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SM 1. Harmonic analysis of the nonlinear magnetoresistance 

Figure S1 shows a schematic of the experimental setup and coordinate system employed in this work. We measured 

the longitudinal (𝑅) and transverse resistance (𝑅%) by applying an ac current 𝐼 = 𝐼( sin𝜔𝑡 of frequency 𝜔 2𝜋⁄ =

10 Hz and recording the ac longitudinal (V) and transverse (VH) voltages, respectively. The Ohm's law for a current-

dependent resistance reads 𝑉(𝐼) = 𝑅(𝐼) ∙ 𝐼( sin(𝜔𝑡). Assuming that the nonlinear (current-induced) changes of 

𝑅(𝐼) are small with respect to the linear resistance 𝑅(, we expand 𝑅(𝐼) as follows: 

 𝑅(𝐼) = 𝑅( +
89
8:
𝑑𝐼 = 𝑅( + 𝐼(

89
8:

8:
8<
𝑑𝑡. (S1) 

Using 𝐼(𝑡) = 𝐼( sin𝜔𝑡 we obtain 𝑅(𝐼) = 𝑅( + 𝐼(
89
8:
cos 𝜔𝑡 𝜔𝑑𝑡, where 𝜔 = ?@

A
 is the angular frequency, 𝑇 the 

period, and 𝑑𝑡 = A
C

 the time interval, with 𝑛 being the number of measurements per period. The term 𝜔𝑑𝑡 = 2𝜋 𝑛⁄  

is a constant and is normalized by the fast Fourier transform algorithm used in the experiment. Then, 𝑉(𝐼) becomes: 

 𝑉(𝐼) = 𝐼(𝑅( sin(𝜔𝑡) +
E
?
𝐼(?

89
8:
sin(2𝜔𝑡). (S2) 

The longitudinal voltage consists of first and second harmonic terms that scale with 𝐼( and 𝐼(?, respectively. 

Analogous expansions apply to the Hall voltage and Hall resistance. The first harmonic longitudinal resistance is 

𝑅F = 𝑅(. The second harmonic longitudinal resistance 𝑅?F = E
?
𝐼(

89
8:

 consists of three contributions [1], namely 

the unidirectional magnetoresistance (UMR), the magnetothermal effects due to the temperature gradients (∇𝑇) 

induced by Joule heating, and the spin-orbit torque (SOT) induced modulation of the total magnetoresistance:  

 𝑅?F = 𝑅?FHI9 + 𝑅?F∇A + 𝑅?FJKA . (S3) 

Below we briefly explain the origin of each term. 

Spin-orbit torques: This term occurs due to the current-induced oscillations of the magnetization that modulate the 

magnetoresistance through the dependence of the anisotropic magnetoresistance and spin Hall magnetoresistance 

on the polar (𝜃) and azimuthal (𝜑) angles of the magnetization (𝒎). Due to the symmetric behavior of the 

magnetoresistance with respect to the xy plane, the out-of-plane oscillations driven by the damping-like (DL) SOT 
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do not contribute to 𝑅?F. The in-plane effective field (𝑏PJKA ∝ 𝐼) associated to the field-like (FL) SOT and Oersted 

field, on the other hand, gives rise to a signal with the following symmetry: 

 𝑅?FJKA = 𝑏PJKA(𝐼() ⋅ (𝑅S − 𝑅U)
8 VWXY P

8:
, (S4) 

where 𝑅S  and 𝑅U  are the resistance of the sample when the magnetization is parallel to the x and y axis, respectively. 

The dependence of the resistance in the xy plane follows a cos? 𝜑 function, therefore the current-induced 

oscillations in this plane are proportional to the derivative of this term with respect to the current[2]. 

