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Solutions to exercises

FExercise 1.1

The standard barrel of crude oil is 42 US gallons, that is, 42 x 3.785 litres =
0.159m?. The 100000m3 of crude oil pumped through the Trans-Alaska
Pipeline per day given in Section 1.1 hence correspond to 630000 barrels.
With a current price of some 50 US dollars per barrel (mid 2016), the value
of the crude oil transported through the Trans-Alaska Pipeline in a day is
given by the impressive number of 31000000 US dollars.

Ezercise 2.1
Straightforward differentiations of the probability density pa,e,(z) defined
in (2.16) give the following results:
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By comparing the prefactors of (z — oy)?, z — oy, and 1, we recover the
evolution equations (2.9) and (2.10).
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Ezercise 2.2
According to the superposition principle, we have

1/2 1/2 (x+1/2)/V2t
p(t,z) = / pyt(x)dy = / pot(z —y)dy = / po1/2(2)dz
2 —1/2 (x—1/2)/V/2t

() ()]

FEzercise 2.3

In Mathematica:

convol[x_,sig_]=
Integrate[ (1-t) «PDF [NormalDistribution[t,sig]l,x],{t,0,1}1+
Integrate[ (1+t) «PDF [NormalDistribution[t,sig]l, x],{t,-1,0}]
Plot [{Piecewise [{{1+x,-1<x<=0},{1-x,0<x<1}},0],
convol[x,Sqrt[.03]],convol[x,Sqrt[.311},{x,-2,2},
PlotRange->{0, 1}, AxesLabel->{Text [Style[x,FontSize->201],
Text [Style[p[t,x],FontSize->20]1}]

Notice that Mathematica ®) actually gives an analytical result for the inte-
gral implied by the superposition principle in terms of error functions. The
resulting curves are shown in Figure C.9.

X)

Figure C.9 Mathematica ® output for the diffusion problem of Exercise
2.3.

Exercise 2.4

% [—/pln(p/peq)dm} = —/ [?ﬁ In(p/peq) + gzz dx
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— [ wlo/pa) 5 do == [ 7 5 Wi/ ds

where the normalization of p and the diffusion equation have been used. By
inserting the expression for J given in (2.25) we obtain the desired result.

Ezercise 2.5
The eigenvalue problem for pure diffusion with D =1 is given by

1 d*p(x)

—Ap(.%') = 5 dz2

which has the solutions
p(z) = Cysin(vV2Az + Cy) .

The boundary condition p(0) = 0 suggest Co = 0 and the boundary condi-
tion p(1) = 0 then selects discrete values of A,

\ 2\, =, )\n:nﬂ .

We can now write the solution as the Fourier series

oo
x) = Z cnsin(nmz) e At

where the coefficients ¢, are determined by the initial condition at ¢ = 0.
By multiplying with sin(mnz) and integrating, we find

1 o
/ sin(mnx) de = ch/ sin(mmx) sin(nrz) dx,
0 n=1
leading to the explicit expressions
1 c
— = (=)™ ==,
S (=

Note that all the coefficients ¢, with even n vanish. The fraction of the
substance released as a function of time is given by

1
8
1— taydr=1- Y —5e
/Op(’x) € n27r2€

n=odd

FExercise 2.6
According to the respective definitions, we have

T—exp{M(t1) + M(t2)} =1+ M(t1) + M(t2)
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+5 [M(t1)? + M (t2)*] + M (t2) - M (1)

_'_

RN =

[M(1)° + M(12)%] + 3 [M(12) - M(5)? + M(82)" - M{0)] + ..
and
exp{M (t1) + M (t2)} =1+ M (t1) + M (t2)

% (M(t1) + M) + é IM(t1) + M(t2)P + ... .

In terms of the commutator C = M(ts) - M(t;) — M(t1) - M(t2), the
difference can be written as

T exp{M(t1) + M(12)} — exp{M{(1) + M(t2)} = - C

+ é [C - M(t1) + M (t3) - C + M(ts) - M (t1)? — M(t1)* - M (t2)
+ M (t2)% - M(ty) — M (t1) - M(t2)*] + ... .

Ezercise 2.7
Straightforward differentiations of the probability density pa,e,(x) defined
in (2.39) give the following results:

0 1 1 _
Giperen(@) = |y(e ) 01610, (- a

R DA
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5@ e (© 40+ AT(0)- 0,1 (o - a)

(@ —oy) - Ot (Ag(t) + Ax(t) - ay) — trAl(t)} Po©,(T)

and

S ae o Dy(t) pae (@) = 3 (@ — ) O Dy(t) ;! (w— ax)

20 Oz
— tr (Dg(t) . @;1) :|pat@t($) .
By comparing prefactors, we obtain the following evolution equations:

oy = Al(t) - o+ Ao(t) R
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and
Gt = Al(t) -0+ O - A{(t) + Do(t) .

FEzercise 2.8
In Mathematica ®):

Theta={{0.4,0.3},{0.3,0.6}}

invT=Inverse[Theta]

flxl_,x2.]1:=Exp[-1/2 {x1,x2}.invT.{x1,x2}]/Sqrt[(2 Pi) 2 Det[Theta]l]
Plot3D[f[x1l,x2]1,{x1,-2,2},{x2,-2,2}]

The output is shown in Figure C.10.

Figure C.10 Mathematica ® output for the two-dimensional Gaussian of
Exercise 2.8.

Exercise 2.9

The covariance matrix © is symmetric and can hence be diagonalized. By
a linear transformation to suitable coordinates, ® can hence be assumed to
be diagonal. For diagonal ®, the probability density in (2.39) indeed is the
product of d one-dimensional Gaussians.

Exercise 3.1

To switch from a rectangular to a triangular initial distribution, we only
need to change the stochastic initial condition. The curve for t = 0.03 is
produced by the following MATLAB (®) code:

% Simulation parameters
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NTRA=1000;NTIME=3;NHIST=100;DT=0.01;
XMIN=-1.;DX=0.05; XMAX=1.;
edges=XMIN:DX:XMAX;
centers=XMIN+DX/2:DX:XMAX-DX/2;

for K=1:NHIST
% Generation of NTRA trajectories x
y=random('Uniform',-1,1, [1,NTRA]); x=sign(y).* (l-sqgrt (abs(y)));
for J=1:NTIME
x=x+random('Normal', 0, sqrt (DT), [1,NTRA]) ;
end
% Collection of NHIST histograms in matrix p
p (K, :)=histc (x,edges) / (DX*NTRA) ;
end

% Plot of simulation results
errorbar ([centers NaN],mean (p),std(p)/sqrt (NHIST), 'LineStyle', 'none")

Ezercise 3.2
By integrating (3.19) over x, we obtain

1(a:+t—t’)} ,
1-— (t,z)dr = 2 A dtdr.
/o il / /\/27rt—t’ { t—t

For the time derivative of the left-hand side of this equation, we obtain by
means of the diffusion equation

d > 19ps(t, z)

Cdt 0 pf(t ) 2 aCC

t,0).

=0

The contribution to the time derivative of the right-hand side of the above
equation resulting from the upper limit of the time integration is

a(t) lim

i = [ oe ] xte)}d‘”’”:;““)’

where we can neglect the mean value —e compared to the width /e of the
Gaussian distribution. For the time derivative of the Gaussian under the
integral in the above equation, we can again use the diffusion equation to

obtain
o 10? L(z+t—1t)2
— —— 2 Sdt'dr =
/ / \/ t—t’ (837 28x2) eXp{ 2 t—t x

_Lfa)

0 \/2m(t—1)

By equating the time derivatives of the left- and right-hand sides, we arrive
at the desired result (3.20).

ef(tft’)/Q dt’ .
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Exercise 3.3

Mathematica ®) code for the inverse Laplace transform using the Zakian
method, adapted from the implementation Zakian.nb by Housam Binous
in the Wolfram Library Archive (1ibrary.wolfram.com):

alph={12.83767675+I 1.666063445,

12.22613209+I 5.012718792,

10.9343031+I 8.40967312,

8.77643472+1 11.9218539,

5.22545336+1 15.7295290};

K={-36902.0821+I 196990.426,

61277.0252-1 95408.6255,

-28916.5629+1 18169.1853,

4655.36114-1 1.90152864,

-118.741401-T 141.303691};
abar[s_]=Exp[l-Sqrt[1+2s]]* (Sqrt[1+2s]+1)/(Sqgrt[1+2s]-1);
alt-1=2/t Sum[Re[K[[i]]abar[alph[[i]1]1/t]],{i,5}];
Plot[alt],{t,0,5},PlotRange->{0,2.5}]

Mathematica ®) code for the evaluation of (3.19):

plt_, x_]:=(1/Sqrt[2Pi t]) Exp[-0.5(x-1+t) 2/t]+
NIntegratel (a[tp]/Sqrt[2Pi(t-tp)]) Exp[-0.5(x+t-tp) 2/ (t-tp)],{tp,0,t}]
Plot[p[0.3,x],{x,0,2}]

Exercise 4.1
From (4.15) and (4.21) we have

1oy W R
T \oU/viN  2U
which gives (4.22a). Similarly, from (4.16) and (4.21) we have

- (20),-

which gives (4.22b). Finally, from (4.17) and (4.21) we have for a single-
component fluid

7= (ow)o =50 P () (75)] - 3%

Rearranging and using previous results, we can write

fi= T3 — RTIn [(%)3/26;;)} + gRT

where we have used @y = %RT 0. Collecting all terms depending on T in
f°(T) leads to (4.22c).
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FExercise 4.2
We first invert (4.21) to obtain

Vo\—2/3 25— N5g
U(S,V,N :N~( ) {,4~ }
( ) “{ Nz P3N E
as a starting point for our Legendre transformation. By differentiation with
respect to S we obtain

=) e

and by inversion

4 <3RT>3/2]

Ny ’

Now, from (4.24) the Helmholtz free energy is then given by F(T,V,N) =
U(S(T,V,N),V,N) — TS(T,V,N),

S(T.V,N) = Nio + NRIn| S
0

1% <3RT>3/2]
i Ny
T () e (3]

This expression can be simplified considerably by introducing a new constant

F(T,V,N) = gNRT—NéoT—NETln[ o
Uuo

¢ in terms of all the other constants,

o= L (ZRY o (B).

Ezercise 4.3
By integrating p = NRT/V we find
~ |4
F(T,V,N) = —NRT1 {7}
(1) "o
where C(T', N) represents an additive integration constant. To obtain an
extensive free energy, C(T, N) must be of the form C(T,N) = N C(T).
Equation (4.25) then leads to the entropy
- 1 dC(T)

~ |4
S(T,V,N)=NRIn [J\/é’(T)] — NRT% o

For reproducing the ideal-gas entropy (see solution to Exercise 4.2) we need
to choose

= ! =cT3?,
c(T)
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where ¢ plays the role of a further integration constant. For a suitable match-
ing of constants, the resulting Helmholtz free energy (4.39) coincides with
the solution to Exercise 4.2.

Exercise 4.4
In terms of intensive quantities we can write (4.15) as 1/T = (9s/0u), and
(4.17) as —f1/T = (0s/0p)y. Applying these to (4.56) we obtain

1 3kpp /l_s_i_k:]g{@lnRo(p) 5]

T 2mu’ T p m

dlnp 2

Combining these using the Euler equation (4.44) gives the following equa-
tions of state:

kgT kgT 1
’U,—§p7B p:pB {1_8115%)(p):|7

2 m m dlnp

which match the equations of state for an ideal gas if Ry(p) is constant.

FExercise 4.5
Using the Maxwell relation (05/00)71., = (0p/0T)sw, and definition for
specific heat capacity ¢; = T'(05/0T )44, in (4.49) gives
dp 08
div= T+ |T(52) = plao+ |[1(5 ) i — fiz) | duy.
i=dl+|T(5r)  —pjdo+|T(5 =)+ (i = ji2)|dw
Focusing on the last term in square brackets, we use (4.52) and write
T(a), =Tl = da) = i — i+ plon — 02) = (i — )
— =T(51—82) =101 — 1 01 — Ug) — -
wi ) 1 1 2 1 2 T plv1 2 H1— H2),
which can be arranged to give
05 . .
T(—) i1 — fi2) = (b1 — ho).
9w, ), T = fi2) = (b1 = ha)

Now, to change the independent variables in the derivative on the left-hand
side, we write

R G G I P L

where have used the Maxwell relation and (4.52) to obtain the second equal-
ity. Combining the last two results, we obtain

T(;ILi)Tﬁ + (1 — fio) = (h1 — ho) + T<§§“>a,w1 (01 — D2).

Substitution in the expression above for du gives the result in (4.53).
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Now, substituting the total differential of §(T, p,w1) in (4.45) gives

0s 05 05
di=T(S2)  dT —pdo+ T dp+ [T in — fiz)] dun.
Y <3T)p,w1 pav <8p) Pt (awl)np (= fio) | dun
Using ¢, = T'(05/0T )p,w, for the specific heat capacity at constant pressure

and composition and the Maxwell relation (05/0p)rw, = (00/0T)pw, We
obtain

dit = é,dT — pdv+T<gT) dp + [ (aajl)T,pﬂﬂl—gQ)}dwl.

Replacing the terms inside the square brackets with the result found previ-
ously gives the expression in (4.57)

Ezercise 4.6
The total differential of the specific Gibbs free energy for a two-component
system g = g(T, p, w1) can be written as

dj = —3dT + idp + (i — fiz)duwr,

§= _(£>p,w17 0= <gfi>T,w1’ A= fiz = (88151)?1’

Setting a@ = ¢ in (4.52) and comparing with the third expression above, we
have §o = fio. Now, from (4.51) we can write §1 = fi1 = U1 + p1 — T'§1 so
that the total differential of fi; = f11(T, p, w1) can be written as

where

djin = —51dT + o1dp + (a‘“) duwr.
8w1 Tp

w1 T,’Ll)]

One way to define an ideal mixture (not necessarily comprised of ideal gas
components) is by the fundamental equation for the molar Gibbs free energy

where

»>
—

k k
g(Ta b, :Ca) = Z 'xagg(T, p) + RT E Tolnx,.
a=1 a=1

Now, since § = @ + pv — T'S, we can write using (4.59) the following:

k

T =— Z aga RTZmalnxa+Zxau +p2mav

a=1
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k
:_Zxa —u ”g)—RTZxalnxa

a=1

= TZ xaég — RTZ Tolnxq,
a=1 a=1

which gives

k
pruxa j{:lh' )'_j%j£:$ahlxa,
a=1

where the second term is the entropy of mixing, which is always positive.
Now, since § = it and o, = fiq, We write the fundamental equation for ideal
mixtures as follows:

k k k k
Z Tafla = Z xa,&g +RT Z Tolnzy, = Z $a(ﬂg + RTn Ta)s
a=1 a=1 a=1 a=1
which gives (4.60).

