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Abstract
Starting with the basic definition, a short description of a few relevant physical quantities
playing a role in the growth process of heteroepitaxial strained systems, is provided. As such,
the paper is not meant to be a comprehensive survey but to present a connection between the
Stranski–Krastanov mechanism of nanostructure formation and the basic principles of
nucleation and growth. The elastic field is described in the context of continuum elasticity
theory, using either analytical models or numerical simulations. The results are compared with
selected experimental results obtained on GeSi nanostructures. In particular, by tuning the
value of quantities such as vicinality, substrate orientation and symmetry of the diffusion field,
we elucidate how anisotropic elastic interactions determine shape, size, lateral distribution and
composition of quantum dots.
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(Some figures may appear in colour only in the online journal)

1. Introduction

More than twenty years have passed since the early
works of Mo et al [1] and Eaglesham and Cerullo [2]
demonstrated the formation of coherent nanoscale islands
(nanocrystals (NCs) or quantum dots (QDs)) during the
epitaxial growth of suitable lattice-mismatched semiconductor
pairs. Thenceforth, intensive efforts have been devoted to
the Stranski–Krastanov’s (SK) growth of Ge on Si surfaces.
The interest in Ge/Si epitaxy stems from two interconnected
sources. On the one hand, this system has a great deal
of potential in technological applications compatible with
standard Si technology, such as quantum computing and
quantum information devices [3, 4]. On the other hand,
it has been recognized as an ideal prototype system for
modeling the fascinating and complex phenomena related to
strained heteroepitaxy and for investigating the properties of

QDs’ spontaneous formation. The possibility of developing
simple yet predictive models for epitaxial growth has driven a
huge amount of literature on Ge/Si, including many excellent
monographs and review papers surveying the different aspects
of the subject [5–8]. In this context, our purpose is to look
at the Ge/Si epitaxy from a peculiar and, hopefully, original
perspective: we have not followed the usual ‘historical’
approach of surveying all the various contributions to the
subject present in the literature. Rather we have chosen a few
selected cases which drive the growth of Ge/Si nanostructures
and have gone on to elucidate the connection between the
elastic field and symmetry, shaping, faceting and composition.
To this end our review includes some unpublished material by
the authors such as independent calculations or measurements
as well as adaptations of original data and figures.

The paper is organized as follows: after briefly reviewing
some basic concepts of elasticity theory, we focus on how a
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realistic three-dimensional (3D) modeling of the elastic field in
epitaxial nanostructures can be obtained by finite-element (FE)
simulations. In particular, we highlight the link between island
shape and elastic field symmetry. Then, we examine different
case studies, with special emphasis on vicinal surfaces, in
which the symmetry of the elastic field and of pair interactions
between islands affects the growth evolution. Finally, in the
last section we briefly describe the effect of intermixing on the
energy relaxation of nanostructures.

2. Epitaxial growth and elasticity: concepts and
definitions

Derived from the Greek language and composed by the
prefix ε̇πι meaning ‘over’ and τ άξ ις meaning ‘order’, the
word epitaxy literally means ‘oriented growth of a material
onto a different material [9]’. Epitaxial growth can be
therefore identified as the process in which a deposit crystal
is grown on the single crystal surface of a different substrate
crystal. Substrate and deposit may differ either chemically
or geometrically. The epitaxial growth of a material A on
a substrate B is governed by the surface energies of the
overlayer, of the substrate and of the interface. In the
following sections, we will mainly discuss the case of SK
growth: This process occurs after an initially perfect wetting
of the substrate is performed and the surface energy tradeoff
is modified. Consequently at a critical thickness, the initial
wetting condition is violated and henceforth 3D islands start
forming. The most common example of this SK process is
when a semiconductor film is epitaxially grown onto a surface
of another semiconductor with the same symmetry and crystal
structure, but with different lattice parameter. Due to the
strain accumulation at the heterojunction interface caused by
the lattice mismatch, the film is inherently unstable and, at a
certain thickness, the excess elastic strain energy is relieved by
surface roughness in the form of coherently strained islands on
top of a two-dimensional (2D) wetting-layer (WL).

There are two main sources of strain in heteroepitaxy:
(a) the difference in the lattice parameters, and (b) the
difference in the thermal expansion coefficient between
the epilayer and the substrate. Generally speaking, both
parameters have different values in the epitaxial layer and
in the substrate; nonetheless the lattice parameter mismatch
is generally the most significant. We can confirm this by
considering the pivotal case study of Ge/Si. The lattice
constants of Si and Ge are aSi = 5.428 Å and aGe =
5.658 Å [10]. Thus, the lattice mismatch in the Ge/Si system
at room temperature is approximately 4 × 10−2. On the other
hand, the linear thermal expansion coefficient of Si and Ge
are 2.7 × 10−6 K−1 and 5.9 × 10−6 K−1, respectively [10].
This produces a difference in thermal expansion coefficient
of Si and Ge of the order of 3.2 × 10−6 and a strain of order
(3.2×10−6)δT for a temperature change of δT . Therefore, also
taking into account a temperature incursion of 1273 K, which
corresponds to the maximum practical growth temperature on
the Ge/Si system, we conclude that thermal strains are one
order of magnitude less than lattice mismatch strains.

Figure 1. (a,b) For the evaluation of the free energy gain of 3D
islanding with respect to a flat film. α is the contact angle of the 3D
pyramid of height h and lateral edge L. (c) Critical thickness dc for
3D islanding as a function of the island contact angle α.
Copyright Wiley-VCH Verlag GmbH & Co. Reproduced with
permission [11].

When referring to a coherent or pseudomorphic growth of
the overlayer, we mean that the heteroepitaxial layer does not
keep its own lattice constant ae but is tetragonally distorted
to the substrate lattice parameter as (figure 1). We then
define the lattice mismatch f between the substrate and the
epilayer as f = (ae − as)/ae [11]. If we now assume
that the lattice parameter difference is accommodated entirely
elastically, i.e. without the formation of misfit dislocations,
and if we also neglect the effects of differential thermal
expansion coefficients we can then directly link the elastic
strain of the epilayer in the plane of the interface with the lattice
mismatch:

ε‖ = 2
(as − ae)

(ae + as)
≈ (as − ae)

ae
= −f, (1)

From the above equation, we can distinguish between two
different cases: (a) For ae > as, as in the case of Ge/Si, the
strain in the epitaxial layer is compressive and ε‖ is negative
and (b) for ae < as, the film is stretched and the in-plane strain
is tensile (ε‖ > 0). Due to the biaxial in-plane distortion, the
epitaxial layer relaxes along the interface normal and produces
an out-of-plane strain component

ε⊥ = 2
ν

(1 − ν)
f, (2)

where ν is the Poisson ratio of the epilayer material. In other
words, the biaxial compression within the pseudomorphic Ge
layers grown on Si induces an outward distortion in the growth
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direction. For νGe = 0.273, one finds that the lattice constant
of a Ge film along the interface normal is about 3% larger.

The elastic strain energy per unit area stored in the
epitaxial film is defined as


el = E

(1 − ν)
ε2
‖d, (3)

where E is the Young’s modulus and d the film thickness.
For a pure Ge (x = 1) epilayer on Si(0 0 1) surface, we have
E ∼ 103 GPa [10] and therefore an elastic energy density
ρ2D = Eε2

‖/(1 − ν) of about 1.55 meV Å−3. With an epilayer

thickness of 4 ML (∼6 Å), this produces a surface strain energy
of ∼10 meV Å−2 close to the magnitude of the surface energies
densities [12]. Since the elastic energy increases linearly
with layer thickness, we therefore expect that such energy can
possibly drive the 2D-to-3D growth transition.

The critical thickness dc at which islanding takes place is
of course one of the most important parameters which define
a given epitaxial system. This thickness can be determined
by examining the free energy balance of a planar epilayer film
of area Sfilm and volume V with respect to a configuration in
which an island of the same volume is formed on a very thin
2D WL [13–15] (figure 1). The total free energy of the 2D
configuration (figure 1(a)) is

F2D = E

(1 − ν)
ε2
‖V + (σ + σi) Sfilm, (4)

where the first term gives the elastic strain energy and the
second term gives the surface energy. σ and σi are the surface
energy densities of the film and the island-substrate interface,
respectively. For the configuration of figure 1(b), the total free
energy is instead

F3D = R
E

(1 − ν)
ε2
‖V + (σ + σi) Sfilm + γ S − σB, (5)

where γ is the specific free energy of the island facets of area
S and B the base area. Since the formation of a 3D island
enables the elastic relaxation of strain, the elastic energy term
in equation (5) is reduced by a factor R < 1 with respect to
the planar film. It follows that the tradeoff between the 3D and
the 2D configurations is

�F = (R − 1)
E

(1 − ν)
ε2
‖V + γ S − σB. (6)

Incidentally, we note that edge energies of the island, scaling
as V 1/3, have been omitted in equations (5) and (6). What
makes this tradeoff difficult to calculate in practice is that both
the surface energy cost and the strain energy relaxation due
to island formation inherently depend on the island shape.
Moreover, σ depends sensitively on the film thickness d.
In the case of SK growth, this is mainly due to the effect
of lattice distortion and, to a lesser extent, to the chemical
contribution of the interface energy. A proper description of
this issue entails a detailed knowledge of the atomistic structure
of surface atom bonding via first-principles calculations [16–
18]. In addition, the origin of the critical thickness dc for

islanding has been discussed in connection to the occurrence
of intermixing, surface diffusion and segregation [19].

For purposes of simplification we consider a regular
square-based pyramid with facet inclination α. The base and
lateral surface areas of the islands are defined in terms of the
island volume and we assume, for concreteness, γ = σ . After
this treatment, the tradeoff becomes

�F = (R − 1)
E

(1 − ν)
ε2
‖V + γ

(
6

tan α

)2/3

(sec α − 1) V 2/3.