Magnetothermal effects: This term occurs due to Joule heating and the corresponding quadratic increase of the 

sample temperature with current, which gives rise to temperature gradients  

 ∇𝑇 ∝ 𝐼(? sin?(𝜔𝑡) 𝑅( =
E
?
𝐼(?[1 − cos(2𝜔𝑡)]𝑅(. (S5) 

Depending on the direction of ∇𝑇, the anomalous Nernst (ANE), spin Seebeck and magneto-thermopower effects 

can give rise to a longitudinal current-dependent electromotive force, which appears in the measurement of 𝑅?F. In 

previous work[1,2], we demonstrated that in the geometry used for measuring the UMR only the out-of-plane 

temperature gradient (∇T]) and ANE give measureable contributions to 𝑅?F, which have the form 

 𝑅?F∇A ∝ ∇T]𝑚U. (S6) 

Unidirectional magnetoresistance: This term occurs due to the difference in resistance for opposite polarity of the 

injected current. As discussed in the main text, the UMR has three different contributions, namely the two SD-UMR 

terms originating from the bulk and interface spin-dependent scattering of the spin-polarized conduction electrons, 

and the SF-UMR originating from the spin-flip scattering induced by the electron-magnon interaction. The SD-

UMR gives rise to a second harmonic resistance 

 𝑅?F_` ∝ 	𝜃J%	𝑰 ×𝒎 ∝ 𝐼(𝜃J%𝑚U, (S7) 

where 𝜃J% is the spin Hall angle of the nonmagnetic metal layer (NM). The SF-UMR, on the other hand, is due to 

the modulation of the magnon density by the absorption of the SHE-induced spin current, which alters the electron-

magnon scattering in the ferromagnetic layer and thereby the longitudinal resistance. Depending on the current 
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direction, magnons are effectively damped or amplified, which results in a current-dependent resistance term. Due 

to the strong dependence of the magnon density on temperature, we find that the spin-flip scattering terms scales as 

𝑇 + ∆𝑇 ∝ 𝑐𝑜𝑛𝑠𝑡. +	𝐼?, where  𝑇 is the sample temperature in the absence of Joule heating and ∆𝑇 ∝ 𝐼? is the 

temperature rise due to Joule heating. According to our measurements (see main text), the SF-UMR gives rise to a 

second harmonic resistance 

 𝑅?F_i ∝ 𝐼(𝜃J%[𝑇 + ∆𝑇] ⋅ 𝐵kl(A)	𝑓n𝑚Uo ∝ 𝜃J%[𝐼( + 𝐼(p] ⋅ 𝐵kl(:q)	𝑓n𝑚Uo, (S8) 

where 𝐵 is the externally applied magnetic field, 𝑝 is the exponent of the power law decay of electron-magnon 

scattering with applied field, and 𝑓n𝑚Uo	is an odd function of 𝑚U that can be expressed as a power series of 
st

s
+

ust

s
v
p
+ u

st

s
v
w
+ ⋯ . Combining equations S7 and S8 we obtain the general expression for the UMR 

 𝑅?Fyz{ = 𝑎𝐼( + 𝑏(𝐵)𝐼( + 𝑐(𝐵)𝐼(p. (S9) 

where 𝑎 ∝ 𝐼(𝜃J%𝑚U,  𝑏 ∝ 𝜃J%𝐵kl	𝑓n𝑚Uo and 𝑐 ∝ 𝜃J%𝐵kl	𝑓n𝑚Uo. Note that the UMR does not originate uniquely 

from the SHE but has contributions from all the different effects that contribute to charge-spin conversion in a 

ferromagnetic/normal metal bilayer, including the REE and related phenomena[3]. In this context, 𝜃J% is an 

effective parameter that accounts for the overall charge-spin conversion efficiency. 

