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Substrate induced symmetries on graphene nanostruc-

tures

When considering the structure of a graphene nanoisland on Ni(111), both the stacking

and edge type have a determinant influence on its final shape. In nanostructured systems,

the edge energy is an important part of the total energy and can affect the final stacking

with the substrate. For this reason several combinations of stacking and edge have to be

considered in order to determine the possible system structures. As seen in Figure S1, zz

edges with top-fcc and top-hcp stacking have threefold-edge symmetries; however zz edges

with bridge-top stacking do not obey to the same symmetry rules.

Figure S1: Graphene zz edges on Ni(111). Edges with top-fcc stacking, which have a
threefold symmetry, are shown on the left. Top-hcp, which have the same symmetries as top-
fcc, are shown in the middle. Zz edges with bridge-top stacking have complicated symmetries
represented by colors.

Figure S2 shows the structure of triangular graphene nanoislands exhibiting only ZZ edges

with top-fcc, top-hcp and bridge-top stacking. Other stackings, such as fcc-hcp, bridge-fcc,

and bridge-hcp, have not been considered since it is unlikely that the energy cost can be

compensated by the most stable edge configuration.
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Figure S2: Different zz edge configurations of graphene nanoislands depending on their
shape and stacking.

While TGI with top-fcc and top-hcp stacking are composed of a single type of zz edges,

TGI with bridge-top stacking are composed of one zzγ edge and two zzα (zzβ) edges. Con-

sidering the edges structure we would expect different properties for zzγ and zzα (zzβ) edges,

such as stability, growth rate, reactivity. In the case of our experimental observations there

is no statistically relevant variation of the length of one edge with respect to the others in

TGI and they possess a marked threefold symmetry. For this reason we discard bridge-top

stacking as a possible candidate. We also note that the orientation of a TGI depends on the
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combination of the stacking with the edge type. For example, islands with top-fcc stacking

and zzh edges have the same orientation as islands with top-hcp stacking and zzt edges.

Changing either the stacking or the edge type alone results in a change of the orientation of

the triangular graphene nanoisland.

HGI exhibit 3 zzh and 3 zzt edges for top-fcc and top-hcp stacking. In the case of

brigde-top stacking they would posses 2 zzα, 2 zzβ , and zzγ edges. The existence of the

reconstruction in 3 edges indicates that the stacking of HGI can only be top-fcc or top-hcp,

consistent with our conclusion for TGI.

First-principles simulations

Details of the theoretical methods

Spin-polarized density functional theory (DFT) calculations with SIESTAS1 are performed

using the generalized gradient approximation for exchange-correlation with the Perdew,

Burke and Ernzerhof (PBE) functionalS2 and a cutoff of 310 Ry for the real-space grid

integrations. The basis set consists of double-ζ plus polarization orbitals for all the atomic

species. The corresponding Ni lattice parameter is 3.506Å. Spin-polarized calculations are

required due to the ferromagnetic character of the substrate and to the presence of un-

saturated carbon bond and/or edge states at the carbon edge. Our calculations yield the

correct state for the Ni substrate, with a bulk magnetic moment of 0.66µB. All the systems

investigated (described below) are relaxed until forces are smaller than 0.04 eV/Å.

Simulations with ANT.GS3, a DFT code based on a cluster embedded Green’s func-

tion formalismS4,S5 which interfaces with the GAUSSIAN09 packageS6, are done using the

LanL2DZS7 basis set and Becke’s exchange functionalS8 complemented with the correlation

functional of Perdew, Burke and ErnzerhofS2.

In this work, we have decided not include the effect of van der Waals (vdW) forces,

although they are known to be an issue for graphene/Ni(111) system.S9–S12 In particular, we
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expect that the vdW interaction will be important to determine the absolute value of the

adsorption energy. However, here we are mainly concerned with the description of the weak

covalent interaction among the under-coordinated carbon atoms in the edge of the nanoisland

and the underlying Ni(111), i.e. the saturation of the carbon dangling-bonds in the graphenic

structures by the Ni atoms in the substrate. We expect PBE to be able to account for this

weak covalent interaction. Furthermore, with our computational scheme and PBE we obtain

an adsorption distance (∼ 2.1Å) in good agreement wih that obtained with higher level

calculations.S10,S11 As explained below, for the optimization of the graphene nanostructures

on Ni(111) we also fix this distance to the substrate for those atoms deep inside the ribbon

(bulk graphene atom), which will guarantee that the mechanical boundary conditions for the

relaxations of the edges will be correctly described. All in all, and in absence of a consensus

about the performance of the different DFT-vdW functionals available, we firmly believe

that PBE is sufficient to tackle the particular problem we are considering here, i.e. that of

the structure and stability of the edges of graphene on Ni(111).

