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Abstract: The magnetic anisotropy and exchange coupling between spins localized at the positions of
3d transition metal atoms forming two-dimensional metal–organic coordination networks (MOCNs)
grown on a Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni
or Mn metal centers linked by 7,7,8,8-tetracyanoquinodimethane (TCNQ) organic ligands, which
form rectangular networks with 1:1 stoichiometry. Based on the analysis of X-ray magnetic circular
dichroism (XMCD) data taken at T = 2.5 K, we find that Ni atoms in the Ni–TCNQ MOCNs are
coupled ferromagnetically and do not show any significant magnetic anisotropy, while Mn atoms in
the Mn–TCNQ MOCNs are coupled antiferromagnetically and do show a weak magnetic anisotropy
with in-plane magnetization. We explain these observations using both a model Hamiltonian based on
mean-field Weiss theory and density functional theory calculations that include spin–orbit coupling.
Our main conclusion is that the antiferromagnetic coupling between Mn spins and the in-plane
magnetization of the Mn spins can be explained by neglecting effects due to the presence of the
Au(111) surface, while for Ni–TCNQ the metal surface plays a role in determining the absence of
magnetic anisotropy in the system.

Keywords: magnetism; metal–organic network; X-ray magnetic circular dichroism (XMCD); density
functional theory

1. Introduction

There exists an exciting type of two-dimensional system that can be grown on surfaces by
self-assembly techniques. This is of interest both from a fundamental point of view and because
of the potential applications in the fabrication of electronic and spintronic devices. These systems
are called metal–organic coordination networks (MOCNs) and consist of metal centers linked by
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organic ligands that permit, in principle, the design of overlayers with specific electronic and magnetic
properties [1]. The synthesis and growth of a given MOCN with a given composition, essentially
defined by its stoichiometry and coordination, depends on the relative strength of the interactions
between the constituents (organic ligands and metal centers) and their interaction with the underlying
surface [2–11]. Indeed, the chemical state of the organic ligands and metal centers can be modified due
to vertical electronic charge transfer from the surface [12]. Additionally, lateral charge transfer between
the MOCN constituents is crucial for bonding and equally important for the electronic and chemical
properties of the overlayers. Particularly interesting is the role of the metal centers in the formation of
the two-dimensional networks by favoring a given coordination and stoichiometry, determining the
charge and magnetic moment of the metal center, and, occasionally, also of the organic ligand that can
acquire spin polarization. An important point is that this spin-polarized hybrid state could be used to
control the electronic and magnetic properties of the interface.

The case of 3d transition metal atoms as metal centers and molecules with large
electronegativity, like 7,7,8,8-tetracyanoquinodimethane (TCNQ) or 2,3,5,6-tetrafluoro-7,7,8,8-
tetracyanoquinodimethane (F4TCNQ), on metal surfaces is of special interest because they form
well-ordered MOCNs with few defects and different stoichiometry [4,7,13]; the latter characteristic
depends both on the underlying surface and preparation conditions. The experimental techniques
typically used to characterize the geometric structure and chemical composition of MOCNs on
surfaces are scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and
X-ray photoemission spectroscopy (XPS), while for the electronic and magnetic properties the standard
techniques are angle-resolved photoemission spectroscopy (ARPES) , scanning tunneling spectroscopy
(STS), and X-ray magnetic circular dichroism (XMCD).

The theoretical description of this type of system has been shown to be quite reasonable using
standard electronic structure methods, like density functional theory (DFT) [4,11,13,14], although one
has to be aware of the limitations of each method when aiming at achieving quantitative agreement
with the experimental data. However, the explanation of the observations at a qualitative level and its
understanding with the help of a model Hamiltonian is the recipe that we follow in this work. In any
case, it is worth mentioning that an essential problem, which is hard to overcome, concerns the accuracy
of the calculations when dealing with very low energy scales, as is the case of the determination of
exchange couplings or magnetic anisotropies in the sub-meV energy range. Apart from this limitation
imposed by the methodology itself, it is also important to stress that exchange coupling and magnetic
anisotropy energy are extremely sensitive to both slight geometrical distortions and band filling,
i.e., electronic charge transfer. Therefore, it is important to balance the different effects that each and
every approximation can have in the final results when trying to explain an observation that can
be deduced, e.g., from XMCD data, regarding the strength and type (ferro or antiferromagnetic) of
exchange coupling or the kind of magnetic anisotropy (easy axis or easy plane).

The exchange coupling between magnetic centers in two-dimensional MOCNs is affected to a
major or lesser extent by the underlying substrate. The presence of the surface represents a difficulty
for describing the full system (MOCN/surface) because the overlayer structure is not necessarily
commensurable with the crystal surface or because the size of the commensurable supercell is too
large. In the case of weak coupling between the overlayer and the surface, as is the case of Au(111)
surfaces, the essential features can be described by neglecting the role of surface electrons in the
first approximation. As a rule of thumb, when the lateral bonds between the metal centers and the
organic ligands are much stronger than the metal–surface or ligand–surface bonds, this approximation
is expected to be a reasonable way to describe the magnetic coupling between metal atoms in the
MOCN. However, in case of lateral (metal–molecule or intermolecular) and vertical (MOCN–surface)
couplings of comparable strengths, an explicit inclusion of the surface is required to describe the
system, which could happen either due to strong coupling with the surface or weak lateral coupling.
Next, one should consider the role of charge transfer between surface and overlayer, even in the case of
weak coupling, as it can be important in determining magnetic moments, magnetic coupling, or even
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magnetic anisotropy. Indeed, when intermolecular coupling is weak, the role of surface electrons can be
relatively more important in determining the magnetic coupling between spins of the metal centers
via Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction [15], which may appear not only on metal
surfaces but also on the surface of topological insulators [16,17]. Very recently, it has been proposed
that the RKKY interaction is responsible for the long-range ferrimagnetic order in a two-dimensional
Kondo lattice with underscreened spins by the conduction electrons in a FeFPc–MnPc mixture on the
Au(111) surface [18].

