘clean’ conduction limits of fast and slow scattering
rate compared with the SO precession rate, respectively [13]. The important
qualitative result is that a net spatially uniform spin accumulation can be
induced by the flow of an electric current in an SIA or a BIA conductor;
the orientation of the non-equilibrium spin density is always transverse to
the average electron momentum in the case of Rashba SIA, but depends on the
relative alignment between current and crystallographic axes according to the
specific form of the SO Hamiltonian in the general case where both SIA and BIA
are present.

4. Current-induced spin–orbit torques

(a) Combined effects of exchange and spin–orbit coupling in ferromagnets

The results of the previous section show that it is possible to manipulate
the polarization of the conduction electron spin in the absence of external
magnetic fields in either BIA or SIA systems. Together with other forms of
spin accumulation and spin currents that can be excited in semiconductors by
electrical or optical means, this has generated considerable interest in a ‘magnet-
free’ approach to spintronics [14]. Moreover, several proposals have been made
to exploit the intrinsic SO fields in semiconductors to control or modulate spin
injection into FM electrodes through a semiconductor channel [62–64] or tunnel
junction [31,65,66]. It has been realized as well that the mechanism described
in §3 could be used to exert a torque on the magnetization of an FM layer in
contact with a semiconducting channel by absorption of the SO-induced spin-
polarization component perpendicular to the FM magnetization at the interface
between the two materials [67,68]. More recently, however, it has become clear
that the very same SO effect is intrinsic also to an FM [69] and can be used to
induce a torque on the local magnetization in a single, uniformly magnetized FM
structure [15–17] as well as DW motion in FM layers [59]. Here, we focus on such
an effect in a uniformly magnetized FM, which we denote as an SO torque in
order to distinguish it from the widely investigated STT mechanism, where the
SO interaction enters only indirectly through the damping and spin-flip relaxation
parameters [70].

The combined action of SO coupling and exchange interaction in a single FM
layer with either SIA or BIA is described by the Hamiltonian

H = h̄2k2

2m∗
e

+ HSO − JM̂ · s, (4.1)

where HSO is defined in equations (2.1)–(2.3), M̂ = M/Ms is an adimensional
unit vector, Ms the saturation magnetization of the FM (A m−1 units) and J (eV
units) the exchange coupling parameter between the conduction electron spin and
the local moments of the FM. The physical picture described by equation (4.1) is
that, even though the spin of the conduction electrons in an FM is usually aligned
parallel or antiparallel to the local magnetization M, an out-of-equilibrium spin
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density non-collinear to M is created by the flow of a current. This component
interacts with M through the exchange coupling between itinerant and localized
electrons, i.e. between p–d and s–d states in a magnetic semiconductor and
transition metal, respectively, in a way analogous to a magnetic field with fixed
orientation, determined by the current and crystal structure.

In the case of the pure Rashba interaction, diagonalization of equation (4.1)
for an arbitrary direction of M̂ = (sin q cos f, sin q sin f, cos q) and electric current
j = j(cos x, sin x, 0) confined to the azimuthal plane yields the energy eigenvalues

3±,k = h̄2k2

2m∗
e

±
√

J 2 + a2k2 − 2akJ sin q sin(x − f). (4.2)

The resulting band structure thus depends on the relative strength of exchange
versus SO-induced spin splitting, i.e. on the ratio J /akF, as shown in figure 2a–c.
Note that gradually turning on exchange results first in the opening of a gap
of magnitude 2J between 3+,k and 3−,k at k = 0 and, finally, to fully spin-
polarized spin-up and spin-down bands where the Rashba interaction acts only
as a perturbation. The band asymmetry in figure 2b,c depends on the relative
orientation of k with respect to M, and disappears for M ‖ ẑ.