(7)

3D-to-2D islanding occurs when F2D becomes larger than F3D,
namely at the critical film volume Vc for which �F = 0.
Thus, the critical thickness at which islanding takes place can
be estimated as

dc = V 1/3
c = �Fs (1 − ν)

(1 − R) Eε2
‖
, (8)

where we write �Fs = γ (6/tan α)2/3 (sec α − 1) for
compactness. It has been shown that, for very shallow islands,
the elastic problem has an approximate solution (1 − R) ∝
tan (α) [13–15, 20]. If we make use of this approximation,
we obtain the behavior of dc as a function of the contact
angle of the island facets which is shown in figure 1(c). The
vertical axis is displayed in arbitrary units, since a quantitative
estimate is beyond the limits of this oversimplified model.
Nevertheless, the plot shows that the evolutionary path for the
2D-to-3D transition is one for which the contact angle increases
continuously from planar to a 3D morphology [21, 22]. This
can be explained as follows. The surface free-energy term
�Fs, causing the formation of a 3D morphology to be an
activated process, scales with the sidewall angle of the islands.
This means that, when the morphology is shallower, less new
surface is created, and hence the activation energy is also
lower. As shown by scanning tunneling microscopy (STM)
measurements shown in figure 2, this continuous islanding
process is experimentally observed in Ge/Si heteroepitaxy
and occurs between 3.2 and 3.8 monolayers (MLs) of Ge
(1 ML = 1.4 Å) [21, 23–26]. From the images, it can be
seen that the initial step of the 3D transition takes place via
the formation of shallow mounds, with a height-to-base ratio
ranging between 0.015 and 0.03, which become progressively
larger and steeper, finally evolving into complete square-base
pyramids bounded by facets [1].

The cost to be paid, in order to obtain more quantitative
information, is the mathematical simplicity of isotropic
elasticity. In fact, silicon and germanium are highly anisotropic
materials, with elastic behavior dependent on the crystal
orientation. For example, the possible values of the Young’s
modulus for Si range from 130 to 188 GPa [27] and, hence, the
use of an average elastic constant is a significant approximation
producing errors of an order of 10–20%. Therefore, we cannot
avoid making use of complete anisotropic description in the
following analysis.

Hooke’s law- i.e. the fundamental law of linear elasticity-
describes the relationship between stress σ and strain ε in terms
of stiffness C

σ = Cε. (9)
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Figure 2. STM images (25 × 25 nm2) showing the formation of the first Ge 3D islands on the Si(0 0 1) surface.

For isotropic uniaxial crystals, the stiffness C is a single
value parameter known as Young’s modulus E. In an
anisotropic material, things are not so simple and the stiffness
is represented by a fourth rank tensor with 34 = 81 terms. In
this case, Hooke’s law is written as

σij = Cijklεkl . (10)

Note that all indices span between 1 and 3 and that the sum
over repeated indices is understood. In cubic semiconductors,
such as Si and Ge, only three independent components are
needed to describe the complex stiffness tensor; their values
are summarized in table 1.

For the (0 0 1) crystal plane, the Poisson ratio and the
Young’s modulus, written in terms of the anisotropic elastic
constants become

ν001 = C12

(C11 + C12)
; E001 = (C11 − C12) (C11 + 2C12)

(C11 + C12)

(11)

Table 1. Elastic properties of Si and Ge.

Element Si Ge

Lattice constant: a 5.428 Å 5.658 Å
Elastic moduli: C11 166.2 GPa 128.4 GPa
C12 64.4 GPa 48.2 GPa
C44 79.8 GPa 66.7 GPa

and the elastic strain energy per unit area (equation (3)) of an
anisotropic planar epitaxial film is


el =
[
C11 + C12 − 2

C2
12

C11

]
ε2
‖d. (12)

The challenge which remains, however, is how to accurately
evaluate the elastic relaxation for realistic 3D island’s shapes.
Several approaches have been proposed for semiconductor
QDs. Continuum models may be used to take advantage of
the fast, semi-quantitative estimates of analytical solutions.
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Continuum models are generally based on Green’s functions
and are usually described by a flow-chart similar to the
following: the elastic field of a macroscopic island is computed
starting from the Green function of a point-like inclusion
of the deposit crystal on a semi-infinite substrate [28], i.e.
integrating this function over the island volume. A very
common method developed in this framework is known as
flat-island approximation [14, 29]. We have already used it to
obtain the estimate of R giving the qualitative behavior of dc in
figure 1(c). Unfortunately, the method fails in determining the
elastic fields in steep islands, even if a proposed improvement
has been shown to yield consistent estimates for this case
also [30]. What really limits the application of analytical
solutions is that they can be computed for simple island shapes
only.

2.1. Finite element simulations for realistic modeling of the
elastic properties in epitaxial nanostructures

The complexity of realistic 3D geometry requires the ‘brute
force’ of the computational power of numeric simulations.
The two most common computational approaches for studying
strain energy relaxation in QD structures are molecular
dynamics (MD) and FE methods. As an atomistic approach,
MD computes the strain distribution on the basis of
the interactions and the displacements of single atoms in
the system. This means that atomic-scale features of the
system such as surface reconstructions, or inhomogeneous
alloying [31–37] are inherently included in the model. On the
other hand, such an atomistic approach is computationally very
demanding when treating systems, like semiconductor QDs,
which consist of several millions of atoms. For this scale, FE
simulations offer much more readily accessible results [38–40]
which have been shown to be robust and reliable by comparison
with atomistic calculations [41].

The basic assumption of FE calculations is that the elastic
body can be approximated by an assemblage of discrete
elements (typically a tetrahedron for 3D problems). This set
of elements, together with their vertices (nodes) constitute the
finite mesh. It is usually convenient to use a non-uniform
distribution of the mesh elements, i.e. increasing the density
where the elastic energy is expected to be higher—i.e. inside
the island. In this case, any field variable f (r) will be
completely defined by its nodal values and by the interpolation
functions within the elements.

Let us now apply the FE approach to an epitaxial model
system, i.e. a depositing crystal in the shape of a pyramid
grown on a substrate with smaller lattice parameter (figure 3).
The initial condition for the strain is set by the lattice mismatch
f : before relaxation, the deposit is compressively strained
to the substrate lattice parameter in the three perpendicular
directions (in plane x and y, and out-of-plane z) and the
initial condition thus reads εxx = εyy = εzz = −f , where
εxx , εyy and εzz represent the three diagonal components of
the strain tensor. Now the best way needs to be found to
mimic the lattice mismatch in the framework of continuum
elasticity [42]. The solution is to adopt the so-called Eshelby
formalism for inclusions [43]. We define this as an inclusion

Figure 3. Geometric model of a Ge pyramid on a Si(0 0 1) substrate
used in FE simulations. Copyright Wiley-VCH Verlag GmbH & Co.
Reproduced with permission [11].

of a region, completely embedded in a surrounding medium
(matrix), which undergoes a permanent deformation. If we
now remove the inclusion from the medium, the medium
will experience a deformation so as to restore the zero-stress
condition, assuming a uniform strain ε∗

ij called eigenstrain.
Therefore, the eigenstrain is defined as the value of the strain
field at which the stress field is zero by the following equation

σij = Cijkl

(
εkl − ε∗

kl

)
. (13)

In our case, since the island itself acts as a stressor and if
we were able to take the compressed island away from the
substrate, it would undergo an elastic dilation, according to
the eigenstrain principle, to recover its own lattice parameter.
As a consequence the eigenstrain is simply

ε∗
kl = f δkl, (14)

where δij is the Kronecker delta. In the real world, the state of
eigenstrain—i.e. the condition of zero stress—is never reached
by the island; conversely both the substrate and the island
deform in order to minimize the elastic energy. Solving the
elastic problem means finding the displacement field caused
by the condition of eigenstrain in the entire space. Therefore,
the minimum elastic-energy distribution can be obtained by
allowing the system to relax, as far as the elastic equilibrium is
reached. The equilibrium condition is defined by the following
requirement: the sum of forces inside the elastic body has to
balance the external force Ti acting on it; thus the equilibrium
equation can be written as

− ∂

∂xj

σij (u) = Ti, (15)

where u is the displacement field. The island itself being at
the origin of the stress in the system, and there are no external
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forces, so Ti = 0. By looking at figure 3, we can define
different types of boundary conditions. With the exception of
the bottom of the simulation box where the Dirichlet condition
ui = 0 is imposed, all the other boundaries are free surfaces at
which the null-stress condition σ·n = 0 holds (n is the normal
to any free surface). In addition, we apply periodic boundary
conditions (PBCs) in the x–y plane in order to simulate an
infinite bulk.

The elastic problem described by equation (15) is
solved self-consistently by using the constitutive stress-strain
relations (13) and (14) which, for a cubic symmetry, are

σii = (C11 − C12)εii + C12f

σij = C44εij (i �= j).
(16)

By means of an iterative procedure, the FE solver looks for
the displacement field u minimizing the elastic energy (per
unit volume) of the system ρ = 1

2

∑
klmn

Cklmnεklεmn which, for

structure with cubic structure, reduces to

ρ = C11

2

(
ε2
xx + ε2

yy + ε2
zz

)
+ 2C44

(
ε2
xy + ε2

yz + ε2
xz

)
+2C12

(
εxxεyy + εxxεzz + εyyεzz

)
. (17)

After minimization, the total elastic energy of the system is
computed by integrating the local energy density over the
island and the substrate volumes

ρ3DV =

∫

isl

ρ (r)dr +
∫

sub

ρ (r)dr


 . (18)

As the reader may have noticed, we completely neglected
the thin WL under the island in the previous description.
Introducing a very thin layer in FE calculations is higly
problematical: first, it requires a high number of mesh
elements, increasing significantly the computational effort.
Moreover, FE simulation including the WL is not fully self-
similar, since the thickness of the WL is fixed (e.g. 3–4 ML for
Ge/Si) independently of the island size; therefore, its weight
over the elastic body depends on the island volume. The
question to be answered is: can we afford to neglect the WL
in the simulations? We can obtain a rough estimate of the
weight of WL by evaluating the total energy Esub stored in the
substrate (i.e. the second integral in equation (18)) with and
without this thin planar epilayer.