In this work, we consider the case of MOCNs that consist of Mn or Ni magnetic atoms and
TCNQ or F4TCNQ molecules grown on Au(111) surfaces, which show 1:1 stoichiometry with each
metal center (Mn or Ni) coordinated with four organic ligands. Our preliminary study of the systems
Ni–TCNQ and Mn–TCNQ on Au(111) [11] was focused on the type of exchange coupling between
Ni and Mn centers, in fact showing important differences between Ni and Mn networks in XMCD
data taken at T = 8 K, the most significant being that Mn (Ni) metal atoms are antiferro (ferro)
magnetically coupled. Now, for these systems, our new XMCD data taken at a lower temperature
(T = 2.5 K) reveal additional information about the magnetic anisotropy in the systems and, therefore,
we have performed new first principle calculations including spin–orbit coupling (SOC) to explain the
results of the observations. We have also considered the role of the Au(111) metal surface, which can
introduce geometrical distortions in the networks and electronic charge exchange with its constituents.
Additionally, we have developed a more refined model that may account for magnetic frustration
in the systems as well, by including exchange coupling up to next nearest neighbors. The results
of our calculations for the free-standing neutral Mn–TCNQ overlayers are consistent with both the
antiferromagnetic coupling between Mn centers and the weak magnetic anisotropy with in-plane
magnetization, while for Ni–TCNQ overlayers we need to call for effects due to the presence of the
underlying metal surface, like charge transfer and changes in coordination, to explain the absence of
anisotropy in the system. Model calculations based on mean-field Weiss theory permit us to extract
exchange coupling constants from the fits to XMCD curves, as well as to obtain additional information
about the magnetic anisotropy and the different magnetic configurations that may appear in the
networks. Here, we do not aim at achieving quantitative agreement between the fitting parameters
(exchange coupling constants) used for the XMCD curves and those extracted from DFT total energy
calculations but we do give an explanation for the differences observed, these being large for Ni–TCNQ.
Finally, it is worth mentioning that, although the organic ligands TCNQ and F4TCNQ have a different
electronegativity (higher in F4TCNQ than in TCNQ), based on the acquired XMCD data, there are
no substantial differences in the magnetic properties of the corresponding Ni and Mn networks.
Therefore, in the core of the paper we present the results for TCNQ networks and leave the F4TCNQ
results for Section II of the Supplementary Material.

The paper is organized as follows. After describing the XMCD experiments and the technical
details of the calculations in Section 2, we present our XMCD data for Mn–TCNQ and Ni–TCNQ
on Au(111) in Section 3.1, together with fitting curves from model calculations that permit us to
explain the observations and extract information about the type of magnetic coupling and magnetic
anisotropy (Section 3.2). Next, in Section 3.3 we present the results of our spin-polarized DFT+U
electronic structure calculations for Mn–TCNQ and Ni–TCNQ free-standing overlayers that confirm
the observed behavior in the type of magnetic coupling between spins at the 3d metal centers. Then, in
Section 3.4, we present the magneto-crystalline anisotropy analysis of the two considered systems
under study based on calculations that include spin–orbit coupling. Finally, in Section 4, we present
a discussion of our findings and establish the main conclusions that aim at explaining the XMCD
observations and suggest that for Ni–TCNQ networks the Au(111) metal surface plays a role in
determining the magnetic properties of the MOCN, while this is not the case for Mn–TCNQ.
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2. Materials and Methods

2.1. X-ray Magnetic Circular Dichroism Experiments

X-Ray absorption spectroscopy (XAS) experiments were carried out at the X-Treme beamline
of the Swiss Light Source (Villigen, Switzerland) [19]. The samples were prepared in ultra-high
vacuum chambers with a base pressure in the range of low 10−10 mbar. The pressure in the
magnet-cryo-chamber was always better than 10−11 mbar. The Au(111) surface was cleaned
by repeated cycles of Ar+ sputtering and subsequent annealing to 800 K. The molecules
7,7,8,8-tetracyanoquinodimethane (TCNQ, 98% purity, Aldrich, Saint Louis, MO, USA) and
2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ, 97% purity, Aldrich) were thoroughly
degassed before evaporation. The organic adlayers were grown by organic molecular beam epitaxy
(OMBE) using a resistively heated quartz crucible at a sublimation temperature of 408 K onto the
clean Au(111) surface that was kept at room temperature. The coverage of molecules was controlled
to be below one monolayer. Ni or Mn was subsequently deposited using an electron beam heating
evaporator at a flux of about 0.01 ML/min on top of the molecular adlayers that were heated to
350–400 K to promote the network formation. The sample was checked in situ by STM at the beamline
and subsequently transferred to magnet chamber without breaking the vacuum. A representative
STM image, which shows the typical Mn-TCNQ network domains on Au(111), can be found in the
Supplementary Material.

The polarization-dependent XAS experiments were performed in total electron yield detection.
Magnetic fields were applied collinear with the photon beam at sample temperatures between 2.5
and 300 K. The data were acquired by varying the photon energy at the L2,3 edges of Ni and Mn,
as well as the K edges of O and N using circular and linear polarized light. The absorption spectra
were normalized with respect to the total flux of the incoming X-rays and were further treated to be
normalized to the absorption pre-edge due to total electron yield variations. The background obtained
from clean or molecule-covered Au(111) was subtracted to allow comparison of the spectral features.
The XMCD is obtained from the difference of the left and right circular polarized XAS spectra, whereas
the XAS is obtained from the average of the two circular polarizations. The sample was rotated between
normal X-ray incidence with respect to the sample surface at θ = 0◦ and grazing incidence with θ = 60◦

(see Figure 1). All shown spectra were acquired at T = 2.5 K at external magnetic fields up to µ0H = 6.8 T.
The magnetization curves were recorded by acquiring the maximum of the XMCD signal at the L3 edge
as a function of the external magnetic field, normalized by the corresponding pre-edge of the XAS signal.
To facilitate the extraction of the easy and hard magnetization axes, the magnetization curves at different
angles of the magnetic field were normalized to the same value at the highest magnetic field point.

Figure 1. Schematic view of the data acquisition geometry in the X-ray absorption spectroscopy (XAS)
experiments. The external magnetic field B is kept parallel to the incident beam and the surface is
rotated at a polar angle θ with respect to the surface normal.
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2.2. Density Functional Theory Calculations

DFT calculations were carried out using the Vienna Ab Initio Simulation Package (VASP) [20–22].
For the description of electron–ion interactions the projector augmented wave (PAW) method was
employed, whereas the Perdew, Burke, and Ernzerhof (PBE) functional was used to describe exchange
and correlation within the generalized gradient approximation (GGA) [23]. A Hubbard-like Coulomb
repulsion correction term (U = 4 eV) was added to describe the 3d metal electron states, based on
Dudarev’s approach [24] , as implemented in VASP. A previous study [11] has already corroborated
that the results concerning magnetic moments and 3d level occupations do not change appreciably in
the 3–5 eV range of the U parameter.