FExercise 4.8
Using (4.62), the chemical potential for a non-ideal gas (I) is

fie, = fig (T, p) + RT In(zg,dap").
Using (4.63) for a liquid (II) that is a nonideal mixture, the chemical poten-
tial is
i = i (T, p3") + RT In(z7a),
(T, psa"), we can write

FO(T, ) = (T, p) + RT n(30p5™),

Now, for a2

so that

fies = fig ®(T,p) + RT In(xg7adopi").
For a system at equilibrium, setting i, = il gives (4.64).
FExercise 4.9

For the case of a gas dissolved at low concentration in a liquid (II), substi-
tution of fo = ki a%q in (4.61) gives

fin = A28 (T, p) + RT In(kn o).

Using the expression for jil, from Exercise 4.8 and setting i}, = il gives
(4.65).
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Ezxercise 4.10
By combining (4.60) and (4.70), we obtain

k k
- 1 ~ 0
Z Uolnz, = ~RT Z Vafie (T, p),
a=1 a=1
from which we obtain (4.72) by exponentiation. By differentiation we get

; ’“ 8&3(T,p)] |

AL mgm) =3 7, [nam p)—T

dT :1 orT

A Maxwell relation implied by (4.29), together with (see Exercise 4.7)

k
5(T,p,xq) Zxas (T, p) RZxalnxa,

leads to
8/12 _ 950 _ 0
or  ON, ¥

so that we obtain (4.73) with 2O = 9 + T30,

FEzercise 5.1

For (i): V-u =4/, [, V- -udV =4L?, and

L L
/ n-udd= / dl‘g/ dzs [uy(r1 = L, x9,23) — ui(z1 = 0,22, x3)]
A 0 0
= L% [ug + 'L — ug] = u'L3.
For (ii): V - u = 323 + 1 and

/V udV = / d:Eg/ dl‘g/ dz ( 3:62—}—561)
:/ dxg/ dxo 623 = 8.
0 —1

2 1
/ n- udA = / dl‘g/ dl‘g [ul(xl = 1,x2,x3) — ul(xl = —1,I2,$3)]
A 0 -1
2
+/ dilig/ dl‘l [ug(l‘l,l‘Q = 1,1’3) — UQ(:E1,$2 = —1,%‘3)]
0
1 1
+/ dx2/ dry [ug(x1, v, 3 = 2) — uz(w1, 22, r3 = 0)]
—1 —1
2 1
= 2/ dﬂ?g/ d.’L’l =
0 —1
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Exercise 5.2
For constant wu:

o 1.0 1 0

(2,0, m
- \r  or “=0

R 2u
/ V. -udV = 471'/ r’dr— = 47 R%u.
1% 0

r

/n-udA—/dAdr-u—élﬂRQu.
A A

For u(r):
V.-u= <i+68r> u(r).

/VV wdV = 4r /OR r2dr <2“y) + u’(r))

R
. /0 drdi‘i(r?u(r)) — 1nR2u(R).

/n~udA:/dA6T~u:47rR2u(R).
A A

For u(r) = Q/r?, V-u = 2%(76) +u/(r) = 0, which implies that from all spher-
ical shells the contribution is zero. Nevertheless, [ 4n-udA= 41 R?*u(R) =
47 Q. The reason is the singularity at the origin.

Exercise 5.3
The unit vector ¢ = v/v is tangent to a streamline with position 7(¢) so
that t = dr(()/d¢. Hence, we can write v x t = 0, or

3
ox;
Z Eijkviaicj =0.

ij=1
For v = vy (21, x2)01 + va(x1, x2)d2 the above can, using (5.9), be written as
2005 0w O _
Oxo OC Oz OC ’
or g—? = 0, which means the stream function 1 is constant along a streamline.

Now, for 1 = ¢, an arbitrary constant, we can write di)(c,z2) = %dxg =
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pvidxy, which after integration gives:

1,[)2(8,12)
g — Py = / pvidxa
wl (C’xQ)

where 11, 1o are values of the stream function on adjacent streamlines.
Hence, the mass flow rate (per unit width) between any two streamlines is
equal to the difference between the values of the two streamlines.

Ezercise 5.4
Substitution of ¢, = cz, for ¢, in (5.21) gives

0%y Jdc o=~
C(T)t +wv an> —i—xa{—at +V (v )] V- J)+ Vs
Using (5.22) to replace terms in the square bracket gives the result in (5.23).

Ezercise 5.5
We begin with the difference in reference velocities, which can be written as

k

k koo

. g . 1S~ 98
v—v :ng(v—vg):—z:—ggz—; T
=1 =1 P8 =1 Ms

which is the result in (5.24). Note that (5.13) was used for the second equal-
ity, and the third equality follows from basic relations between concentra-
tion variables: x5 = cg/c = pg/cMjy. Next, we combine (5.13) and M, times
(5.20), which gives

k

- e o J
MaJa:Ja:Ja'i‘poc('v_'v):Ja_pj ~B7
cﬁ:lMﬁ

where we have used (5.24) to get the result in (5.25). For the volume-average
velocity, we have

PaVa = pavT +j(];'
Multiplication by ¥, and summing we obtain: Z’;:l Va jL = 0. Since v =
Zi:l PalaVa, the difference in reference velocities can be written as

k k
v—ol = Zpaﬁa(v —vg) = —Z@gjg,
=1 =1

which is the result in (5.27). Now, using (5.13), we can write

jl& = Ja — Palv — 'vT)a
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which, when combined with (5.27) gives (5.28).
In the absence of chemical reaction (I' = 0), we write (5.11) as follows

9pa
ot

Multiplication by 9, and summing, we have

=-V. (UTPa +.7':£¢)'

k k k

;)t Z(@apa) =-V. Z(@apa)zfr -V. Z(@a.ﬂy);

a=1 a=1 a=1

where, since we are considering ideal mixtures, we have taken 9, to be
. k A E o~ s .
constant. Now, since ) _; pala =1 and >, _, voégiY = 0, we obtain

V.ol =0.

FExercise 5.6
Multiplying dNo = 37| 7a,jd€; by Mo, we obtain

d(NoMo) =~ Moie jd;

J=1

Summing over «, the left-hand side vanishes so that we can write

k a;
My ; = g Vo jMy = — E Vo, j Ma
a=q;+1 a=1

Dividing the first equation by Vdt and using v,,; = I/Oé7j(qu /M,,) gives
d (NoMo\ <= - 1dg O - 1dg
(") = ey g = 3 vestoay g Z”w i

j=1
where I'; = M, ;/Vd¢;/dt. Dividing (5.29) by M, and using (5.20) we obtain

¢
ot

= -V (Vaca) + Y Y = -V (viea + T + > Tyl

=1 *"aJ j=1

where T'; = T';/M, ;. Summing over o we obtain

k n
0 .
8{ =V @)+ Y tayly
a=1 j=1
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Now, setting ¢, = cxq, the last two results can be used to obtain
O n k
c(aTa +o* an) - VI Y (ﬁw —a Y &Bﬁj)Fj.
j=1 B=1

Ezercise 5.7
From the mass balance (5.5) we have with the assumption of constant p and
velocity v = vé, the following:

dv

&
which implies the velocity is constant along the length of the reactor. For
steady state, the species mass balance (5.14), neglecting diffusive transport,
simplifies to

dpa

0= _UE + VQF.

Dividing by M, making the substitution 7, = v M,/M, gives

p 3
dz

where T' = T'/M,. Integration from the entrance with ¢, (0), to the exit with
¢a(L), of the reactor having length L, gives the desired result.

= 7,1,

Exercise 5.8
To find the vector product of r with (5.32) we write

om
7’><ﬁ:—rxV(vm)—rxV-ﬂ'—i—rxpg.
The first term on the right-hand side can be written as
> ) > )
rx V. (vm)= | Z Zplp X 6ia—xi 00 myd) = Z Zp0p X gvjmkdk
i,J,k,p=1 Jk.p=1
> )
= Z €pkmxp%11jmk6m
j7k7p7m:1 J
3 3
0 Ox
= Z 5pkma—xpvjmk6m — Z 5pkmvjmk—p6m
, _ T . _ Ox;
J,k:pm=1 Jk.pm=1
3 P 3
= Z %vj(spkmxpmkém) - Z € jkmVjME0m

J

j7k7p7m:1 j7k7m:1
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=V.v(rxm)—vxm=V_ v(rxm)

The second term on the right-hand side can be written as

& ) > )
X (V : 71') = E .%'p5 X 6 8 ij(s 5k = E xpép X %ﬂjkak
i,j,kp=1 Jikp=1 J
3
0
= E E’pkmxp%ﬂ'jk(sm
jik,pm=1 J
3 0 3 ox
— § . _ § . p
= Epkm %wpﬂjkém Epkmﬂ—jk ax ] 6771
jk,p,m=1 J 7, k,p m=1 J
3
E 0 E Om
= 7. z’;‘pkmwpﬂ’kj EikmTjk
dkpm=1""7 Jiksm=1
9
T \T
= E %(ébijpﬂ'km) Om + 5 Emlchrjk(s’rn
j,k,p,m=1 J Jiskym=1

=V -(rxa)l+e:nm

Combining the above results, and recognizing that r is independent of time,
gives desired result. For the source term we write

3 3
E.IT = E 5Z-jk6i6j6k : 7Tmp5m5 = E €ijk7Tkj(sZ'
i7j7k7p7m:1 Z?J?kzl
3
= E (€ij1715 + Eijam2; + €ij3T35)0;
i.j=1

= e321(m12 — M21)03 + €231 (m13 — 731)02 + €132(M23 — W32) 01,

which vanishes only if 7;; = 7j;, or the pressure tensor is symmetric nl =

Ezercise 5.9
To show the velocity gradient Vv is symmetric, we must find its relation to
the vorticity w. We begin by computing € - w,

3 3

vy,

ew= Z €ijk0i0;0r - wpdy = Z €jk0;0;0y - 5man6P
,J, k7p:1 i,j,k: m,n,p=1 m
= Z 665 ikE k Z 65 dim n*é‘zn(sm)%
ijkEmn ] j oz,

i,5,k=1 i,5,k=1
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. 3 55 87)]' avi _V V T
_i,j,zkzllj(ami_axj)_ v

where the second equality in the second line follows from a well known
identity between the permuation symbol and Kronecker delta. Since w =0
for an irrotational flow, the velocity gradient is symmetric.

We use the identity V x Va = 0, which holds for arbitrary scalar a. For
irrotational flow w = V x v = 0, so that can write v = —V®, which when
substituted in (5.36), gives (5.44).

Now, for the two-dimensional flow v = v1(x1, x2)d1 + vo(x1, x2)d2, We can
write v = —V @ as follows:

0d 0P

v = - Vo = ——.
83?1, 8.1'2

Combining these with (5.9) setting p = 1 gives the following:
00 _ ov 00 _ou

87.%'1__(9%'2’ 81‘2_8$1’

known as the Cauchy-Riemann equations. Hence, the stream function
Y(x1,x2) and velocity potential ®(z;,z2) are orthogonal.

Ezxercise 5.10
Using the identity in (5.45), we write the steady-state form of (5.40) as
follows:

VP =—p %Vzﬁ —v x (V x ’U)] = —PV<%U2>7

where the second equality follows since V x v = 0. Using (5.41) and rear-
ranging terms taking p to be constant gives (5.46).

FExercise 5.11
Since v = —V®, we can write

o® _ 102
or T T as

so that ®(r,#) is governed by (5.44), which takes the form

Vp = —

1g< 8(1)) 1a2q>:0'

ror\"ar) TR oee
For an impermeable cylinder v,(R,0) = 0, which leads to the boundary
condition 0®/9r(R,0) = 0. Since v(c0,0) = V; = V cosd, — V sin6dy,
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which leads to the boundary condition ®(oco,#) = Vr cosf. Substitution of
® = f(r)cosf in the equation above leads to

T‘dT‘( Z{“)_ri?:()’

(R)=0,  f(oo)=—Vr.

which is solved subject to
U n
dr
Writing f(r) as a power series, we find using the boundary conditions f(r) =

VR(R/r +r/R), so that the velocity potential is

R r
P = VRCOS(9<? + E)
Hence, the velocity field is given by

B RN2p 109 B . RNz oY
w=Veosd[1=(T)] =155 w=—VenolL+(T)] =50

where the second equalities give the relation to the stream function. Inte-
gration with the condition ¥/(R,6) = 0 gives

o= vrsmo](1) - (%))

The velocity potential and stream function are plotted in Figure C.11. To
find the pressure field, we use (5.46), which implies P + p/2v? is equal to a
constant. Setting P (o0, ) = 0, where v(o0,0) = V', we have

Py i () = oo (7)o (3)]
Note that pressures at the front and back of the cylinder cylinder are equal
P(R,0) = P(R, ).

Ezercise 5.12
The scalar product of velocity v with the momentum balance (5.32) gives:

0
v - 8—?:—v-V-('vm)—v-(V-ﬂ)+’u-pg.
We evaluate the above term-by-term:
3
om 0 10
v-—=v - —(pv) = Z vi(il-- pvj vl& pv;) = 2&@1}2)
ij=1 i=1

w

1
v-V-(vm)= 'Zl v;8; - V - (pvjd;v) ZU’ (pv;v) 2V - (pv*v)
27‘7:
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x,/R
(=)

Figure C.11 Potential flow around a cylinder. Velocity potential ®/V R
contours (left) and stream function contours ¢/V R (right).

3 3
v (Vem) = Y b 58‘9 TkmOkOm = Y uiai.aa'ﬂjmém
i,7,k,m=1 '7j m=1 Lj

Lm0
= E v =2 = g UﬂTﬂ E 71'],
Pyt R B Oz; ij=1 ax]
=V.(r-v)—m:Vo.

Combining the above results gives (5.49).

Ezercise 5.13

For a 1-component fluid, the source terms +pv - g in the potential energy
equation (5.48) and in the kinetic energy equation (5.49). In a 2-component
fluid, this is no longer the case and a conversion from potential into internal
energy can take place. In the potential energy equation, the generalization
is —p1v1 - fr — pova - fo, whereas the generalization in the kinetic energy
equation is v - (p1 - f1+ p2 - f2). The no longer vanishing sum is balanced by
the additional source term ji - fi + jo - fo in the internal energy equation
(5.53).