SM 2. Separation of the spin-orbit torque, magnetothermal, and magnetoresistive contributions to R2w 

 

Figure S1. Schematic of the device structure and coordinate system. 
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In order to single out the UMR, both magnetothermal and SOT effects must be quantified. Since the SD-UMR and 

the magnetothermal voltages possess the same angular symmetry (see Eqs. S6 and S7), they cannot be quantitatively 

separated by measuring only the longitudinal 𝑅?F. However, the SD-UMR does not manifest itself in the Hall effect 

measurements, whereas the magnetothermal voltages do. By employing this property, we can quantitatively extract 

the magnetothermal contribution from the longitudinal 𝑅?F following the method explained in detail in Ref. [1]. In 

brief, the procedure consists in performing angle-dependent measurements of the harmonic Hall resistances 𝑅F% and 

𝑅?F%  by rotating 𝐵 in the xy plane and repeating the measurements for several amplitudes of 𝐵. As it is known from 

previous measurements[2], 𝑅?F%   depends on the polar (𝑏}
JKA) and azimuthal (𝑏PJKA) components of the current-

induced electric fields due to the SOT and Oersted field as well as on the ANE due to ∇T]. The component 𝑏}
JKAis 

due to the damping-like (DL) SOT and is counteracted by the effective field 𝐵~�� = 𝐵 + 𝐵� + 𝐵8, where 𝐵� and 

𝐵8 are the anisotropy field and demagnetizing field, respectively. The component 𝑏PJKAis due to sum of the FL-SOT 

and Oersted field and is counteracted only by the external field (assuming no significant in-plane anisotropy, as is 

the case here). Thus, the effects of  𝑏}
JKA  and 𝑏PJKA  on 𝑅?F%  are scaled by 𝐵~�� and 𝐵, respectively. Moreover,	𝑏}

JKA  

induces an out-of-plane tilt of the magnetization and therefore manifests itself through the anomalous Hall effect 

(AHE), whereas  𝑏PJKA  induces an in-plane tilt of the magnetization and therefore manifests itself through the planar 

Hall effect (PHE). The resulting expression for 𝑅?F%  is given by[2] 

 𝑅?F% = �𝑅�%�
��
���

����
+ 𝐼(𝛼∇T]� cos 𝜑 + 2𝑅�%�

�����

�
(2 cosp 𝜑 − cos 𝜑), (S10) 

where 𝑅�%�  and 𝑅�%�  are the anomalous and planar Hall resistances, respectively, and 𝛼 is an effective coefficient 

that accounts for the ANE and the spin Seebeck effect. By isolating the term proportional to cos𝜑 and analyzing 

its field dependence, one can unambiguously determine 𝑏}
JKA  and the magnetothermal contribution 𝐼(𝛼∇T].  
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Figure S2(a) shows a series of measurements of 𝑅?F%  of Co(2.5 nm)/Pt(6 nm) taken at different fields with 𝑗 =

2 × 10� A/cm2. We observe that the cos 𝜑 contribution to 𝑅?F%  dominates the signal, as expected because the DL-

SOT is larger than the FL-SOT and 𝑅�%� ≫ 𝑅�%� . By fitting 𝑅?F%  with Eq. S10, we obtain the coefficient 

�𝑅�%�
��
���

����
+ 𝐼(𝛼∇T]�. Figure S2(b) shows a plot of  �𝑅�%�

��
���

����
+ 𝐼(𝛼∇T]� as a function of 1/𝐵~��. The linear 

scaling is in very good agreement with Eq. S10. We determine the magnetothermal contribution by taking the 

intercept of the linear fit with the y-axis, which indicates that 𝐼(𝛼∇T] is about 0.02 mW. Finally, in order to convert 

the magnetothermal Hall resistance into a longitudinal resistance, we multiply 𝐼(𝛼∇T] by the geometrical aspect 

ratio (length/width) of the Hall bar, which yields 𝑅?F∇A =	 𝐼(𝛼∇T]
�
�
	.	 Here, the factor �

�
 is obtained by taking the 

ratio of the anisotropic magnetoresistance to the planar Hall resistance, which agrees with measurements of the 

sample dimensions performed by scanning electron microscopy. 

By evaluating the slope and the intercept of such data, we characterized the DL-SOT and magnetothermal signals 

for all the samples reported in this study. Note that 𝑅�%� , necessary to quantify the DL-SOT, is obtained by 

performing a Hall effect measurement using a large out-of-plane field (not shown).  