For the geometrical optimization of the free-standing Mn–(F4)TCNQ and Ni–(F4)TCNQ systems,
periodic supercell boundary conditions were imposed. The optimal cell dimensions and atomic
positions were obtained by an energy minimization procedure with a convergence criterion of 10−6 eV
for the energy and 0.02 eV/Å for the forces to assure that we reach sufficient accuracy in numerical
values of the calculated magnitudes. The Kohn–Sham wave functions were expanded in a plane wave
basis set with a kinetic energy cutoff of 400 eV for all the systems considered. Monkhorst–Pack k-point
sampling equivalent to 8× 12 in the 1× 1 surface unit cell [25] and Methfessel–Paxton integration
with smearing width 0.1 eV [26] were used. Symmetry considerations were switched off from the
calculations and a preconverged charge density with a fixed value of the total spin for the unit cell was
used to relax all the networks. For the obtained relaxed 1× 1 geometries, where the layer is constrained
to be flat, we evaluated the magnetic anisotropy energies with adjusted parameters. Total energies
were converged with a tolerance of 10−7 eV. A 12× 18 k-point sampling and the corrected tetrahedron
method of integration [27] were used instead of smearing methods.

Figure 2 shows a top view visualization of the rectangular and oblique cells considered. The optimized
geometrical parameters are included in Table 1, where ~a1 and ~a2 denote the lattice vectors, a1 and a2 their
moduli, while d1 and d2 denote the values of the Mn–N or Ni–N bond lengths indicated in Figure 2.

a) b)Mn-TCNQ Ni-TCNQ

x

y

d1

d1

d2

d2

c) d)Ni-TCNQ
oblique 1

Ni-TCNQ
oblique 2

a2

a1

γ
1 γ

2

Figure 2. Visualization of the Mn–TCNQ (a) and Ni–TCNQ (b) rectangular cells. Blue, gray, and white
circles correspond to N, C, and H atoms respectively, while bright violet and bright green circles correspond
to Mn and Ni atoms. The fluorinated (F4)TCNQ molecules differ from regular TCNQ only in having
F atoms instead of H, the corresponding C–F bond lengths being somewhat longer than those of C–H.
Panels (c,d) show the distorted cell models used for Ni–TCNQ. Geometry details are found in Table 1.
TCNQ, 7,7,8,8-tetracyanoquinodimethane.
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Table 1. Moduli of lattice vectors (a1 and a2), angle between lattice vectors (γ), and bond lengths
(d1 and d2) of the optimized Mn–TCNQ and Ni–TCNQ 1× 1 rectangular and distorted unit cells.

1 × 1 Cell Mn–TCNQ Ni–TCNQ Ni–TCNQ Oblique 1 Ni–TCNQ Oblique 2

a1 (Å) 11.52 1.32 11.36 11.46
a2 (Å) 7.38 7.16 7.18 7.24
γ (◦) 90 90 83.50 77.43
d1 (Å) 2.12 2.01 1.90 1.84
d2 (Å) 2.12 1.95 2.12 2.00

3. Results

3.1. X-ray Magnetic Circular Dichroism Data

The XMCD intensity variation as a function of the applied magnetic field (B) defines a curve
that is proportional to the system magnetization. Therefore, when the value of the spin magnetic
moments at the metal centers (S) , the temperature (T), and the Landé g-factor are known, one can
use simple models to simulate the magnetization response. A good reference to be considered is
the case of paramagnetic behavior (spins responding individually to the applied magnetic field)
that can be represented by a Brillouin function. Whenever a preference for ferromagnetic (FM) or
antiferromagnetic (AFM) coupling between spins appears, the corresponding magnetization curves
will show higher or lower curvature, respectively, than the corresponding Brillouin function for the
same S, T, and g-factor values. In this way, in principle, one can decide about the type of magnetic
coupling between localized spins at the metal centers, as long as the value of the spin (S) is known. Note
that, in the presence of strong magnetic anisotropies and high orbital angular moments, the analysis
becomes more involved [28]. However, here we can follow this simplified scheme, as shown below.
According to our DFT calculations, described in Section 3.3, Mn atoms in Mn–TCNQ have a localized
spin magnetic moment close to S = 5/2, although somewhat lower, while Ni atoms in Ni–TCNQ have
a much lower spin close to S = 1/2, although somewhat higher. Therefore, we use the values S = 5/2
and S = 1/2 for Mn and Ni, respectively, to perform our XMCD analysis that includes fitting curves
to XMCD data based on Weiss mean-field theory described in the next section, where J and D are
defined, and also a comparison with the corresponding Brillouin functions.

The results are shown in Figure 3a,b for Mn–TCNQ and Ni–TCNQ, respectively. It is evident that
in Mn–TCNQ the coupling between Mn spins is AFM, while in Ni–TCNQ it is FM. Additionally, the
fitted values of the exchange coupling constants reveal a weaker coupling between Mn spins
(J = −0.03 meV) as compared to the coupling between Ni spins (J = 0.13 meV), while the single ion
anisotropy parameter D = 0.06 meV corresponds to a weak anisotropy with in-plane magnetization
for Mn–TNCQ and D = 0 to the absence of anisotropy for Ni–TCNQ. In order to learn more about the
magnetic anisotropy of these systems, in Figure 4 we plot a comparison of XMCD data obtained for
perpendicular and grazing incidence for Mn–TCNQ and Ni–TCNQ, the former showing a mild angular
dependence with stronger intensity for grazing incidence, i.e., a fingerprint of magnetic anisotropy in
the system with in-plane magnetization. Incidentally, this weak anisotropy is only observed at low
temperatures. However, in the Ni–TCNQ XMCD data there is no significant angular dependence,
which means a negligible magnetic anisotropy. A value of the Ni atom spin S = 1/2 corresponds to
the absence of single ion anisotropy [29].
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Figure 3. The best fit with the Weiss mean-field theory to the experimental data for (a) Mn–TCNQ and
(b) Ni–TCNQ at normal beam incidence (θ = 0◦) and the temperature T = 2.5 K. The experimental data
are shown in red squares, whereas the solution of the mean-field self-consistency equations is shown as
the blue solid curve. For comparison, we also plot the Brillouin function for S = 5/2 in (a) and S = 1/2
in (b), showing that the shape of the measured magnetization versus B deviates substantially from the
Brillouin function at this temperature.
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Figure 4. Comparison of the rescaled X-ray magnetic circular dichroism (XMCD) signal measured for
(a) Mn–TCNQ and (b) Ni–TCNQ at normal (θ = 0◦) and grazing (θ = 60◦) beam incidences. The data in
(a) show a sizable θ-dependence, which we attribute to the single-ion anisotropy for Mn–TCNQ. In contrast,
the data in (b) show no θ-dependence, meaning that there exists no sizable magnetic anisotropy.