Ezercise 5.14
The steady state form of (5.50) with isotropic pressure tensor @ = pd gives,

1
0=-V_. <vp¢+v§p02+pv)+pv-v
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1
=-V. [pv(¢+ §v2+ Q)] +pV .o
p
1 1
= —<¢+7v2+B>V‘(pv) —pv'V(qﬁ—i- 71)2_’_2) +pV-v
2 0 2 P
1
= —pv-V(qﬁ—i——v?—i—g) —B’U-Vp,
2 p/ P

where we have used the steady state form of (5.5) in the first and third terms
to go from the third to fourth line. After a minor rearrangement, we have

Vp
P

Now from Excercise 5.3 we have v = vdr({)/d(, which when substituted in
the above result gives

v-V(qﬁ—l— v)—i—v =0

i (¢+f )+dl Vo _y,

¢ ac  p
3
8xz~ 0 8@ 1 8]7
=180 — ¢+7v2 + ) 8- 8i——— =0,
;1 ¢ Jaxj< 2 ) ;1 aC pOx;
d 1, ldp
dg(¢+2”)+ ac -

which after integration between two points on a streamline gives (5.54).

Ezercise 5.15
Since we are considering the isentropic case, we need only to consider mass
(5.6) and momentum (5.35) balances:

g’z—k'v Vp=—-pV v,

ov
(a +v- Vv) =—-Vp
where we have set g = 0. Now, since dp = (0p/0p)sdp = dp/cs?, where c; is
the isentropic speed of sound, we can write the mass balance as

Oop
5 +v-Vp=—c®pV - v,

Substitution of p = pg + dp, p = po + op and v = 0 4+ v in the mass and
momentum balances above gives, keeping only linear terms, the following;:
Obp

ot —C§2P0V ",
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@
Po ot

Taking the divergence of the linearized momentum balance gives:

= —Vp.

9 2
Z(V-v) = —-V%§
P, (V- v) = —V7p,
which when combined with the linearized mass balance gives (5.55).

Exercise 5.16
Setting ¢ = 0 in (5.61) and differentiation with respect to time gives

0’E 0 0B
—_— = C— B = _
92 c@tv X cV x 5
Taking the curl of (5.62) gives
0B 9 N

where the first equality is obtained using (5.74) and the second using (5.59)
with pe = 0. Combining these gives (5.75). Substitution of (5.76) in (5.75)
gives
2
(% - k2>E —0,
c
which implies k£ = w/c. Substitution of (5.76) in (5.62) gives

0B
ot

Integrating, we obtain

= —cV x Bye'km=9t) — ik x Egeltkr—wt),

B = gk > Eoei(k.r—wt) _ Boei(k-r—wt)’

which is (5.77) with By = k x Ey/k.

Now, substitution of (5.76) in (5.59) leads to k- Ey = 0, and substitution
of (5.77) in (5.60) leads to k - By = 0. Hence, the E and B fields are
orthogonal to k and from (5.62) we know they are orthogonal to each other,
and therefore are transverse waves. Note that for the Poynting vector we
have

¢E x B = cEy x Boe? k1) = %Eo x (k x Eg)e?(kr=et)

- %[(EO - Eo)k — Eo(k - Eo)]e** ™) = ¢(E, - Eo)%e%(k.r_wt)
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Ezxercise 5.17
By applying the product rule, Maxwell’s equations and the rules for double
cross products, we obtain

18(E><B):1<—B><8E+E><83>

c Ot c ot ot
:—%ixB—Bx(VxB)—Ex(VxE)
:—%ixB—%VBZJrB-VB—%VEQJrE-VE
:—%ixB—kV'T—BV-B—EV-E

1
=V.-T—pyE—-ixB.
C

The desired result (5.69) is now obtained by using the definitions (5.58) for
pel and 7 and the expression (5.65) for the Lorentz force.

FExercise 6.1
When generalized to k particle species, (4.53) reads

T<8p> —p d@+§k:[h —T<8p> @]dw.
T ) e — “ or).. e

D, We
Noting that © = 1/p so that do = —dp/p?, we multiply both sides by p and

find

Da DT dp 1 Dp

Di_ o DT fr (&) ) (-1
Pt —r° Dt+{ <8T>ﬁ’wa P ( th)

k
~ Op ~ Duw,,
*Z[hQ‘T@T)A ] 0
a=1 V,We

Substituting for the balance laws for p, w, and 4, this becomes

. . DT Op
V- jgg—m:Vv=p——+ [T(aT>ﬁwa—p}V‘v

Dt
k
+ Zl [iLa -7 <$>ﬁw @a} (=V - ja +val),

which gives the desired relation with w =pd + 7.

du = ¢;dT +
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Ezercise 6.2
Starting with s = s(u, p1, p2), we write

Os _0s0u  0s Opr | 0s Opz _ 10u_ [ndpr  [120ps

ot Ouodt  Op Ot  Opy 0t Tot T ot T ot

where the second equality follows from the equations of state introduced in
Chapter 4. Substitution of (5.14) and (5.51) gives,

0 1
8;;:7T V~('vu+jq)+7r:V'v]
1 . 1 . . .
+ 2LV (wpr + 1) + L2V - (vps + g2) — = (vrjin + vain)T.
T T T
Now, using (6.3) and rearranging the terms involving V-, we can write
0s 1

_ N N 1 1 f2 )
5% T(U +p—prin — p2i12)V-v — v (TVU T Vi T V2
VotV pa) £V (e
. . fr. pz 1 L, N
+ Jg - Vf —J1- V? —J2- V? 7T Vv — f(ylm + vain)T.
Using the Euler and Gibbs-Duhem relations in the first and second terms,

respectively, we have

O0s 1/. .. ..
a:—V'(US>—V'T<3q—,&131—ﬂ2]2>
, . ar. f2 1 | .
+]q'VT_Jl'VT—J2'VT—TTZVU—T(Vll,Ll‘i‘VQVQ)F.

In the above expression, the second term is the entropy flux in (6.9) and the
second line is the entropy production rate in (6.10).

Ezercise 6.3
For a system with uniform temperature and pressure, we combine (6.17) and
(6.11) to obtain

- I oy
J1 =LV e Vwy = —pD12Vwy,
T ng 6w1 Tp

so that
Ly (0O
Dy = 1L (L
pLaz TU)Q <8w1 Tp
Using fiq = fia/ Mg and (4.60) we obtain
<agl> _ RT 1dey  RT 1 dun
Tp

6w1 N Ml I dw1 N M w1 dw1
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where the second equality follows from 1 = ¢;/c = wi M / M;. Now, since

w =P My My
p M x1 My + 2o Mo
and dry = —dx1, we obtain by a lengthy but elementary calculation
dxy M?
dwi NGy
so that o )
o _ RT'M 1 RT 1
<3wl>T,p - M1M2 “Tl a EwlMQ + szl
where the second equality follows from
1 w1 w2
MMM
Combing the above results gives
RL1 1

PD12 = ~ ~
wi1w2 wi My + wo My

which is the expression in (6.25) for the diffusion coefficient Dys.

Exercise 6.4
Equation (5.25) for jo = —j1 becomes

Jp=— [c—p1<~1— ! )}jlz L.
CM1 M1 MQ CMlMQ
With 31 = —pD12Vw; and the relationships given in the solution to Exercise
6.3 we obtain the desired result. Similarly, using (5.27) we obtain
31 = g1 — pr(01g1 + D2ga) = (1 — prin + priia)n
= ploj1 = —p*D1202 V.

Now, since
P1 N N N
wr =" == p1(w11 + wats)
we obtain
dw1 . 1
dpr  p*o2’
so that

jI = —-D12Vp1.
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Exercise 6.5
For uniform pressure, substitution of (6.17) in (6.14) gives

Lg1 + L (hg — ill)VT L (%) o
awl Tp ’

= T2 pwoT
which, when compared with (6.19) leads to

D12

_ Lun <%> D= Lg1 + Ly (hy — In)
pwoT \Owy/Tp’ al pwiwyT
Similarly, substitution of (6.17) in (6.13) gives

, Lyg + Lqi(ha — h1) Lo (9
_ V- () v,
Ja T2 pwaT \Owy/ Tp w

Using (6.20) and the above expression for j; we obtain

. L +2L1i12—i11 +L11ilg—i112
.7(/1 P —" L q ( TQ) ( ) vT
L + Li1(ha — ha) [ 8j
g1 + Li1(he 1)( ,Ul) Vi,
wQT 8’(01 T,p
which, when compared with (6.18) leads to
Lgq + 2qu(im - Bl) + Lll(iLQ — 31)2
T2 ’
Substitution of (6.29) and (6.30) in (6.22) and making obvious cancelations
gives,

[qu + Lll(iLQ — iLl)]Q < [qu + 2Lq1(il2 — iLl) + Lu(ilg — ﬁl)Q]LH.

N =

Completing the square on the left-hand side and making further cancelations
gives

L2 < LggLai.
Using (6.13) and a combination of (6.11), (6.15), and (6.16), we find

-1

w1

Ly, L ofi ofi
ST (8/“) [pwfwg (a‘“) ]
pws w1/ p W1/ Tp

IDa1| < pi\/L”qu_

Tp1p2

o
D2, < TAD13 | puwlw, (SEL
9 Tp

-1

and hence
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Exercise 6.6
From (6.26), we obtain under isothermal and isobaric conditions

Drg Dy o
—w=-D;pVinp = -2 kpTV Inp = ——2vEL
v —v 12V NPy knT B np1 kel © Ny
where (4.60) has been used, and hence also
Dy
—v=——2-VOo°.
U1 v kBT

We have thus found the mobility Di2/(kgT’) characterizing the velocity
achieved in response to an external force, and its inverse is the friction
coefficient.

Exercise 6.7
For a system with uniform temperature, we combine (6.17) and (6.11) to

obtain
. 1 o[l Vg — U
J1=—L11 [7 <M1) Vuw, — — 1Vp]
T.p T

awl

Setting D12 = L11(0f11/0w1) 1,/ (pw2T) we obtain the expression in (6.32).
Using the results from Exercise 6.3, we find the following expression for an
ideal mixture

. MMy,
= —pD19Vwy — pwiwo D19 —=——= (D
Wil pL12 1 — pwiw? 12RTM(1

where the 90 are the pure component specific volumes.

—99)Vp,

Ezercise 6.8
Starting with s = s(u, p1, p2), we write

ds  10u f1ndp1 iz Op2

o Tot T ot T ot

Substitution of (5.14) and (5.67) gives,
0s

1 o1 p 1
a:—fV('UU—{—Jq)—TTV'U—TV'U—{—T

1 . [ ) 1 . .
+ %V (vp1 +J1) + %V “(vp2 + Jo2) — f(’flul + voig)T.

Neglecting flow and reaction terms, and rearranging as in Exercise 6.2, we

(J1-fi+32-F2)

obtain

0s Ty 0 .
a:—V'(US)—V'T<J(1—M131—M232>
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. 1, i1 1. fio
VA -(TV—— )—f -(va— )
g Vo T 7~ h) -7 L

where the second line is the expression for ¢ in (6.33). Rearranging terms,
this can be written as

1 1 1
i —(fn = )i VT — =41 - (Vi — e (Vo — o).
7alde = (= fi2)jn] - VT = i - (Vin = f1) = w2 (Viiz = f2)
From (6.9), terms in the first square brackets give T'j5, so that we have found
the first term in (6.34). Using (5.65), we can write

o = —

J1- (Vi = f1) +32- (Ve — f2) = g1 - V(i1 — fi2) — (2151 + 2232) - E
1 . .
—E[lel - (v1 X B) + 2272 - (v2 x B)].

For the second line, in the absence of flow, we write

. . 2. . 2. .
Z1J1'(v1XB)+2232'(’U2><B)=;191'(31XB)+;232'(J2><B)=0-

Again, in the absence of flow jo = % = z1j1 + 2972, and the first line gives
the second and third terms in (6.34). Or, using E = —V ¢, we have

J1-(Viw—f1)+32- (Vg — f2) = 31 - V(i — i),
where fil, = jio + Za®el, Which gives (6.43).
Ezercise 6.9
Rearranging (6.38), we obtain

T . L ;
MG ) = i+ 29T = 2 4 ey VT,
(& Lee Lee Oel

E +

where €] = Lge/Lee. Now, from (6.37) we can write

. . Mel . . Mel  ~ Mel . .
Jq = TJS - f,uell = —LssVT + Lee (E + - Vuel) - Teﬂ'elz

(&
T . L M)
:—L VT L (7 se el ~
s VEF L\ T P T

fLeli
e
= -AVT + (Wel - W;el ﬂel)iv

VT) -

where 7o) = T'Lge/Lee = €. To examine power generation in a thermo-
electric device, we compute ¢ - E. Neglecting fi.], we can write
2 i cal . 1

) i ) . .
Z'E:a+€ell'vT:a+5elz'( 2\ z_XJ‘I> :(ZT+1)

i2 Eel .

)\ z'jqa

Oel

where Z = g2 /M.
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Ezxercise 6.10
From Exercise 6.3, we have for w; < 1, the expression

(o) _ r
Ow Tp lel

Substitution in (6.42), we have for an isothermal system,

, DioM
J1= —pD12V’U)1 — pP1 IR;T 121V¢617

which leads to (6.45). From Exercise 6.6, we see the term Do M;/(RT) in
(6.45) is the mobility of species 1. The product of mobility and force gives
the species velocity, which when multiplied by the mass density, gives the
mass flux due to the external force.

Ezercise 6.11
As vy — v = jo/pa, the two-component case of (6.54) becomes

_7Vﬂ1:7<j71_j£>:£ P
RT D2 \p1  p2 Dig wiwe” "’

where the second equality follows since jo = —3j1 and py = pwg. Solving for
71, we obtain
wyws My . M, M,

= —pD — Vi1 = —pDia—
J1 P12 2y BT M1 P 12MRT

Using results from Exercise 6.3, we obtain

w1 Vjiy.

J1=—pD12Vwy,
which shows D15 = D1s.