 

Figure S2. (a) Angular dependence of the second harmonic Hall resistance 𝑅?F%  of Co(2.5 nm)/Pt(6 nm) as the field 𝐵 rotates 

in the xy plane. Black lines show the fits according to Eq. S10. (b) DL-SOT and magnetothermal contributions to 𝑅?F%  

plotted as a function of 1/Beff. The slope of the linear fit corresponds to the DL-SOT strength multiplied by RAHE; the 

intercept corresponds to the field-independent magnetothermal contribution 𝑅?F
%,�A = 𝐼(𝛼𝛻𝑇]. 
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Figure S3. (a) Values of the DL-SOT derived from the linear fits shown in Fig.S2 (b). The values of the effective field are 

linearly proportional to the current up to 12.75 mA, which corresponds to j = 3x107 A/cm2. The deviation from linearity at 

higher current may be due to Joule heating-induced changes of the anisotropy field and Ms. (b) Estimated thermal contribution 

to the longitudinal 𝑅?F signal recorded at 𝐵 = ±2 T. 

According to this analysis, the thermal contribution 𝑅?F∇A  to the longitudinal resistance is less than 4% of the total 

𝑅?F signal in Co(2.5 nm)/Pt(6 nm) throughout the entire current range investigated in this work (Fig. S3). In the 

Pt(4 nm)/CoCr(t) series, on the other hand, the UMR is smaller and of the same order of magnitude as the 

magnetothermal signal. Detailed measurements of the SOT and 𝑅?F∇A  of CoCr(t)/Pt(4) are reported in Sect. SM 7.  

 

SM 3. Estimation of the device temperature as a function of applied current 

We estimate the current-induced Joule heating of our devices by comparing the change in the resistance as a function 

of current in ambient conditions to the change of resistance as a function of temperature. Figure S4 shows the result 

of such an analysis. We first record the temperature dependence of R near room temperature (268 – 298 K range). 

Then, we perform a linear fit and obtain the slope ∆𝑅/∆𝑇 [Fig. S4(a)]. We then measure 𝑅 in ambient conditions 

as a function of current [Fig. S4(b)]. We observe that 𝑅 increases proportionally to I2, as expected, since the heat 

generated by the injected current depends on the power applied on the device (∆𝑇 ∝ 𝐼?𝑅). Finally, we estimate the 

temperature rise with respect to room temperature as ∆𝑇(𝐼) = 	 u∆9
∆A
v
kE
[𝑅(𝐼) − 𝑅(𝐼 ≈ 0)], as shown in Fig. S4(c). 
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Figure S4. (a) Reference measurement of the resistance as a function of temperature. The solid line is a linear fit to the data. 

(b) Device resistance as a function of current, showing a quadratic increase (fit), as expected from Joule heating. (c) Device 

temperature as estimated from the relation between R and T found in (a). 

 

SM 4. Spin disorder magnetoresistance due to electron-magnon scattering 

The resistivity of a ferromagnet contains both nonmagnetic and magnetic terms. The nonmagnetic terms mainly 

arise from electron-phonon and electron-impurity scattering. The magnetic terms, as expected, depend strongly on 

the magnetic configuration and applied magnetic field. These terms include the anisotropic magnetoresistance, the 

domain wall magnetoresistance, and the spin disorder magnetoresistance. The latter, also called magnon 

magnetoresistance, arises from spin flip scattering due to the interaction of the conduction electrons with thermally 

excited magnons[4,5]. A signature of this effect in thin films is an almost linear and nonsaturating negative 

magnetoresistance in the single-domain magnetic state, due to the damping of magnons at high fields[6,7]. 

