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Thermally active artificial spin ice provides a model
system for geometric frustration in which the nanomag-
netic moments take on the role of Ising spins that can
be imaged in real-space and real-time. For the kagome
spin ice, two long-range ordered phases have been pre-
dicted [1, 2], but these have not been experimentally
verified. In order to observe these equilibrium phases,
it is necessary to lower the reduced blocking tempera-
ture TB/JNN to below the critical temperatures for the
phase transitions. For artificial kagome spin ice, the crit-

ical temperatures are T charge
crit = 0.35JNN and T spin

crit ≈
0.12JNN.

I ESTIMATION OF NANOMAGNET

INTERACTION STRENGTH

In order to derive the dependence of both TB and JNN

on the geometrical and material parameters, we focus on
the dipolar interactions between nanomagnets, which are
given by the dipolar pre-factor

JNN =
µ0m

2

4πa3
∝ m2

a3
. (1)

Here µ0 is the vacuum permeability, a is the lattice con-
stant between nearest-neighbours, and m is the magni-
tude of the magnetic moment given by

m = MsatV, (2)

where Msat is the magnetisation at saturation and the
volume V of a stadium-shaped nanomagnet is given by

V =

(
L− π − 4

4
W

)
Wh ∝ L2h , (3)

where L is the nanomagnet length, W = L/3 is the nano-
magnet width with a fixed aspect ratio, and h is the
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thickness of the nanomagnets that are spaced apart with
the lattice constant

a ≈ L+ g ≈ L , (4)

where g is the gap (g = 20 nm� L), which is the small-
est separation between neighbouring nanomagnets (see
Fig. 1 of the main text). Hence the dipolar interactions
can be simplified to

JNN ∝M2
satLh

2 . (5)

II DERIVATION OF BLOCKING TEMPERATURE

REDUCTION BY INTERFACIAL DMI

The energy barrier EB that determines the blocking tem-
perature TB depends, to a first approximation, on the
shape and volume of the nanomagnet Kxy, as well as
the DMI anisotropy KDMI resulting from the interfacial
coupling with the heavy-metal layer. Following the same
arguments laid out by Cubukcu et al. [3], the effective
anisotropy due to the interfacial DMI of a simple rectan-
gle is given by

KDMI ≈
D2
s

h2
√
AexKxz

L−W
LW

, (6)

where Aex is the exchange stiffness constant, Kxz is the
out-of-plane shape anisotropy, and Ds is the surface DMI
strength that follows from the thickness-dependent effec-
tive DMI strength D [4] given by

D =
Ds

h
. (7)

The blocking temperature is then proportional to

TB =
EB

kB ln τm
τ0

∝ (Kxy −KDMI)V , (8)

where kB is the Boltzmann constant, τm is the character-
istic measurement time, and τ0 the inverse attempt fre-
quency [5]. The in-plane shape anisotropy Kxy is given
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by

Kxy =
1

2
µ0M

2
sat (Nx −Ny) , (9)

and the out-of-plane shape anisotropy is given by

Kxz =
1

2
µ0M

2
sat (Nx −Nz)−Ku , (10)

where Ni are the demagnetisation factors along the three
axes (i = [x, y, z]) and Ku is the uniaxial anisotropy (as-
sumed to be zero for Ni80Fe20). The blocking tempera-
ture is then given by

TB ∝
(
Kxy −

2D2
s√

AexKxz

1

Lh2

)
L2h , (11)

and the reduced blocking temperature is given by

TB

JNN
∝
(
Kxy

L

h
− 2D2

s√
AexKxz

1

h3

)
. (12)

The reduced blocking temperature Eqn. (12) is smaller
for smaller lateral nanomagnet lengths L, which should
result in better magnetic ordering. Furthermore, thinner
nanomagnets would result in a lowering of the reduced
blocking temperature due to the increased effective DMI
strength.

III MINIMUM ENERGY PATH AND ENERGY

BARRIER SIMULATION

In order to calculate the energy barriers between the two
easy axis magnetisation states, we use the simplified and
improved string method [6–8]. The string method com-
putes the minimum energy transition path by employing
an iterative approach so that the initial path evolves it-
eratively towards the minimum energy path (MEP). The
MEP represents the energetically most favourable way to
switch the magnetisation between the new, relaxed initial
state and the new, relaxed final state.