Ezercise 6.12
From the three-component version of the Gibbs-Duhem equation (4.54), we
obtain

w1 Vi +waViie +wsVijz = 0,

which allows us to write (6.49) as

. w1 ﬂl w2 [L2
— [+ @ L;{if—P Lu+L 7]17

J1 { 11+ (L1 + 12)w3 T 12+ (L1 + 12)w3 T

. w1 ﬂl w2 [Lg
— [L+ L;ﬂif—P Lip+ L 7LL<

J2 { 12+ (L2 + 22)w3 T 92 + (L12 + 22)w3 T
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Substitution of (6.46) leads to the expressions

. 1 o[l o[l
J1= T{ [Ln + (L1 + L12)Zﬂ 871'[211 + [L12 + (L11 + L12)w2} 85)? }V wq

w11 Ofi wa 1 Ofi
1} i + {Lu + (L11 + L12) 2} o }V wa
w3

1
L L L
{ [ 11+ (Li1 + L12) D1 D

T

. 1 w1 Ofl wa ] Ofiz
= L L L —_— L L L
J2 T{[ 12+ (L12 + Lag)— }8 1+[ 22 + (L12 + L22) 3}8101 Vuwn

a,ul

Ows

— 1{{ {Lm + (L12 + Log)— }

Ofia
{L22 + (L12 + Lgg) 3} Doy }VWQ

For ideal mixtures (see Exercise 4.7), we write (4.60) for species 5 and divide
by Mpg to convert from per mole to per mass chemical potential

fip = fug(T,p) + i,
Differentiation with respect to w,, holding temperature and pressure con-
stant, gives

of RT 0 ; -
(G0 = 517550 = 17 50— 2 (5= 7))

where the second equality follows using 3 = cg/c = M wg/ M 5 and 1/ M=
Z’;:l W/ M Substitution in the expression for j; gives, after some tedious
algebra, the following,

: RM . - -

J1= _Z\WW%{ {(1 — w2)2M2 + wo (w1 My + w3M3)} L1y

+w1 |:(1 — wl)Ml + (1 — ’UJQ)MQ — w3M3)] ng}le
RM

MlMgMgwg’wg

+ {(1 —w1)2 My + wi (w2 Mo + w3M3)} L12}Vw2-

{w2 [(1 —w) M+ (1 — wo) My — w3M3] L

Similarly, substitution in the expression for jo gives
. RM . - .
J2 = _J\Wm{ [(1 — wg)2 My + wa(wy My + w3M3)} Lo

+wq [(1 - wl)Ml + (1 — wz)Mg — ngg)] LQQ}le
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RM

MlMQMg’wgwg

+ (1 — w1)2M1 + wl(ngg + ngg)} LQQ}V’UJQ.

{wg [(1 — wl)Ml +(1- wg)Mg — ngg] Lio

Comparing these expressions with those in (6.50) we find

RM - N .
D3 = ——=— { [(1 — wo)2 My + wo(wy My + w3M3)} Ly
pMy Mo Mswiws
+w [(1 —wy) My 4 (1 — wa) My — w3M3)} L12},
RM . 5 5
D12 = == {’LUQ [(1 - wl)Ml + (1 - wg)MQ - ngg} L11
pMy Mo Mswaws
+ | (1 = wy)? My + wi(wa My + wsMs)] L12}7
RM - 5 5
Dy = ———— { [(1 — w2)2M2 + wo (w1 My + ngg)} Ly
p My M Mzwiws
+wy [(1 —wy) My + (1 — wa) My — w3]\;f3)} L22},
RM . 5 5
D23 = ~— == {wg [(1 - wl)Ml + (1 — w2)M2 — ’LU3M3} L12
p My Ms Mzwows

+ (1 - w1)2M1 + wy (’LUQMQ + ngg)] LQQ}.

Ezercise 6.13
By combining (6.47), (6.51), and vq — v = jo/pa, We obtain

3

3
0 = Z paPBRaﬁ('Ua - ’U) : ('U,B - U) = Z piRaavi +2 Z papﬁRaﬁva *Ug,
af=1 a=1 a<f

where (6.52) and the symmetry R,s = Rpg, have been used. We further
write

3
0= PaRaavi =Y papsRas(va —v5)" + Y papsRap(v +vj)
a=1 a<pf a<f
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which can be rewritten as
3
0= — Z paPBRaﬁ(va - 'UB)Q + Z paPBRaﬁvi-
a<f af=1

By using (6.52) again, we obtain the desired result.

Ezercise 6.14
We begin by writing

1ds = B
Near equilibrium, we can write
0A 0A
A ~ Aeq + 875(5 - feq) - 675(5 - geq)'

Combining (4.23) and (4.66) gives
dF = —SdT — pdV + Ad¢.
so that A = (0F/0&)r,v. This allows us to write
0*F o (O*F
A= (T@)T,V(g —&eq) = VQ(TNOQ)T,V@ — &eq)-
Combining this results with the first, we have

d¢ o (O?F 1
£ () -t~
dt TV Vy 6]\73 T,V(g feq) T (€ geq)
where 7! = LrVi2(92°F/ON2)r v . Integration subject to £(0) = 0 gives
the desired result. Using the stability arguments in Section 4.4, the free
energy is minimized at equilibrium: (92F/ON2)r v > 0 so that the relaxation

time 71 is positive.

Exercise 6.15
With (4.60), we can write (6.57) as

k k q q

1 o 5 1 0~ p

x = AT E o flo, + g Inxle, Y= “FRT E 70 fi — E Inale.
a=q+1 a=q+1 a=1 a=1

Substitution in (6.58) gives

~ Zn Dqﬁg b _ q l7aﬁg 1 —D,
I' = —Lp |e~o=atl RT || T — e “a=1"RT ||:ra“ ,
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which, with AG? = 22:1 7o 10, gives (6.61), which can be written as

q k
F:k‘fo;”a—kr H re.
a=1 a=q+1
The rate constants for the forward and reverse reactions are given by,
- -0 0
_y_ Pafiq 230 kg
kf = Lre a=1 RT y kr — e RT kf = ?’

where the equilibrium constant K is given by (4.72). At equilibrium, I' =0
so that

Do fi

k X )

Do — = Dol — A
||xa“‘—e o T,
a=1

which is expression in (4.71).

Ezercise 7.1
The viscous dissipation terms in (7.3) can be written as

n|[Vv + (Vo)l]: Vo — g(V . 0)2} +na(V - )2,

Clearly, term the multiplied by 74 is non-negative, so we focus on the term
multiplied by n.

(Vo + (Vo) : Vo — §<v cv)? = %[vu + (V)] : [Vo + (Vo))
4 %[w (V)] : [Vo — (Vo)T] — %(v  v)?
= 2 [[Vo+ (Vo)) (Vo + (Vo)"] - g(v o) + %(v ]
_ % (Vo + (Vo)) [V + (V)]

4 4
(Vo4 (Vo)]:6(V - 0) + (V- 0)%5 - 6]

_ % (Vo + (Vo)"] - %(v 0)a] - [[Vo+ (V)T - g(v 0)d]

In the first equality, we have simply added and subtracted 1/2[Vv+(Vv)T] :
(Vv)T. The second equality follows because the scalar product of a symmet-
ric and antisymmetric tensor is zero. The third follows since [Vv + (Vv)T] :
6 =2V -v,and § : § = 3. The last expression, which is the square of a
difference, is of course nonnegative.



Solutions to Exercises 35

Exercise 7.2
For a single-component fluid, the last term on the right-hand side of (6.8)
vanishes so that

. (0T Dp
pcp<at +wv- VT):—ap Dr ~V.j;—7:Vov

where we have set a,, = —1/p(0p/0T),. Substitution of Fourier’s law (6.4)
and Newton’s law of viscosity (6.6) gives (7.6).

Ezercise 7.3
Using the identities in (5.45) and (5.74) in (7.2) gives

(2;# ~V? —vx(va)) N[V (V- -v) =V x (V xv)]

(nd+ n) ‘v) = Vp+pg.
Recognizing w = V x v gives (7.7).

Ezercise 7.4
Substitution of (7.13) in (7.10a) gives

mD_apL_p<ﬁRQ)2[(r 2 (BR)?

or  or  "\1-p2 BR)? 1 r

where we have used g = —gé,. From (7.10c) we have

oP 8pL

GZ_P g =

9z o0z M7
Now, we write the total differential for p™:

0 op"
dp© = %dr + 8—dz

Substitution and integration from R, h(R) where p~ = 0 to r, z gives

e =57 5) (R 1 - -2 (7))
_ g (z - h(R)).
)

Setting p"“(r, h(r)) = 0 and solving for h(r) gives

1) =) - o (=) {1t - () ]+ e +#((7) - 1]},
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Now, since the volume of fluid is constant, we can write

h(r) r2r rR
(1 - B*)R’L = / / / rdrdfdz
0 0 BR

R rh(r) R
= 271'/ / dzrdr = 27T/ h(r)rdr.
BRJO BR

Substituting A(r) and integrating gives

1 /BRON2 21 3 T, 1,
hr) = 29(1—[32) [_ 12 2t Tes
352 OV _am (D) — (PR
st () o (5) - (2]
Finally, substitution for A(r) in the expression for p~(r, z) gives the expres-

sion in (7.14).

Exercise 7.5
If we introduce the dimensionless radius r/R and the dimensionless time

(n/p)t/R?, then (7.10b) becomes

dvg 0 18( ) o (1 +82

— =—|-—=(rv)|==—1|-v 5

ot or|ror ? or \r ° or2 "
so that we can identify the drift term —1/r and the diffusion coefficient 2.
If we further interpret vg/(2R) as the probability density, the boundary
conditions (7.11) imply probability densities 0 and 1 at the positions 1/2

and 1, respectively. The curve for ¢ = 0.01 is produced by the following
MATLAB ®) code:

% Simulation parameters
NTRA1=100;NTIME=1000; NHIST=100;DT=0.00001;
XMIN=0.5;DX=0.025; XMAX=1;
edges=XMIN:DX:XMAX;
centers=XMIN+DX/2:DX:XMAX-DX/2;

for K=1:NHIST
% Generation of trajectories x
NTRA=NTRAi;
x=.99999999+0nes (1, NTRA) ;
for J=1:NTIME
x=x-DT./x+random('Normal', 0, sqrt (2+DT), [1,NTRA]);
nm=NTRAi-length (find (and (x>XMAX-DX, x<=XMAX) ) ) ;
if nm>0
vy=.99999999«0ones (1, nm) ;
x=[x,v];
end
x (find (or (x<XMIN, x>XMAX)))=[1];
NTRA=length (x) ;
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end
% Collection of NHIST histograms in matrix p
p (K, :)=histc (x,edges) /NTRAi;

end

% Plot of simulation results
errorbar ([centers NaN],mean (p),std(p)/sqrt (NHIST), 'LineStyle', 'none")

Ezercise 7.6
For the axisymmetric flow in spherical coordinates v, = v,.(r,0), vy =
vg(r,0), (5.43) gives,
10 1 Ov,
Wy = ;E(rw)) 0
Now, from (5.36) we find the following

1w 1 ey
U 2sing 06 vo =

Crsinf or”

Substitution gives

1U¢:=

B 1 0% sinﬁg( 1 671/})]
rsiné L Or? r2 00 \sinf 00 /1’
which, with (7.18), gives (7.17).

Exercise 7.7
For incompressible flow, in (7.7) we can write p — p" and —Vp" + pg =
—VP. Taking the curl of this result, we obtain

1
pvxg’t’+2Vva2—vax(va) =9V x Vv -V x VP,

where p is taken to be constant. Since V x Va = 0 for any scalar a and
w =V X v, we have

ow

E—%Vx(wxv):yvzw,
where v = n/p. Rewriting the second term on the left-hand-side gives
ow 9
E%—U‘Vw—w‘V'v—i-w(V'v)—|—v(V-w) = vV w,

The fourth term on the left-hand side is zero because of incompressibility
and the fifth is zero because V - V x a = 0 for any vector a, so that the
above expression gives (7.19).

For the flow given by v, = v,(r, 2,t),v, = v,(r, 2,t), we have

ov, (%z) 5.

w:va:<az ~ or
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For the non-linear terms in (7.19), we have

0o1[% 0 %] [ o
w-Vov=| wy 0 = 0 = | =% |,
ovy ov,
0 0z 0 0z 0
Owg

o (1)1) o Y w ) o
. _ _wp  wr — 6 Ovg
(Y V'w = 0 P 87, 0 Uy or + Wy Oz

Uy 0 528 0 0

Combining these results, we obtain

Owy +vz8w9 _ Urwy 1/[

Owy +ov
" or 0z T

ot

12( GWQ) Pwy  wy

- P20 _ W
ror\ Or 022 r2l’

which gives the result in (7.20).

Ezercise 7.8
The equation for the wire temperature T is obtained by substitution of (4.57)
and (6.4) in (5.67), which gives

. oT 18<8T

Foar = Aear (M) T I

where species 1 is the electrons that move in the immobile lattice of metal
ions in the wire. From (5.65) and (6.37), we write the Lorentz force as
follows: f1 = 21 E = (z1/0¢)%, where we have neglected driving forces due
to temperature and chemical potential along the wire. The flux of electrons
is obtained from (6.35), which gives: j1 = —(me1/e)é = (1/21). Substitution
in the wire temperature equation gives

r@r

0T -190 ( 8T) Py

Porar =N ar TR

where P, = nR?Rqi? and R = 1/0g. Using the radial-average wire tem-
perature given in (7.27), we obtain
dT) 20T Py

P = R ar ot TR

—~

which is (7.26). Finally, if the energy flux is continuous at r = R, we can
write A\OT/0r(R) = AOT/Or(R). Substitution of this in the expression for

(T') gives (7.28).
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Exercise 7.9

The sample temperature 7" is governed by (7.22) and (7.23), with the bound-
ary condition in (7.23b) replaced by (7.29). Using the change in variable
u= (T —Ty)/(Pea/4Am\) gives

o =Y ()

. ou
u(r,0) =0, lim <ra—) = -2, wu(oo,t) =0.

r—0 s
The similarity transform & = r/+/4xt leads to the following,
ou_ Edu ou_ 1 du
ot 2tde’ or  JAxtd¢’
This allows the problem to be written as
Tuy (26+ 1) % =0
dg? ¢)de 7

u(oc) =0, lim (532) )

To solve this we let Y = du/d¢ so that

Cg+(2§+é)yzo.