In figure 4, the normalized change of Esub has been
calculated for Ge/Si pyramids having the same volume but with
a different facet inclination. As is evident, the WL plays a role
in the elastic relaxation of the system only for very shallow
island morphology. Steeper islands, in fact, exert an elastic
loading deeper in the substrate and, as such, the presence of
the WL becomes in this case negligible.

2.2. Thermodynamic stability of epitaxial nanostructures

As shown in the previous section, FE simulations offer a
straightforward method for computing the relaxation factor
R appearing in equation (5) for complex 3D island shapes
within anisotropic elasticity. Our goal is now to establish some

Figure 4. Relative weight of WL in FE simulations as a function of
the facet inclination of Ge pyramid. EWL

sub is the elastic energy stored
in the substrate including the WL, whereas Esub is the same term
neglecting the presence of the WL. Copyright Wiley-VCH Verlag
GmbH & Co. Reproduced with permission [11].

Figure 5. Relaxation factor as a function of the aspect ratio of Ge
pyramids. Data obtained by FE calculations (squares) are fitted by
an exponential decay curve (continuous line) using k = 1.839 Å−1.
Copyright Wiley-VCH Verlag GmbH & Co. Reproduced with
permission [11].

general criteria for the thermodynamic stability of different
island shapes. For a direct comparison with experimental data,
we define the island geometry in terms of the height to-square-
root of the island base ratio or aspect ratio r . For square-based
pyramids, r is simply 1/2(tan(α)). Figure 5 shows the aspect-
ratio dependence of the relaxation factor for pure Ge islands
grown on the Si(0 0 1) surface. It is immediately noticeable that
R decreases monotonically as the facet inclination increases,
thus indicating that steeper structures provide a better elastic
relaxation. By looking at the distribution of the εxx strain
tensor component inside the islands (figure 6), it can be seen
that, for the steeper island, the island top is almost completely
relaxed and the compressive distortion is mostly concentrated
in the lower part, which is in close proximity to the
substrate.

This dependence of the relaxation factor on shape is very
general and is not restricted to the pyramid case alone [44].
It is therefore useful to find an analytical form to describe the
functional behavior of R with aspect ratio. It has been shown
that a simple exponential form R(r) = e−kr is suitable to fit
FE data except at high values of r [45]. For data shown in
figure 5, we obtain k = 1.839 Å−1. It is evident that steep
islands provide better elastic relaxation: on the other hand,
they exert an elastic load which penetrates more deeply into

6
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Figure 6. Cross-sectional maps of the εxx strain component for Ge islands of aspect ratio (a) r = 0.1 and (b) r = 0.7. Copyright
Wiley-VCH Verlag GmbH & Co. Reproduced with permission [11].

the substrate, as shown in figure 6. Note that the effect of
substrate loading is correctly taken into account in equation
(18), whereas it is neglected by using a single-exponential
decay fitting function. To compensate for this bias, one could
add a positive exponential ek2r factor to R(r) [42].

For the sake of simplicity, we use a single exponential for
R(r). This makes it easy to write the total energy difference
between the island and planar configurations (equation (7)) in
terms of the aspect ratio r

�F (r, V ) = (
e−kr − 1

)
ρWLV + γ

(
3

r

)2/3 (√
4r2 + 1 − 1

)
×V 2/3, (19)

where ρWL = 
el/d . This equation provides a scaling
expression for the energy balance driving the morphological
evolution of islands with volume and is useful for comparing
the relative thermodynamic stability of different island
shapes [45].

For a given volume, the equilibrium aspect ratio
corresponds to the minimum of �F(r). We can therefore
obtain the shape evolution with volume predicted by
thermodynamics by setting ∂�F (r, V )/∂r = 0, giving

e−kr = 2

31/3k

(
γ

ρWL

) [
2r2 − 1 +

√
4r2 + 1

r5/3
√

4r2 + 1

]
1

V 1/3
, (20)

and solving equation (20) for different volumes. The results
are shown in figure 7(b). Since, in the small-volume limit,
the surface cost of islanding is dominant, shallow islands
are energetically favored. As the volume grows, the volume
term becomes increasingly important; thus, the better elastic
relaxation, provided by steeper morphologies, counterbalances
the larger exposed surface.

This morphological evolution of strained epitaxial
nanostructures towards steeper shapes at larger volumes
is experimentally observed for a variety of semiconductor
epitaxial systems [7]. As an example, we consider the
Ge/Si(0 0 1) system. Figure 8 shows experimental values
of the aspect ratio as a function of volume for Ge islands
grown on the Si(0 0 1) surface at 600 ◦C. As expected, the
general trend shows that the larger the island, the steeper is the
island’s facet inclination. However, a close inspection of the
experimental plot shows sudden slope changes at characteristic
islands volumes superimposed on the monotonic increase of
the r curve. Obviously, these features should correspond to

Figure 7. (a) Equilibrium relaxation factor as a function of aspect
ratio at increasing volume as a graphical solution of equation (20).
(b) Thermodynamically favored island’s aspect ratio as a function of
volume. The squares correspond to the solution of equation (20) for
different volumes. Copyright Wiley-VCH Verlag GmbH & Co.
Reproduced with permission [11].

distinct morphological transitions in the islands shape. In
fact, in our oversimplified picture, we have assumed pyramid
shapes only, but, actually, also the overall geometry of islands
evolves as the Ge growth proceeds. This is clearly shown
in figure 9 where the main islands’ morphologies observed
in Ge/Si(0 0 1) are displayed. Experiments show that, at the
onset of 3D islanding, very shallow mounds, known as pre-
pyramids [24, 26], are formed (figure 9(a)). These structures
have a very low aspect ratio ∼0.04 and, above all, are non-
faceted. A useful tool for studying island faceting is the
so-called facet plot (FP) analysis [46]. It consists of a 2D
histogram displaying the component of the surface gradient
on the horizontal and vertical axes: Well-defined spots in the
FP therefore indicate faceting. Conversely, a diffuse halo, like
the one shown in figure 9(b), means that pre-pyramids do not
contain distinct facets. At bigger Ge coverage, non-faceted
islands evolve into square-based pyramids (figure 9(c)) [25].
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Figure 8. Experimental evolution of island’s aspect ratio with
volume. Arrows point to the discontinuities which indicate a shape
change in the islands. Copyright Wiley-VCH Verlag GmbH & Co.
Reproduced with permission [11].

As shown in panel (d), pyramids are bounded by four
{1 0 5} facets forming angle of ∼11◦ with the (0 0 1) plane
(r = 0.1).

Faceting is a clear indication of anisotropic surface energy;
thus it is inconsistent with the assumption γ = σ made in
equation (7). In the case of the {1 0 5}-faceting in Ge/Si(0 0 1)
system, in particular, including surface energy anisotropy is
crucial when matching quantitatively the experimental results.
The (1 0 5) surface energy is, in fact, severely lowered for
compressive strain experienced in the Ge/Si heteroepitaxy.
This is due to the peculiar features of the rebonded-step (RS)
reconstruction observed on {1 0 5} facets [33, 47–49]. In the
RS structure the surface is partitioned into nanoscale {0 0 1}
facets by non-rebonded SA steps and rebonded SB steps [48].
As a result, the uppermost dimers in the (2 × 1) unit cell
form the characteristic array of U-shaped structures, organized
into zigzag rows orthogonal to the [0 1 0] direction which are
observed in high-resolution STM images (figure 10). The
easiest way to include the surface-energy anisotropy in the
total free energy gain of islanding (equation (6)) is to combine
FE calculations for the elastic term with ab initio density
functional theory (DFT) data for the strain-dependency of the
(1 0 5) surface energy [48]. In other words, it is possible to
interpolate ab initio results [48] for surface energy versus strain
and use this dependence to obtain the surface energy value
corresponding to the average value of the strain over each facet
provided by FE simulations.

The importance of this correction of surface energy
is clearly shown by figure 11 where we compare the
formation energy �F(V ) (equation (6)) of a {1 0 5} Ge
pyramid (r = 0.1) calculated assuming a strain-independent
surface energy with that obtained after taking into account
the dependence of the energy density γ105 of the island
facets upon strain. The lowering of surface energy under
compressive strain flattens the activation energy for island
formation, correctly describing the barrierless nucleation
process observed experimentally [21, 25].

Figure 9. STM images showing the principal islands’ morphologies
observed in Ge/Si(0 0 1) epitaxy: (a) pre-pyramids; (c) pyramids;
(e) domes; (g) barns. Panels (b), (d), (f), (h) show the corresponding
FPs. Copyright Wiley-VCH Verlag GmbH & Co. Reproduced with
permission [11].

A further shape transition, called ‘domes’, is observed at
higher coverage between pyramids and larger islands [50–52].
The domes have a perfect fourfold symmetry like pyramids, but
more complex morphology, including four {1 0 5}, four {1 1 3}
and eight {15 3 23} facets (figure 9(e)). It has been shown that
pyramids transform into domes beyond a critical size. Such
a transformation is still not fully settled, although the growth
sequence of flat pyramid-stepped pyramid-domes starting from
the more relaxed top of pyramids seems favored from a
kinetic view-point [52]. FE simulations reveal interesting
information on this shape transition [16]. Figure 12(a) shows
the dependence of�F(V )versusV for pyramids and domes on
the singular Si(0 0 1) surface. The islands chemical potential,
µ, figure 12(b), is obtained by differentiating equation (6) with
respect to the number of atoms proportional to V . From this
analysis, we learn that the shape transition to domes, occurring
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Figure 10. (a) Schematic structure (top and side views) of the Ge/Si(1 0 5) RS surface reconstruction for a 4 ML Ge coverage. Pink circles
are Ge; subsurface Si layers are shown below (in green). Dashed lines show the surface unit cell. (b) Experimental and simulated STM
images (28 × 33) Å2 for filled (V = −1.5 V; I = 1.5 nA) and empty (V = +1.0 V; I = 0.7 nA) states at constant current. Copyright
American Physical Society. Reproduced with permission [84].