Manchon & Zhang [15] carried out the explicit calculation of the non-
equilibrium spin density 〈ds〉 induced by the flow of an electric current in an
FM in a way analogous to the procedure described in §3 with the addition of
exchange. However, the order of magnitude of the effective field acting on M can
be estimated in an even simpler way. Supposing that exchange coupling is weak
relative to the SO interaction, then 〈ds〉 can be calculated to first order in a and
zeroth order in J , giving the same result as equation (3.11). By writing the cost
in exchange energy per unit volume owing to 〈ds〉 (m−3 units) as −J 〈ds〉 · M̂,
one can easily see that the action of a current on the local moments is equivalent
to that of an induction magnetic field (T units)

BSO = J
〈ds〉
Ms

= − m∗
e a

eh̄Ms
Pj (ẑ × ĵ), (4.3)

or to that of a torque per unit volume

TSO = M̂ × J 〈ds〉 = m∗
e a

eh̄
Pj(M̂ × ŷ), (4.4)

where the parameter P = J /3F is approximately equal to the spin polarization of
the current. It can be shown that a thorough calculation of 〈ds〉 in the case of
strong exchange coupling (J � akF) yields the same result of equations (4.3) and
(4.4) [15,16].1

A similar calculation can be performed in the general case of coexisting Rashba
and Dresselhaus SO interactions [17]. The effective fields corresponding to HSO
of equations (2.1)–(2.3) are

BSO(100) = m∗
e a

eh̄Ms
Pj[(−a sin x − g cos x)x̂ + (a cos x − g sin x)ŷ], (4.5)

1Note that eqns (7), (11) and (12) in Manchon & Zhang [15] report an erroneous factor 2.
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BSO(110) = m∗
e a

eh̄Ms
Pj[−a sin xx̂ − cos x(bŷ + lẑ)] (4.6)

and BSO(111) = m∗
e a

eh̄Ms
Pj(−a + g)(sin xx̂ − cos xŷ). (4.7)

An alternative way to look at this phenomenon has been introduced by
Garate & MacDonald [71] by calculating the change in magnetocrystalline
anisotropy energy induced by the flow of a steady-state electric current in a non-
centrosymmetric FM conductor. This follows from the general definition of the
internal anisotropy field of an FM as the derivative of the ground-state energy
with respect to the direction of the magnetization, analogously to the derivation
of the effective magnetic field that enters into the Landau–Lifshitz equation of
magnetization dynamics. As the electric current breaks time reversal invariance,
the magnetic anisotropy energy in the transport steady state of an FM turns out
to be unidirectional, i.e. not invariant with respect to magnetization reversal. It
can be shown that the contribution to the anisotropy field owing to the applied
current is directly related to the non-equilibrium transverse spin density 〈ds〉
calculated above.

(b) Spin–orbit versus spin torque

It is of interest to analyse the distinctive features of the SO torque or,
equivalently, of the effective field BSO with respect to other known types of
current-induced torques in magnetic materials. The general form of the modified
Landau–Lifshitz–Gilbert equation that takes into account STT terms [70,72]
together with the SO interaction in a single magnetic layer characterized by
inversion asymmetry can be written as

vM
vt

= geM × (Bext + Bexc + Ban + BSO) + lG

Ms
M × vM

vt

− 1
(1 + b2)M 2

s
M × [M × (u · V)M] − b

(1 + b2)Ms
M × (u · V)M, (4.8)

where ge = −e/me is the gyromagnetic ratio, Bext, Bexc and Ban represent the
external, exchange and anisotropy magnetic fields, lG is the Gilbert damping
parameter and b = h̄/(Jtsf ) is the non-adiabaticity parameter, which depends on
the s–d exchange and the spin-flip relaxation time tsf . The vector u = (mBP/eMs)j
represents the action of a spin-polarized current on the magnetization gradient,
yielding the adiabatic and non-adiabatic STT contributions, i.e. the last two
terms of equation (4.8).