The string method is implemented in magnum.fe, a
micromagnetic simulation code based on the finite ele-
ment method [9]. To create the geometry of the five
nanomagnets and generate the finite element meshes, we
use GMSH, an open-source 3D finite element grid gener-
ator [10]. For our calculations, we consider one central
nanomagnet, with the easy axis along the x-direction,
surrounded by its four nearest-neighbours (NN), see Sup-
plementary Movies [11].

In the simulations, we used the magnetic material pa-
rameters of bulk Ni80Fe20, with a saturation magneti-
sation Msat = 790 kA/m and exchange stiffness con-
stant Aex = 13 pJ/m. To determine the effect of the
interfacial Dzyaloshinskii-Moriya interaction (DMI), we
vary the DMI strength between D = 0.0 mJ/m2 and
D = 2.0 mJ/m2.

As an initial step, the reversal of the central nanomag-
net is assumed to be a coherent rotation from a uniform
initial state with m̂ini = (−1, 0, 0) to a uniform final state

with m̂end = (1, 0, 0). Here, m̂ denotes the unit-vector-
field representation of the magnetisation configuration.
This initial path is divided into 21 equidistant states with
respect to the energy-weighted arc length of the rotation.

We consider the total energy of the system to be

Etot = Edem + Eex + EDMI , (13)

where Edem is the demagnetizing energy, Eex is the ferro-
magnetic exchange energy, and EDMI is the antisymmet-
ric exchange energy. The demagnetizing energy is given
by

Edem = −µ0Msat

2

∫
Ωm

m ·Hdemdx , (14)

with Ωm corresponding to the region containing magnetic
material m i.e. the five magnetic nanomagnets, and the
demagnetisation field Hdem given by

Hdem(x) = −Msat

4π

∫
Ωm

∇∇′ 1

|x− x′|
m(x′)dx′ . (15)

The ferromagnetic exchange energy is given by

Eex =

∫
Ωm

Aex(∇m)2dx, (16)

and the antisymmetric exchange energy due to the inter-
facial DMI is given by

EDMI =

∫
Ωm

D[m · ∇(ed ·m)− (∇ ·m)(ed ·m)]dx ,

(17)
with ed being the surface normal to the ferromagnetic-
heavy metal interface. The energy barrier EB can be
computed using

EB = Esaddle − Eini , (18)

where Esaddle is the energy corresponding to the saddle
point of the MEP (State 10) and Eini is the energy cor-
responding to the initial magnetisation (State 0).

The full animation of the magnetisation reversals with
and without the interfacial DMI are provided in the Sup-
plementary Movies [11], where the colour scale represents
the out-of-plane magnetisation component mz. It can
be seen that, with the interfacial DMI, the reversal is
more coherent as a result of the additional short-axis
anisotropy.

IV EFFECT OF ROUGHNESS

To address the influence of lithographic edge roughness
on the blocking temperature, we performed the energy
barrier simulations for nanomagnets with DMI as shown
in Suppl. Fig. 1. Scanning electron microscopy (SEM)
images were used to define the geometry. Comparing
nanomagnets with and without edge roughness, while
keeping the magnetic moment constant, we find that
there is a significant increase in the energy barrier by
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Suppl. Fig. 1. (a) Experimental scanning electron mi-
croscopy (SEM) image series of seven-ring artificial kagome
spin ice structures with L = 450 nm, 300 nm, 210 nm, 150 nm
and 100 nm. (b) Energy barrier simulation of a nanomag-
net of length L = 100 nm and aspect ratio L/W = 3 with
and without edge roughness. To include the edge roughness,
the shape is taken from an SEM image of a nanomagnet of
length L = 100 nm (top image). This is compared to the ideal
nanomagnet (bottom image) with only small edge roughness
resulting from the meshing (bottom image). In the energy
barrier simulations, the total volume, and therefore the mag-
netic moment, of both the nanomagnet with edge roughness
and the ideal nanomagnet is the same.

13.6 meV or 10 % on introducing edge roughness. This
corresponds to a factor of 24 in the reorientation fre-
quency at 50 K. This is due to the fact that, with the
interfacial DMI, coherent rotation is favoured and the
added edge roughness gives rise to a non-uniform state
that leads to an increase in the energy barrier.