Figure S5 (a) shows the first harmonic measurements of 𝑅F as a function of field applied parallel to y. These 

measurements exhibit the typical magnetoresistive behavior of ferromagnetic thin films, with a sharp peak due to 

domain reorientation near 𝐵 = 0 and a linear negative magnetoresistance at high field due to the decrease of spin  

disorder in the saturated state. Of interest to the present study is the fact that the slope of negative magnetoresistance 

at high field, �9�
��
�
��E	�

, changes proportionally to 𝐼? [Fig. S5 (b)], indicating that Joule heating significantly 

increments the magnon population as the temperature changes by an amount ∆𝑇 ∝ 𝐼?. Therefore, in agreement with  
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Figure S5. (a) Magnetoresistance of Co(2.5)/Pt(6) as a function of 𝐵 ∥ 𝑦. The curves show 𝑅F(𝐵, 𝐼) −	𝑅F(0, 𝐼) for different 

current levels. The current ranges from 4.25 mA (𝑗	 = 	1 × 10�	A/cm2) to 21.25 mA (𝑗	 = 	5 × 10�	A/cm2). (b) 𝜕𝑅𝜔
𝜕𝐵

 evaluated 

for 𝐵 ≥ 1	𝑇 as a function of 𝐼?. The line is a linear fit to the data. 

the Rayleigh-Jeans approximation of the Bose-Einstein distribution function, we expect that the magnon density in 

our samples will be proportional to 𝑇 + ∆𝑇 ∝ 𝑐𝑜𝑛𝑠𝑡. +	𝐼?, where 𝑇 is the ambient temperature (the sample’s 

temperature in the absence of current).  

 

SM 5. Fits of the current, field and magnetization angle dependence of 𝑹𝟐𝝎 

We first analyze the current dependence of 𝑅?F reported in the main text [Fig. 2(d)], also shown below in Fig. 

S6(a). For 𝜑 = 90°, we find that the function 

 §9Y�¨©ª

9
= [𝑎 + 𝑏(𝐵)]𝐼( + 𝑐(𝐵)𝐼(p  (S11) 

fits the data accurately at different currents and fields [solid lines in Fig. S6(a)]. Figure S6(b) and (c) show the fit 

results for [𝑎 + 𝑏(𝐵)] and 𝑐(𝐵) as a function of 𝐵. We see that these coefficients are larger at low field and rapidly 

decay as 𝐵 increases. We attribute this strong field dependence to the damping of ambient temperature (coefficient 

b) and current-induced (coefficient c) magnons by the external field.  
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Figure S6. (a) Fits of the current dependence of the UMR in Pt(6 nm)/Co(2.5 nm) according to Eq. S11. (b,c) Field dependence 

of the fit coefficients  [𝑎 + 𝑏(𝐵)] and 𝑐(𝐵). The solid lines are fits to 𝐵kl.  

We now turn to the field-dependent decay of the UMR signals at constant current. In order to obtain quantitative 

insight into the dependence of the UMR on the field-induced magnon damping, we fit the SF-UMR given by 

|𝑅?F(𝐵) − 𝑅?F(𝐵 = 2	𝑇)| with the following empirical expression: 

 |𝑅?F(𝐵) − 𝑅?F(𝐵 = 2	𝑇)| = ¬
�

 . (S12) 

Here 𝑟 is the signal amplitude that scales with the injected current and 𝑝 is an exponent that is expected to be close 

to 1 based on models of the negative magnetoresistance due to electron-magnon scattering[6,8]. Notice that the 

subtraction of the signal measured at 2 T effectively eliminates the SD-UMR from the total signal. Figure 2(b) in 

the main text shows the results of the fits using Eq. S12 for different current densities in Co(2.5 nm)/Pt(6 nm). In 

order to avoid the low field region where the magnetization is nonuniform, we restricted the fits to 𝐵 ≥ 50 mT. 

 
Figure S7. (a) Fits of the field dependence of the SF-UMR of CoCr(t)/Pt(4 nm). (b) Values of the exponent p plotted as a 

function of the CoCr thickness. The current density for all CoCr samples was kept at j ~ 2.5x107 A/cm2.  
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We find excellent agreement between the data and Eq. S12 by letting the exponent p vary depending on the current 

density. We find that p increases monotonically from 0.61 to 0.86 as j varies from 1 to 5x107 A/cm2, as expected 

due to the temperature-induced renormalization of the magnon mass in thin Co films[8]. In other words, as the 

temperature increases the magnon dispersion “softens” and the magnon density of states increases, leading to a 

stronger dependence of the SF-UMR on the applied magnetic field. Another effect related to the magnon stiffness 

appears in the field dependence of the SF-UMR of the CoCr/Pt series, where we observe that p decreases from 

about 1.7 to 1.1 as a function of CoCr thickness (Fig. S7). We attribute such a decrease to the strong increase of the 

magnon stiffness that occurs in thin films during the cross-over from two-dimensional to three-dimensional 

behavior[7]. Accordingly, a stronger field is required to suppress the current-induced creation and annihilation of 

magnons in thicker films relative to thin films. 