The adiabatic and non-adiabatic STT components can be observed by
injecting a current into a textured magnetic film, i.e. in measurements of DW
displacements [73–75]. Although these two torques exist independently of SIA
or BIA, a recent experiment revealed an enhancement of the non-adiabatic spin
torque component in an SIA Co film deposited between asymmetric Pt and Al
oxide interfaces [76]. Such an enhancement can be related to the increase in
the conduction electron spin-flip rate 1/tsf caused by the SO interaction. The
difference between this effect and a proper SO torque can be understood by
considering the single- and many-electron pictures. In the single-electron case, the
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Figure 3. Cross-sectional schematic of the different types of effective magnetic fields generated by
(a) Rashba torque, (b) adiabatic and non-adiabatic spin torque, and (c) spin-transfer torque. The
bottom panels show the field/torque directions (thick arrows) under reversal of the magnetization
(thin arrows). (Online version in colour.)

field given by the SO interaction induces the rotation of the spin around an axis
perpendicular to the electric field and the instantaneous wavevector k. In a many-
electron picture, however, the rotation of the spins has a collective component,
owing to BSO, as well as a dispersive component, owing to the distribution of
k on the Fermi sphere. This second component leads to spin decoherence, i.e.
a decrease in tsf . Equation (4.8) shows that the non-adiabatic STT term may
be enhanced by the latter effect, conditional on the presence of a magnetization
gradient. As shown in figure 3, the field-equivalent of the non-adiabatic STT
component has different symmetry and time-reversal properties compared with
BSO. Thus, despite their common origin, these two mechanisms are qualitatively
and quantitatively different, producing distinct effects on the local magnetization.

Generally speaking, the main differences between STT and SO torques,
sketched in figure 3 for the specific case of Rashba SO coupling, can be
summarized as follows. First, whereas STT works by transferring spin angular
momentum between two non-collinear magnetic layers or domains, an SO torque
transfers orbital momentum from the lattice to the spin system. It is therefore
independent of the magnetic configuration of the layer and homogeneously
distributed inside a magnetic film, whereas STT requires the presence of a
magnetization gradient (u · V)M �= 0. From equations (4.5) to (4.8), it follows
that the action of BSO is analogous to that of an externally applied field, the
sign of which depends on the current direction but is independent of the local
magnetization orientation. As such, BSO can be used to switch the magnetization
of a single FM layer by current injection without the need of a fixed magnetic
‘polarizer’ and non-magnetic spacer layers, as required by STT devices. However,
BSO is an effective field with orientation defined by the current direction with
respect to the crystalline structure of the FM; therefore, it cannot be used to
excite steady magnetization precession, contrary to the negative damping term
introduced by STT [77,78].

(c) Spin–orbit torque in dilute magnetic semiconductors

The experimental detection of a Dresselhaus type of SO torque in an FM
was first reported by Chernyshov et al. [18] for dilute magnetic semiconductor
Ga1−xMnxAs films epitaxially grown on the (001) surface of GaAs. The films, with
Mn concentration x = 6–7%, present FM behaviour up to a Curie temperature
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Figure 4. (a) Atomic force micrograph of a 6 mm wide Ga1−xMnxAs disc with non-magnetic
contacts aligned along the crystallographic directions shown in (b). (c) Transverse anisotropic
magnetoresistance Rxy as a function of external field direction fH for H = 10 mT and j =
±1 × 106 A cm−2. (d) Current-driven variation of Rxy for a fixed field H = 6 mT applied at
fH = 72◦, showing the hysteretic rotation of M from the [010] to the [1̄00] direction. Adapted
from Chernyshov et al. [18] with permission from the authors. (Online version in colour.)

