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Surprisingly, if a ferromagnet is exposed to an ultrafast laser pulse, its apparent magnetization is

reduced within less than a picosecond. Up to now, the total magnetization, i.e., the average spin

polarization of the whole valence band, was not detectable on a sub-picosecond time scale. Here,

we present experimental data, confirming the ultrafast reduction of the total magnetization. Soft

x-ray pulses from the free electron laser in Hamburg (FLASH) extract polarized cascade

photoelectrons from an iron layer excited by a femtosecond laser pulse. The spin polarization of

the emitted electrons is detected by a Mott spin polarimeter. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4862476]

The most commonly used method to study ultrafast

magnetism is the magneto-optical Kerr effect with visible or

near infrared light.1–3 It is based on spin-orbit coupling, as

light does not directly interact with the spin of the electron,

and probes, furthermore, only electrons close to the Fermi

energy. This method detects the magnetization only indi-

rectly and it is controversial to which extent it is applicable

for laser excited hot electrons.4–7 Time-resolved magneto-

optics can be extended to the vacuum ultraviolet by employ-

ing high harmonic generation8,9 and to the x-ray range using

x-ray magnetic circular dichroism at slicing sources.10 But

all these methods still depend on spin-orbit coupling. Recent

time resolved experiments have shown that spin-orbit cou-

pling can be altered by an infrared laser pulse.11 A spin-orbit

coupling independent way of probing ultrafast magneto-

dynamics can be achieved by analyzing the generation of ter-

ahertz radiation.12,13 However, this technique only gives the

time derivative of the magnetization filtered with the band-

width of the detector.

Another, more direct way of detecting the magnetization

is photoemission with spin analysis. Ultraviolet or x-ray pho-

tons cause electrons to be emitted from the sample into vac-

uum. Here, the spin polarization is detected by a spin

polarimeter. Photoemission is more direct than all-optical

detection methods as it does not rely on spin-orbit coupling

inside the laser excited sample. So far, spin resolved ultrafast

photoemission experiments have been carried out with laser

based light sources reaching a photon energy of up to

6 eV.14,15 If we subtract the work function of Evac � 5 eV,

these experiments probe only the top 1 eV of the band

structure.

Our approach is to use soft x-ray pulses of 182 eV from

a free electron laser (FEL) to detect the spin polarization of

the whole valence band of a 3d ferromagnet. This way we

can detect the total magnetization on the femtosecond time

scale.

The principle of the experiment is shown in Fig. 1. An

iron film on tungsten (110) serves as the magnetic sample.16

The resulting clean, single-crystalline iron film has a mag-

netic in-plane easy axis along the [110] direction and yields,

after brought to magnetic saturation, a magnetic single do-

main state. The change of the magnetization is measured by

a pump-probe technique where the sample is demagnetized

by an 800 nm laser pulse and probed by the 182 eV FEL

pulse. Photoelectrons are created by excitation with the FEL

and their spin is measured by a Mott spin detector.

Here, we study the spin polarization of the cascade elec-

trons. They originate from everywhere in the valence band.

Hence, their spin polarization P is an average measure of the

actual spin polarization of the whole valence band. An

increase of the detected spin polarization is observed, due to

the spin-filtering effect. On their way to the surface, minority

electrons scatter more efficiently into unoccupied states than

majority electrons. This increases the share of majority
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electrons leaving the sample compared to the minority elec-

trons.17 Nevertheless, excitation of the electron gas by the

pump laser will redistribute electrons in such a way that

occupied and empty states change place within the pump

laser photon energy of 1.5 eV around the Fermi energy.18

Therefore, the total number of empty states is not affected

by the pump beam. The electrons, which can leave the sam-

ple, need an energy exceeding the work function of iron

(110) of 5.1 eV.19 The spin filter effect is caused by scatter-

ing into the total number of unoccupied states. The spin fil-

tering is, therefore, not expected to get altered by pumping the

sample with near infrared radiation of 1.5 eV. Thus, the spin

polarization of the cascade electrons represents the “total”

magnetization of the sample, even in the pumped state.

The cascade not only provides a gain mechanism by

increasing the polarization of the low energetic electrons but

also the cascade formation enhances the yield of the emitted

electrons.