3.2. Model for Mn–TCNQ and Ni–TCNQ

In Mn–TCNQ, the coupling between local moments is antiferromagnetic and occurs by means of
the Anderson superexchange mechanism [15,30]. In perturbation theory, the superexchange interaction
was found to be dominated by a virtual process in which two electrons hop from the lowest unoccupied
molecular orbital (LUMO) of the TCNQ molecule, which is doubly occupied in this MOCN, onto
two adjacent Mn atoms [11]. Inclusion of additional molecular orbitals, such as the highest occupied
molecular orbital (HOMO), leads to a generic superexchange interaction with coupling constants Jx, Jy,
and Jd, as shown in Figure 5. The model Hamiltonian describing the magnetic properties of Mn–TCNQ,
thus, reads

H = −1
2 ∑

ij
JijSi · Sj + D ∑

i
S2

i,z + gµB ∑
i

Si · B, (1)

where Si denotes the local moment of the Mn atom (S = 5/2) on site i, D is the single-ion anisotropy
energy, g is the Landé g-factor (g ≈ 2), and B is the magnetic field. The Heisenberg exchange constant
Jij is restricted to the nearest (Jx and Jy) and next-to-nearest (Jd) neighbors on the rectangular lattice.
The summation in the Heisenberg interaction term accounts twice for each pair of interacting sites;
hence the presence of the factor 1/2 in Equation (1).
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A quick insight into the tendency to order the spins in this model is granted by the Fourier
transform of the exchange coupling Jij,

Jq = ∑
j

Jije
−iq·(rj−ri) = 2Jx cos (qxax)

+2Jy cos
(
qyay

)
+ 4Jd cos (qxax) cos

(
qyay

)
, (2)

where q = (qx, qy) is the two-dimensional wave vector and ri is the position of the Mn atom on site i.
For ferromagnetic couplings (Jij > 0), the maximum of Jq occurs at q = 0, which indicates that the spin
order could be uniform from a mean-field point of view, not addressing the question about its stability
against fluctuations in two dimensions. Additional terms, such as the single-ion anisotropy or the
Zeeman interaction, may stabilize the uniform spin order.

Jx

Jy

Jx

Jy
Jd

Sa

SaSb

Sb

(a)

Jx

Jy

Jx

Jy
Jd

Sa

SbSb

Sa

(b)

Figure 5. Sketch of the Mn–TCNQ lattice showing the relevant magnetic couplings between the Mn
atoms. The four-leg TCNQ molecules mediate by superexchange an antiferromagnetic interaction
between the nearest neighbors on the lattice (couplings Jx and Jy) as well as between the next-to-nearest
neighbors (coupling Jd). For a sufficiently small-magnitude Jd, the tendency is to order the spins in the
checkerboard pattern (a). With increasing the magnitude of Jd, a crossover to ordering spins in rows or
columns takes place (b).

In contrast, for antiferromagnetic couplings (Jij < 0), the maximum of Jq occurs usually at the
edge of the Brillouin zone, indicating that the magnetization is staggered in some way over the unit cell.
When only nearest neighbors are coupled (Jx = Jy 6= 0 and Jd = 0), the maxima lie at q = (π/ax, π/ay)

and its equivalent points, which results in the usual checkerboard-like antiferromagnetic order (see
Figure 5a). As the diagonal coupling is turned on (assuming an antiferromagnetic Jd < 0), for a
sufficiently large magnitude of Jd there is a transition from the checkerboard pattern to a so-called
superantiferromagnetic state of antiferromagnetically ordered rows or columns. For

∣∣Jy
∣∣ > |Jx|, by

requiring ∂Jq/∂qx ≡ 0 at qy = π/ay, we find at Jd = Jx/2 the transition point for antiferromagnetic
column formation (see Figure 5b).

The effect of the diagonal coupling Jd consists in introducing magnetic frustration [30,31] in the
spin lattice. We remark here that the special point Jd = Jx/2 is realized to a good approximation
in our Mn–TCNQ lattice, because (1) the LUMO of the TCNQ molecule has a weak overlap with
the dxz and dyz orbitals of the Mn atom, as will be shown in the next section, thus, dominating the
superexchange, and (2) the direct coupling between the LUMOs of neighboring TCNQ molecules is
rather weak. The latter makes it possible to consider two independent paths of superexchange for the
nearest neighbors, with each path going separately via one of the two TCNQ molecules connecting
the two neighboring Mn atoms. For the diagonal coupling, only one path is possible, which leads to
a reduction of the diagonal coupling by a factor of 2 as compared to the nearest-neighbor coupling.
With approximations (1) and (2), the coupling constants obey Jx = Jy = 2Jd (see [11] for further details).
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Despite the fact that the Mn–TCNQ lattice may well be in a frustrated magnetic state consisting
of a mixture of the two phases in Figure 5, the XMCD data appear to be consistent with a much
simpler description of the magnetization as a function of the B-field, which is derived from the
Weiss mean-field theory, and it faithfully captures weak deviations from the paramagnetic state.
The superexchange couplings are rather weak [11], of the order of 10−5 eV, and the Zeeman term soon
dominates. Additionally, there exists a fair amount of single-ion anisotropy, described by the DS2

z term
in Equation (1).