Figure 11. Formation energy of a {1 0 5} Ge pyramid calculated
assuming a strain-independent surface energy γ = σ = 65 meV Å−2

(continuous line) in comparison to the curve obtained after taking
into account the dependence of γ{105} on strain (dashed line).
Adapted from [108].

at the volume V1, is of the first-order, since it is accompanied
by a discontinuity in µ (marked by an arrow).

Recently, another coherent island shape, named barn in
figure 9(g), has been identified in the high-temperature growth
regime (T = 720 ◦C to 800◦) [53, 54]. These islands show
a distinct morphology with the appearance of {1 1 1} facets
in addition to the facets of domes (figure 9(h)). Stoffel
et al [54] demonstrated that the transition from domes to
barns is very similar to the pyramid-to-dome transition, i.e.
the appearance of steeper facets is accompanied by a drop in
the area of shallower facets. The formation of barns suggests
that steeper facets are progressively stabilized as the growth
temperature is increased. This was indeed confirmed by the
recent observation of ultra-steep {12 5 3} facets for islands
grown at 900 ◦C [55].

Figure 12. Total energy versus volume for pyramids and domes on
the singular surface and the corresponding behavior of chemical
potentials. The chemical potential corresponding to the lowest
total energy is indicated by the brighter color line showing a
discontinuity at the critical volume V1 marked by the arrow.
Adapted from [80].

2.3. Island shape and elastic field symmetry

The realistic modeling of the elastic field in epitaxial
nanostructures, obtained by FE simulations, makes it possible
to directly image the redistribution of elastic energy which
drives the formation of 3D islands. In spite of the larger
surface area (per unit volume) compared to a flat film, 3D
islands are energetically favored due to a global reduction
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Figure 13. (a) In-plane strain map for a Ge dome grown on a Si(0 0 1) substrate. Panel (b) and (c) show, respectively, cross-sectional slice
plots of the strain field in the substrate and the island.

of the elastic energy. Strain relaxation is caused by two
simultaneous mechanisms acting in islands [30]. First, misfit
strain is not entirely concentrated into the epimaterial, as in
the case of a planar film, but is partially redistributed into the
substrate. Moreover, on all the free surfaces characterized
by an inclination with respect to the interface, the in-plane
compression can be partially reduced since the material is free
to change its effective lattice parameter forces along the free
surface normal (in fact, the forces in that direction vanish). The
appearance of a non-uniform elastic field both in the island and
in the substrate is clearly evident in figure 13 which shows maps
of the in plane-strain ε‖ inside a Ge dome and in the Si(0 0 1)
substrate underneath. As expected from the lattice parameters
of Ge and Si shown in table 1, strain is compressive in the
island and tensile in the Si substrate close to the interface.
The substrate is partially expanded to match the larger lattice
constant of Ge. Clearly, the lattice distortion in the substrate
gradually decays as the distance from the island increases
(figure 13(b)). Conversely, the island is highly strained close to
the base and becomes more and more relaxed, moving from the
base towards the top (figure 13(c)). This strain redistribution
between island and substrate is evident in figure 14 which
shows the average in-plane strain at different position on the
vertical axis (normal to the interface). Further interesting
details can be obtained by analyzing the detailed shape of the
cross-sectional line profiles of ε‖ shown in figure 15(a). It
is worth noting that the strain profiles in the Ge dome are
generally characterized by a higher strain relaxation at the
island center, with the exception of the profile on the very
top (0 0 1) facet of the dome (topmost continuous profile). At
this point it is interesting to highlight the role of the island
shape on the strain distribution by discussing the case of
Ge/Si(1 1 1) islands. These islands are characterized by a
large atomically flat (1 1 1) surface parallel to the substrate
plane, and are stabilized by the surface-energy gain [8, 56]. By
analyzing figure 15(b), it can be seen that the different island
shape determines a completely different strain distribution with

Figure 14. Average in-plane strain at different position on the
vertical axis (normal to the interface). The position of the
island/substrate interface is at 0. L is the island radius.

respect to the Ge/Si(0 0 1) case: Most of the radial strain
profiles in the island now show a maximum compression at
the island center. The only exception is the lowest profile
drawn at the base of the island: This is due to the higher strain
concentration acting at the island base edges.

In the next section, we will discuss a case study in which
this peculiar shape-dependent strain profiles of Ge/Si(1 1 1)
islands is shown to markedly affect the growth evolution.

3. Experimental case studies

3.1. Strain-biased diffusion in Ge/Si(1 1 1) epitaxy

Epitaxial growth is dominated by the simultaneous effect
of elastic and diffusion fields. Therefore, by studying
their interconnection, a more exhaustive understanding of
the growth process is gained [57, 58]. Experimental and
theoretical studies have shown that misfit strain effectively
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Figure 15. Cross-sectional line profiles of in-plane strain in Ge
domes grown on (a) Si(0 0 1) and (b) Si(1 1 1). Profiles are
computed for different height in the island and for different depth in
the substrate. Continuous lines are the profiles inside the island and
dashed lines are the profiles in the substrate. The height and depth at
which the profiles refer are given in terms of the island height h.
From bottom to top: h/30; h/6; h/3.3; h/2.2; h/1.3; h/1.1; −4h;
−h/2; −h/3; −h/5.

alters the diffusion pathways by changing the barrier height
for diffusion, thus affecting the random motion of individual
atoms and determining a net current towards the decreasing
strain direction [59].

We have recently highlighted the interdependent role of
strain and diffusion on atolls formed after the annealing at
high-temperature of large islands grown on a Si(1 1 1) substrate
by deposition of 10 ML of Ge at 600 ◦C [60]. At much larger
Ge coverages, ranging between 250 and 1200 ML, and post-
growth annealing at 850 ◦C, a net of continuous corrugations
with steep facets on their sidewalls was observed and attributed
to the Ge segregation [61].

In this Section we show that, when the elastic field profiles
described previously, are coupled to the strain-driven diffusion,
the shape evolution from islands to atolls is qualitatively
reproduced.

From the experimental standpoint, atolls are formed
starting from large singular-top domes annealed to T ≈970 ◦C
for various time intervals. Figure 16 shows Ge atolls formed
after 10 s of annealing. They have either triangular or
circular bases, resembling the bimodal shape distribution of
Ge/Si(1 1 1) islands. From STM images, we observe an outer
ridge annulus, on average 30 nm high, separated by a trench-
like channel from the internal mesa. Sequential STM images
taken as a function of annealing time (figure 17) clearly show

the pathway of shape transformation from islands to atolls.
Pristine islands are initially indented by the formation of deep
trenches around their perimeter growing from the top face
down to the substrate and outwards. Trenches are the result of
the Ge–Si intermixing caused by the lattice strain on substrate
and along the island base and provide an efficient channel for
the mass exchange between islands and the substrate through
surface transport [62]. As the depression proceeds the inner
region of the islands is encircled by surrounding reefs and
finally converted into atolls. The result of the highly non-
uniform mass transport is clearly observed, the material being
drained out from trenches and diffused outwards; as the central
mesa is progressively eroded, becoming a shallow mound. The
source of this biased diffusion is related to the peculiar strain
distribution in Ge/Si(1 1 1). Figure 18 shows a map of the strain
energy density ρ (equation (17)), obtained by FE simulations.
In line with the strain profiles reported in figure 18(b), the
core of the islands is highly strained, whereas a strong misfit
relaxation occurs close to the outer rims. In-between, the
strain gradient is maximized where the trenches observed in
the experiment are formed. This strain gradient originates a
flux Jρ = −Dρ∇ρ, where Dρ is the diffusion coefficient of
the process [60]. The strain-driven flux can be added to the
general equation for diffusion which reads

∂tC = Dρ∇2ρ + DC∇2C. (21)

DC is the ordinary diffusion coefficient of the flux JC , caused
by the gradient of the surface concentration C of Ge adatoms.
For a cylindrical island with a highly strained core and an initial
aspect ratio of 0.1, we have solved equation (21), modeling
the overall shape of the elastic field as ρn,ω ≈ e−(rn/nωn), for
integer n even and ω < 1. The solution for ρ6,9/16 is shown in
figure 19.

It should be noted that, at relatively low temperatures
(�500 ◦C) of epitaxial growth, the small diffusion rate of
adatoms restricts the influence of intermixing and surface
mass transport with respect to the other energy minimization
processes. By contrast, these contributions become substantial
at higher temperatures and thicker coverage of Ge. As a
consequence, a purely kinetic description of the atolls shape
evolution seems reasonable as a first approximation. To sum
up the gradient of the strain is the source of the diffusion
flux driving the formation of atolls. The results shed light
on the intimate connection between strain and diffusion, and
contribute to a better understanding of their interdependence
in the self-assembly of mismatched nanostructures.

3.2. Shaping the morphology by substrate miscut

In the case of a substrate slightly misoriented from a singular
plane, the surface breaks up into a staircase of terraces and
steps and is referred to as a ‘vicinal surface’. The relevant
angles of a vicinal surface are the miscut polar angle θ and the
azimuthal angle φ (figure 20). Tanθ gives the density of steps
and tanϕ the density of kinks on the step edge [63]. Below we
will restrict ourselves to vicinal surfaces with φ = 0 for which
the density of kinks is minimal.
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Figure 16. STM images of atolls obtained by 10 s of annealing to 970 ◦C of 10 ML of Ge grown on the Si(1 1 1) surface. Adapted from [60].

The miscut dependence of vicinal surfaces induces
a strong asymmetry in the formation of self-assembled
nanostructures [64–66]. Apart from its important implications
for the growth process, the broken symmetry is technologically
relevant, since it is able to split the degeneracy of electronic
levels and to provide optical anisotropy [67–69].