Finally, we discuss the fitting of angular dependence of 𝑅?F appearing in Fig. 3 of the main text. The contribution 

of the SD-UMR and spin-orbit torques to 𝑅?F are proportional to sin𝜑 and sin𝜑 cos? 𝜑, respectively. The angular 

dependence of the SOT signal can be understood by examining Eq. S4 and the effective fields acting on m 

corresponding to the FL, Oersted and DL torques. For in-plane magnetization the DL-SOT generates out-of-plane 

oscillations to m whose signal is proportional to (8 X¯°
Y }

8}
�
}±²(°

) which is zero due to symmetric variation of the 

magnetoresistance for up and down tilting of m around 𝜃 = 90°, where 𝜃 is the polar angle of the magnetization 

with respect to the z-axis. However the Oersted and FL effective fields contribute to 𝑅?FJKA  as noted in Eq. S4. This 

signal is proportional to (𝑑 cos? 𝜑 𝑑𝐼⁄ ) where the derivative can be replaced by 𝑑𝜑 without losing generality, 

thereby yielding 𝑅?FJKA ∝ (sin𝜑 cos 𝜑). Finally By taking into account the geometrical factor of the effective field 

𝐛´µ,K~ ∝ 𝐦 × 𝐓´µ,K~ ∝ cos 𝜑 we obtain the final angular form of the SOT term as 𝑅?FJKA ∝ (sin𝜑 cos? 𝜑).  

In order to capture the peaked angular dependence of the SF-UMR around 𝜑 = 90° and 270°, we have to consider 

higher order terms in sin𝜑 in the cumulative expression of the second harmonic resistance. We therefore assume 

that 𝑅?F(𝜑) is given by 



 12 

 𝑅?F(𝜑) = 	𝑅?FJ¹ sin𝜑 + 𝑅?FJ´E sin𝜑 + 𝑅?FJ´p sinp 𝜑 + 𝑅?FJ´w sinw 𝜑 + 𝑅?FJKA sin𝜑 cos? 𝜑, (S13) 

where 𝑅?FJ¹  and 𝑅?FJKA  represent the amplitude of the SD-UMR and spin-orbit torque contribution to 𝑅?F, and  

𝑅?F
J´E,p,w are the expansion coefficients of the angular dependence of the SF-UMR. Because of the presence of 

different odd terms in sin𝜑, a fit of  𝑅?F(𝜑) using Eq. S13 is overparametrized. Therefore, to extract plausible 

values of the fit coefficients, we have first fitted the high-field curve (B  = 2 T) with a simple sine function to find 

the SD-UMR contribution, assuming that the 𝑅?FJKA  and 𝑅?FJ´  are negligible in this measurement. We then fitted the 

low-field data by setting 𝑅?FJ¹  equal to that obtained at high-field. We have realized that the choice of 𝑅?FJKA  strongly 

affects the parameter set for the different 𝑅?FJ´  coefficients. To tackle this issue, we have estimated 𝑅?FJKA  by 

analyzing the transverse Hall signal 𝑅?F%  recorded simultaneously with 𝑅?F. We then fixed 𝑅?FJKA  to that estimated 

and left the  𝑅?F
J´E,p,w terms as free parameters. For the low-current data, the higher order terms, namely 𝑅?FJ´p and 