We make the mean-field approximation for the model in Equation (1),

H ≈ HMF := Hloc +
1
2 ∑

ij
Jij 〈Si〉 ·

〈
Sj
〉

,

Hloc = ∑
i

Si · hi + D ∑
i

S2
i,z,

hi = gµBB−∑
j

Jij
〈
Sj
〉

, (3)

where Hloc gives the local description of the interacting system in terms of the Weiss fields hi. The spin
averages 〈Si〉 can be regarded as variational parameters of the theory. The last term in the first line
of Equation (3) compensates for the double counting of interaction energy occurring in the local
Hamiltonian Hloc and plays an important role when calculating the free energy of the interacting
system. The minimization of the free energy allows us to determine the values of the order parameters
〈Si〉. The procedure is described in the Appendix A.

Next, we focus on the XMCD data taken at normal incidence (θ = 0◦), for which the magnetic field
is applied along the OZ-axis, B = (0, 0, B). For the (checkerboard) antiferromagnetic phase, we use
two order parameters Sa and Sb, which represent the OZ-components of the spins in the unit cell as
shown in Figure 5a, and minimize the upper bound to the free energy [FAF(Sa, Sb)] with respect to the
order parameters Sa and Sb. Alternatively, one can require stationarity of free energy, ∂FAF/∂Sa = 0
and ∂FAF/∂Sb = 0, which yields two coupled equations,

Sa =
∂F1(ha)

∂ha
and Sb =

∂F1(hb)

∂hb
, (4)

where F1 is the free energy of a single isolated spin. The mean-field solution is obtained from these
self-consistent equations. As a rule, several solutions are found. The choice of the physical solution
relies again on the lowest value of the free energy. For the superantiferromagnetic phase, we use again
two order parameters, Sa and Sb, but now they are distributed in the unit cell as shown in Figure 5b.
The mean-field approximation takes into account only the connections (i.e., bonds) between the spins
on a local scale, whereas the constrains related to the dimensionality of the systems go unaccounted
for. We can, therefore, adapt here all the results derived for the phase in Figure 5a by simultaneously
replacing Jx and Jd in all expressions as {

Jx → 2Jd,
Jd → Jx/2.

(5)

The factors 2 and 1/2 appear here because each Jx connector counts as half a bond in the unit cell,
whereas each Jd connector counts as a full bond.

We fit the experimental data for normal magnetic fields in Figure 3 assuming the relation
Jx = Jy = 2Jd, which corresponds to the case when a single orbital of the ligand is dominating the
superexchange. We reach a good fit to the experimental data for Jx = −0.02 meV. Our working assumption
was that the critical temperature (TWeiss

N ) is sufficiently low as to allow application of the Weiss theory,
i.e., TWeiss

N < T. This means also that the order parameters Sa and Sb are never of opposite sign and are,
in fact, equal to each other over the full range of applied magnetic fields. Therefore, the experimental data
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can equally well be fitted by a ferromagnetic mean-field theory with antiferromagnetic coupling constants.
To simplify the matter even further, we consider a square lattice with a single coupling constant J.
Effectively, this coupling constant will be related to the previous coupling constants by equating to each
other Jq at q = 0 for both models, which immediately yields 4J = 2Jx + 2Jy + 4Jd. Using the above value,
we arrive at J = 3Jx/2 = −0.03 meV and D = 0.06 meV for S = 5/2.

The same effective model derived from a mean field Hamiltonian with J, S and D parameters can be
used for Ni–TCNQ, although its relation with the microscopic Hamiltonian described in [11] is different.
In this case, we find a good fit with J = 0.13 meV and D = 0 for S = 1/2.

3.3. Spin-Polarized DFT+U Calculations

We first consider a two-dimensional free-standing overlayer description for Mn–TCNQ and
Ni–TCNQ networks. Both the lattice vectors and atomic positions have been optimized by using
an energy minimization procedure within DFT, as described in the Materials and Methods section.
The projected densities of states (PDOS) onto different atomic 3d orbitals of the Mn and Ni atoms are
shown in Figures 6 and 7, respectively. The insets show the PDOS onto atomic p orbitals of the C and
N atoms of the organic ligand, as well as onto Mn and Ni 3d states without m number resolution, in a
narrow energy range close to the Fermi level. A close inspection of Figures 6 and 7 reveals important
differences between the two systems under study. The most significant is the half-filling of the 3d
states with all the majority spin states occupied in Mn–TNCQ, which corresponds to a value of the
spin localized at the Mn atoms approximately equal to S = 5/2 . Meanwhile, in Ni–TCNQ only one
minority spin state is fully unoccupied (3dxy), which corresponds to a value of the spin localized at the
Ni atom of approximately S = 1/2, although it can be somewhat higher as the minority spin states 3dxz

and 3dyz are partially occupied. Additionally, in Ni–TCNQ, the 3dxz and 3dyz states are hybridized
with TCNQ orbitals close to the Fermi level, in particular the LUMO, giving rise to a delocalized spin
density [11]. This can be seen by comparing the PDOS onto atomic p orbitals of the C and N atoms
of the TCNQ organic ligand shown in the insets of Figures 6 and 7 for Mn–TCNQ and Ni–TCNQ,
respectively. In Ni–TCNQ the LUMO orbital is spin-polarized but this is not the case in Mn–TCNQ, for
which the TCNQ LUMO practically does not hybridize with Mn states and is fully occupied. There is
another important difference between Ni–TCNQ and Mn–TCNQ: the former is metallic while the
second is not. Indeed, the calculated band gap in Mn–TCNQ is rather large (several eV) and translates
into large energy barriers for the injection of holes or electrons. As a consequence, electronic charge
transfer from the Au(111) surface is expected to play a role in Ni–TCNQ but not in Mn–TCNQ.