V DIRECT VISUALIZATION OF THE

REDUCTION OF TB DUE TO INTERFACIAL DMI

IN X-PEEM

In order to experimentally verify the origin of the re-
duced blocking temperature, we first measured the sat-
uration magnetization of nanomagnets with and with-
out the interface to the heavy-metal Pt. For this, we
performed SQUID-VSM measurements and determined
that identically grown Ni80Fe20 nanomagnets (with di-
mensions L = 450 nm, W = 150 nm, and h = 4.2 nm) on
5 nm Pt and on a Si substrate have the same saturation
magnetization Msat of 360 kA/m.

In order to experimentally verify that Pt induces an
interfacial DMI, we fabricated a Pt strip on a Si sub-
strate. We then patterned arrays of Ni80Fe20 nanomag-
nets, both on the Pt strip and the neighbouring Si sub-
strate, depositing a film wedge to obtain nanomagnet ar-
rays with different thickness. We measured the blocking
temperatures using time-dependent X-PEEM [12], and
the nanomagnet thickness is varied along the x-direction
of the sample, see Suppl. Fig. 2(a), ensuring a block-
ing temperature TB within the accessible temperature

Suppl. Fig. 2. (a) Scanning electron microscope (SEM) im-
age of wedge sample of variable Ni80Fe20 thickness along the
x-axis of the sample and (b) a zoom in of nanomagnets with
their lateral dimensions L and W = L/3 indicated. The Si
and Pt surface are indicated and can be seen in de zoom in
(b) where the higher contrast surface is coming from the Pt.
The red box in (a) indicates the thermally active Ni80Fe20

of thickness 4.2 nm artificial square ice on a 5 nm Pt layer
at room temperature (RT) imaged with time dependent X-
PEEM. In X-PEEM, nanomagnets with moments pointing
towards the x-ray propagation direction, see red arrow in (a),
appear bright, while moments opposing the incoming x-rays
appear dark. On Si, the identically prepared array is still in a
remanent magnetization state (all white) after saturating with
an in-situ field applied in the direction of the x-rays. (c) On
heating to 500 K, the nanomagnets on Si become thermally
active on the same timescale as those on Pt at 296 K. Simul-
taneously, the magnetic contrast of Ni80Fe20 on Pt disappears
at 500 K due to the high switching rate of the nanomagnets,
resulting in an averaged grey contrast.

range of the X-PEEM. The overall size of each individ-
ual array is 22 by 22 nanomagnets, occupying an area of
10 µm× 10 µm. A control array was fabricated on top of
both the Si and Pt interface in order to observe the effect
of Pt inside a single circular field-of-view with a diameter
of 15 µm, see Suppl. Fig. 2.

Magnetic imaging was performed at the SIM beamline
PEEM endstation at the Swiss Light Source, employing
x-ray magnetic circular dichroism (XMCD) at the Fe L3

edge [13]. XMCD contrast images are obtained by pixel-
wise division of images recorded with right and left cir-
cularly polarized x-rays. The resulting XMCD contrast
gives a direct measure of the projection of the magnetic
moments onto the x-ray propagation vector. Moments
pointing towards the incoming x-rays appear dark, while
moments opposing the x-ray direction appear bright (see
Suppl. Fig. 2(c-d). For each x-ray polarization, an ex-
posure time of two seconds is chosen, while switching
polarizations regularly takes one second. This gives an
overall time of roughly three seconds (τm ≈ 3 seconds) to
obtain an XMCD image.



4

Initially, we find the thickness of Ni80Fe20 patterned
on Pt where moment reorientations take place on the
timescale of the acquisition time of the PEEM, see bot-
tom panel of Suppl. Fig. 2(c). For this purpose, the
sample is saturated along the x-ray direction, and sub-
sequently, the thickness along the x-direction is found
where switched magnetization appears as dark spots in
an otherwise remanent state (all white). An XMCD se-
quence is taken to determine the reorientation rate, where
10 switches per image series is taken as the array with
TB at room temperature (296 K). As a check, the ar-
ray of Ni80Fe20 nanomagnets on Si is imaged throughout
and is still found to be in the magnetized state after 12
hours, see top panel of Suppl. Fig. 2(c). The sample is
then heated in-situ up to 500 K, where the reorientation
rate of the nanomagnets on Si is similar to the reorien-
tation rate at room temperature for Ni80Fe20 on Pt, see
top panel Suppl. Fig. 2(d). For the array with Ni80Fe20

nanomagnets on both Si and Pt (middle panel), it can
be clearly seen that the reorientation rate on Si is signif-
icantly lower than that on Pt that, on average, results in
a gray contrast. Hence, the energy barriers for nanomag-
nets on Pt are significantly lower than for those on Si for
identical magnetic moments.