Integrating and using the second boundary condition gives

du 2
Y = — = —2¢ Lt
g x e
Integration with the first boundary condition gives

2

u(€) =2 /g -y

Finally, using the change of variable z = y? we obtain

u(&?) = /OO C i - Ey(£%),

2 T

which is the expression given in (7.30) with & = r/+/4xt.
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Ezercise 7.10
Setting p = pp in (7.1) gives V - v = 0. Setting p = po in (7.2), except for
the gravitational force term, gives

ov
pO(E +v- Vv) =nV2v — V(" + poo) + (p — po)g,

where we have replaced p with p"* and added and subtracted pog. Substitut-
ing p— po = —poay,(T —Tp), and dividing by pg gives (7.32). Setting p = po
and ¢, = ¢, in (7.3), and neglecting the viscous dissipation term, gives

poép(%% Y- VT) — AV2T,

which, after division by poé, gives (7.33).

Ezercise 7.11
Using the change of variables u = (wp — wao)/(Waeq — WAo), the problem
in (7.38) and (7.39) becomes:

ou 0%
U pRlY
ot AB 0x3’

u(zs,0) = u(oo,t) =0, u(0,t)=1.
Using the change of variables £ = x3/1/4Dapt we obtain

d?u du

This problem is solved using the same method as in Exercise 7.9 and is given
by
WA — WAQ

u=——"—=1-cerf(¢)
WAeq — WAO

where the error function is defined in (7.46). From this solution we find

owa 1

0,£) = —(Wheq — WAQ) e
81‘3( ) ) (wAeq wAO)m

so that the mass flux of A is given by

. owa Dap
(ja)3(0,t) = _pDABaTcgm’t) = p(WAeq — wA0)Y/ —
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The time rate of change of mass M is simply

am B Dap
o A(ja)3(0,t) = pA(waeq — wao) —

Integration gives

M(#) — M(0) = AM(t) = pA(waeq — wAO)Q\/@

For a film of finite thickness h, we have AM (c0) = pA(waeq — wao)h, sO
that

AM(t) l Dagt

AM(x)  JrV R2
which is the result from (7.44) for t < h?/Dag.

Ezercise 7.12

For this problem we assume spherical symmetry so that all fields depend on
r and t only, and if a velocity exists, it is purely radial v = v,.d,. In this
case, (7.34) takes the form

Owp owap 9w A 20wp

SR 4o, TR = D[S + 25
ot o or AB|"or2 + r or

Since we have assumed p is constant, we have V - v =0, or

9 o5
E(r UT) _07

which, when integrated, gives v, = f(t)/r2. Since v,.(0,t) must be finite, we
have v,(r,t) = 0. Scaling radial position by Ry and time by R%/Dag, we
obtain (7.56). The initial condition is wa(r,0) = wap, and the boundary
condition at the surfaces of the sphere is wa(R,t) = waeq. Also, the sec-
ond term on the right hand side of (7.56) requires the boundary condition
Owa /0r(0,t) = 0. Normalizing wa with wag and waeq gives (7.57).

Using the change of variable u = rwa, (7.56) and (7.57) become

ou  0%u

ot~ or?’
u(r,0) =0, u(0,t) =0, u(l,t) =1,

which has the solution,3

2 (=)™
. 2,2
=r+=) ™ —n’r?t).
u=r 2 sin(nmr) exp(—n )

3 Crank, Mathematics of Diffusion (Oxford, 1975).
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1.00 ——

0.75} |

(WA _WAO)/(WAE_WAO)
o
01
=]

I 0.1
0.25} -
0.03 0.01
0.00
000 025 050 075  1.00

r/'R

Figure C.12 Evolution of concentration profile for diffusion in a sphere
given by (7.58) for tDap/R? = 0.01,0.03,0.1,0.3 (bottom to top).

Undoing the change in variable wp = u/r and reintroducing the dimensional
quantities gives (7.58). The concentration field from (7.58) is plotted in
Figure C.12. The initial profiles in Figures 7.8 and C.12 are quite similar
because the penetration is small and the effect of curvature is small. At later
stages, curvature becomes important and diffusion process is faster in the
spherical domain compared to the planar domain.

Ezercise 7.13
Using L, L?/x and V to scale position, time and velocity, respectively, and
AT to scale temperature relative to Tp in (7.33) gives

(Z + (VXL)’U VT = V2T.

Using these and nV/L to rescale pressure in (7.32) gives

(X)a—vﬁt(%)'wV’v:VQv—VPo—(

p0L3apAT)
v/ ot

g
T
vV ’

g

Choosing V' = x/L as the characteristic velocity leads to (7.59) and (7.60).
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Ezxercise 7.1/

The velocity field is postulated to have the following form: v, = 0;vg(r, z) =
rw(z);v, = 0, which satisfies (5.36). The boundary conditions for vy are
vg(r,0) = 0, and vg(r, H) = Qr, so that w(0) = 0 and w(H) = Q. The r-, 6-
and z-components of the Navier-Stokes equation (7.8) take the form:

oP _ v 10P _ [Q(EQ(W ))ﬂ%e} oP _
o P ree or\rart 0221 0z
Substitution for vy in the #-component gives

oP  ,d*w
90 =" e T fa(r)

0

Integration gives
P = f1(r)0 + fa(r).

Now, since P(r,0) = P(r,0 + 2x), fi(r) =0, so that we have

P

dz?

and P = fo(r). Integrating and using the boundary conditions gives w =
Qz/H, so that

=0,

vy = Qr%

We now check the consistency of the velocity with the r- and z-components
of the Navier-Stokes equation. Substitution of vy in the r-component and
differentiation with respect to z gives:

82
P = 2pQ2L.
0z0r H?
Differentiation of the z-component and differentiation with respect to r
gives:
0*P
== 0’
ordz

which shows the solution is inconsistent with r- and z-components of the
Navier-Stokes equation. If we rescale r by R, z by H, and P by nQR/H, we
obtain

(277: = NRe TZZ,

where Nge = pQQRH /1. Consistency of the solution is obtained when Ny, <
1, or for creeping flow, in which case OP/dr = 0.
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The torque exerted by the fluid on the lower disk is computed from (7.15),
which gives

2
M, = / r X [n -7 (r, 0)] rdrdd
0 0

where 7 = rd, and n = —§,. The pressure tensor takes the form: @ =
u%’r(&géz +6.0dp) where we have set the isotropic contribution to zero. Sub-

stitution gives
2
/ / (6,7) —rég)rdrd@
2w

3 nQm R
- B drdfs, — — 5.,
/ " 2H

which gives the result in (7.61).

Ezercise 7.15
As stated, the velocity field is given by v, = 0, vg = vg(r,0), v, = 0. The
velocity is constrained by V - v = 0, which takes the form
vy
00

which restricts the velocity field, vy = vg(r). The r-, 6- and z-components

=0,

of the Navier-Stokes equation (7.8) can, for creeping flow, be written as,

oP _,  1oP a<1a )) oP

o =% va e et 7. °

Hence, we can write the #-component as

a(rag N _dP_,
T \var\) T g T

Integrating with respect to 8, we obtain
P =FK0 + ks.
Hence, we can write
kl:T’ AP =P(a) — Pla—m).
Substitution for k1 in the #-component gives

"o \Gar\" ) = ™ -
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which is solved subject to the boundary conditions
vg(R) = QR, vg(BR) = 0.
Twice integrating the expression above we obtain

Co C1 C2
= Ornr—1/2)+ Lr+ 2.
Vg 2r(nr /2) 2r .

Applying the boundary conditions, we find
c1 Q o (1 InR—$%In BR) B Q(BR)? ¢o (BR)*Inp

PRRE 1— 32 T g2 T 12
so that the velocity is given by
QR (r o R RAP r 2 R
ot (D ekt A (RN P O
vo = 1_52( b ) 2n(1— B2 [R R P (R BR 1 5)}

Now, from (5.41) we have P = p" + po, where g = —V ¢. Since g = —gds =
—gsin 66, — g cos 00y, we can write

do = 8(z)d + 8—?(10 = gsinfdr + gcos frdf ~ gR cos 6db.
Integrating from 6 = 0 with ¢(0) = 0, we obtain

¢ = gRsin6.
Now, we write

AP =P(e) = Pla—7) = p(a) + pd() — [plr — ) + po(a — )]

Now, since p“(a) = po and p"“(a — m) = po, we obtain AP = 2pgRsina ~
2pgh. Hence, the velocity is given by

v = mm(r_ﬁzR> (ﬁgh};z)n[r _52<R15R_1j1“;3”

Now, since there can be no net flow, we can write

R 1
/ vgrdr = RQ/ vgrdr = 0.
BR B

Substitution for vy gives
pghR / Yo 2,2 2 / 2 _ 2
relnr — Brln + 4 ln dr + re — B%)dr =

Evaluating the integrals and solving for h, we obtain

_3mQ  (1-B)(1+26)
C pgR 1+ 3-8 B4 652 In B
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Ezxercise 8.1
The velocity field has the form: v, = vy = 0,v, = v,(r, z). Since the density
is constant, we apply (5.36), which gives

ov,
=0.
0z
This constrains the velocity profile to be the same at each cross section along
the tube: v, = v,(r). The r-, 6- and z-components of (7.8) simplify to
82_0 82_0 P _ 1i< dvz)
or o0 8- rar\ ar )

These constrain the modified pressure P = P(z). Integrating the z-
component twice with respect to r and enforcing regularity at the origin
and no slip at the tube wall v,(R) = 0, we obtain

o= ()]

Using (8.4), we have

or

Integration from z = L with P(L) = Pp, gives

8nV L z
P=Pu+ g (1-7)
which leads to

,007TR4(P0 - PL)

W= 81

I

where P(0) = Py. Since P = p" + pop, we can write Py — P, = p~(0) —
p“(L) + po[#(0) — ¢(L)]. Now, since g = —V¢, we have d¢/0z = —g - §,.
Integration gives ¢(0) — ¢(L) = g-8.L so that Py— Py, = po—pr +pog-06.L,
which gives

w — PorR(po = pr) + pog - 3-1]

8n
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FExercise 8.2
The velocity field has the form v; = vy (21, 22),v2 = v3 = 0. For constant p,
the velocity is constrained by (5.36), or

g _
81'1
so that v; = vi(x2). Using this velocity field, we find from (7.8),
opt d?vy op- op"
5. =N3> — =0, — =0.
3.T1 d:C2 8562 8563
Applying the second and third equations, and integration of the first equa-
tion gives,
1 dp"
V1 = %me% “I— C1T2 + Co.

Applying the no-slip boundary conditions v (+H) = 0, we obtain

H? dp" T2\ 2
we TN (),
2n dxy H
Similar to (8.4), we can write
2poBH? ( dpL)

H
W:2B/ v1dry =
0 puv1aT2 31 dar

or

2 L
ngﬂzvzi(‘ﬁ;)-

Integration with p%(L) = pr, and p"(0) = po gives

2p0BH?3(po — pL)

W= 3nL

Exercise 8.3

For incompressible flow in a tube with v, = v,(r), the vorticity wy = wg(r)
is simply

 dv,

wp =~ =

In this case, (7.20) simplifies to

o)
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Integrating twice and enforcing regularity at the origin gives

C1
wy = —
0 9
where ¢ is a constant. Now, from (7.7) (see Exercise 7.3), we can write
dp" 1d
DV x wl = D () = e

Integration with p%(L) = pr, and p"(0) = po gives

C:m—m

1 77L )
so that

w:pO_PLT

= oL

Combining this with the definition for wy and integrating with v,(R) = 0
gives (8.3).

Exercise 8.4
From (8.12), we obtain

0 0
E(prvr) = —E(pmz).

Analogous to (5.8), we write

0 (2 2.(%%)

or\dz)  9z\or
Comparing the two equations, we have
1 0y 1 0y
Up = ——— Vy = —— —.
" opr 0z’ N pr Or

Multiplication of the second by 2rp and integrating, we have

1 1
2/0 pu rdr = —2/0 dy = 2[1(0,z) — (1, 2)].

From (8.18), the left-hand side is equal to one so that we obtain the desired
result.

Exercise 8.5
Setting vt = 0 we have from (8.22),

(%gl)

_ .2
o =16(1-1%).
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This allows us to write (8.23) as

8p(1) 1 821)9) 32
or 3 ordz 3

and (8.24) as

ap 19, oV
0z ;50 or

Differentiation of dp(!) /0r with respect to z gives 9%p(t) /0Zdr = 0 so that
differentiation of the expression above for dp(!) /0z with respect to r gives

) — 16Npe(1 — 12)2.

g ()] = ot

Integration of the above expression and applying the boundary conditions
(1) —_ 9,1 _
vy '(1,2) = Ovy ’/Or(0,z) = 0 leads to

2
o) = —%(1 =)+ 5 Nke(7 = 9t + 27).

Now, since (pv,) =1 and <p(0)v£0)> = 1, we have
1 1
/ p(l)v;(zo)rdr+/ p Vv Wrdr =0,
0 0

where p(© =1 and p() = p® = §(1/3 — z). Substitution and performing
the integrations gives fo/4 = 16(1/8 — z) + 2NRe. Combining these results
we obtain (8.25). For dp(!) /92, we can now write

op®
0z

Now, we write dpt) = (9p(V) /ar)dr + (9pM) /0z)dz and integrate subject to
the boundary condition p"(1,1/3) = 0, which gives (8.26).

= 64(1/8 — 2) — 8Npe.

Ezercise 8.6

We retain all assumptions made in Section 7.2 with the exception that the
flow is isothermal and allow the viscosity to be temperature dependent:
n(T) = no[l + A(T — Tp)], where np and A are constants. Hence, at steady
state, the velocity and temperature fields have the form v, = v, =0, vg =
vg(r) and T'= T'(r). It will be convenient to use dimensionless forms of the
governing equations. Spatial position will be scaled by R, velocity by QR
and temperature, relative to Ty, by 1/A.
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The r-component of the Navier-Stokes equation takes the form:

dsld dl /1 d
1+7T)—(—— — = =0.
(1+ >d7" (7" dr(rv9)> + dr (7" dr(rv9)> 0
The temperature equation can be written as follows:
1d/ dT d (vg\12
Td?”( dr) +NNa(1+T)[ dr(i)} =0,

where Nxa = 10€22R?/(\/A). The boundary conditions for velocity are given
by

and for temperature by
T(5)=0, T(1)=0.