The x-ray probe and infrared pump experiment has been

performed at the PG2 beamline20,21 of the free electron laser

in Hamburg (FLASH).22 The sample is excited by <120 fs

(Ref. 23) full width half maximum (FWHM) pump pulses

from a Ti:sapphire laser, and subsequently measured by FEL

probe pulses of �50 fs FWHM average length at a photon

energy of 182 eV. The pulse length is derived from the shape

of the photon spectra and the dispersion properties of the

PG2 beamline. The FEL pulse energy on the sample is fluc-

tuating in the range of 6–300 nJ per pulse. Both lasers are

p-polarized and impinge collinearly, under 45� onto the sam-

ple. The spot-size of the pump beam (310� 220 lm2) is

larger than the FEL spot-size (130� 150 lm2) in order to

measure a homogeneously pumped sample. The resulting

incident pump energy density is 12 mJ/cm2. The time delay

of the optical laser is varied in respect to the FEL with an op-

tical delay line. The relative arrival time of pump and probe

pulses is monitored with a streak camera23 and an electro op-

tical beam arrival time monitor for the electrons in the

FEL.24 This way the measurement can be corrected for drifts

and the inherent time jitter of the FEL. The FEL is operated

in burst mode where the machine delivers bursts of pulses at

a rate of 10 Hz. Each burst consists of 300 pulses separated

by 1 ls. On every other FEL pulse, the film is excited by the

pump laser. The un-pumped events provide a measurement

of the full magnetization. For normalization, the sample’s

magnetic orientation is reversed between bursts by magnetic

field pulses.

The cascade electrons are collected by an electrostatic

lens system which also provides energy analysis. A voltage

of �98 V is applied to the sample while the first lens element

(V0) is on ground potential. This makes the electrons trajec-

tories less sensitive to magnetic stray fields and achieves a

higher transmission of electrons into the Mott detector. The

energy analyzer is set to a center kinetic energy of 100 eV

with an energy passband of 4.8 eV, corresponding to the

peak of the electron cascade.

A Mott spin polarimeter is used to detect the spin polar-

ization along the magnetization direction of the sample. As

the FEL causes more than one detected electron per pulse,

the Mott detector uses calorimetric electron detectors, pro-

viding an electrical pulse height I";#left;right proportional to the

number of electrons on the left and right detector channels

and for the magnetization directions "; #. The pulse heights

from FEL pulses within the same pump-probe delay interval

of 25 fs are averaged resulting in Î
";#
left;right. From the averaged

pulse heights, the electron polarization P along the magnet-

ization direction M";# is calculated as in Ref. 25

P ¼ 1

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Î
"
left Î

#
right

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Î
#
left Î

"
right

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Î
"
left Î

#
right

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Î
#
left Î

"
right

q ; (1)

using a Sherman factor of S¼ 0.17. The ultrafast change of

the relative magnetic polarization is measured on an 8 mono-

layer thick iron film. Fig. 2(a) shows the polarization of the

pumped (red) P(t) and un-pumped sample P0(t) (black). The

data have been binned to a temporal resolution of 200 fs.

Fig. 2(b) shows the laser induced magnetization loss

DP=P0 ¼ ðP� P0Þ=P0 as a function of the pump-probe

delay. The time dependent data are smoothed by a Savitzky

Golay filter with polynomial of degree 3 and a window

length of 11 data points. Before smoothing, the data are fitted

with an exponential decay of time constant s together with

an exponential recovery of time constant q convoluted with

a Gaussian excitation G(t)

DP

P0

¼ A 1� e�t=sð Þe�t=qHðtÞ � GðtÞ; (2)

where P0 is the polarization of the un-pumped sample, A rep-

resents the amplitude of the demagnetization, and HðtÞ
denotes the Heaviside function.

The results of the fit lead to an exponential decay constant

of s ¼ 45650 fs, a recovery constant of q ¼ 5:262:7 ps, and

a quenching of A¼�22 6 3%. The minimum of the demag-

netization lies at 180 6 100 fs. The given uncertainties corre-

spond to 6r. Notice that the apparent oscillations are a

consequence of noise: they also partially appear in the un-

pumped data P0 (Fig. 2(a)).

Since our method measures the spin polarization aver-

aged over the whole valence band, we conclude that the total

FIG. 1. Experimental overview: The iron film is excited by an 800 nm pump

laser. The subsequent FEL probe pulse generates an electron cascade which

passes through a hemispherical energy analyzer. The spin polarization is

measured with a Mott detector. An electric field of 2.5 kV/m is applied

between the sample and the first lens element to accelerate the electrons

towards the electron optics. The inset shows the energy levels involved and

the generation of the electron cascade with the electron yield denoted as I.
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magnetization of the sample can be quenched within a

1/e-decay time of 100 fs. Hence, our experiment confirms

the time scale of ultrafast demagnetization. We can therefore

rule out that angular momentum of the spins is “hidden”

deeper in the valence band, where it would be inaccessible to

other measurement techniques.
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