VI REDUCED DIPOLAR ENERGY OF

SEVEN-RING STRUCTURES

In order to compare the ordering between different seven-
ring artificial kagome structures, we considered the re-
duced dipolar energy ∆E/JNN, using only the spin con-

figuration Ŝ and their distance r̂ in fractions of the lattice
parameter in the dipolar configuration energy (Eqn. 19
for the dipolar energy). The reduced dipolar energy is
calculated by dividing out the dipolar pre-factor JNN,
that contains all the geometrical information. The energy
of each seven-ring structure is computed by summing the
dipolar energy over all neighbours giving Econfig, similar
to the method used by Farhan et al. [14], and is repeated
for all 20 seven-ring structures found in a single field-
of-view PEEM XMCD image. The reduced dipolar en-
ergy of the ground-state configuration EGS is computed
with the two possible degenerate ground-state configura-
tions given in Fig. 3(c) of the manuscript. The obtained
∆E/JNN is the average excitation above the ground-state
〈Econfig − EGS〉 and the error is given by the standard
deviation of the mean. Furthermore, ∆E/JNN can be
compared for various dipolar pre-factors (Suppl. Fig. 3),
from which we conclude that, for each L, the increased
coupling (higher JNN due to increased thickness) results
in better magnetic ordering.

VII ORDERING AND BLOCKING

TEMPERATURE IN SEVEN-RING KAGOME

STRUCTURES

In order to compare the magnetic ordering of kagome
structures with differently sized nanomagnets, we plot

Suppl. Fig. 3. Point-dipolar energy of the magnetic con-
figurations of kagome structures compared to the ground
state energy normalized to the dipolar pre-factor (∆E/JNN =
〈Econfig−EGS〉/JNN) determined from X-PEEM images where
each point corresponds to an average of 20 seven-ring struc-
tures for various combinations of L and h. Each colour series
corresponds to a particular L and is plotted against JNN, the
dipolar pre-factor given by Eqn. (1). The error bars indicate
the standard deviation. The lower value of JNN for thinner
nanomagnets results in poorer ordering, i.e. lower ∆E/JNN.
Thus each line for a given L shows a downward trend from
left (thin nanomagnets) to right (thicker nanomagnets).

the average configuration energies ∆E/JNN with an ex-
perimentally determined blocking temperature TB(L, h)
at two temperatures of 50 K and 86 K indicated by the
dashed red lines in Suppl. Fig. 4(a,c). We have defined
TB as the temperature below which only 3 to 5 moment
fluctuations were observed within 50 sec, corresponding
to the time of 10 consecutive XMCD images. To deter-
mine the blocking temperature TB as a function of L and
h, we identified using X-PEEM the thickness h of kagome
structures with L = 450 nm, 300 nm, 210 nm, 150 nm and
100 nm, for which T = 50 K and at T = 86 K are the
blocking temperatures.

Since TB ∝ h, we can linearly interpolate the block-
ing temperatures for all remaining thicknesses, as given
in Suppl. Fig. 4(b). The resulting average configuration
energies ∆E(L, TB) are plotted in Suppl. Fig. 4(c) for dif-
ferent nanomagnet lengths L and blocking temperatures
TB(L, h). In Suppl. Fig. 4(c), we have included the loca-
tion at each lateral dimension where an optimum mag-
netic ordering is obtained, i.e. a low value of ∆E(L, TB).
From the dashed black line through these low values of
∆E(L, TB) it can be seen that larger lateral dimensions
result in better magnetic ordering, with ∆E/JNN closer
to that of the ground state.