Next, using these two optimized structures calculated with a 1 × 1 surface unit cell within
the DFT+U method with spin polarization as a starting point, we proceed to double the size of
the surface unit cell into a 2 × 1 cell that contains two metal centers (Mn or Ni atoms) and two
TCNQ molecules. In this way, we can decide which is the most favorable type of magnetic coupling
(ferro- or antiferro-magnetic) between spins localized at the Mn or Ni centers by comparing the
values of the corresponding total energies. We consider a checkerboard configuration using oblique
vectors in the 2× 1 surface unit cell and confirm that ferromagnetic coupling is favorable in Ni–TCNQ
networks, while in Mn–TCNQ networks antiferromagnetic coupling is preferred in agreement with [11].
The corresponding spin densities are shown in Figure 8 for Mn–TCNQ and Ni–TCNQ. In Section III
of the Supplementary Material we also include other configurations obtained by using a rectangular
2× 2 surface unit cell, in which other AFM configurations with spins aligned in rows or columns are
considered as well [32], showing the importance of next to nearest neighbors (diagonal) couplings in the
networks that have been discussed in the previous section. We have obtained values of J using the total
energy differences between these frozen spin configurations (see Supplementary Material Section III).
The so-calculated values differ with respect to the fitted ones by a factor of five in the case of Mn–TCNQ
and by two orders of magnitude in the case of Ni–TCNQ. The large discrepancy found in this latter
case of Ni–TCNQ points again towards a more complex scenario than in the Mn–TCNQ case.
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Figure 6. Projected density of states (PDOS) onto the five different Mn(3d) orbitals for Mn–TCNQ.
The inset shows the PDOS onto p orbitals of C and N atoms in TCNQ, as well as onto all Mn(3d)
orbitals, in a narrow energy range close to the Fermi level (EF). Note that the pz contributions of C and
N atoms account for the lowest unoccupied molecular orbital (LUMO).
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Figure 7. Projected density of states onto the five different Ni(3d) orbitals for Ni–TCNQ. The inset
shows the PDOS onto p orbitals of C and N atoms in TCNQ, as well as onto all Ni(3d) orbitals, in a
narrow energy range close to the Fermi level (EF). Note that the pz contributions of C and N atoms
account for the LUMO.

It is worth mentioning that the exchange constant J obtained in [11] refers to the coupling between
the Ni spin and the itinerant spin density of the TCNQ LUMO hybridized band. That exchange coupling
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is of the direct exchange type and has, therefore, much larger typical values than the mediated couplings
(RKKY and superexchange). To emphasize its direct exchange origin we denote it here by Jdir. A rough
estimate for the relation between the two exchange coupling constants can be obtained in terms of
the band width of the LUMO hybrid band (W) as J = J2

dir/W. Taking W ∼ 100 meV and the value
Jdir = 5.55 meV of [11], we get J ∼ 0.3 meV, which has the same order of magnitude as the fitted value.

a) b)Mn-TCNQ Ni-TCNQ

Figure 8. Top (upper panels) and side (lower panels) views of the calculated spin densities for
(a) Mn–TCNQ and (b) Ni–TCNQ free-standing overlayers.

3.4. Magnetocrystalline Anisotropy

The magnetocrystalline anisotropy energies (MAEs) can be obtained from DFT calculations that
include SOC effects. The resulting total energies, thus, depend on the orientation of the magnetization
density. For extended systems, where the transition metal atomic orbital momentum is expected to be
partially or totally quenched, the MAE appears as a second-order SOC effect. In systems where the
PDOS is characterized by sharp peaks and devoid of degeneracies at the Fermi level, a second-order
perturbative treatment of the SOC makes it possible to establish a few guidelines for the likelihood
of an easy axis or plane. The perturbation couples states above and below the Fermi level and it is
inversely proportional to the energy difference between states. When the spin-up d-band is completely
filled, it can be shown that the energy correction is proportional to the expected value of the orbital
magnetic moment and that the spin–flip excitations are negligible [33–35].

The total energy variation as a function of the magnetization axis direction is very subtle, often in
the sub-meV range per atom. When spin–orbit effects are not strong, it is common practice to use the
so-called second variational method [36], where SOC is not treated self-consistently. First, a charge
density is converged in a collinear spin-polarized calculation. Next, a new Hamiltonian that includes a
SOC term is constructed and diagonalized for two different magnetization directions. Then, the MAE
is calculated from the difference of the two band energies. Alternatively, a more precise MAE can be
obtained from total energy calculations that include SOC self-consistently. Using the latter method, in
this work we have calculated MAE values for free-standing Mn–TCNQ and Ni–TCNQ networks.

The small energies involved in the anisotropy are a challenge for DFT calculations. The MAE
is highly sensitive to the geometry and electronic structure calculation details, such as the exchange
and correlation functionals and basis set types. From a technical perspective, a reliable MAE is only
achieved with demanding convergence criteria. For example, it has been observed that fine k-point
samplings of the Brillouin zone are needed [37–39]. An account of the convergence details as well as
MAE dependence on the U parameter can be found in Section IV of the Supplementary Material.

Table 2 shows the obtained values for U = 4 eV in 1× 1 cells (i.e., only ferromagnetic ordering is
considered in this section). For the Mn–TCNQ rectangular network, we find in-plane magnetization
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with negligible azimuthal dependence, i.e., easy plane anisotropy. The MAE, calculated as the total
energy difference between magnetic configurations with Mn magnetizations parallel to the OX and
OZ axes, is 0.2 meV. In the Ni–TCNQ rectangular network the energetically preferred magnetization is
out-of-plane and the MAE values vary significantly with the azimuthal direction. As shown in Table 2,
the values change as much as 1.50 meV with azimuthal angle variations.

Table 2. Magnetocrystalline anisotropy energies (MAEs, in meV) for Mn– and Ni–TCNQ calculated
as the difference MAE = Etot(0, 0)− Etot(90◦, φ), where the two values in parenthesis are the polar
and azimuthal angles, respectively, defining the magnetization direction. Positive (negative) energies
indicate in-plane (out-of-plane) anisotropy. The last line corresponds to the oblique cell Ni–TCNQ
model with angle γ = 77.43◦, where the anisotropies at the directions of the long (short) pair of Ni–N
bond directions are shown. The table values have been obtained for U = 4 eV with an energy cutoff of
400 eV and a 12× 18× 1 k-point sampling, using the tetrahedron method for integration.