Estimation of edge energies using triangular nanoislands

For the description of triangular graphene nanoislands on Ni(111) using SIESTA, we con-

sidered an 8×8 supercell made up of a 3 layer Ni(111) slab, with a vacuum region of more

than 10 Å between both surfaces, and a graphene island containing 22 C atoms placed on

one of the surfaces. A 2×2×1 Monkhorst-Pack mesh is used for the k-point sampling of the

three-dimensional Brillouin zone. Geometry optimizations are performed with the bottom

Ni layer fixed, and both on-top/fcc and on-top/hcp stacking of graphene on Ni(111). The

optimized TGIs are shown in Figure 3 of the paper.

We have verified that adding a fourth Ni layer introduces differences of less than 10%,

in the calculated energies. For example, the energy difference between TGIs with zzh and

zzt edges changes from 183meV to 199meV when increasing the slab width from 3 to 4 Ni

layers. However, these energy differences are small enough as to provide an overall correct
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picture of the problem, so that we can be confident about the conclusions extracted from

our calculations. Besides, a similar number of Ni layers has been employed in previous DFT

calculations for graphene on Ni(111).S13,S14

We have also studied larger triangular graphene nanoislands, containing 33 C atoms,

using ANT.G. These TGIs are placed on a Ni(111) surface described by a cluster with 2 Ni

layers (140 Ni atoms). Relaxed geometries, together with the energy differences per carbon

atom, are shown in Figure S3. We can expect that the structure of the central part of

these larger triangle is closer to that of extended graphene on Ni(111) and, thus, the energy

difference with respect to the extended layer reflects more faithfully the effect of the edges.

Although these larger calculations required using a cluster that only contains (explicitly) two

Ni layers, due to the fact that ANT.G uses a model self-energy to account for the presence of

a semi-infinite substrate underneath, the corresponding results are not expected to be much

less accurate than SIESTA calculations from the point of view of the finite size effects. In any

case, we reckon these calculations to be somewhat less accurate in reflecting the differences

among top/fcc and top/hcp stacking.

The main purpose of including ANT.G calculations in this work was two-fold: on the

one hand, to compare the results obtained using two different approaches, and on the other

hand, to compare the conclusions regarding the edge effects extracted from the calculations

for triangular nanoislands of different sizes. Notably, from the results summarized in Figure 3

and Figure S3, we see that the overall picture extracted from the two sets of results is the

same, which we believe is a further indication that our DFT calculations for smaller triangles

are correct and reliable.

From the energies per carbon atom obtained using graphene triangles in different con-

formations (Figure 3 and Figure S3), we can estimate the energy difference between zzh and

zzt edges. We use this method, rather than deriving this difference from our calculations

of adsorbed graphene nanoribbons, due to the impossibility to obtain a nanoribbon that

presents only one type of edge (either zzh or zzt) and, simultaneously, maintains the correct
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E0 + 144 meV E0 + 110 meV

zzh − ontop/hcp

zzt − ontop/fcc zzt − ontop/hcp

zzh − ontop/fcca) b)

c) d)

Figure S3: Relaxed structure of TGIs containing 33 carbon atoms on Ni(111) as obtained
with ANT.G. The corresponding energies per carbon atom, measured with respect to the
most stable TGI, are also given.

top/fcc stacking.

The most stable triangle island always exhibits zzh edges and has top-fcc stacking [Fig-

ure 3 (a) and Figure S3 (a)]. It is also quite clear from Figure 3 (a) and (b), as well as

from Figure S3 (a) and (b), that the effect of stacking is only minor and the main energy

differences are related to the different edges.

To illustrate how we estimate the edge energies let us first consider the triangle island in

Figure S3 (a). It has three zzh edges, each of them with 4 edge C atoms. Additionally, there
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are another 3 uncoordinated “edge-like” C atoms on the vertices of the triangle. However,

while the atoms in the edges are in hollow positions, the atoms in the vertices occupy

top positions. Therefore, if Eh and Et are the edge energies per atom associated with,

respectively, zzh and zzt edges, we can estimate the total edge energy of the island in Figure S3

(a) as 3×(4 Eh+Et). Here we have assumed that the energy penalty associated with having a

C atom either in the edge or in one of the vertices is similar and only depends on the stacking

(hollow or top) of that particular atom with the metal substrate below. Correspondingly,

the edge energy of the island in Figure S3 (c) can be estimated as 3×(4 Et+Eh) and the

difference between them is ∆E
triangle

edge = 9×(Et-Eh).