of about 80 K. Compressive strain in this system leads to in-plane fourfold
magnetic anisotropy with two easy axes along the [100] and [010] directions
and an SO field of the linear Dresselhaus type given by equations (2.1) with
a = 0, and g ≈ 2 × 10−13 eV m, proportional to the difference between out-of-
plane and in-plane diagonal components of the strain tensor. The action of
the effective SO magnetic field was detected in 10–15 nm thick films patterned
into discs of diameter up to 10 mm by measuring the transverse anisotropic
magnetoresistance, Rxy = Vy/Ix (figure 4a), as a function of the direction and
magnitude of the injected current and externally applied magnetic field H: Rxy ∝
(r‖ − r⊥) cos fM sin fM , where r‖ (r⊥) denote the resistivity for j ‖ M (j ⊥ M) and
the angle fM is defined in figure 4b. By mapping the angular dependence of BSO
for both j ‖ [11̄0] and j ‖ [110], Chernyshov et al. showed that BSO presents the
symmetry expected from equation (4.5) in the absence of a Rashba component,
i.e. that of figure 1b. Figure 4c reports the change in sign of Rxy owing to the
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rotation of fM by 90◦ as M switches from the easy direction parallel to [010] to
the easy direction parallel to [1̄00] under an in-plane applied field of constant
amplitude and variable direction fH . Hysteretic behaviour is observed as the
current direction is reversed, because switching occurs at a lower angle fH when
both the projections of BSO and H along one of the easy axes have a positive
sign. Reversible field-assisted magnetization switching controlled by the current
direction could thus be demonstrated in the presence of a fixed external field
of 6 mT applied at fH = 72◦ for a current density |j | � 106 A cm−2, as shown in
figure 4d. The critical current required to induce switching is about a factor 10
larger compared with the STT mechanism in Ga1−xMnxAs [79], but still compares
favourably with respect to metal-based STT devices [3]. Notably, the saturation
magnetization Ms enters equations (4.4)–(4.6) through a denominator, which
favours low switching thresholds in dilute magnetic semiconductors owing to their
relatively small Ms compared with FM metals. Because the symmetry of BSO can
be adjusted through epitaxial strain and stacking of different layers, and both
Ms and J can be controlled through the charge carrier density, dilute magnetic
semiconductors represent very rich systems for future investigations of SO torques
and related effects.

(d) Spin–orbit torques in ultrathin metal films

Experimental studies of current-induced SO effects have traditionally focused
on semiconductors since bulk metals present centrosymmetric crystal structures.
However, Rashba-type SO splitting of the conduction bands can still take place at
the interface between a metal and a dissimilar material, including vacuum. This
was first recognized in angle-resolved photoemission measurements of the surface
states of non-magnetic 5d elements, in particular Au [32,80,81], W [82] and Bi
[83]. Investigations of rare-earth surface states, notably of Gd [34] and Tb [42],
later revealed clear signatures of coexisting Rashba and exchange coupling in the
case of FM metal films in the form of magnetization-dependent asymmetry of
the electron band dispersion, similar to that sketched in figure 2c. These studies
coincide in showing that a heavy metal interface induces large Rashba splittings of
the order of 100 meV and that increasing the asymmetry of the charge distribution
at a metal surface leads to an increase of such an effect [34,84,85], in agreement
with equation (2.6).

The necessary conditions to induce an SO torque are therefore fulfilled in metal
systems as well as in semiconductors. Recently, Miron et al. [19] reported the first
observation of a current-induced SO torque in an FM metal for a thin Co layer
grown between asymmetric Pt and AlOx interfaces. The structure of this system,
shown in figure 5a, was chosen so as to optimize the SIA of the FM Co layer and
produce a strong Rashba effect. Experiments were performed on a 0.6 nm thick Co
film sandwiched between 3 nm Pt and 1.6 nm Al layers deposited by sputtering
on a thermally oxidized Si wafer. The top Al layer was exposed to an oxygen
radio-frequency plasma resulting in a fully oxidized AlOx interface at the Co
boundary [86,87]. SIA results from the presence of AlOx and Pt on either side of
the Co layer, where Pt/Co hybridization enhances atomic SO coupling and both
interfaces create a strong out-of-plane electron potential gradient. Measurements
of the magnetic anisotropy energy and orbital magnetization of Co/Pt [88–90],
the AHE as well as the enhanced non-adiabatic spin torque component found in
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Pt/Co/AlOx DW constrictions [76] indicate that SO coupling in such a system is
strong. Most importantly, the Co layer is FM at room temperature with 100 per
cent remanence, as shown in figure 5b. The Co magnetization has a saturation
value close to the bulk, Ms = 1090 kA m−1, and is very stable after oxidation. For
control purposes, a symmetric structure Pt/Co/Pt was grown by replacing the
AlOx layer with 3 nm Pt, giving a saturation magnetization of 1110 kA m−1. Both
samples present strong out-of-plane anisotropy and uniaxial anisotropy fields of
0.92 and 0.57 T, determined as the field required to achieve 90 per cent magnetic
polarization along the hard axis.