Note that the system ordinary differential equations for vy and T" become
decoupled and linear for Ny, = 0, in which case T" = 0 and vy is given in
(7.13).
To implement the perturbation method, we write the following: vy =
(0) + Nn avél) +..cand T = TO 4+ Ny, T + ... . Substitution and collecting
(NNa) terms we have the following:
(’I“ dr (TUéO))> =9

(1+T()) (rdr )

(0)
rdr( = ) 0
B

Solving for T subject to T () = T)(1) = 0 gives T(® = 0. We can

now solve for véo) subject to v(o) (B) = (0)(1) = 1, which gives

ORI (1 _ é)
o1\ )
Using these results and collecting (Nn.)! terms we have

dld, () dT(l) 1d, oy B> drW
dr(rdr(m )> Cdr (rdr " )>_ 1-p32 dr '’

1) (0) 4
T LA

Solving for T subject to T (3) = ( ) =0 gives

Inr

W =
T = 1—52[ H0=F5)



Solutions to Exercises 51

Substitution and solving for vél) subject to vél)(ﬁ) = vb(,l)(l) = 0 gives

) = s G ) mr - 2L ().

Normalizing the torque on the stationary cylinder by the result for isother-

mal flow given in (7.16), we can write

Ms(1-p% 2 [@ Ue(ﬁ)}
ATB2R2LOm, 1 —p2Ldr '

p
Substitution of vy = véo) + NNavél) gives the desired expression. For A < 0,

(8) -

the correction due to viscous dissipation is less than one.

Exercise 8.7
We begin with (8.31) simplifies to

10 ( 81)2) 1dp

2y '

ror\ Or ndz’

where p = p(z). Integrating twice with respect to r and using the boundary
conditions in (8.15b) and (8.16b) gives

oo Bl ()]

Substitution in (8.12) gives

L = 2o G162

rarpr_éln r) 1az\Paz)

Integrating with respect to r and using the boundary conditions in (8.15a)
and (8.16a) gives (8.32). Integration of (8.32) gives

dp
2 _ e
P 0
Now, using (8.18), we find cg = —8npgV/R?, which gives (8.33). Making
these results dimensionless and using (8.11), we have
dp

1 e

Integration subject to the boundary condition p(1) = 0 gives (8.34).

Ezercise 8.8

Using Hy to scale spatial position gives a properly scaled z, which suggests
we use Hy/ = R to scale radial position, which we denote as 7. Similarly,
we scale v, by V, and v, by V/f3, which we denote as @,. For flow in a tube
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driven by an externally imposed pressure difference, the characteristic stress
is divided by the aspect ratio of the tube § = R/L. This would suggest
the characteristic stress for squeezing flow is nV/(Hy3). However, since the
pressure gradient in squeezing flow is induced internally, it seems reasonable
to include an extra factor of 3, so that stress is scaled by nV/(Hy3?). Finally,
time is scaled by Hp/V. This leads to the following dimensionless forms of
the continuity and Navier-Stokes equations:

10 ov,
r@r(rvr) 0z =0,
ov, _ 0o, v\ 8p 0 /10 %o,
Ne or Ty T 8,2) = %(%%(“’T)) T o2
~ ov v v ov 0%v
2 z z z o 4 4 =92 z
6NR€(8t+T8*+ 87;)_ 8 (87") 5

Velocity boundary conditions assuming no slip and impermeable disks are
at the lower disk given by

or(7,0,8) =0 w.(7,0,6) =0, 0<7<1,
and at the upper disk by
vp(7, H,t) =0, v, (r,H,t)=-1, 0<7<1,

where H =1 —¢.

Invoking the lubrication (8 < 1) and creeping flow (Nge = pV Hy/n <
1) approximations, the z-component of the Navier-Stokes simplifies to
Op“/0z = 0 so that p“ = p"(7,t). The r-component of the Navier-Stokes
simplifies to the following:

02, B op"
022 oF

Integrating twice with respect to z and using the boundary conditions above

= G- ()]
Uy = — ) = (=]
2 or I\H H
Substitution in the continuity equation and integrating with respect to z
subject to the boundary conditions above for v, gives Reynolds equation:

for v, gives

:'887( 8(57’) _%'
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Integration with respect to 7 and requiring the pressure gradient be bound
at 7 = 0 gives
op- 6 -
or  H3

Substitution in the expression for v, gives

G- G

which, when substituted in the continuity equation and is followed integra-
tion with respect to z, gives

=3[(7) -3(7)]
==2\m) "a2\m) |
Integrating the expression for the pressure gradient and taking p¥(1,t) = 0
gives

To find the force on the upper disk, we use (8.39), which takes the form

o el 1
Fs= / / o, -m(r,H,t)rdrdd = 277/ pL(T, t)rdré,,
o Jo 0

where the second equality follows because 7 (r, H,t) = p"(r, t)d. Substitution
for p* and integration gives

3
SYTER

Reintroducing dimensional variables gives the Stefan equation.

Fo=

Exercise 8.9

Using Ry to scale radial position, the dimensionless tube radius is given
by follows: R(z) = 1 + tan(p)z. Following Exercise 8.7, we have for the
dimensionless pseudo-pressure field p = p%(z) and

L0 0eey dp®

ror\ or/)  dz’

which is subject to the boundary conditions in (8.15) and
v (R,2) =0, v, (R,2)=0, 0<z<1/B.

Integration subject to the boundary conditions for v, gives

-1 ()]
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Using the continuity equation we can write

10 ov 10 dp 1 > 1 _dR dp
L0 gm0 10 e @) Loy

rar(”’) 0z 487;[( )dz 4( T)sz +2 dz dz
Integrating with respect to r and using the boundary conditions for v, gives

Reynolds equation:

d dp"
—(rS2) =0,
dz ( dz
Integration with respect to z gives
ot
dz 1,
Now, since
R
2/ vyrdr =1,
0
we find ¢; = —8, so that
2 7\ 2
=gt (7))

where R(z) = 1+ tan(p)z. To find p", we write

d
[1 4 tan(yp)z ]4 CZ = -8,

Integration subject to the boundary condition p~(1/3) = 0 gives

L 84/ tan(p 1+ tan(p)/B
=30 —I—tf:n( )/B) i 1—:—ttan( )z) -1

_ _ [ _ gtan(@)
= 8(1/8 )[1 2=

(1/5+z)...]

Exercise 8.10
The average velocity is computed from the volumetric flow rate divided by
the cross-sectional area of the pipe,

(100,000 m?/day)(1 day/24 hrs)(1 hr/3600 s)
) = (7/4)(1.22 m)? m/s.

The Reynolds number is found as

p(v)D (900 kg/m?)(1 m/s)(1.22 m)

Npe = -
R n 0.01 Pa s

= 110, 000.
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Since the flow is turbulent, we use (8.42) to find the friction factor, which
gives fs = 0.0044. Now, using (8.41) we have

(100 km)(10% m/km)

(1.22 m)/4 0.0044 = 0.6 MPa.
22m

—AP = %(900 kg/m?)(1 m/s)?

Exercise 8.11
We are settlng vr = 0 so that p = p(z). We introduce the radial average of

a quantity ( =2 fo Jrdr. Applying this to (8.12) gives
d
2 (o)) =0,

where p is uniform over the tube cross section. From the dimensionless form
of (8.18), we have p(v,) = 1. For convenience, we write (8.14) as

1 0 dp 10/ Ov,
= NVRe zUz) = ( )
2 R@z(pvv) +7"8r or
which, when integrated over the tube cross section, gives
1 d dp ov
—NRe— )= == 4 222(1, 2).
2 Redz (p<vz>) dz + or ( Z)

Now, for laminar flow (v2) ~ %(vz> , so that using p(v,) = 1 and (8.11) we

can write,

Integration from z = 0 to z = 1/ gives

1B 8y
oVt [PO00] - o1/ - 0 2 [ R, 2

3 p(0) or
Using the definition for the friction factor in (8.37), we can write
NRefs B 1/8 avz 1/8 8'Uz
SR ~- 2)dz,
4 plvz)* Jo or

where the second equality follows using p(v,) = 1 and assuming p is ap-
proximately constant over the length of the tube. Hence, the integrated
momentum balance becomes:

2 p(l/ﬂ) _ 1 NRefs
3Vl [©G ] = o 10118 = p(0] + =55

Now, since p(1/8) = 0 and p(0) = —Ap, we have from (8.11) the following:
p(1) =1 and p(0) =1 — eAp, so that we obtain the desired result.
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Ezercise 8.12

The system we consider has volume V bound by surface A = Ag + A1 + Ao
with velocity v4 and outward unit normal vector n. Integration of (5.5) over
V gives

/8pdV— | pav - /V (vap) V:—/V-(vp)dV
1%

where the first equahty follows from the general transport theorem since
V = V(t). Using Gauss’s divergence theorem (cf. footnote on p.60) we can
write

dMyie
tt:—/,0('0—'0,4)-ndA:—/ pv - ndA,
dt A AitA

where Mot = fV pdV . The second equality follows because v —v4 = 0 on Ag

and vg = 0 on A; and As. Now, since (pv); = —prvin and (pv)e = paven,
we have
thot

= —Pz/ vod A + P1/ v1dA = —pa(v2) Ag + p1(v1) A,
dt As Ay

where the first equality follows because the density is uniform over A;, and
the second from the definition ((.. fA )idAJA;. Since Al..] = [..]2 —
[..]1, we obtain (8.44).

Similarly, integration of (5.32) over V and using the general transport
theorem gives

d
/de—/V'(vAm)dV:—/V'('vm—Fﬂ')dV—F/png.
dt Jy v v v

Using Gauss’s divergence theorem we can write

thot
dt

:—/n-(v—vA)mdA—/n-ﬁdA+Mtotg.
A A

where M, = fV mdV . Now, as before, we take into account the different

surfaces

thot
dt

:—/ pvv - ndA — n-ﬂ'dA—/ n - wdA + Miotg,
A1+As A1+A2

where we have used m = pv. Neglecting extra stress (7) contributions to
the total stress at A;, we have w1 = —pin and mo = pon, so that

thot

— = —/ pgvgdAng +/ pw%dAnl - / podAns —i—/ p1dAng
dt AQ A1 A2 Al
- Ts + Mtotga
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where Fj is defined in (8.39). Recognizing that both p; and p; are uniform
over A;, we can write

dM,
= ~(02(03) + p2) Aamaz + (pr (1) + pr) Aina — Fo o+ Miarg.
Finally, noting that A[..] = [..]2 — [..]1, we obtain (8.45).

Exercise 8.13
Integration of (5.50) over V gives

/Vgt(;pvz—i—vp(b)dv = —/VV-(v;pUQ—l—quﬁ—i-ﬂ'-v)}dV-i-/vﬂ' : VodV.

Using the general transport theorem (see Exercise 8.12) and Gauss’s diver-
gence theorem (cf. footnote on p.60), we obtain,

d

a(Ktot + Piot) = —/

1
{(v - UA)§p1)2 + (v —va)pp+pv+T- v] -ndV
A

—l—/pV-'udV—i—/T:V'vdV
1% 1%

where Kot = fV %pdeV and Py = fV popdV . Now, using the same as-
sumptions as in Exercise 8.12, we can write

d 1
%(Ktot‘f'q)tot) = —/ (zpvz—i-pqﬁ—i-p)v-nd\/—/ (- v) -ndV
A1+As Asm

—i—/pV‘vdV—F/T:VvdV
\% \%

Recognizing that both p and ¢ are uniform over A; and A, and using (8.47),
the above expression gives (8.46).

For steady flow in a straight pipe having constant cross section, (8.46),
simplifies to

0= —(v)AA[p¢ + p"] -1—/‘/7' : VodV,

where we have taken the density be constant and, since there are no moving
surfaces, excluded the W term. This can be rearranged to give

_ / 7 VodV = —(0) AA[pd + p] = —(0) AAP.
Vv

Combining with (8.41) gives (8.48).



58 A Modern Course in Transport Phenomena

FEzxercise 8.1/
As in Exercise 8.10, we consider the steady flow of an incompressible fluid
with density p in a pipe of constant diameter D. Since AP = 0, (8.46)
simplifies to

1 5, L 1 3
= A—— fo == DL
P A fo =yl RDLE,
where we have used (8.48), and A = 7D?/4, L/ Rpyq = 4L/D. Substituting
values from Exercise 8.10, we have

W——/T:V’UdV—
Vv

. 1
W = (900 kg/m*)(1 m/s)37(1.22 m)(10° m)0.0044 = 760 kW.
FExercise 9.1

We treat z as a time variable with a forward Euler discretization. The finite

difference scheme on a grid r; = 1, ..., N;., with midpoints 71 /5, Ar = ﬁ
and z; = 1,..., N; takes the form
Tiv1,—Ti Ty 5—Ti 1
AZ e riAr ’
The stability criterion is Az < %22, where o = ﬁ is biggest at N, — 1.

The boundaries are evaluated after the interior points as 77 j+1 = 15 j4+1 for
91(0,2) = 0 and T, j+1 = T, _, j4+1+Ar for 2L(1, 2) = 1 while T'(r,0) = 0
acts as an initial condition.

$ Simulation parameters
N=100; % Number of grid points along 0<r<l
DR=1/(N-1);
R=0:DR:1;
ALPHA=1/ (1-R(N-1) "2);
DZ=DR"2/ (2+«ALPHA) ;
z=0:DZ:1;
T=zeros (N, size(Z,2)+1l); % Initialize array for temperature values
% including initial values
% Outer loop along z coordinate
for J=2:(size(Z,2))
% Inner loop along radius r
for I=2:(N-1) $% Without boundaries
T(I,J+1)=T(I,J)+DZ/DRx1/(1-R(I)"2)*1/R(I)*...
((R(I)+DR/2) % (T (I+1,J)-T(I,J))/DR —...
(R(I) - DR/2)*(T(I,J)-T(I-1,J))/DR);
end
T(1,Jd+1)=T(2,J+1); % Boundary at r = 0
T(N,J+1)=T(N-1,J+1) + DR; ¢ Boundary at r = 1
end

o

% Plot of simulation results



Solutions to Exercises 59

figure;

axis ([0 1 0 2])

hold on;

ylabel ('$(T-T-0)/(g-0 R/ \lambda)$', 'FontSize',14, 'Interpreter', 'latex');
xlabel ('$Sr/R$', 'FontSize',14, 'Interpreter', 'latex');

for Z_sim=[0.005 0.01 0.05 0.1 0.2 0.3 0.4]
plot (R, T(:,round(Z_sim/DZz)),"'-k")
end

for Z_approx=[0.1 0.2 0.3 0.4]
plot (R, 4*Z_approx+R."2-R."4/4-7/24,"'--k")
end

FExercise 9.2
Substitution of (9.19) in (9.17) gives:

[e.e]

o0 [ee] o0
i(i — 1)airi_2 + Z ia;ri 2 + B2 Z airt — 2 Z arit? =0,
=0 =0 =0
o o (o]
Z iair'? + B2 Z airt — B2 Z a;ir™t? =0,
=0 =0 1=0

9 00 0 9
_IBZ § :ai_QTsz + 52 § :ai_4r%2 + ,82 § :aﬂ’l o 62 E aiTlJrQ — 07
=2 =4 =0 =0

where the second line follows from a simple cancelation of terms, and the
third from using the expression for a; given in (9.19). Shifting the index in
the sums in the first two terms causes the first and third, and second and
fourth terms to cancel.

