E *H* zürich

Interaction between charge, spin and orbital currents in magnetic heterostructures

P. Gambardella

Department of Materials, ETH Zürich, Switzerland

V. Krizakova G. Krishnaswamy

G. Sala

- E. Grimaldi
- M. Wörnle
- C.-H. Lambert
- D. Phuong
- S. Velez

- Z. Luo
- A. Hrabec
- S. Finizio
- S. Wintz
- J. Raabe
- L. Heyderman

M. Weigand

- S. Couet K. Garello F. Yasin G.S. Kar
- ເmec

P. Welter C. Degen

Outline

- Charge-spin conversion mechanisms
- Spin-orbit torques
- Current-induced manipulation of
 - ✓ Ferromagnets
 - ✓ Ferrimagnets
 - ✓ Antiferromagnets
- Examples of applications
 - $\checkmark\,$ Domain wall logic
 - ✓ MRAMs

Spin currents

Spin polarized current

Tunnelling Magnetoresistance (TMR)

Spin torques

Spin polarized current

Magnetic random access memories (MRAMs)

STT-MRAM

Chappert, Fert & Van Dau, Nat. Mater. 2007 Dieny et al., Nat. Electronics 2020

	Ferrite core memory	STT-MRAM
Density	32 kb/ft ³ Pitch (size) 5 mm (1 mm)	1 Gb/cm ² Pitch (size) 100 nm (50 nm)
Writing Speed	> 1 ms	10 ns
Switching current Switching energy of 1 bit	100-500 mA 1-5 10 ⁻⁷ J	50 μA 1-5 10 ⁻¹³ J
Endurance	?	10 ¹²⁻¹⁴ cycles

Embedded memories: Present

V. Krizakova et al., J. Magn. Magn. Mater. 562, 169692 (2022)

Electronic vs spin memories

V. Krizakova et al., J. Magn. Magn. Mater. 562, 169692 (2022)

Charge-spin interconversion mechanisms

Currents of angular momentum

$$\begin{split} J_{c} &= J_{\uparrow} + J_{\downarrow} \\ J_{S} &= -\frac{\hbar}{2e} (J_{\uparrow} - J_{\downarrow}) \end{split}$$

The spin Hall effect

Dyakonov and Perel, JETP Lett. **13**, 467 (1971) Sinova et al., Rev. Mod. Phys. **87**, 1213 (2015)

Spin-dependent anomalous velocity:

$$\boldsymbol{v} = \frac{1}{\hbar} \frac{\partial E_n(\boldsymbol{k})}{\partial \boldsymbol{k}} + \dot{\boldsymbol{k}} \times \boldsymbol{\Omega}_n(\boldsymbol{k})$$

Karplus and Lüttinger, Phys. Rev. **95**, 1154 (1954) Xiao, Chang and Niu, Rev. Mod. Phys. **82**, 1959 (2010)

 $\theta_{SH}(Pt) = 0.05 - 0.2$ $\lambda_s(Pt) = 1 - 14 nm$

MOKE detection of the SHE-induced spin accumulation in Pt

Stamm, PG et al., *PRL* **119**, 087203 (2017)

MOKE detection of SHE-induced spin accumulation

ETH zürich

Rashba-Edelstein effect

Manchon and Zhang, PRB **78**, 212405 (2008) PG and Miron, Phil. Trans. R. Soc. A **369**, 3175 (2011)

Currents of angular momentum

$$\begin{split} \mathbf{J_c} &= \mathbf{J}_\uparrow + \mathbf{J}_\downarrow \\ \mathbf{J_S} &= -\frac{\hbar}{2\mathrm{e}} (\mathbf{J}_\uparrow - \mathbf{J}_\downarrow) \end{split}$$

 $\mathbf{J}_{\mathrm{c}}=0, \mathbf{J}_{\mathrm{L}}\neq 0$

Bernevig et al., PRL 2005

Orbital Hall and spin Hall conductivities in the transition metals

$$j_L = \sigma_{yx}^{OH} E$$

 $j_S = \sigma_{yx}^{SH} E$

Dongwook Go & Yury Mokrousov, to be published see also Salemi and Oppeneer, Phys. Rev. Mater. **6**, 095001 (2022)

Charge and spin conversion mechanisms

Manchon and Zhang, PRB **78**, 212405 (2008) PG and Miron, Phil. Trans. R. Soc. A **369**, 3175 (2011)

Kontani et al., PRL 1**02**, 016601 (2009) Go et al., PRL **121**, 086602 (2018)

Salemi et al., , Nat. Comm. 10, 5381 (2019)

Current-induced spin-orbit torques in FM/NM bilayers

"Bulk" spin current

Interfacial spin polarization

Manchon et al., Rev. Mod. Phys. 91, 035004 (2019)

Orbital torque in Co and Ni layers due to OHE in Cr and Mn

 «Standard» spin-orbit torque in Co/Pt and Ni/Pt due to spin current generated by Pt

Orbital torque in Co and Ni layers due to OHE in Cr and Mn

 «Standard» spin-orbit torque in Co/Pt and Ni/Pt due to spin current generated by Pt