VIII MONTE CARLO SIMULATIONS

We used Monte Carlo (MC) simulations to compute the
equilibrium configurations by modelling the individual
nanomagnets as point-dipole macrospins and with Ising
degrees of freedom along the length of each nanomagnet,
arranged on a finite kagome lattice [1, 2, 15, 16]. The
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Suppl. Fig. 4. (a) The point-dipolar energy of magnetic con-
figurations compared to the ground state normalized to the
dipolar pre-factor (∆E/JNN = 〈Econfig − EGS〉/JNN). These
values are determined from X-PEEM images where each point
corresponds to nanomagnets with a particular L and h. Each
data point corresponds to the average of ∆E/JNN for 20
seven-ring structures. The location of the observed global
minimum in ∆E is indicated with a black star. (b) The ex-
perimentally obtained blocking temperatures TB(L, h) at two
temperatures of 50 K and 86 K (red dashed lines) with the
remaining TB(L, h) ∝ h linearly interpolated at each L. The
two blocking temperatures are also indicated with red dashed
lines in (a) and (d). (c) Energy barrier simulations of nano-
magnets for various L and h, with the resulting linear rela-
tionship between EB and h. (d) The reduced configuration
energy ∆E/JNN as a function of the interpolated blocking
temperatures. Indicated with a dashed black line is the aver-
age minimum energy configuration at each blocking tempera-
ture, with a trend towards larger L and TB(L, h) resulting in
better magnetic ordering.

Hamiltonian is as follows:

H =
1

2

∑
<i,j>

JNN

(rij/a)
3

[
Ŝi · Ŝj − 3

(
Ŝi · r̂ij

)(
Ŝj · r̂ij

)]
,

(19)

where Ŝi is the macrospin unit vector for the macrospin
i, r̂ij is the unit vector connecting the macrospins i
and j, and rij is the distance between the neighbour-
ing macrospins with, a, the neareast-neighbour distance.
Interactions up to fifth nearest-neighbours (rij = 3.55)
are required to obtain converging results. The simula-
tions were carried out on an array containing N = 2646
macrospins with periodic boundary conditions. The sim-
ulations are performed with a dipolar pre-factor JNN =
379 K to which the temperatures are scaled.

We then perform the simulation in three regions with
varying temperature stepsizes and MC sweeps. Here an
MC sweep is defined as N single site MC steps followed
by N/2 hexagonal loop MC steps, where the latter loop
algorithm is the same as that used in Ref. [1]. The high-

Suppl. Fig. 5. The heat capacity from MC simulations,
showing three peaks corresponding to the paramagnetic-ice
cross-over, and the two phase transitions T charge

crit and T spin
crit ,

to the charge and spin-ordered phases, respectively. The filled
markers correspond to the reduced temperatures determined
from the X-PEEM images for an artificial kagome spin ice
with interfacial DMI. The open markers correspond to the
reduced temperatures obtained experimentally for systems
without the interfacial DMI, with the open circle correspond-
ing to the values from Farhan et al. [17]. The dashed lines
indicate two systems with and without DMI (D), and similar
JNN. The extent of the twofold degenerate charge-ordered do-
mains obtained from X-PEEM images is indicated in red and
blue in the inset for L = 450 nm on Pt with T/JNN = 0.84.

temperature paramagnetic to Spin Ice I crossover is sim-
ulated by varying the temperature from 9000 K down to
600 K in steps of 100 K with 10 000 MC sweeps at each
temperature to obtain a well-converged heat capacity.

The Spin Ice I to Spin Ice II transition (T charge
crit ) is sim-

ulated by varying the temperature from 600 K down to
100 K in steps of 5 K and with 10 000 MC sweeps. The
Spin Ice II to Long-Range Order transition (T spin

crit ) is sim-
ulated by varying the temperature from 100 K down to
1 K in steps of 1 K with 100 000 MC sweeps, eventually re-
sulting in a system-spanning long-range ordered kagome
spin ice. The resulting temperature-dependent heat ca-
pacity is given in Suppl. Fig. 5. Furthermore, the reduced
temperatures (dashed lines) of the experimental systems
with and without DMI are indicated. For L = 450 nm
on Pt (with DMI) it is found that T/JNN = 0.84 and
for L = 450 nm on Si (without DMI) the reduced tem-
perature T/JNN = 4.49. Hence, the obtained reduced
temperature of the nanomagnets with DMI is closer to
the charge-order phase transition.
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