φ = 0 φ = 90◦ φ = 45◦ φ = −45◦

Mn 0.20 0.19 0.20 0.20
Ni −1.44 −0.95 −1.95 −0.45

φ = 0 φ = 90◦ φ = 22.6◦ φ = −57.4◦

Ni (oblique) −0.07 −0.04 0.03 −0.09

The different behavior of the MAE with the azimuthal angle in Mn and Ni networks can be
understood in terms of the differences in the metal–molecule bonds, particularly the Mn–N and
Ni–N bonds. In both networks the dx2−y2 (with magnetic quantum number m = 2), dxy(m = −2),
and dz2(m = 0) orbitals remain rather localized, whereas the dxz(m = 1) and dyz(m = −1) orbitals
are spread over a wider energy range of a few eV below the Fermi level (see Figures 6 and 7).
The delocalization of electronic charge in these dxz and dyz orbitals is stronger in the Ni–TCNQ case,
where the latter two sub-bands are partially occupied and form hybrid states at the Fermi level with the
TCNQ LUMO. As these hybrid states lie at the Fermi level, they have a dominant role in the magnetic
anisotropy and, since they yield markedly directional charge and spin density distributions along the
Ni–N bonds, they are likely to produce azimuthal MAE variations. Conversely, the Mn d-electrons
hybridize weakly with the TCNQ orbitals close to the Fermi level, i.e., with the LUMO, and have
essentially no weight at the Fermi level. The spatial extent of these relevant Ni–TCNQ hybrid states is
manifested in the delocalized electron spin densities depicted in Figure 8b, as compared to the case of
Mn–TCNQ shown in Figure 8a with a spin density more localized at the Mn sites and its neighboring
cyano groups.

The existence of an easy axis (plane) of magnetization for Ni (Mn) cannot be anticipated from
the electronic structure details. In the Mn–TCNQ system, since the d-band is half filled, the MAE is
led by spin–flip excitations and, therefore, the value of the exchange splitting is determinant. In the
absence of same-spin excitations, the anisotropy would be associated to the anisotropic part of the spin
distribution. More precisely, the MAE would be proportional to the anisotropy of the expected values
of the magnetic dipole operator [34,35]. However, Figure 8a shows an anisotropic spin distribution
extended towards the cyano groups of the organic ligand TCNQ in the network plane by the crystal
field. The quadrupolar moment of this distribution should promote out-of-plane magnetization.
This interpretation is at variance with the SOC-self-consistent DFT result. A more elaborated model
has been proposed for systems with localized d-orbitals. It states that the spin–flip excitations that
keep the quantum number |m| constant favor an in-plane magnetization [40]. The calculated PDOS
of Figure 6 shows that the two |m| = 2 peaks (dxy,↑−dx2−y2,↓) are those closer to the Fermi level, for
majority and minority spin states, respectively. This situation is, in principle, compatible with an easy
plane behavior. The conclusion we draw is that the basic qualitative feature of the magnetic anisotropy,
namely the magnetization direction, cannot be accounted for by rules of general character, not even in
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a case like Mn–TCNQ, where the d-electrons have a rather localized character that would make this
system seem a priori a good playground for these models.

Next, we turn our attention back to the case of Ni–TCNQ, where the DFT calculations yield a
relatively large value for the MAE with out-of-plane magnetization, as well as significant variations
of the MAE in the network plane. This theoretical result contrasts with the experimental absence of
anisotropy in this system and, thus, requires a further analysis oriented at finding an explanation.
As we discuss below, the discrepancy could be explained by substrate effects, mostly due to electronic
charge transfer from the metal Au(111) surface. However, if we tried to calculate MAE values from
DFT calculations with SOC using the supported Ni–TCNQ/Au(111) model structures presented above,
we would not obtain informative results, since it would be very difficult in practice to disentangle the
anisotropy effects originated by different aspects of the system. The most significant of them is the
unavoidable artificial strain introduced in the system by forcing a commensurable Ni–TCNQ overlayer
on top of the Au(111) surface due to the use of periodic boundary conditions in a finite size system
imposed by our DFT calculations. However, these limitations can be more conveniently understood
using free-standing models.

In the 1× 1 rectangular Ni–TCNQ free-standing overlayer we can attribute the large MAE values
to the partially occupied Ni(dxz,dyz) states. If these |m| = 1 bands were completely filled by transfer
of 0.5 electrons from the metallic substrate, their contribution to the MAE would be dramatically
reduced. Additionally, the Ni atom spin would become close to S = 1/2, a case for which no single-ion
anisotropy is possible [29]. However, it is hard to give a precise estimate of the amount of charge
transfer and, on top of this, other sources of anisotropy reduction could be at play, like a reduction
of Ni coordination due to a geometrical distortion. Indeed, the lowest-energy configuration of this
rectangular unit cell is obtained upon a small symmetry-lowering distortion where the four Ni–N
bonds are inequivalent: the bonds at 45◦ degrees with the OX-axis (d2) have a length of 1.95 Å
and the other pair at −45◦ (d1) of 2.01 Å (see Figure 2). The former direction is that of the hardest
magnetization axis. This symmetry breaking, though subtle from the geometry point of view, is
nevertheless associated to a noticeable asymmetry in the electronic structure, which is in turn behind
the strong azimuthal variability of the MAE. In a closer inspection of the PDOS we find that the
Ni(dxz,dyz) peaks at the Fermi level hybridized with the molecule LUMO are contributed by d-orbitals
lying on the plane containing the short Ni–N bonds (d2) and the surface normal (see Section IV of
the Supplementary Material). The long bonds (d1), to which |m| = 1 states at the Fermi level do not
contribute, correspond to a softer magnetization direction.

To understand the consequences of this distorted geometry on the magnetic anisotropy, we have
constructed a free-standing flat Ni–TCNQ model in an oblique unit cell, in which the angle γ between
the lattice vectors ~a1 and ~a2 is varied (the rectangular cell corresponds to γ = 90◦). As described
in Section IV of the Supplementary Material, two cases have been considered: a weakly distorted
case with γ = 83.5◦ and a larger distortion with γ = 77.43◦. The unit cell angle γ has been reduced
while uniformly scaling the lattice constants to keep the unit cell area equal to that of the rectangular
equilibrium unit cell. Then, the atomic (x, y) coordinates have been relaxed to satisfy the same
convergence criteria as in other models of the present work. For a larger distortion of the rectangular
cell with γ = 77.43◦, one could force a commensurate supercell [(5, 2), (1, 3)] on Au(111) [4]. In the
optimized structure the TCNQ is barely deformed, but one Ni–N bond at the azimuthal direction
φ = 22.6◦ is broken because of the cell distortion and the pair of bonds at the φ = −75.4◦ direction
have their lengths reduced to 1.85 Å (see Section IV of the Supplementary Material). The magnetic
anisotropy is significantly reduced with respect to that of the rectangular cell, but the hardest direction
is still the one along the shortest pair or Ni–N bonds (see Table 2). The main consequence of the Ni
coordination reduction caused by the cell shape change is to partially quench its spin. We observe
that the local magnetic moment is reduced by about 0.3 µB, approaching the ideal S = 1/2 state that
would yield no anisotropy in the single-atom picture. We observe, nevertheless, that this distorted
configuration still has partially filled Ni dxz,yz(|m| = 1) states at the Fermi level (see Section IV of
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the Supplementary Material). Therefore, we note that this mechanism of anisotropy reduction and
the charge transfer effect proposed above are of a different nature, although both originate from the
interaction with the substrate.