In order to observe the effects of current injection on M, the two films
were patterned into an array of wires, each 0.5 mm wide and 5 mm long, and
contacted by two current pads. In this geometry, the application of a current is
expected to produce an in-plane field BSO perpendicular to the wires, as given
by equation (4.3). By itself, this field will not induce deterministic switching
of M between the up and down directions. However, if BSO is sufficiently
strong compared with the anisotropy field, the energy barrier for magnetization
reversal will be distorted from the symmetric doughnut shape typical of uniaxial
anisotropy to a strongly asymmetric profile, lowering the barrier in the ĵ × ẑ
direction and raising it in the opposite one, as shown in figure 5c. Such a
current-induced distortion can be compensated or enhanced by applying an
in-plane external field Bext collinear to it, providing a means to quantify the
magnitude of BSO. Starting from a monodomain out-of-plane configuration, the
Co magnetization was monitored using wide-field polar Kerr microscopy as single
current pulses of increasing amplitude and constant 100 ns duration were injected
into the wires until the nucleation of reversed domains was observed. This
occurred as the wires evolved from the saturated metastable monodomain state
towards the macroscopically demagnetized ground state constituted by an equal
mixture of up and down domains. Figure 6a shows that about an equal amount
of nucleation events occurs at a current density j = 7.8 × 107 A cm−2 for opposite
current directions if Bext = 0. However, as Bext ≶ 0, the domain nucleation rate
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becomes strongly asymmetric depending on the relative orientation of current
and field (figure 6b,c). These results qualitatively prove the presence of a current-
induced torque acting on the Co magnetization with the symmetry properties
predicted by equation (4.3). It should be noted that Joule heating caused by the
current may also lower the domain nucleation barrier, but cannot explain the
asymmetry of the nucleation rate observed at constant j . Artefacts owing to a
small unintentional misalignment of Bext outside the xy-plane are also ruled out,
as these would be independent of the sign of j . Further, the Oersted field acting on
Co produced by the current flowing in the Pt layer would have opposite effects
compared with those observed in figure 6, and an estimated magnitude of less
than 1 mT � Bext. Finally, similar measurements performed on Pt/Co/Pt do not
yield any measurable asymmetry in the nucleation rate, providing a final proof
of the SO origin of the torque in Pt/Co/AlOx related to SIA.

The quantitative dependence of BSO on j was determined by making systematic
use of Bext as a known reference field, and plotting the percentage of wires for
which at least one nucleation event was observed for a given combination of Bext
and j , as reported in figure 6d–f. Strong amplification or suppression of domain
nucleation was observed depending on the orientation and amplitude of the
current density and external field, leading to a rigid shift Dj of the nucleation
rate curves measured for different values of Bext. The inverse slope of the (Bext,
Dj) plot, reported in figure 7 for both Pt/Co/AlOx and Pt/Co/Pt, is a direct
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measure of the BSO/j ratio, giving (1.0 ± 0.1) × 10−8 T cm2 A−1. This value shows
that the SO torque acting on the Co magnetization is extremely large, matching
the prediction of equation (4.3) for a Rashba constant a = 10−10 eV m, which is
a realistic estimate considering that a ranges from 4 × 10−11 to 3 × 10−10 eV m
at the interface of 5d metal systems and that oxidation may further enhance
its value. We remark, however, that recent AHE measurements show that the
relationship between BSO and j is not linear, in particular when an extended range
of currents j = 106−108 A cm−2 is considered [91,92]. Such nonlinear behaviour
might be attributed to transient heating effects, which, at high current, can
enhance the effective action of BSO compared with static external fields, as well as
to more complex dynamic phenomena that are not included in the simple models
presented here [92].