 Orbital torque in Ni,Co/Cr due to orbital current and spin current generated by Cr

	Cr	Mn	Со	Ni
$\langle L \cdot S \rangle$	_	_	+	+
σ_L	+	+		+
σ_{S}	—	_	+	+

G. Sala and PG, Phys. Rev. Res. 4, 033037 (2022)

Crucial role of orbital-to-spin conversion

G. Sala and PG, Phys. Rev. Res. 4, 033037 (2022)

Giant orbital Hall effect in metallic heterostructures

G. Sala and PG, Phys. Rev. Res. 4, 033037 (2022)

Charge-spin conversion and spin-orbit torques

Functionalities & applications

Manchon et al., Rev. Mod. Phys. 91, 035004 (2019)

Spin-orbit torques acting on domain walls

Bloch walls

Néel walls

Spin-orbit torques acting on domain walls

Bloch walls

$$\boldsymbol{s} \parallel \boldsymbol{M}_{DW} \Rightarrow \boldsymbol{T}_{DL} = \boldsymbol{s} \times \boldsymbol{s} \times \boldsymbol{M}_{DW} = \boldsymbol{0}$$

$$\boldsymbol{s} \perp \boldsymbol{M}_{DW} \Rightarrow \boldsymbol{T}_{DL} = \boldsymbol{s} \times \boldsymbol{s} \times \boldsymbol{M}_{DW} = max$$

Thiaville et al., Europhys. Lett. 100, 57002 (2012); Khvalkovskiy et al., PRB 87, 020402R (2013)

Spin-orbit torque induced domain wall motion in magnetic racetracks

$$j = 2 \cdot 10^8 A \ cm^{-2} \ (T^{DL} = 36 \ mT)$$

Baumgartner & PG, APL **113**, 242402 (2018) Miron et al., *Nat. Mater*. 2011; Thiaville et al., *Europhys. Lett*. 2012 Ryu et al. *Nat. Mater*. 2013; Emori et al., *Nat. Mater*. 2013

Chiral domain walls due to interfacial DMI in thin films with PMA

$$\mathcal{H}_{DMI} = -\boldsymbol{D} \cdot \boldsymbol{S}_1 \times \boldsymbol{S}_2$$

Fert and Levy, PRL 44, 1538 (1980); Kubetzka et al., PRL 88, 057201 (2002); Heide et al., PRB 78, 140403 (2008)

Chiral domain walls measured by scanning NV magnetometry

Vélez, PG et al., Nat. Comm. 10, 4750 (2019)

Current-induced domain wall motion in a magnetic insulator

Vélez, PG et al., Nat. Comm. 10, 4750 (2019)

Current-induced switching and domain wall motion in Pt/TmIG

Current-induced switching and domain wall motion in Pt/TmIG

Vélez, PG et al., Nat. Comm. 10, 4750 (2019)

Current-driven stabilization of skyrmion bubbles in Pt/TmIG/YIG

- YIG is demagnetized
- Current pulses can nucleate bubble domains and break stripe domains into bubble domains

Vélez et al., Nat. Nanotech. 17, 834 (2022)

ETH zürich

NV magnetometry of skyrmions in Pt/TmIG/YIG

Vélez et al., Nat. Nanotech. 17, 834 (2022)

ETH zürich

Q = +1

Q = -1

y

Current-driven skyrmions in YIG/TmIG/Pt

Hopping motion

Skyrmion Hall effect

Vélez et al., Nat. Nanotech. 17, 834 (2022)

From chiral Néel walls to chirally-coupled nanomagnets

 $H_{\rm DM} = -\vec{D}_{12} \cdot (\vec{m}_1 \times \vec{m}_2)$

From chiral walls to chirally-coupled nanomagnets

XPEEM @ SIM beamline/PSI

Luo, Dao, Hrabec, Heyderman, PG et al., Science 363, 1435 (2019)

ETH zürich

DMI-induced lateral coupling

Current-driven domain-wall inverter

STXM measurement of an OOP-IP-OOP racetrack

The \otimes \odot DW is inverted into a \odot \otimes DW by the current pulses

Z. Luo, et al., Nature 579, 214 (2020)

Domain-wall NOT gate

We define \otimes = logical '1' and \odot = logical '0'

Fabricating majority logic gates based on DMI coupling

Luo, Hrabec, Heyderman, PG et al., Nature 579, 214 (2020)

Examples of DW logic circuits enabled by SOT and chiral coupling

AND gate

NAND+NOR circuit

Luo, Hrabec, Heyderman, PG et al., Nature 579, 214 (2020)

Spin-orbit torque switching of a single ferromagnetic layer

- ✓ Transfer of *orbital* to *spin* momentum
- ✓ Efficient spin injection/No polarizer
- ✓ Scalable
- ✓ Versatile (PMA, IMA, ...)
- ✓ CMOS-compatible
- DL torque is in-plane: switching of M_z requires symmetry-breaking field

Miron et al., Nature 476, 189 (2011)