=0

Ezercise 9.3

Using 41(v,)? /A to scale temperature in (9.1) gives the temperature equation
for adiabatic flow for Np, > 1. Substitution of (9.6) in the temperature
equation leads to the following:

1d/ df 9 9
——|(r—) =co(l —7%) —4r°.
rdr (r dr) co(l —r7) —dr

Integration and using the boundary condition df /dr(0) = 0 gives

Using the boundary condition df /dr(1) = 0 gives ¢p = 4. A second integra-

tion leads to
A
T =4z + (7"2—5) + ca.
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Since this solution is valid for z > 1, we must formulate an alternative
initial condition. Applying the procedure used to derive (9.7) to the current
problem we obtain:

1
/ r(1—r?)Tdr = z.
0
Substitution for 7" and integrating gives co = —1/4, so that the temperature

field is
T =4z - (r*/2 —1* —1/4).

Exercise 9.4
Substitution of (6.4) and (6.5) with V - v =0 in (6.2) gives

A n T
a:ﬁVT.VTJrT[VvJF(Vv) ] : Vo,

or, in terms of normalized variables,

oR? VT VT [Vo+ (Vv)']: Vo

A DTo/(n(v)?) + T2 ATo/(4n(u)?) + T

The velocity is given by v = 2(1 —r2) and temperature by T' = 4z — (r*/2 —
72 4+ 1/4). Substitution in the expression above gives

o R? B 16 + 4(1 — r?)%r?
A [ATo/(4n(v.)?2) + 42 — (142 — r2 4 1/4)]2
472

T NI/ (n(oay?) + 42 — (12— 2 + 1/4)°

The conduction (first) and viscous dissipation (second) terms are plotted in
the left and right parts, respectively, of Figure C.13.

Exercise 9.5
Introducing the change in variable x = 1 —r in (9.2)-(9.4) gives, for x < 1
and neglecting curvature, the following

T T

2y T a2

T(z,0) =0,
or, ar,
%(O,z) = -1, %(oo,z) =0,

where the second boundary condition applies to the center of the tube, which
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1.0 . 1.0 .
—
1\
o 0'5 o
£ ost {8 osp—— ]
N N \
1.0 _\3\
4
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0.0 0.0 :

0.0 0.5 1.0 0.0 0.5 1.0
/R 7/R

Figure C.13 Local rate of entropy production o R?/\ for adiabatic flow in
a tube for \Tp/(4n(v,)?) = 1. Left plot is for flow and right plot is for
conduction.

is effectively at an infinite distance from the tube wall. Differentiation of the
temperature equation with respect to = gives:

00  9%0 100
20— = — — ——,
0z 0x? «zx0x
where § = 9T /0x. The initial condition is replaced by
0(x,0) =0,
and the boundary conditions become

0(0,5) = —1,  6(c0,2) =0.

Now, using the similarity transformation £ = Cz/ z!/3, the above equa-
tions take the form:

829+(3£2—1)g§=0,

00) = -1,  6(c0) =0,

where for convenience we have set C' = (9/2)'/3. Integration gives

gz = c1exp [/ —(352 - é)dﬁ] = leeXP(_fg)‘



62 A Modern Course in Transport Phenomena

Integrating again and using the second boundary condition gives

§ _ o
0¢) = 1 / Eexp(—E)dE

Using the first boundary condition leads to

[ eem-e9d] " =

where I'(z) is the Gamma function, so that we have
S — —
) = prrgy [, Eon(-EaE
To obtain an expression for the Nusselt number, we write (9.28) as follows:

-z 2
T(0,2) — Ta(z) T(0,%2)’

where the second equality makes use of the boundary condition at the tube

I'(2/3)

NNy =2

wall and the fact that the average temperature does not change from its
initial value in the entrance region of the tube. Now, since § = 9T /0,
integrating we can write:

T(O,z):/:edx:—Z/ooﬂdf
T

()" o / Eexpl ?ds\ /Ooof%xp(—f?’)d&,

where integration by parts was used to go from the second to third line.
The first term in the square bracket is zero, and the second is simply 1/3.
Substitution in the expression for Ny gives (9.31).

Ezercise 9.6
The temperature equation for an incompressible Newtonian fluid with con-
stant thermal conductivity A is given in (7.21), which, neglecting viscous
dissipation, we write as
. ar \ 0T 0*T
/)valaiz1 = [81:% + 8@}

From Exercise 8.2, we have

0= (5]
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Combing these, and making x; dimensionless with H, and temperature,

relative to Tp, dimensionless by go/A, we can write

or o°T o°T

Np(1 —23)—— = — + —,
pe 2)6961 ox? Oz}

where N}, = 3V H/(2x). Using the rescaling Z; = x1/N},, and applying the

condition Np, > 1, we obtain

or  0*T
1—a22)— = —.
( $2) 0T 81’%
The initial and boundary conditions are given by
aT oT
70 =0 —(71,0) =0 —(71,1) = 1.
( 7332) ) O (xlv ) ) Ois (xl )

As in Section 9.2, we assume the following form for the temperature in the
downstream region,

T(Z1,72) = coT1 + f(x2).
Substitution in the temperature equation leads to the following:
d*f 2
—5 = co(1 — x5).
da;% 0( )
Integration and using the boundary conditions gives

3 3 xd
T(i‘l,l'g) = 5.@1 + Z(.’Eg — g) + co.

To find co, we formulate an alternative initial condition by integrating the
temperature equation over xzo from x = 0,1, which gives

1 oT oT oT
— 2 _ — — - — (7
/0 (1 x2)85c1dx2 . (Z1,1) (Z1,0).

Applying the boundary conditions and integrating with respect to Z, leads
to,

1
/ (1 — .%'%)deg = I.
0

Substitution for 7" and evaluating the integral gives,

3 3 x5\ 45
S
2T\ TG ) T
Now, writing (9.27) in dimensionless form, we have
oT . N

8762(3171,1) == [T(z1,1) — Ta(Z1)),
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where Ny, = 2hH /A, and

fol vldey 3_ 21
_ =25 - =

Ty = .
fol v1dxo 2 80

Using the boundary condition for the temperature gradient, and substituting
for T" and Ty, we obtain

Ny 17

T2 35

which gives the desired result.

Ezercise 9.7

The system we consider has volume V' bound by surface A with velocity v 4
and outward unit normal vector n. Adding (5.50) and (5.51), we obtain the
differential balance for total energy:

0 1 1 .
a(u%—imﬂ%—p(ﬁ) =-V. (vu+v§pv2+vp¢+3q+7r-v).

Integration over V gives

iEtot = /VV . |:UA <u+ %pvz —I—pd))}dv

dt
—/VV-[v(u%-;pUQ+,0¢)]dV—/VV'jqu—/VV‘(W'U)dV

where we have used the general transport theorem (see Exercise 8.12), and
the total energy is Fiot = fv(u + %pv2 + p¢)dV. Using Gauss’s divergence
theorem, the energy balance takes the following form:

d 1
Etot:/ <u—|—p02+p¢)(vA—v)-ndA—/n-jqu—/n-(ﬂ-v)dA.

Since v —v4 = 0 on Ag and v4 = 0 on A;, the first term can be written as

/A<u+;pv2+,0¢>(’v,4—’u).ndA:—/A+A (U+%pv2+p¢)v-n¢4
= —A[(u+ 5ole®) + w)pe) 4],

where we have taken u, p and ¢ to be uniform over A; with ((..);) =
1) A, (-)idA/A;. For the second term in the energy balance, we write

/n-jqu: n-jqu+/ n - j,dA = —Q.
A A1+Az

s
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where the second equality follows by taking j, = 0 on A;, and Q is defined
in (9.25). The third term in the energy balance can be written as

/An-(ﬂ'~v)dA: A1+A2n‘(7'r-'v)dA+/ n-(mw- - v)dA

As
= / pv-ndA—W
A1+Az

where in the first line we have taken into account that v = 0 on A. The
second line is obtained by taking @ = pd at A;, and the rate of work done
on the fluid at moving solid surfaces is given by W = — i) A, T vdA.
Combining the results above, we obtain (9.34).

Exercise 9.8

Since the tube has constant cross-section A1 = Ay = ZD? and (v1) = (vg) =
(v). Hence, the steady state form of the energy balance (9.34) simplifies to
the following:

() (he = 1) T D* = Q.

where we have neglected changes in potential energy, and taken W = 0
since there are no moving surfaces. Since we are neglecting resistances in the
steam and tube wall, the tube wall is maintained at a constant temperature
T(R,0) = T(R,L) = T(R). We express Q using the log-mean temperature
difference given by (9.35) so that we can write the energy balance as

T, —Ty
In[T(R) — Ty] — In[T(R) — T3]

R T
(v)pép(T — Tl)ZDQ = hiy (mDL),

where we have used hyo — h; = pép(T 5 — T1). Making obvious cancelations
and minor rearrangements, we obtain the following:
D Np, | [T(R) — Tl}
= — n y
4 NNy, T(R) — T3
The Reynolds number is found as follows:
Ne. — plv)yD 4w 4(4 kg/s)
Re ™ ™ 7 #Dp  7(0.1 m)(0.001 Pa s)
For water at 25-50°C, the Prandtl number is Np, =~ 6, so that Np, =

NgreNpr =~ 306,000. Since the flow is turbulent we use (9.33) and find
Ny, = 273. Plugging these values into the expression for L gives

L

= 51,000

[ Qw6000 (Toy

4 273 50
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Exercise 9.9
Integration of (6.1) over V gives

d , .
dtStot—/VV~(UAs)dV—/VV-(vs)dV—/VV-(jq/T)dV+E

where Sior = [}, sdV and Y= [ 0dV . Using Guass’ divergence theorem,
we obtain

d .

— Stot = / s(va —v) -ndA - / (Jg/T) - ndA+ %,

dt A A

Recall that A = Ay + A2 + As, and that v —v4 = 0 on Ag and vg = 0

on A;. We take s to be uniform over A4; and neglect j, at A;, so that with
((-)i) = [, (--)idA/A;, we obtain

d ..
%Stot = —A[(v)sA] + S5+ %,

where S = — Ja.m3q/TdA.

Ezercise 9.10
At steady state, we write (9.36) as follows,

. L
. n-Jq 2 2 A 1
Y=A A dA =7mR*V — — 2R ———dz.
(s + [ AN =BV ol — ) 2R [ s
For the entropy change, we can write o — §; = ¢&,InT5/T. Substitution
gives

- o 1 (DL k
Y = 7R*Vpé,In < — 27 Rqo / dz.
"AT)0) o T(r,z)
Changing to dimensionless variables and setting L. = RNpe, we have

z’] 1
IR T R S S

TRV, ) o BFT(E)

where 8 = AT /qoR. Substitution of (9.10) and integration gives

¥ B4 15/4 B+ 29/24
TR2V pé, g—1/4 B+5/24

Ezercise 10.1
From Figure 10.1, we postulate the velocity field to have the form vy = v9 =
0,v3 = v3(x1,x3). For constant p, the velocity is constrained by (5.36), or

0

v _

ors
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so that v = v3(x1). Using this velocity field, we find from (7.8),

oP oP oP 0%v3
=0, =0, o=
0x1 Oxo o3 Oxy
Integration of the third equation gives,
vy _1dP
dey  ndxs ! !

Taking the gas to be inviscid, we have the boundary condition m3(0) =
dug

713(0) = —1g:2(0) = 0 so that ¢; = 0. Integrating again we have

Applying the boundary condition v3(h) = 0, we obtain

om0 ()

2n dxs h
Now, we have
dp _ dpt
d.l‘g - ClZL‘3 Pgs-

L
Assuming the pressure in the gas is uniform 3%3 = 0, we have with g = ¢33,

ar
drs

w= - (3)]

which is the expression in (10.2) with V = pgh?/(2n).

—pg-

Substitution gives

Ezercise 10.2
Starting with (6.8), we substitute (6.20) generalized to k components

DT T (ap> Dp
p,w

k k
_ ./ . 7 . j
pcpﬁ_ P 9T 7—V-JQ—Z]O"V}LO{—T.V’U—Fzyaha.

L Dt

a=1 a=1

Neglecting viscous heating and taking the pressure to be constant, we obtain

oT ' k ' A k A
pép(EJrv-VT) = V3 =3 G Vha - TY vaha.
a=1 a=1
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Now, for an ideal mixture, we write ho, = ho, = Myhg, where the hy, are
constant. Hence, we obtain

A or ./ T i ~ 70
pcp<a+’v-VT) = VT vk,
from which (10.6) is obtained.

FExercise 10.3
From Exercise 6.12, for wz ~ 1 and w; < 1 and we < 1, we can write

RL1q RL1o
Dy3 = ——, 12=—=
pMiwy pMaws
RL5 RLo
Dy = ———, 23 =——=—.
pMiwy pMaws

Now, since Lio < v/L11Los, we assume L1y < Ly and L1y < Loy so that
the cross diffusion coefficients can be neglected. Hence, we obtain

: RL
Ja = —pDa3Vwa, Das = — o= )
pMowe
for a = 1,2, ..., which can be generalized to a k-component system to give

(10.17).