The structural origin of the SO-induced magnetic fields is different in
Pt/Co/AlOx compared with the case of Ga1−xMnxAs discussed in the previous
section, the first being due to the Rashba effect and the second to the Dresselhaus
effect. Note that, according to equations (4.5)–(4.7), the lower Ms favours a
greater efficacy of the SO field in Ga1−xMnxAs relative to Pt/Co/AlOx ; the much
larger value of a in Pt/Co/AlOx compared with g in Ga1−xMnxAs, however,
compensates for this effect. Moreover, as the current flows in both Co and Pt
layers, the measured BSO/j ratio in Pt/Co/AlOx depends also on the SO torque
acting on the Pt-induced magnetization [88]. There are reasons to believe that
the SO torque efficacy may be further enhanced in FM metals through proper
interface engineering and/or alloying with high Z atoms. Photoemission studies
revealed the presence of giant SO splitting at Ag and Si (111) surfaces alloyed
with Bi [39,93] as well as the possibility to tune the spin-dependent density of
states near 3F by quantum well effects [94–97].
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We note here that the realization of the role played by the Rashba effect in
FM metals may help the interpretation of past experimental puzzles and suggest
future directions for fundamental as well as applied research. For instance, the
extraordinarily high transient magnetic anisotropy attributed to the electric field
produced by a relativistic electron bunch traversing a Cr80Mg20/Co70Fe30/Pt layer
[98] could be interpreted as the action of a transient SO field owing to the
equivalent current density of the bunch. At the fundamental level, the relationship
between a and magnetocrystalline anisotropy energy should be further studied,
as both depend on the strength of the SO interaction and it is not yet clear
how the presence of strong electric gradients across dissimilar interfaces relates
quantitatively to the occurrence of perpendicular magnetic anisotropy.

5. Outlook

The experimental discovery of a Rashba-type torque in an FM metal at room
temperature [19] opens very promising perspectives in spintronics, namely for
the fabrication of magnetic storage and logic gates operating through intrinsic
current-induced SO torques. By controlling the magnetization orientation
through the interplay of magnetocrystalline and shape anisotropy, materials and
geometries appropriate for switching without the assistance of external magnetic
fields can be realized. The single FM layer structure, robust FM properties of
metal films, and the possibility of modulating the Rashba field by an external
gate voltage [36] allow for the design of novel and simplified devices with respect
to those currently investigated in mainstream spintronics. However, SO torques
may also be readily integrated in existing technological platforms. Indeed, a
metal/oxide bilayer is already half of an MTJ, which could be used as a readout
element of a magnetic bit where the write functions are performed by the SO
torque [15]. Moreover, several studies have pointed out the interplay between
SO coupling and tunnelling anisotropic magnetoresistance in MTJs [99–101] and
explicitly considered the dependence of the tunnelling conductance on interfacial
Rashba spin splitting in metal systems [102,103] as well as the coexistence
of Dresselhaus and Rashba fields in metal/semiconductor heterojunctions
[31,65,104], providing additional functionalities to layers displaying strong SO
effects. Further, as noted by Obata & Tatara [59], DW manipulation can be
achieved by means of an SO torque, depending on the type of DW involved and
easy axis magnetization direction, which may be useful in, for example, shift
register or random access memory applications based on DW motion.

In conclusion, theoretical predictions and experimental observations show that
strong SO torques acting on uniformly magnetized FM layers can be induced
by the flow of an electric current. SO torques originate from either SIA or BIA
in combination with sp–d exchange, allowing for the transfer of orbital angular
momentum from the crystal lattice to the local spin magnetization. Because of
the intrinsic coupling between charge and spin, SO torques are equivalent to
an effective magnetic field and can be induced in uniformly magnetized layers
without the need of non-collinear polarization layers, contrary to STT. The
current densities required to produce sizeable SO-induced fields are in the range
106−108 A cm−2, comparable to those required by STT device operation.
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