Spin-orbit torque switching of a chiral antiferromagnets: Mn₃Sn

Nakatsuji et al., Nature 527, 212 (2015) Tsai et al., Nature **580**, 608 (2020)

Krishnaswamy, PG et al., Phys. Rev. Appl. 18, 024064 (2022)

Rare-earth transition-metal ferrimagnetic alloys

 $RE_{x}TM_{1-x}$ GdFeCo, TbCo, DyCo, ... $J_{\rm RE-RE}$ J_{RE-TM} RE $J_{\text{TM-TM}}$ ΤM Net M

- Fast dynamics
- Easier to measure than AFMs
- Bulk PMA and DMI
- Low stray field
- Tunable by composition and temperature

see, e.g., Buschow, Rep. Prog. Phys. 40, 1179 (1977); Kim et al., Nat. Mater. 21, 24 (2022)

SOT-induced switching of Pt(5 nm)/Gd₃₀Fe₆₃Co₇(15 nm) dots

Sala et al., Nat. Comm. 12, 656 (2021)

Time-resolved scanning transmission x-ray microscopy (STXM)

- Contrast due to XMCD
- Normal incidence: $\pm M_z$
- Element specific: Gd M_5 -edge (1185eV) Fe L_3 -edge (707 eV)
- Time resolution: $\sim \! 100 \text{ ps}$
- Lateral resolution: $\sim \! 25 \text{ nm}$

Current pump / x-ray probe measurements

- Pump: 0.8 20 ns current pulses at 20 MHz rep rate
- Probe: 70 ps x-ray pulses at 500 MHz rep rate

PolLux beamline Swiss Light Source

ETH zürich

Asynchronous switching of ferrimagnetic alloys

ETH zürich

Asynchronous switching of ferrimagnetic alloys

Asynchronous and synchronous switching of ferrimagnetic alloys

Switching of M_{TM} and M_{RE} in ferrimagnets

- Asynchronous switching of sublattice magnetizations with ns-long transient FM state
- Asymmetric action of spin-orbit torques on TM and RE sublattices: master-slave dynamics
- Variable strenght of antiferromagnetic coupling depending on alloy microstructure

Spin-orbit torque switching of binary MTJ devices

CMOS-compatible back-end-of-line array of 3-terminal MTJs

Imec - Interuniversity Microelectronics Centre, Leuwen, Belgium

00

K, Garello, S. Couet, F. Yasin, G.S. Kar

ETH Zurich

V. Krizakova, E. Grimaldi, G. Sala, PG

Dual pulse switching of 3-terminal MTJs

E. Grimaldi, V. Krizakova, K. Garello, PG et al., Nat. Nanotech. 15, 111 (2020)

Single-shot SOT and STT switching in a 3T-MTJ

STT only

Squeezing the switching time distributions by VCMA, STT, self-heat

E. Grimaldi et al., Nat. Nanotech. 15, 111 (2020)

Trade-off between speed and efficiency: comparison between STT and SOT

Writing by combined V_{SOT} & V_{MTJ} pulses provides gain in speed and energy efficiency

Krizakova et al., Phys. Rev. Appl. 15, 054055 (2021)

Quantifying the separate effect of SOT, STT, VCMA, and SELF-HEATING

• Critical SOT voltage: $V_c(V_{\text{MTJ}}, t_p)$

• Normalized critical voltage: $v_c = V_c/V_{c0} = (V_{c0} + \Delta V_c)/V_{c0}$

$$v_{c} = 1 - \left(\frac{2 \varepsilon}{M_{S} t_{FL} t_{MgO}} V_{MTJ} \pm \frac{\beta}{RA(1 - b|V_{MTJ}|)} V_{MTJ} + \frac{\zeta}{RA(1 - b|V_{MTJ}|)} V_{MTJ}^{2}\right) \cdot (H_{k} \mp H_{offset})^{-1}$$

$$VCMA \qquad STT \qquad Joule heating due to V_{MTJ}$$

Krizakova et al., Phys. Rev. Appl. 15, 054055 (2021)

3-terminal MTJs: combining four effects in one device

SOT $\propto j_{SOT} \propto V_{SOT}$ STT $\propto j_{STT} \propto V_{MTJ} \operatorname{sign}(M_{REF})$ Krizakova et al.,
Phys. Rev. Appl. 15, 054055 (2021)Joule heating $\propto I^2 R$ VCMA $\propto V_{MTJ}$ \sim

Dense integration of 3-terminal MTJs for SOT-MRAM: "VGSOT"

Embedded memories: Future

umec

ETH zürich

Material issues: SOT efficiency vs power density

Krizakova, PG et al., J. Magn. Magn. Mater. 562, 169692 (2022)

Materials with large SOT efficiency

Manchon et al., Rev. Mod. Phys. 91, 035004 (2019)

Conversion efficiency in TIs: twin-free single crystal Bi_{0.9}Sb_{0.1}

- $\xi_{DL} \approx 1$ (single crystal),
- $\xi_{DL} \approx 0.05$ (amorphous)
- Isotropic
- Nonmonotonic *T*-dependence