𝑅?FJ´w, are negligibly small. On the other hand, for the high-current data, nonzero 𝑅?FJ´p and 𝑅?FJ´w are required to fit 

the data. A similar result, albeit with a much reduced 𝑅?FJ´p term compared to 𝑅?FJ´w, is obtained by letting 𝑅?FJKA  vary 

as free parameter. The fit parameters obtained by using the two approaches are reported in Table S1. Despite the 

uncertainty in the relative weight of 𝑅?FJ´p and 𝑅?FJ´w for the high-current data, these results indicate that the higher 

order terms are essential to fit the observed peaked behavior around 𝜑 = 90° and 270° and that the interaction 

between magnons and the injected spin current becomes highly efficient when the magnetization is collinear with 

the spin polarization direction, leading to a nonlinear angular and current dependence.  

Table S1 – Fit parameters obtained for the low-field data reported in Fig.3 (b) and (d) of the main text. All parameters are in 

units of mW. The gray boxes indicate fixed parameters used for the fits. Left sub-column of 	

𝑅?F
JKA,J´E,p,w correspond to the fitting results obtained by fixing 𝑅?FJKA  to the estimated value determined by the harmonic Hall 

measurements. Right sub-columns correspond to fitting by leaving all four parameters free, i.e.  𝑅?FJKA  and 𝑅?F
J´E,p,w. 

 𝑅?FJ¹  𝑅?FJKA  𝑅?FJ´E 𝑅?FJ´p 𝑅?FJ´w 

Co(2.5)/Pt(6) – 4.25 mA -1.1 -1.0 -0.94 -3.23 -3.4 0 0 0 0 

Co(2.5)/Pt(6) – 21.25 mA -8.8 -5.5 -10.9 -54.7 -11 73.5 19.9 -77.3 -77.3 
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SM 6. Temperature dependence of the UMR in Co/Pt bilayers 

By analyzing the current dependence of the UMR signals we have revealed that the SF-UMR is a strongly 

temperature-dependent process whereas the SD-UMR is not. Temperature dependent measurements in the range of 

4 – 300 K confirm this hypothesis and provide further evidence that the SF and SD-UMR originate from different 

resistive mechanisms.  

 
Figure S8. (a) Temperature dependence of the longitudinal resistance of Co(2.5 nm)/Pt(6 nm) measured with j = 1x107 A/cm2. 

(b) 𝑅?F(𝐵, 𝐼) as a function of 𝐵 recorded at 20 K and 300 K for large (j = 4x107) and moderate (j = 1x107) current density (a 

constant offset is removed from the curves for ease of comparison).  (c) SF-UMR and SD-UMR as a function of the nominal 

sample temperature.  

Although the UMR is much more prominent at high current density, in order to avoid excessive heating at low 

temperature, we have limited the current density to 𝑗 = 1 × 10� A/cm2. Figure S8 (a) shows the temperature 

dependence of the longitudinal resistance. Expectedly, the resistance decreases as the temperature is lowered in a 

quasi-linear fashion down to 50 K. For comparison, we measured the device resistance for 𝑗 = 4 × 10� A/cm2 at a 

set temperature of 4 K (not shown). The sample temperature is estimated to be ~75 K, thus showing a strong Joule 

heating effect for relatively large 𝑗 at low temperature (note that Joule heating has a stronger effect on temperatures 

below 100 K than it has at 300 K due to the reduced heat capacity of metals at low temperature). Figure S8(b) shows 

𝑅?F measured as a function of 𝐵 ∥ 𝒚 at T = 300 K and 20 K.  We observe that the low field enhancement of the 

signal associated to the SF-UMR is more prominent at 300 K than at 20 K, in agreement with the larger population 

of magnons at high temperature. Figure S8(c) summarizes the results obtained for the SF- and SD-UMR as a 

function of temperature. We find a ten-fold decrease of the SF-UMR between 300 K and 4 K, whereas the SD-
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UMR decreases by a about factor of two in the same temperature range. This strong (weak) temperature dependence 

of the SF (SD) contributions to the UMR is consistent with the different origin of the two effects. For completeness, 

we remark that, even at a current density of  𝑗 = 1 × 10� A/cm2, there may be deviations from the real and nominal 

temperature plotted in Fig. S8 (c), especially below 100 K.  