All in all, the observed lack of magnetic anisotropy in the Ni-TCNQ/Au(111) XMCD data is
clearly a substrate effect, which reduces the Ni–TCNQ anisotropy by a combined effect of charge
transfer and change of coordination. Nonetheless, other subtle substrate effects not considered here
might also have a role, such as fluctuations in the Au–Ni charge transfer due to the incommensurability
and corrugation of the network.

4. Discussion and Conclusions

Motivated by the XMCD data, we have performed a thorough analysis of the magnetic properties
that characterized Mn and Ni metal–organic coordination networks, focusing on the magnetic coupling
and anisotropy. By fitting the XCMD data using a model Hamiltonian based on mean-field Weiss
theory and comparing with Brillouin functions, we find a completely different behavior for Mn and Ni
networks: while in Mn networks the spins localized at the Mn centers are coupled antiferromagnetically
with a mild preference to in-plane magnetization, in Ni networks the spins localized at the Ni atoms
are coupled ferro-magnetically and do not show any sizable magnetic anisotropy.

These observations are also rationalized with the help of density functional theory calculations
in two steps: first we focus on the magnetic coupling and next we address the subtle question of the
magnetic anisotropy. Spin-polarized DFT calculations using a 1× 1 surface unit cell to describe the
free-standing-overlayers reveal a very different electronic structure close to the Fermi level for the two
systems under study. The Mn–TCNQ system is insulating and has weak hybridization between Mn
and TCNQ states close to the Fermi level, while in Ni–TCNQ, hybridization between Ni (3d) states
and the TCNQ LUMO at the Fermi level is rather significant. This difference permits us to explain the
observed trends in XMCD data with antiferromagnetic (ferromagnetic) coupling for Mn (Ni) networks
that is also confirmed by another set of DFT calculations using a 2× 1 surface unit cell.

We find that the basic qualitative feature of the magnetic anisotropy, namely the magnetization
direction, cannot be accounted for by rules of general character. Actually, the magneto-crystalline
anisotropy is contributed by many electron excitation channels and it clearly shows an intricate
dependence on the fine electronic structure details of each particular system. While in Mn–TCNQ/Au(111)
the observed magnetic anisotropy with in-plane magnetization agrees with the DFT calculations for the
neutral Mn–TCNQ overlayer, the observed lack of magnetic anisotropy in Ni–TCNQ/Au(111) suggests
the existence of a substrate effect, which reduces the Ni–TCNQ anisotropy due to a combination of
electronic charge transfer and change of Ni–N coordination.

Supplementary Materials: The following are available online: I. STM data for Mn-TCNQ; II. Supplementary XAS
and XMCD data for TCNQ and F4TCNQ networks; III. Energetics of different magnetic configurations using a
2 × 2 unit cell; and IV. MAE convergence details: dependence with U and with lattice distortions.
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Appendix A. Minimization Procedure to Obtain the Self-Consistent Mean Field Equations

The general procedure for the minimization of the free energy of the metal–TCNQ model outlined
in Section 3.2 is described here. Given an interacting Hamiltonian H and a variational Hamiltonian H0,
the Bogoliubov upper bound for the free energy reads

F ≤ F0 + 〈H − H0〉0 , (A1)

where, by definition,

F = −T ln Z and F0 = −T ln Z0,

Z = Tr
{

e−βH
}

and Z0 = Tr
{

e−βH0
}

,

〈A〉0 =
1

Z0
Tr
{

Ae−βH0
}

, ∀A. (A2)

Using the mean-field Hamiltonian of Equation (3) in the place of H0, we obtain the upper bound for
the free energy, which needs subsequently to be minimized with respect to the order parameters 〈Si〉.

To analyze the XMCD data taken at normal incidence, we consider a magnetic field applied along
the OZ-axis, B = (0, 0, B). The paramagnetic partition function of a single isolated spin reads

Z1(hz) =
S

∑
Sz=−S

e−β(hzSz+DS2
z). (A3)

The corresponding spin average value can be found in this case by differentiating the free energy
〈S〉0 = ∂F1/∂h, where F1 = −T ln Z1.

Two order parameters (Sa and Sb) are needed to describe the (checkerboard) antiferromagnetic
phase. They represent the z-components of the spins depicted in Figure 5a. The upper bound to the
free energy reads (per unit cell):

FAF =
(

Jx + Jy
)

SaSb + Jd

(
S2

a + S2
b

)
+

1
2

F1(ha) +
1
2

F1(hb)

−(Jx + Jy)

(
Sa −

∂F1(ha)

∂ha

)(
Sb −

∂F1(hb)

∂hb

)
−Jd

(
Sa −

∂F1(ha)

∂ha

)2

− Jd

(
Sb −

∂F1(hb)

∂hb

)2

,

(A4)

with

ha = gµBB− 2(Jx + Jy)Sb − 4JdSa,

hb = gµBB− 2(Jx + Jy)Sa − 4JdSb. (A5)

The terms in the last two lines of Equation (A4) come from the average 〈H − H0〉0 in Equation (A1).
These terms are required only when looking for the global minimum of FAF(Sa, Sb), which is carried
out over the domain −S ≤ Sa < S and −S ≤ Sb < S. The values of Sa and Sb at the global minimum
then correspond to the mean-field solution. Alternatively, we can use the stationarity condition

∂FAF/∂Sa = 0 and ∂FAF/∂Sb = 0, (A6)

to obtain the two coupled Equation (4).
These self-consistency equations of the mean-field theory need to be solved for Sa and Sb by

substitution of the expressions for ha and hb from Equation (A5). Since several solutions can be
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found, we use the condition of least free energy value to select the physical solution. In practice,
it is convenient to find a rough approximation for Sa and Sb by looking for the global minimum of
FAF(Sa, Sb) on a discrete grid and then refine the obtained solution by iteratively substituting it into
the self-consistency Equation (4).
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