For a general triangle island with Ne edge C atoms (plus 3 C atoms in the vertices) the

difference of edge energy between a triangle island with zzt edges and another one with zzh

edges reads

∆E
triangle

edge = (Ne − 3)× (Et − Eh). (1)

Then, multiplying by the linear density of edge atoms in a zz edge, λzz, the energy

difference per unit length between zzt and zzh edges is obtained as

∆Ezz =
∆E

triangle

edge

(Ne − 3)
× λzz. (2)

For the triangular nanoislands under consideration here λzz is ∼ 0.40Å−1.

We now take the total energy differences given in Figure 3 in the paper and in Figure S3 for

islands with identical stacking but different edge configurations. Notice that these energies

are given per C atom, so they must be multiplied by the total number of C atoms in the

islands before using them. If we assume that these energy differences (for triangles with the

same stacking) are solely due to the different edges, we can identify them with ∆E
triangle

edge in

Eq. 2.

For the islands containing 22 C atoms we obtain an edge energy difference between zzt
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and zzh edges (∆Ezz) of 0.26 eV/Å and 0.27 eV/Å, respectively, for islands with top/fcc and

top/hcp stackings. These values might be somewhat overestimated, since for triangles of

this size different edge types might induce quite different relaxations in the inner part of the

islands. This effect, if present, must be mitigated in the larger triangles from which we obtain

edge energy differences of 0.21eV/Å and 0.16 eV/Å, respectively, for top/fcc and top/hcp

stackings. Hence, we have decided to use the average value of all these calculations as our

estimate of ∆Ezz, which amounts to ∼ 0.22 eV/Å. Finally, from the maximum (0.27 eV/Å)

and minimum (0.16 eV/Å) values, we estimate an error of ±0.05 eV/Å.

Estimation of the energies of reconstructed edges using nanorib-

bons

For graphene nanoribbons on Ni(111), a 4x8 supercell made of a 3 layer Ni(111) slab is

employed, with a vacuum region of more than 10 Å between both surfaces, and a graphene

ribbon containing 40 C atoms placed on one of the surfaces. A 5x2x1 Monkhorst-Pack

mesh is used for the k-point sampling of the three-dimensional Brillouin zone. Geometry

optimizations are performed with the bottom layer fixed. Only initial configurations in which

the bulk of the graphene nanoribbon has on-top/fcc stacking with respect to the underlying

Ni(111) are considered. All the calculations are performed using the SIESTA code.

With the aim of extracting edge formation energies, geometry optimizations are done

in various steps. First, we tried to relax carbon ribbons with all different combinations

of edge terminations. In these relaxations, we only fix the atoms in the bottom Ni layer

and the height of the central rows of C atoms over the Ni surface. We force this height to

remain similar to that found for an extended graphene layer on Ni(111). This last point

is important to mimic the limit of large graphene islands. Unfortunately, due to the small

width of the ribbons, during the relaxations some of the ribbons move significantly from the

initial position over the Ni(111) surface. Thus, the final stacking does not always correspond

to the nominal initial one. However, it was possible to stabilize two nanoribbons in which the
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final relaxed structure could be assigned unambiguously to two different edge combinations:

zzh(57)/zzt(57) and zzh/zzt(57) [see Figure S4(a) and (c)]. These ribbons only allow to

compare the stability of the reconstructed and zigzag hollow edges. It is interesting to note

that the zzt edge does not appear in these ”stable” nanoribbons. One could interpret this as

an indication of the unfavorable character of the zzt edges. As we see below, this suspicion

is confirmed by later calculations.

In order to discern the importance of the stacking with the underlying substrate it is

necessary to proceed further. Therefore, in a second step and based on the zzh(57)/zzt(57)

and zzh/zzt(57) nanoribbons stabilized so far, we set up new model nanoribbons by “unre-

constructing” one of the edges (the lower half of the ribbons (a) and (c) in Figure S4 ) while

keeping the atoms in the other edge fixed. Hence, we end up with four different nanorib-

bons: zzh(57)/zzt(57), zzh(57)/zzt, zzh/zzt(57) and zzh/zzt. By construction, the first two

nanoribbons [(a) and (b) in Figure S4] have identical zzh(57) edges, whereas the other two

[(c) and (d) in Figure S4] have identical zzh edges. These model systems are then relaxed

fixing the bottom Ni layer and the C atoms in the upper half of the ribbons (rows 1 to 5).