Many investigations have reported extended {1 0 5}
faceting on Si(0 0 1) vicinal substrates [65, 69–74], suggesting
that the low surface energy of the {1 0 5} plane is crucial
in determining the shape evolution of Ge nanoislands. The
morphological change of the island is roughly as follows:
On the singular Si(0 0 1) surface a {1 0 5} pyramidal island
has fourfold symmetry and almost square base with each
side oriented along the 〈0 1 0〉 directions (figure 21(a)). As
the substrate miscut increases, the island elongates along the
[1 1 0] direction while its base becomes a distorted rhombus
(figure 21(b-e)). This shape change increases the side area
of the facets along the step-down direction at the expense of
the other facets. Let us consider a pyramid sitting on a vicinal
surface (figure 22). The [5 5 1] intersection line of two adjacent
{1 0 5} facets is tilted by 8.05◦ (indicated as β +θ in the sketch)
to the (0 0 1) surface. To allow {1 0 5} faceting, this angle
must never change, producing the observed elongation toward
the miscut direction. The asymmetry in terms of the ratio
between the longest and the shortest sides of the pyramid is
straightforwardly calculated as

Lm

LM
=

√
csc2 (8◦ + θ) + csc2(8◦)
csc2 (8◦ − θ) + csc2(8◦)

, (22)

and shown in figure 23 as a function of the mis-
cut angle. The good match between equation (22)

and experimental data indicates that the dot asymme-
try has a simple geometrical description. FE calcu-
lations of the average in-plane strain, εxy = (εxx+

εyy)/2, for a {1 0 5} energy-relaxed pyramid sitting on vici-
nal surfaces with increasing angles of miscut are illustrated in
figure 24. As expected, the Ge pyramid remains for the most
extent compressed to match the Si lattice constant even after
relaxation. The area nearby the vertex is the most relaxed, but
the amount of stress relief decreases as the misorientation an-
gle increases. The reduction of the aspect ratio determines, in
fact, a shortening of the apex-substrate distance, thus inhibiting
a complete relaxation. The substrate experiences an average
low level of strain; some residual tensile strain is observed just
below the pyramid, reaching a maximum in correspondence of
the projection of pyramid height. To counteract this expansion,
the substrate results compressed around pyramid edges.

From a general inspection of the images it is easy to
recognize that the higher the value of θ the higher the energy
density stored in the pyramid. To be quantitative, the strain
energy density, ρ, is computed numerically by integrating over
the island and substrate volume and is plotted in figure 25.
As anticipated, the elastic energy density inside the island is
an increasing function of θ . The amount of energy stored
in the substrate, normalized to the island volume, is instead
observed to decrease as the pyramid flattens and its capacity
of exerting tensile stress diminishes. The total energy density
is then obtained by summing up these two terms.

A similar calculation is performed on a thin WL of Ge
properly resized in order to cover the uppermost surface of the
substrate. By taking PBCs in the x–y plane, in-plane relaxation
is inhibited and the film is allowed to relax only along the z
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Figure 17. STM snapshots of the shape evolution during annealing
to 970 ◦C: (a) pristine compact islands grown with 10 ML of Ge
coverage; (b) 2 s of annealing; (c) 10 s of annealing; (d) 25 s of
annealing; (e) 50 s of annealing; (f) 90 s of annealing. Adapted
from [60].

direction. In this way the results are fully independent of WL
thickness, provided specific quantities are used. As done for
the pyramid, the substrate-WL system is rotated rigidly of an
angle θ to simulate an epilayer grown on a vicinal substrate.
The calculated ρ function of the WL is shown in figure 25.
Unlike pyramid, the substrate has an elastic energy density
several orders of magnitude smaller than the WL. Because it
lacks Ge-free areas, expanded and compressed domains are
no longer possible, and, consequently, no deformation takes
place. On the other hand, the amount of elastic energy in the
WL is higher than in the pyramid and nearly constant with
θ because the amount of energy depends on in-plane elastic
constants and the WL does not change its shape according to
angle.

Of course, a strict correlation exists between the
morphological evolution and the energetics of {1 0 5} facets.
The excess (free) energy of the island is derived as in equation
(6) with proper allowance for the angular dependence

�F (V, θ) = (
ρpyr(θ) − ρWL(θ)

)
V +

[
γ105S(θ)

−σWL(θ)B(θ)
]
V 2/3. (23)

Figure 18. Maps of the strain energy density obtained by FE
simulations for Ge/Si(1 1 1) islands: (a) top view; (b) lateral view. R
is the island radius. (c) Cross-sectional cuts of the strain maps taken
at different heights along the radial diameter of the island. From
bottom to top: h; 0.8 h; 0.65 h; 0.5 h; 0.4 h; 0.35 h; 0.3 h. Adapted
from [60].

Here, S(θ) and B(θ) are the lateral and base surface areas of
the pyramid which are simple increasing functions of the polar
angle;

σWL(θ) = α cos θ + β sin θ (24)

is the surface energy density of the vicinal Ge WL, which can
be estimated from the step formation energy per unit length,
β, including [75] or not [64] the step-step interaction energy.
ρpyr(θ) and ρWL(θ) are the elastic-energy densities stored,
respectively, in the island (including substrate deformation)
and in the WL. In figure 26(a), we plot the total energy versus
volume curves for a Ge pyramid grown on a misoriented Si
substrate with θ ranging between 0 and 5◦. Following Zhang
et al [76], the following parameters have been used: γ105 =
6.0 eV nm−2, σ∞

sub = 8.71eV nm−2 and σ∞
WL = 6.05 eV nm−2,

where σ∞
sub is the surface energy of the bare substrate, and σ∞

WL
is that of the Ge WL with infinite thickness. The thickness of
the WL is d = 4.5 ML.

The activation energy for island formation and the critical
volume Vc corresponding to the maximum of �F at a given
miscut angle θ are obtained by differentiating equation [23].
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Figure 19. Snapshots of the island shape evolution as obtained by solving the diffusion equation in the presence of misfit strain. t is the
simulation time: (a) t = 0; (b) t = 0.005; (c) t = 0.01; (d) t = 0.05; (e) t = 0.1; (f) t = 0.2. Scale boundaries are shown in the uppermost
panels. Copyright IOP Science. Reproduced with permission [60].

Figure 20. Schematics of a surface vicinal to a high index surface.
The density of steps and kinks is determined by the miscut polar
angle θ and the azimuthal angle φ. l is the average distance between
steps and d is the average distance between kinks. Copyright
Wiley-VCH Verlag GmbH & Co. Reproduced with permission [11].

With respect to volume and are given by

�Fc (θ) = 4
27

[γ105S(θ)−σWL(θ)B(θ)]3

(ρpyr(θ)−ρWL)
2 ,

Vc (θ) = 8
27

[γ105S(θ)−σWL(θ)B(θ)]3

(ρpyr(θ)−ρWL)
3 .

(25)

These quantities are shown in figure 26(b) as a function of
θ . One can see that both the nucleation barrier and the island
critical volume decrease substantially with the increase in the
miscut angle; in other words the nucleation is favored on the
vicinal rather than on the singular substrate. Accordingly, a
decreased size means fewer atoms form the island and thus
there is a smaller fluctuation to start the nucleation process.
It is worthy of note that the growth of dots on misoriented
substrates results in the progressive decrease of the WL
thickness with an increasing of the miscut angle. Nevertheless,
the barrier becomes exceedingly large for d thinner than 4 ML

ever diminishing probability of nucleating QDs below this
coverage, as illustrated in figure 26(c). The theoretical result is
consistent with the experimental evidence obtained on vicinal
surfaces [74, 77, 78].

When segregation of Ge atoms from the WL to the island
is allowed, much more epitaxial material ends up in the QDs
on the vicinal than on the singular substrates, causing a strong
decrease of Vc at a given critical miscut angle, θc , and the WL to
disappear [79]. As a consequence, a sharp transition from the
SK to the Volmer-Weber growth mode beyond θc = 4◦ − 6◦

together with a concomitant increase in the NC density, are
predicted. It should be noted, though, that the activation barrier
depends strongly on the exact values of γ105 and σWL and
that a realistic estimation needs to take into account the strain
energy correction to the surface energy [48]. As a result of
DFT in the local density approximation, a number of fairly
accurate surface energy values for the most relevant GeSi
surfaces are available. It is generally found that lowering the
surface energy of the {1 0 5} facets under compressive strain
flattens the barrier and gives rise to a barrierless nucleation
process, observed experimentally on the singular Si(0 0 1)
surface [21, 26].

For miscut angles larger than 8.05◦, instead, the formation
of a pyramid is hindered. As a matter of fact, at θ = 8.05◦, the
[5 5 1] line runs parallel to the substrate orientation (figure 22)
while the island rearranges itself into a strongly elongated
prism of triangular cross section bounded by two adjacent
{1 0 5} facets called nanoripple (figure 27) [65, 73, 80, 81].
Due to the geometric constraint, the down side of the ripple
cannot be bounded by real facets; thus it gradually lowers
in height and width as the number of stacked {1 0 5} layers
decreases near the end of the island (figure 27(b)). An accurate
evaluation of the elastic, surface and edge contribution to
islanding for θ = 8.05◦ shows that it is energetically more
convenient to pile up material on a long ripple than to form
an additional layer on the WL [82]. This explains the almost
perfect alignment of ripples [83] occurring on the Si (1 1 10)
surface under Ge deposition (figure 28).

As islands grow, their shape deviates from a skewed
version of the symmetric shape becoming asymmetric [80].
In comparison with the domes on the singular surface (fig-
ure 29(a)), which have two symmetric {1 1 3} facets along the

14



J. Phys.: Condens. Matter 27 (2015) 253001 Topical Review

Figure 21. Shape evolution of Ge islands on vicinal Si(0 0 1) surfaces. (a) θ = 0◦; (b) θ = 1.5◦; (c) θ = 2◦; (d) θ = 4◦; (e) θ = 6◦. From
the schematics, it is evident that the perfect fourfold symmetry of square-based islands on the singular surface is broken by the miscut. The
miscut-dependent asymmetry can be described in terms of the ratio between the lengths of the shortest (Lm) and the longest (LM) island’s
sides. Copyright Wiley-VCH Verlag GmbH & Co. Reproduced with permission [11].

Figure 22. Schematic representation of a {1 0 5} pyramid grown on
a vicinal substrate. In the real Stranski–Krastanov growth, a thin
WL, not shown in the figure, is present in between the substrate and
the pyramid. Copyright Wiley-VCH Verlag GmbH & Co.
Reproduced with permission [11].