 
 

Figure S9. Spin-orbit torque and magnetothermal characterization of Co80Cr20(t)/Pt(4 nm). All measurements are performed at 

room temperature. (a) Plot of 𝑅�%�
��
���

����
+ 𝐼(𝛼𝛻𝑇] as a function of 1/𝐵~��. (b) Plot of 2𝑅�%�

�����

�
 as a function of 1/𝐵. See 

Eq. S10 for more details. (c) Current-induced effective fields due to the DL-SOT and FL-SOT (including the Oersted field) 

normalized to 𝑗 = 1 × 10� A/cm2. (d) Magnetothermal contribution to the second harmonic transverse resistance.   

SM 7. Spin-orbit torques, anomalous Nernst effect, magnetoresistance, and UMR of Co80Cr20(t)/Pt(4 nm). 

In this section we present a comprehensive characterization of the SOTs, magnetothermal effects, and UMR in the 

Co80Cr20(t)/Pt(4 nm) series by means of second harmonic Hall effect measurements. We follow the method briefly 

described in Sects. SM 1 and SM 2 (see Refs.[1,2,9] for more details) to identify the Hall signals with DL-SOT and 

magnetothermal origin [∝ 𝑐𝑜𝑠𝜑, see Fig. S9 (a)], and FL-SOT origin [∝ (2 cosp 𝜑 − cos 𝜑), see Fig. S9 (b)]. 

Figure S9 (c) and (d) show the dependence of the SOT and magnetothermal effect (predominantly driven by the 
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ANE), respectively, as a function of Co80Cr20 thickness. We observe that the absolute magnitude of both the FL and 

DL torque decreases as the Co80Cr20 thickness increases. This result is expected, since the effect of the torques on 

the magnetization scales inversely with the magnetic volume of the sample. We also notice that the DL-SOT is 

significantly larger than the FL-SOT. This result is also in agreement with previous measurements of the DL- and 

FL-SOT in relatively thick ferromagnetic films (≳ 2 nm) [2,8], and is ascribed to the fact that the spin accumulation 

in the ferromagnetic layer rotates away from y as it diffuses into the ferromagnet, which leads to a fast decrease of 

the FL torque.  

Finally, in Fig. S10 we show representative measurements of the first and second harmonic longitudinal signals 

𝑅F(𝜑) and 𝑅?F(𝜑), respectively, that are used to evaluate the UMR of Co80Cr20/Pt reported in Fig.4 of the main 

text. Figures S10(a) and (b) show that the 𝑅F(𝜑) of “thin” (1.6 nm) and “thick” (3.3 nm) Co80Cr20/Pt is proportional 

to cos? 𝜑, as expected for the anisotropic magnetoresistance and spin Hall magnetoresistance of a typical 

ferromagnet/nonmagnet bilayer. Figures S10(c) and (d) show the 𝑅?F(𝜑) measured simultaneously with 𝑅F(𝜑). 

The angular dependence of 𝑅?F(𝜑) follows Eq. S3. The green solid line is the magnetothermal signal 𝑅?F∇A  estimated 

with the procedure outlined in Sect. 2. The remaining contributions, due to 𝑅?FJKA  and 𝑅?FHI9 , are shown by dashed 

and dotted lines, respectively. These data are measured at 𝐵 = 1.85-1.9 T, such that the SF-UMR is negligible at 

this field.  
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Figure S10. (a,b) 𝑅F(𝜑)	and (c,d) 𝑅?F(𝜑) for two different thicknesses of Co80Cr20(t)/Pt(4 nm) measured at room temperature 

with 𝐵 = 1.9 T. The solid green lines are the estimated ANE contributions whereas the dotted and dashed lines show SD-UMR 

and FL-SOT contributions, respectively. Note that, due to the reduced thickness of Co80Cr20(1.6 nm), the FL-SOT contribution 

to  𝑅?F(𝜑) is sufficiently large so as to produce a comparable signal to the SD-UMR. 
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