In the lower half of the ribbons, only the height of the inner C atoms (rows 6 to 8) is fixed.

The relaxed geometries of the two new ribbons are shown in Figure S4 (b) and (d).

Once the energies for the relaxed model systems are calculated, we can proceed with the

estimation of edge formation energies. With that purpose, and given that each nanoribbon

contains two different edge types, we define the following energy equation:

(Ezz1 + Ezz2)L = E − ENi −N ∗ Eg, (3)

where Ezz1 and Ezz2 represent the edge formation energies of the two types of graphene edges

contained in each nanoribbon and L the edge length, E is the total energy of the system, N

the number of C atoms, Eg the energy per C atom for extended graphene on Ni(111) and

ENi the energy of the substrate. It should be emphasized that Eq. 3 can be used to express
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b) zzh(57)/zzt
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Figure S4: Model graphene nanoribbons on Ni(111) used to extract the edge energies. In
panel (a) we have included the row numbering used to describe the relaxation procedure.

the formation energy for any carbon structure on Ni(111), where the chemical potential is

fixed to that of extended graphene on Ni(111).

An alternative expression to Eq. 3 can be derived by taking into account that the ad-

sorption energy of the graphene nanoribbon can be expressed as

Eads
ribbon = −(E − ENi −E

gas

ribbon), (4)

where ENi and E
gas

ribbon are the equilibrium energies of the substrate and the free standing

ribbons, respectively. Note as well that the adsorption energy as defined in Eq. 4 is positive

when the adsorption is more favorable, i.e. when the total energy becomes more negative.
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Besides, the energy per C atom for extended graphene on Ni(111) can be written as

Eg = E
gas
graph − Eads

graph, (5)

where Egas

graph is the energy of the free standing graphene and Eads
graph is the adsorption energy

of graphene on Ni(111). Then, Eq. 3 can be expressed as

(Ezz1 + Ezz2)L = E
gas

ribbon −Eads
ribbon −N ∗ (Egas

graph − Eads
graph). (6)

In the calculation of the adsorption energies we use the standard counterpoise corrections to

reduce the effect of the basis set superposition error (BSSE).S15 This correction to the ad-

sorption energy is standard when basis sets of atomic orbitals are used, and allows improving

considerably the calculated adsorption energies.

Employing the total energies of the four model nanoribbons described above, Eq. 3 and

6 permit us to obtain the following energy relationship between reconstructed and unrecon-

structed edges of hollow or top type:

Ezzt(57) = Ezzt − 0.15 eV/Å

Ezzh(57) = Ezzh + 0.16 eV/Å (7)

Ezzh(57) + Ezzt(57) = 1.07 eV/Å

This information is very relevant in order to understand the relative stability of different

edge types. It shows that, for top edges it is energetically favourable to undergo a 57-

reconstruction (Ezzt(57) < Ezzt), whereas the opposite is true for hollow edges (Ezzh(57) >

Ezzh). From Eq. 7 we can also compute the average (over the hollow and top stackings)

of the zigzag edge energies. For the unreconstructed egde we obtain Ezz=
1
2
(Ezzh + Ezzt) ∼

0.53 eV/Å, which is identical to the value reported by Gao et al.S13 for the zigzag edge

energy on Ni(111) (computed without discriminating the edge stacking) from plane-waves
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calculations using the same exchange-correlation functional that we use here (PBE-GGA).S2

Our average value for the 57-reconstructed edge energies is ∼0.54 eV/Å, which is somewhat

lower than the 0.60 eV/Å reported by Gao et al. for the 57 edges, but still in very close

agreement.

In order to extract absolute edge formation energies additional information is required.

In a first attempt, we considered using a symmetric nanoribbon with either zzh or zzt edges.

However, it is quite difficult to obtain relaxed structures which, simultaneously, are truly

symmetric and whose edges correspond faithfully to the most stable structure of each type of

edge. In this regard, it is interesting to note that relaxed structures with asymmetric edges,

as those shown in Figure S4, are much easier to obtain. Consequently, the relative formation

energies described by Eq. 7, that reflect the effect of the stacking with the substrate, provide

robust results.

To overcome the problems with constructing symmetric nanoribbons we finally decided

to employ our estimation of the edge energy difference between zzh and zzt, ∆Ezz, obtained

from the calculations of triangle islands. Table S1 shows our results for the energies of the

different zigzag edges, with and without reconstruction.