[1 1 0] direction (indicated by α in the corresponding FP), the
domes grown on highly miscut substrates have a different set
of facets (γ and γ ′) on the opposite sides (figure 29(b,c)).

On (0 0 1) substrates with misorientation angles towards
the [1 0 0] direction approaching θ = 11.3◦ from below,
the surface strain causes remarkable changes of the angular
dependence of γ , transforming vicinal (0 0 1) surfaces into
vicinal surfaces of a new singular {1 0 5} face which does
not exist on the strain-free equilibrium morphology. This
conclusion is illustrated in figure 30 which shows the surface
morphology of Si(0 0 1) substrates for 6.0◦ < θ < 12.5◦

under increasing deposition of Ge. The left-column STM
images show the strain-free arrangement of these surfaces. Up
to 6.0–6.5◦ (figure 30(a) and (d)), when the average width
of terraces is comparable to the unit cell size, the (2 × 1)
reconstruction of the surface is preserved. However, the long
range periodicity is broken by the faceting of steps into a dense
array of kinks which compensate for the misorientation along

Figure 23. Lm/LM ratio as a function of the miscut angle. Dots are
the experimental values measured from STM images while the
continuous line represents the expected analytical ratio for an ideal
{1 0 5} pyramid calculated from equation (22). Copyright
Wiley-VCH Verlag GmbH & Co. Reproduced with permission [11].

[1 0 0]. Further misorientation destroys the reconstruction
resulting for θ > 7.5◦ (figure 30 (g) and (l)), in rugged
surfaces. The angular constraint θ≈7.5◦ is set by the width
of the smallest (2 × 1) terrace with average 〈0 1 0〉 orientation
of steps along the [1 1 0] direction and no longer holds in the
[1 1 0] direction where stable (0 0 1) surfaces are observed up
to θ > 10◦. By increasing Ge coverage, the rough (g) and
(l) surfaces flatten considerably, exhibiting the terrace-step
morphology of a vicinal surface (figure 30(i) and (n)) and the
typical RS reconstruction of the {1 0 5} side facets of QDs
grown on Si(0 0 1) substrates (figure 30 (h) and (m)). The
surface flatness is comparable with that of a singular facet,
which is understandable if one notices that, above θ = 6.5◦,
surfaces are vicinal to the [1 0 5] face with terraces parallel to
the (1 0 5) plane rather than to the (0 0 1) plane. Thus a polar
angle of, e.g. θ = 10.5◦ is only ∼1◦ off the (1 0 5) plane and,
hence, the terraces are wider than those (0 0 1) oriented toward
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Figure 24. Results of FEM calculations on {1 0 5} pyramidal islands. Left panels: cross section along the highest symmetry direction.
Right panels: corresponding 3D view. The chromatic scale gives the negative (compressive) strain experienced by the pyramid and the
positive (tensile) strain experienced by the Si substrate.

Figure 25. Partial and total contributions to the elastic energy
density ρ for the pyramidal island and the WL as a function of
miscut angle.

the [1 1 0] direction, as sketched in figure 31 and evidenced
by STM images in figure 32. Ultimately, the overall surface
morphology is changed since small and highly kinked (0 0 1)
terraces are replaced by much larger and regular (1 0 5) terraces

(figure 30(n)). This indicates that the (0 0 1)-to-(1 0 5) phase
transition is not just a matter of geometry but is also driven by
an effective energy gain. Therefore, the large-θ dependence of
the surface energy density (equation (23)), for which step-step
dipolar interactions can no longer be neglected, must play a
crucial role.

A generic vicinal orientation intermediate between the
(0 0 1) and the (1 0 5) planes can then be represented as

σk,WL(θ) = αk cos(θk− θ) +
βk

hk

sin(θi −θ)+
A

h3
k

sin3(θk− θ)

cos2(θk− θ)
,

(26)

where k labels the reference directions σ001 = 0◦ or σ105 =
11.3◦. The resulting σ -plot, shown in figure 33(a), captures the
essential features of the experiment, namely, the appearance of
two cusps in the correspondence of the (0 0 1) and the (1 0 5)
orientations, the latter acting as a singular face in the presence
of epitaxial strain. Once strain is introduced through Ge
deposition, the (2 × 1) structure remains favored from θ = 0◦

up to θ < 5◦ [70]. At larger θ values, the (1 0 5) surface
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Figure 26. (a) Free energy of pyramidal Ge islands grown on vicinal
Si(0 0 1) surfaces as a function of volume for various miscut angles
and fixed WL thickness of 4.5 ML. (b) Energy barrier and critical
volume as a function of miscut angle. (c) Energy barrier as a
function of WL thickness for various miscut angles.

is the most stable and, thus, it develops as follows: (a) at
6.5◦ it replaces the (2 × 1) reconstruction, and (b) at higher
angles it evolves from the initially rough morphology of the
clean surface for which the (2 × 1) reconstruction is hindered
geometrically toward the vicinal (1 0 5) stepped morphology.
Owing to the symmetric shape of the σ -plot around the (1 0 5)
cusp, the structural evolution for θ = 12.5◦ is the same as at
angles slightly lower than 11.3◦.

Combining equation (23) and (26) and setting σWL(θ) =
γ105 for large θ ’s to mimic the fact that terraces run parallel

to the (1 0 5) plane, one finds that islands’ nucleation is
an activated process on (1 0 5) terraces, as illustrated in
figure 33(b). Indeed, experiments show that {1 0 5} islands
formed at the earliest stages of growth coexist with domes
at larger coverage (figure 34(a)). Due to the misorientation
from the (0 0 1) plane, {1 0 5} pyramids have truncated skewed
shapes (figure 34(b)). For θ > 5◦, the surface energy gain of
{1 0 5} pyramids is counterbalanced by that of the {1 0 5}-
reconstructed planar WL. At low Ge coverage, the activated
nucleation of pyramids requires large fluctuations to form
clusters of critical size; this is definitely not a plausible kinetic
route compared to the thickening of a low-surface-energy 2D
film. At larger coverage, instead, the system is prone to choose
the steeper dome shape to relieve strain efficiently.

The emergence of a strain-induced branch in the σ -plot of
the substrate delays the onset of 3D islanding from about 3.5
to 5 ML, above which only domes grow (figure 34(c)). Indeed,
the aspect ratio distribution on the 6◦-miscut (0 0 1) surface is
unimodal (figure 34(e)). Also the pathway leading to domes
is different: domes, which usually develop from increasingly
steeper pyramids, evolve from seeds nucleated onto planar
WL (figure 34(d)). This shows that on vicinal surfaces strain-
induced structural changes result in huge alterations of the SK
growth, leading to the equilibrium phase diagram displayed
in figure 35. The diagram schematically summarizes the
above results. The most striking feature is the appearance
of the RS (1 0 5) reconstruction in the narrow 6◦ < θ < 7.5◦

range for which the (2 × 1) reconstruction is geometrically
hindered. Thus, changes in the substrate surface structure
affect the stability of SK islands, providing an explanation for
the long-standing question of whether {1 0 5} faceting has a
unique pathway in Ge/Si epitaxy. In addition, terraces formed
on{1 0 5}-vicinal surfaces are wide enough to allow an optical
study of their electronic properties [84].

3.3. Effect of the elastic field symmetry on the arrangements
of self-assembled Ge nanostructures

By changing the miscut angle it is possible to tune the
elastic-interaction potential among islands and therefore to
study how the specific island’s shape depends on the elastic
interaction across a variety of realistic configurations of strain
fields [66, 85]. The resulting effect that affects the island
size depends on the elastic field intensity. For small islands,
such as pyramids and ripples, the breaking of the elastic
field symmetry induced by vicinality alters the lateral spatial
ordering between islands. By contrast for large volume islands
such as multifaceted domes, the elastic field drives the Ge
growth through pathways different from those that arise in the
case of Ge growth on planar silicon substrates.

Vicinal islands interact repulsively through their recipro-
cal strain fields in the surface [86–88]. We can define the mu-
tual interaction energy Y as the extra energy density needed
to create an island in a specific site when another island exists
nearby:

Y = U (r) − U (∞) , (27)

where U(r) is the total energy strain density stored in the
island and in the substrate for a pair of islands with relative
distance r .

17



J. Phys.: Condens. Matter 27 (2015) 253001 Topical Review

Figure 27. STM images of Ge ripples grown on the 8◦-miscut Si(0 0 1) surface. Note that, due to the geometric constraint of vicinality, the
down side of the ripple (b) is not bounded by {1 0 5} facets. Copyright Wiley-VCH Verlag GmbH & Co. Reproduced with permission [11].

Figure 28. 3D STM image of the 8.05◦-miscut Si(0 0 1) surface
being completely covered with Ge ripples. Copyright Wiley-VCH
Verlag GmbH & Co. Reproduced with permission [11].

The elastic interaction energy, calculated by FE, is almost
isotropic for the two main configurations of a Ge island pair
grown on a flat Si(0 0 1) surface (figure 36(a)). The situation is
very different when the Ge island is grown on vicinal substrates
which show a strong directional dependence of the elastic
interactions, such dependence increasing for larger miscut
angles (figure 36(b,c)). In this latter case the lowest-energy
configuration corresponds to an islands pair aligned along the
[1 1 0] miscut direction. The energy density maps of an island
pair for miscut angles respectively of 6◦ (figure 36(d)) and
8◦ (figure 36(e)) display the elastic relaxation within and on
the substrate around them by using two different scales. It is
evident that at high vicinal angles the morphological anisotropy
of islands breaks the symmetry of elastic potential producing
directions of reduced interaction energy. It is worth noting that
for large islands the specific shape of island is immaterial and
the elastic interaction scales as in the case of two distributions
of dipoles, i.e. as r−3 [86] (dotted curve in figure 36(a)). On the
other hand at smaller distances the point-island approximation
is no longer valid and the specific details of elastic energy
depend on the island’s shape. In summary, for small volume
islands (e.g. pyramids and ripples) at an increasing miscut

angle, the anisotropy of strain fields increases inside and
around each island: This affects the short range local lateral
arrangement of islands which becomes anisotropic [85].