Table S1: Energies (in eV/Å) of zigzag edges in graphene islands on Ni(111).
The energy difference between zzh and zzt edges (∆Ezz) is obtained from calcula-
tions for triangle islands of different sizes. The average, maximum and minimum
values of ∆Ezz in our calculations are, respectively, 0.22, 0.27 and 0.16 eV/Å.
Using this information and the results of the calculation for nanoribbons with
reconstructed and unreconstructed edges (Eq. 7) we find the values reported in
this table.

Calculated zigzag edge energies (eV/Å)

∆ Ezz = Ezzt-Ezzh Ezzt Ezzt(57) Ezzh Ezzh(57)

0.22 (average) 0.64 0.49 0.42 0.58
0.16 (minimum) 0.61 0.46 0.45 0.61
0.27 (maximum) 0.67 0.52 0.39 0.55

Finally, we have proved that for graphene on Ni(111) the (57) reconstruction of the

zzt edge is more stable than the zz(ad) reconstruction. With this aim, we have optimized
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a graphene nanoribbon with zzh and zz(ad) edges on Ni(111). Following the procedure

described above, we have obtained the minimum, average and maximum formation energies

for the zz(ad) edge to be 0.52 eV/Å, 0.55 eV/Åand 0.58 eV/Å, respectively. Therefore, we

can conclude that for graphene on Ni(111) the zz(ad) reconstruction of the zzt edge is less

stable than the (57) reconstruction.

Equilibrium shapes of graphene nanoislands on Ni(111)

Figure S5: Wulff constructions for graphene islands on Ni(111) taking into account the effect
of the stacking with the substrate of the zigzag edges, as well as their possible reconstruction
[in panels (d), (e) and (f)]. The energy of the ac-ad edge is taken from PBE-GGA calculation
reported in Ref. 10. Red dashed lines correspond to the interpolated edge energies for
arbitrary edge orientations following the recipe in Ref. 11. Panels (b) and (e) correspond to
the shapes in the insets of Figure 6 in the paper.

We now proceed to investigate the equilibrium shape of graphene nanoislands on Ni(111)

using the information provided in Table S1. For this purpose, in addition to the energies

of the zigzag edges, we also need those of the armchair edges. Given the good agreement

between our average results for the zigzag edges and the edge energies reported by Gao et

al.S13 using the same PBE-GGA functional, in this section we will use the armchair edge

energies calculated by these authors. It is interesting to note that, in constrast to the
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situation for zigzag edges, there is only one type of armchair edges for graphene on Ni(111).

Ref. S13 reports an armchair (ac) edge energy on Ni(111) Eac ∼ 0.60 eV/Å, which is clearly

higher than the average energy of zigzag edges and substantially higher that our most stable

zzh edge. A more stable edge can be obtained by attaching an additional carbon atom to one

of the edge atoms (ac-ad edge), reducing it edge energy to Eac−ad ∼ 0.53 eV/Å, which is now

competitive with the zigzag edges. Artyukhov et al.S14, using the local density approximation

for the exchange-correlation functional, also calculated a similar difference of ∼0.07 eV/Å

for the energies of the ac and ac-ad edges.

The Wulff constructions presented in Figure S5 report the equilibrium shapes obtained

once the effect of the stacking of the zigzag edges and their possible reconstruction are taken

into account. The dashed red lines present the edge energies interpolated for an arbitrary

edge orientation using the scheme proposed by Artyukhov et al.S14 Slightly different shapes

are obtained using values of zigzag edge energies within the uncertainty of our calculations

(corresponding to different values assigned to ∆Ezz = Ezzt-Ezzh). However, the absence of

the unreconstructed zzt edges and the transition from triangle-like to hexagonal-like shapes

when the 57 reconstruction of the zzt is allowed are robust features. Shapes in panels (b)

and (e) correspond to edge energies and shapes reported in Figure 6 of our paper.

Edge energy of graphene nanoislands on Ni(111)

From the computed edge energies and the calculated equilibrium shapes, we can now compute

the edge-energy differences between triangle-like or hexagon-like islands depending on their

size. Figure S6 exhibits the magnitude of these edge-energy differences. For a 10 nm2

graphene island we estimate an edge-energy difference of ∼3 eV. Being proportional to

island perimeter, this energy difference is proportional to the square-root of the island area.
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Figure S6: Size dependence of the estimated edge-energy difference between islands with
zzt(57) edges (hexagon-like, HGI) and those that do not exhibit reconstructed zz edges
(triangle-like, TGI). The inset shows the edge energy for each island shape as a function of
the island area. The shapes used for this calculation correspond to those shown in the insets
of Figure 6 in the paper and panels b) and e) in Fig. S5.
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