In the case of Ge domes the elastic interactions are more
intense but, nonetheless, they can also be tuned by substrate
vicinality. In figure 37 the island’s interaction energy and
the correspondent contour plot are reported, respectively, for
Ge domes grown on a flat (figure 37 (a) and (b)) and on
10◦-miscut (figure 37(c) and (d)) Si(0 0 1) surface. In the
case of a singular substrate the interaction potential reflects
the four-fold symmetry and the islands’ coalescence along
the minima in the 〈0 0 1〉 directions. Conversely, for domes
grown on vicinal substrates the breaking of island’s symmetry
produces directions with low elastic repulsion along which
islands can come into contact. Soft configurations are obtained
for islands interacting within an angular window of ±60◦ about
the [1 1 0] direction (figure 37(d)). So the shape of elastic
potential affects the impingement directions: This result is
confirmed by the STM images measured in the case of Ge
domes grown on 8◦ and 10◦-miscut Si(0 0 1) substrates [66].
The statistical analysis on the distribution of impingement
directions reported in figure 37(e, f) shows that the number of
impingements is impressively larger along the elastically soft
directions around[1 1 0]. This result proves experimentally
that the elastic interaction anisotropy can be used to drive the
pathways of Ge heteroepitaxy so providing new self-assembled
strategies. Moreover this analysis can be applied to other
hetereopitaxial systems for which elastic field is a common
key parameter.

3.4. Size-dependent reversal of the elastic interaction energy

In the following we will show how the elastic interactions,
that depend on the island shape, can deviate from the point-
dipole approximation [86], changing drastically the interaction
energy among islands and driving particular pathways in the
ordering of islands. The specific shape of the elastic strain
around and below the islands can modify the interactions
usually experienced by equally sized islands from repulsive
to attractive. In the framework of FE method we consider two
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Figure 29. Morphology of Ge domes: (a) on the singular, (b) on the 8◦-miscut and (c) on the 10◦-miscut Si(0 0 1) surface. In the insets, the
corresponding FPs are shown. The spots of the different facets are labeled as follows: {1 0 5} by ©; {1 1 3} by α; {15 3 23} by β; {1 1 1} by
δ; the new facets along the miscut direction on vicinal substrates are indicated by γ and γ ′. Copyright Wiley-VCH Verlag GmbH & Co.
Reproduced with permission [11].

Figure 30. STM images, (24 × 24) nm2, showing the strain-induced structural evolution of vicinal Si(0 0 1) surfaces at increasing Ge
coverage: (a, d, g, l) clean surfaces; (b, e, h, m) 0.4 ML of Ge; (c, f, i, n) 1.3 ML of Ge. Image (n) has positive sample bias. θ is the
misorientation angle from the (0 0 1) face toward the [1 0 0] direction. In the images, the horizontal and vertical axes are oriented along the
〈1 1 0〉 directions. Copyright American Physical Society. Reproduced with permission from [109].
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Figure 31. The alternative step structures of a vicinal (0 0 1) and
(1 0 5) surface. The terrace and step edge surface energies are
labeled α and β, respectively. Copyright American Physical
Society. Reproduced with permission from [109].

nanostructures elastically interacting on a half space namely
a (1 1 1) surface of Si: a large island and a small neighboring
cluster (figure 38). A rotational symmetry has been taken into
account, assuming a large island with cylindrical shape and an
aspect ratio equal to 0.1 and a small hemispherical cluster with
variable size and position.

The interaction energy Y is calculated for different values
of the ratio between the cluster (Rc) and island (Ri) radius. In
figure 39(a, b) the elastic energy surface of an island-cluster
pair with Rc/Ri ratio equal to 0.25 and 0.0125 respectively
is reported. It is evident that for largest cluster radius
the interaction energy is positive everywhere leading to a
repulsive interaction tending to disadvantage the formation of
a cluster close to the island. Conversely, when the cluster
size is reduced, the interaction potential changes drastically,
assuming a potential well shape and showing that clustering
lowers the total strain energy of the system. To identify
the physical origin of such an attractive interaction we have
analyzed the detailed shape of elastic field for a single island-
cluster pair, as displayed in figure 40, where the strain is
mapped on the side of the island close to the cluster and on
the opposite side. The cluster generates a dual effect: on the
one hand it produces a relaxation of the compressive strain
generated from the island; on the other hand is itself a source
of compression that depends on its size. The total effect can
lower or increase the total energy of the system. To take into
account the relative weight of these two contributions the in-

plain strain integral,
x∫

0
|ε‖(x ′)| dx ′, along the substrate surface

is reported as a function of x = rx/Ri on the side of the island
close to the cluster and on the opposite side. If we compare
the results in the case of a small cluster (figure 40(a) and (b))
the total strain appears flat under the cluster; this shows that
in this position the strain is partially relieved and the total
energy is lower than that on the cluster free side. Conversely,
for the large cluster, (figure 40(c) and (d)), the in-plane strain
integral is no longer flat under the cluster while outside the
cluster edge the compression is clearly evident. In the case of
Rc/Ri = 0.0125, if we consider the cooperative contribution
of several independent clusters, we obtain the results shown
in figure 41 in which it is evident that the more numerous
are the islands, the deeper is the interaction energy well.

Figure 32. STM images of a vicinal (1 0 5) surface (a) and a vicinal
(0 0 1) surface (b) at a polar angle of θ = 10◦ and azimuthal
misorientation toward the [1 1 0] and the [1 0 0] directions,
respectively. The vicinal (1 0 5) surface has markedly larger
terraces, as evident from the corresponding line profiles shown in
panel (c). Copyright American Physical Society. Reproduced with
permission from [109].

In other words the island attracts many clusters around it. This
theoretical prediction is confirmed by the experiment [110]
shown in figure 42. Around a large island, grown by depositing
10 ML of Ge at 873 K on a Si(1 1 1) substrate, a trench region
where several clusters nucleate is apparent. Their density is not
homogeneous this being higher in close proximity to the island
edge. Moreover the trenches visually trace out the compressive
region around the island edges [24] which attract the clusters
as is predicted by the simulations.
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Figure 33. (a) σ -plot of strained Si between the (0 0 1) and the
(1 0 5) orientations. (b) Activation energy for {1 0 5} islanding as a
function of the miscut polar angle.]. Copyright American Physical
Society. Reproduced with permission from [109].

4. The effect of intermixing on elastic relaxation

In this section, we will discuss some important issues which
have been neglected in the previous description of elastic
relaxation. If we re-examine equation (23), we could ask, e.g.
what specific surface energy, σ , has been used—as done—for
the free energy. From section 2, we know that σ of a strained
epilayer is an unknown function of its thickness which must
be calculated numerically. It has been shown [89], however,
that this dependence can be well approximated by a quasi-
exponential decrease of σ with thickness d

σ(d) = σ∞
sub +

(
σ∞

WL − σ∞
sub

) (
1 − e−d/η

)
. (28)

For Ge/Si, equation (28) fits nicely the ab initio data for η = 1.
Obviously, the correction is mostly effective at low thickness
(d < 2 ML), where the surface energy drops from the value of
the bare Si towards that of the bulk Ge. At larger coverage, i.e.
for WL thickness between 3 and 4 ML at which nucleation
of 3D islands occurs [24], one can safely use the surface
energy density of a strained infinite Ge layer without altering
significantly the total free energy gain.

It is much more important to take into account the
substrate-deposit alloying, since intermixing can drastically
reduce the misfit parameter and the latter has a quadratic
dependence on the volume strain energy density. This means
that a drop in the lattice mismatch causes a substantial fall of
the strain energy density. In the case of Ge/Si, a Si1−xGex

random alloy of average lattice mismatch f (x) = 0.04x and

Figure 34. (a, b) STM images of the 6◦-miscut Si(0 0 1) surface.
(a) Bimodal island distribution at a coverage of 5.5 ML of Ge.
(b) Snapshot of a skewed pyramid bounded by {1 0 5} facets.
In the inset, (20 × 20) nm2, the RS reconstruction of the facets is
evident.(c, d) STM images of the 7.5◦-miscut Si(0 0 1) surface.
(c) Unimodal distribution of domes at a coverage of 5.5 ML of Ge.
(d) Precursor of domes growing from the planar WL. (e)
Distribution of the island aspect ratio on a 6◦-miscut Si(0 0 1)
surface and a Si(1 0 5) surface. The two distributions are
fitted to Gaussian functions. Copyright American
Physical Society. Reproduced with permission
from [109].

average composition x close to 0.50 [62, 90, 91] is formed.
Direct evidence of intermixing is, e.g. the appearance of
buckled Ge dimer sites on the Si(0 0 1) WL [92, 93] and of
trenches surrounding the islands [60, 62].

Experiments show that the equilibrium shape of the islands
is not excessively changed by intermixing at the typical
temperatures used in growth experiments [94]. This allows
us to treat alloying as a correction to the equilibrium shape
predicted by the elastic FE analysis applied to unalloyed
islands. Let us assume, as a first approximation, that alloying in
the island is uniform. According to the Vegard’s law, the elastic
constants of the alloy are then linearly interpolated between Si
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Figure 35. Schematic orientational experimental phase diagram of
Si/Ge surface vicinal to the (0 0 1) and the (1 0 5) planes along the
[1 0 0] direction, as a function of Ge coverage. The sharp boundaries
are for guidance only. Copyright American Physical Society.
Reproduced with permission from [109].

and Ge ones, namely

Cij (x) = CGe
ij x + CSi

ij (1 − x) , (29)

where CGe
ij and CSi

ij are the stiffness tensors of pure Ge and
Si, respectively (table 1). We can therefore perform FE
simulations of elastic relaxation of Si1−xGex islands as a
function the Ge composition x and, for each island, compute
the relaxation factor R(r ,x), by comparing the elastic energy
density to that of a Si1−xGex strained film of the same
composition which reads (figure 43)

ρWL(x) = {
C11 (x) + C12(x) − 2[C12(x)]2/C11(x)

}
[f (x)]2 .

(30)

Figure 44 shows that the scaling with the aspect ratio is
only slightly dependent on the island’s composition. The
behavior can still nicely be fitted by an exponential form
R(r, x) = e−k(x)r [45] in which the decay constant k(x) shows
a weak linear dependence on Ge composition (figure 45).
The decrease of the decay constant with Ge content is
due to the smaller elastic constants of Ge compared to Si.
Introducing the composition-dependence in equation (20), one
can predict the preferential aspect ratio for each volume, i.e.
the island’s shape evolution, as a function of the alloying
content (figure 46). Since alloying cooperates/competes with
shape change for elastic relaxation [6, 95], the results obtained
are clear: for intermixed islands, the evolution towards steeper
morphology is shifted to larger critical volumes.

As evident from figure 18, strain energy is not completely
relieved for pure Ge islands, but remains concentrated at the
bottom edges of the islands. Elastic relaxation mediated
by alloying is instead more efficient, thanks to the injection
of Si atoms from the substrate. Moreover, by plotting

the relative difference of relaxation factors �R/R between
shallow (r = 0.05) and steep islands (r = 0.7) for different
Ge content (figure 47), one can also notice that the free-energy
gap between shallow and steep islands is broadened by Ge
redistribution [96].

Despite the assumption of uniform alloying being a good
starting point for our analysis, it is not fully consistent with
experimental results which reveal, instead, relatively non-
homogeneous concentration profiles. The alloying distribution
inside the islands can be probed by scattering experiments,
such as anomalous x-ray diffraction [94, 97]. The results
suggest an increase of the average Ge content moving from the
base toward the top. For instance, Wiebach et al [98] report
Ge concentrations of 25% in the lower and 30% in the upper
part at about one third of the island height, while Malachias
et al [94] find a Si-rich core covered by a Ge-rich external
shell.

Both thermodynamic and/or kinetic driving forces have
been suggested for alloying and the literature on the subject is
worth of a review paper in itself (see, e.g. [99]). Nonetheless,
predicting at the same time both the equilibrium shape and
composition of the dots remains a challenging task. We
will consider here a very instructive model proposed by
Spencer and Blanariu [100] in which the concentration c(r, z)

and the dot shape h(r) are calculated in close form for a
Ge island on Si(0 0 1) in the small-island limit. This is
only possible within the approximation of negligible bulk
diffusion and rather fast surface diffusion. One starts from
the constitutive equations (16) and includes, in the diagonal
components of the strain tensor εij , a compositional strain
−η[c(r, z) − c0], this being proportional to the expansion
coefficient η of Ge within the WL film and zero in the
Si substrate. c0 is the average composition of the island
of volume V . The chemical potentials µi = dGi/dc,
which are defined for each atomic species (i = Ge and
Si), depend on the elastic strain and composition. A fully
miscible random alloy is assumed [101]. As the island shape
is computed self-consistently using equation (15), the non-
uniform stress field results in a non-uniform composition along
the surface. For small island volume and low aspect ratio,
the equilibrium h(r) and c(r , z) profiles can be disentangled,
giving

h(r) = A


a0 +

∞∑
j=1

ajJ0

(zj r

R

)
 , (31)

and

c(r, z) = C

[
α +

L

r

d

dr

(
r

dh(r)

dr

)]
z

h(r)
, (32)

where J0 is the zeroth order Bessel function and zj is the j th
zero of J1(z). L is a length scale factor and C sets the amount
of strain-induced segregation which increases with the lattice
misfit ε = −ηx. Figure 48 shows concentration profiles
obtained, as the island grows, from the burial of successive
layers with variable composition. In a very good match with
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Figure 36. (a–c) Elastic interaction energy for different configurations of an island pair (a) on the singular, (b) on the 6◦-miscut, and (c) on
the 8◦-miscut Si(0 0 1) surfaces (vertical axis in arbitrary units, horizontal axis in units of the average island side). The data in the panel (a)
are fitted to a r−3 function at large island separations (dotted curve) and to an exponential function at short separations (dashed curve). The
vertical line marks the boundary between the two regimes. Elastic energy density maps of an island pair on (d) 6◦-miscut and (e) 8◦-miscut
surfaces. Each plot is displayed with two different scales giving the elastic relaxation within the islands and on the substrate around them.
Copyright American Physical Society. Reproduced with permission [85].

experimental observation, the composition map indicates that
Ge tends to segregate close to the apex of the island where the
elastic strain is minimum. Nonetheless, the model is not able
to describe features, such as Si enrichment around the corners
of faceted islands, which suggest relevant kinetic restrictions,
completely neglected in this picture [102, 103].

In principle, Monte Carlo (MC) simulations are able
to obtain concentration profiles minimizing the system free
energy of the system [31, 104, 105] by using an iterative
procedure consisting of chemical-species random exchange,
energy optimization and acceptance probability determined by
Boltzmann statistical weights. Once again, the application
of this approach is somehow limited by the demanding
computational cost when treating islands with realistic
size/shape. One could think of circumventing this issue
with scaling-down approaches, but then face the problem of
reproducing facets with a minimum physically meaningful
extension [96]. A possible solution would be combining
MC-FE methods for a fast self-consistent calculation of
SiGe distribution minimizing the elastic energy [96, 106].
In practice, an additional mesh defines a non-uniform
composition grid. The values assigned to the latter

are randomly changed (maintaining constant the average
composition) by an iterative procedure with an acceptance
criterion based on the minimization of elastic energy at
each step by FE calculations. It is clear that the alloying
distribution obtained is dictated by thermodynamics alone.
Therefore, the iso-composition maps match those obtained
by selective wet chemical etching [103] only for moderate
growth temperature (T ∼580 ◦C). Conversely, for islands
grown at higher temperature at which kinetic effects cannot
be neglected, the experimental composition profiles are much
more uniform than the simulated ones [96]. The ultimate
goal is therefore to develop methods assessing both kinetics
and thermodynamics. At present initial attempts have been
limited to simplified 2D models [107], albeit they could explain
qualitatively some experimental findings of the heteroepitaxial
growth.

5. Summary

Through a critical analysis of a number of experimental and
theoretical aspects concerning Ge on Si growth, we have
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Figure 37. (a) Interaction energy surface of Ge domes on the singular Si(0 0 1) surface and (b) corresponding contour plot. (c) Interaction
energy surface of Ge domes on 10◦-miscut Si(0 0 1) surface and (d) corresponding contour plot (The region of reduced interaction energy
around the miscut direction is highlighted). Angular distribution of impingement directions measured (e) on 8◦-miscut Si(0 0 1) substrates
and (f) on 10◦-miscut Si(0 0 1) substrates. Copyright American Physical Society. Reproduced with permission [66].

Figure 38. The geometric model used in the FE simulations.
The system consists of a large Ge island interacting with a small Ge
(�1) cluster (�2) through a Si substrate (�3). Copyright IOP
Science. Reproduced with permission [110].

examined the pivotal role of elasticity in strained epitaxial
systems. The problem of stability of QD morphology has

Figure 39. The elastic interaction energy surface of a Ge island
interacting with a cluster for (a) Rc/Ri = 0.25 and (b)
Rc/Ri = 0.0125. The scale of the horizontal axis is given in units of
the radius of the island. The geometric boundary of the island is
highlighted. Copyright IOP Science. Reproduced with
permission [110].
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Figure 40. The in-plane strain distribution in the interacting island–cluster system for Rc/Ri = 0.0125 (panels (a) and (b)) and
Rc/Ri = 0.25 (panels (c) and (d)). For the two values of the size parameter, the strain is mapped on the side of the island close to the cluster
and on the opposite side. The spatial dependence, as a function of x = rx/Ri , of the path integral of ε‖ along the substrate surface is
superimposed on the strain IOP Science maps. Copyright. Reproduced with permission [110].

Figure 41. The depth of the interaction energy well as a function of
the number of clusters for Rc/Ri = 0.0125. The continuous line is a
linear fit to the data. Copyright IOP Science. Reproduced with
permission [110].

Figure 42. STM images of large Ge island surrounded by clusters
on a Si(1 1 1) surface at a Ge coverage of 10 ML. Adapted
from [110].

Figure 43. Elastic energy density of a flat Si1−xGex epilayer grown
on Si as a function of the Ge content.

Figure 44. Relaxation factor versus aspect ratio for Si1−xGex

pyramids of different Ge content. Copyright Wiley-VCH Verlag
GmbH & Co. Reproduced with permission [11].

been examined in the framework of continuum elasticity
theory and useful analytical formulas applicable to simple
morphologies are provided. The results of modeling have
been compared with the experimental STM data taken on
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Figure 45. Dependence of the decay constant k(x) on the Ge
content x in the alloy. Copyright Wiley-VCH Verlag GmbH & Co.
Reproduced with permission [11].

Figure 46. Thermodynamically favored aspect ratio of Si1−xGex

islands as a function of volume obtained by FE simulations.
Copyright Wiley-VCH Verlag GmbH & Co. Reproduced with
permission [11].

Figure 47. Relative difference of relaxation factors between
shallow (r = 0.05) and steep (r = 0.7) Si1−xGex islands as a
function the Ge content in the alloy. Copyright Wiley-VCH
Verlag GmbH & Co. Reproduced with
permission [11].

SiGe as a function of coverage to assess the validity of model
descriptions against realistic growths. In this context, we
have assessed several case studies in which the anisotropy
of the elastic interactions, induced by substrate symmetry-
as crystallographic orientation, steps, and vicinality- crucially
determines the growth behavior. The issue of strain-biased
diffusion has also been briefly discussed. Finally, we
have addressed the problem of intermixing starting from
homogeneous alloying and then shifting to more realistic
compositional maps.

Figure 48. Island shape and composition map according to
equation (32). The lateral size of the island is L. The composition
map is a contour plot of the composition profile c(r, z)/C, the
scaled deviation from a reference composition C. The step between
contours is 0.25, vertical lines are the zero contours, and dark
corresponds to the larger misfit component (i.e. Ge). Copyright
Wiley-VCH Verlag GmbH & Co. Reproduced with permission [11].
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[57] Larché F C and Cahn 1982 Acta Metall. 30 1835
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