FExercise 10.4
From the given reaction, the stoichiometric coefficients are U = —1, g =
—1, D¢ = 2. The mass action law in (6.61) takes the form

N ~0 A50
I'=Lrexp <MA+'LLB> [xAxB —eRr azc] = kiza(l —zpA — z0) — k‘erC,

where kg, k. are the rate constants for the forward and reverse reactions.
Using (4.60) for fi,, and (5.20) to eliminate v,, we can write (10.8) as

1
cVzp = [(1—xzc)dr —xadd] + Dac —[xcdr — xadd],

1
DaB
1 * *
~ (1 —2a)JG — xcd}],

Dcn
where we have also used J} + Jj + J& = 0. Rearranging, we have

1—2c T > ( TA TA )
4 Ji+ J& = —cVzy,
( DaB Dac) A Dap  Dac/)© A

i%e %6 N 1 —za TA
e T ) gy + Ji = —cVa
(9013 QCA> A ( DcB 90A> ¢ @

1
Ve = TCA[:UAJE‘; —xcdr] +
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Solving for J} and J¢ we obtain

Jr_ DAB[(1 — zA)Dac + 2ADcB] Via
A (l—a:A—LL’c)CDAc-O—:CA”DCB-i-xc@AB

cxADcB(DaB — Dac) v
- xrc,
(1 —xpA —20)DAc + 2ADcB + DB

g cxcDaB(Pcs — Dac) Vi
¢ (1—-24 —2c)Dac +2ADcB + 2cDAB
Dcpl(1 —zc)Dac + 2cDag]

- V.’L‘C,
(1 —2zA —x0)DAc + 2ADcB + 2cDAB

where we have set Dca = Dac. These expressions, which simplify to (10.10)
for xp < 1,2z¢ < 1, can be written as,

Ji = —¢DapVza — ¢cDacVac,

Jo = —¢DcaVza — cDepVze,

where one can easily identify the diffusion coefficients Dag. Since we have
assumed an ideal mixture c is constant, so that from (5.22) we have V-v* =
0. Since v* = 0 on the bounding surfaces v* = 0 everywhere. Writing (5.23)
for « = A, C and substituting the expressions above for T, J} and J¢ gives
the desired results.

Ezercise 10.5
For § = 1, we can write (10.19) and (10.20) as
af 0% f
“ 2l
8:1:3 Vax% + f’
which are solved subject to the initial and boundary conditions
f(21,0) =0,  f(0,z3) =0,  f(o0,z3)=0.
(0)

For x5’ we have v = B and I' = Np,, and for T©) we have v = Nie
and I' = —Np,. The solution for za in (10.27) we have v = 1 and write
as xa(x1,x3) = g(x1,23,1"). Taking the Laplace transform and solving, we
obtain
F(z1,s) = I n <€w1\/ﬁ _ emlﬁ> 7
v s(s—n)

where n = ﬁf. Using the convolution theorem, we find

Flarag) = = [ (et _ ) P_re-ting
I L Vi
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2
: / " (e )TV g
0

Y 43

1

T/ in the

Changing variable to £ = in the first integral and to £ = o

8

second, we obtain

2 (= pa(e-z) g ormle
flx1,23) = [en T —1}6 e —¢ dé

W
_/yD?
(m W) 1eag
22
= lem?’l h ~(Tm g 452 dé — t2 - 6_62_F‘1§%d£
Yy ™ z1 0% f
4z3 3
o0 _ (z1/vD)> oo
g / e 12
vy ﬁ z1 /A 7\/77- z1 /7
43 Tug

This means that

1
flx1,23) = ;[em?’g(m,w?wr +n) —g(x1,23,T) — ™ g(x1/\/7,23,m)

+ 9(371/\/’7, z3,0)].

Now, for f(x1,x3) = xg)) with v = 8 =1, we write I" + 7 ~ n so that

f(ﬂfl,l’g) = g($1,$3,0) - 9(131,133,F),

where g(z1,23,0) = erfc(21/v/4x3), which gives (10.30). Finally, for
f(z1,x3) = TO) with v = Ni,. > 1, we write n ~ —I' = Np,, so that

> - g(xl,xs,r)] ,

1 _ Wil
flxy,z3) ~ — [1 — e Terfe <
( ) 5 T

which gives (10.33).

Ezercise 10.6
Integration by parts allows the given solution to be written as

f= / — exp(Ct)dt' = exp(Ct) f- C/ exp(C't )fdt/

from which we find

0
a—{ = exp(Ct)—=

of
ot’
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and
0% f o f t o*f
@ = eXp(Ct)@ — C/O eXp(Ct/)@dt/
f is the solution of
o _o'f
ot 0x?’

f@,00=0,  f0,)=1,  f(oo,t) =0.

Hence, we can write

0% f of
5oz = C’t—C/ dt—E—Cf.

Exercise 10.7
From the problem statement, we postulate zao = xa(x1,t) and v] = v (x1,1).
For a dilute system, we can write I’ &~ k5. From (10.3) with constant ¢, we
can write
ovy
8%1

where k' = k/c, and the approximation holds for dilute mixtures. Since
v} (00,t) = 0, then vi(x1,t) = 0. Combining (5.23) and (10.10a) we have

/ ~
:—kxANO,

Ora %xp
ot

The initial and boundary conditions are given by
xa(z1,0) =0, zA(0,1) = TAcq, xa(00,t) =0.

The problem involves the independent quantities xa /T aeq, 1,t, DaB, k' so

that n—m = 5—2 = 3. Using the scaling x4 /ZAeq — zA, x1/+/DaB/k — 21
and tk’ — t, we have
Oxpn  0%xp
A TR g,
ot Ox? A
and
xa(z1,0) =0, xa(0,t) =1, xa(00,t) = 0.
If the reaction term is dropped, this problem is equivalent to that in Exercise
7.11, which has the solution in (7.45). Hence, we write

TpA = erfc(%).
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Now, from Exercise 10.6 we can write

o ot

which leads to the desired result.

Ezercise 10.8
Dividing (10.36) by M, and using wy = (My/M )z, we obtain

—n - Ny = ky(Zq — Tag) at Ag,
where ky, = kuy /M. Since v* = 0, using (10.10a) in we can write
n-cDAgVaa = I;:m(:vA — T ag) at As.

For the gas absorption process shown in Figure 10.1, we have n = 1, so
that we obtain the boundary condition

Oz B k
871(0’””3) =

Dan [2A(0,23) — zaq].

Exercise 10.9
Integration of (5.14) over V' gives

d
L Mior = / V- (v1pa)dV — / V- (vpa)dV — / Vo judV 4R
Vv 1% \%

dt
where My ot = fV padV and R, = fV voI'dV. Using Guass’ divergence
theorem, we obtain

d

Matot:/pa('UA_'U)‘ndA—/ja‘ndA—i-Ra,
dt A A

Recall that A = A1 + Ay + A, and that vg = 0 on A;. We take p, to be
uniform over A; and neglect jo at A;, so that with ((..);) = [, (..)idA/A;,
we obtain

d Ma,tot = —A[<’U>paz4] _/

n Pa(UA—U)-ndA—/ Ja - ndA+ R,.
at N ‘

As
Now, since Ay = Agi + Agp, and for Ay we have vq4 —v = 0 and j, = 0, this
gives

d

iMoo = ~Al(0)pad) = [ (a0 + ol - mdA+ R

Sp
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where we have set v4 = 0 on Agp,. This gives (10.38) with

ga—_/ nandA
A

sp

Ezercise 10.10 B
Dividing (10.38) by M, and setting G, = 0 we obtain

d

%Na,tot = —A[Ca<'l)>A] +/ ﬁaf‘dV

\%

Perfect mixing implies [ is uniform over V and that Ca2 = Cq. Taking this
into account and dividing by V gives

deq (vV)A -
E = —(Cal — CO&)? + VO!]-_"

At steady state, we obtain the desired result.

Exercise 11.1
From (4.55) we can write for constant T

d(fiz — ) = (V2 — 01)dp + KSZ?)T,,, - <§5)11>T,J dun

1 0m
= (B — 91)dp — —— (—) d
(02 = 01)dp pp2t2 \Ow1/ Typ P

where the second equality is obtained using (4.54). At equilibrium, the left-
hand side vanishes, and we divide the above result by dr, and substitute
(11.8a), which gives

dp1 3/11)_1 o oo M
_— = _— — Q — =

I <8w1 P paa(Ug — 01)Q2°r o
The second equality follows for a dilute, ideal mixture using results from
Exercise 6.3 and noting ps ~ p. The third equality is obtained using A, =
519Q%2R? /D15 and the expression for s; in (11.18). This result can also be

obtained from the steady state form of (11.15). Integration gives

R R T
p1p*09 (09 — 09)Q%r = Apﬁpl,

A, r2 )
2 R2)’
Since the total mass of the solute is constant, we can write

R+L R+L
/ pirdr = / prordr = 2R Lp1g,
R—L R—L

p1 = C1 exXp (
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so that
2

2 o (ST o (S

Solving for ¢; and substitution gives the result in (11.30).

FEzercise 11.2
Setting D12 = 0 in (11.15) gives,

0 10 0
% = —8192;§(T2p1) = —2510%p; — 81927“%

Using the chain rule, we can write the differential for p; to obtain

Op1 _ dpr Oprdr

ot dt  Or dt
Comparing the last two expressions, we find

dpy 2 dr 2
— = —25112 — = 5102
di S1347 01, dt S130°T

Integration gives
p1 = p1o exp(—2s1Q%t), r = cyexp(s1Q%t)

where we have used the initial condition in (11.16) to obtain the first ex-
pression. To satisfy the boundary condition p;(R — L,t) = 0 from (11.17),
we set cg = R — L, which leads to

P[0 for R—L<r<(R- L)exp(s10Q%),
pro | exp(—2519%t) for (R— L)exp(s19Q%) <r < R+ L.

Ezercise 11.3
Using r — (r— R)/L, t — D1at/L? and p; — p1/p10 to rescale (11.15) leads
to

apl _ 1 0 801 ﬁA 0 2
B = T o (LG < Ty g (),
Similarly, (11.17) takes the form
%’f(—l,t) = B(1 = B)App1(—1,1), %’f(l,t) = B(1+ B)Appr(1,1).

For § <« 1, the given equations neglecting curvature are obtained.

Starting from the code for the diffusing particle with drift (see code on
p.30), we only need to adjust the drift and diffusion and push back the
trajectories at both boundaries. The remaining code changes concern the
storage of all time steps and the plotting of selected evolution snapshots.
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o

% Simulation parameters

NTRA=5000; NTIME=300; NHIST=100; DT=0.001;
XMIN=-1; DX=0.05; XMAX=1;
edges=XMIN:DX:XMAX;
centers=XMIN+DX/2:DX:XMAX-DX/2;
ALPHAp=100;

beta=0.1;

for K=1:NHIST
% Generation of NTRA trajectories x
x=random ('Uniform',XMIN, XMAX, [1 NTRA]);

walks=zeros (NTIME,NTRA); ¢ Store trajectories for plot

for J=1:NTIME
x=x+ALPHAp*betaxDT+random('Normal', 0, sqrt (2+DT), [1,NTRA]) ;

x (x<-1)=-1; % Boundary at r = -1
x (x>1)=1; % Boundary at r = 1
walks (J,:) = x;

end

% Collection of NHIST histograms in matrices p. for t=0.01,0.03,0.1,0.3

p-t001 (K, :)=histc(walks (0.01/DT, :),edges)/ (DX*NTRA) ;
p-t003 (K, :)=histc(walks (0.03/DT, :),edges)/ (DX*NTRA) ;
p-t01 (K, :)=histc(walks(0.1/DT, :),edges)/ (DX*«NTRA) ;
p-t03 (K, :)=histc(walks (0.3/DT, :),edges)/ (DX*NTRA) ;

end

% Plot of simulation results

figure;

axis([-1 1 0 2])

hold on;

ylabel ('$\rho_1(r,t)/\rho_{10}$', 'FontSize', 14, 'Interpreter’', 'latex');
xlabel ('$(r-R)/LS$"', 'FontSize', 14, 'Interpreter', 'latex"');

errorbar ([centers NaN],mean (p-t001),std(p-t001)/sgrt (NHIST), '-k")
errorbar ([centers NaN],mean (p-t003),std(p-t003)/sqgrt (NHIST),':k")
errorbar ([centers NaN],mean (p-t01),std(p-t01)/sqgrt (NHIST), '-.k'
errorbar ([centers NaN],mean (p-t03),std(p-t03)/sqgrt (NHIST), '——

l=legend('t=0.01", 't=0.03", 't=0.1", 't=0.3");
set (1, 'Location', 'northwest', 'FontSize', 14)

Ezercise 11.4
From (11.18) we can write

D12 _ 51
RT  M(1— pi?)

or, since R = Nakg, we have

D12 _ Nasy
kBT Ml(l — pQA}?)

which, from Exercise 6.6, we identify as the mobility coefficient.
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Exercise 11.5
Writing (7.2) in component form, we have

v, ov 0%v; 1 0 ov; Op
( J+Z ]) Z@mﬁi‘z 38:@21,:(8@)_6%4_’0%'

We transform this equation term by term, starting with the right-hand side.
The last two terms become

Op op
Pg; =P p ki 9k oz p & ox),

where we have used (11.25a) to obtain the second result. Using (11.22) and
(11.25a) we can write

£ T ) - S Tad (Tt T %)
=Yg Y g <2@u@mv+2@ud%“ > ang)
:ZQM%Z@Z)
k l

where the third equality follows from (11.20). For the first term on the right-
hand side we have

20
aigjx :ZZka Zle (ZQn]v +ZdQ"3 %_@)
:ZZQkinia (ZQW n+denJ z — dcj)
_ o*v),
ZQ’” a0y~ 2 D 2 Gzt
The first term on the left-hand side becomes
ov; 0 dOr.; de:
= g (D Qi+ X - )
By, dQ dQy; O, 20w . dPe:
- Z Q’“ﬂ Uk Z kj Zk: dt]CJ % * k dt2k] T — dt(;]

¥ 0u[Bh (hur - )2
k

In
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ko] dQr dC%) dQij / d2cj
+Z ( ; a +k az kT g
o', de,,\ OV
_Zij[ b _Z(Aln!T — Qin— )a ]f:|
In
ko] deyp d2ij / dZCj
+ Z ( Z Aknx + Zan ) k dt2 L — dt2
The second term on the left-hand side becomes

Z“@'ZEZZ[(Z@M +Zde ;—@)
i XZQlZ (ZQkJUk+ZkoJ k_%)}
Z[(ZQM +Zde %_CZQ)(Z%%%/: ZQ@dQ’“)
:ZQM[Z(U;_ZAW Zand%avk}
+Zkoa< k:_ZAnk$ Zandcn)

Adding the last two results, we obtain

a; a; o, 0
%*Z“@TZ:Z%(#+Z 550)

1

ko’] / d? Qk] dQCj
* 22 dt2 T, dt2

Combining results for the left- and right-hand sides, we obtain
o, dQy.q d*Qu; d?c;
/ k 3, i _ 0
p%_:@’”< +Z la ) [ — K — g dt2]
d%v), 1 0 v, op’ p ,}
N zk: @y {77 — Oz;0) + 37783723 zl: (6952) o), P 9%
Multiplication by ();; and summing over j gives

LCERT iy )
i

) 821); +1
8:1:28:1:2 3
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d’c; d*Qy
[ZQ’LJ dtQJ ZQ@] dtQj / —QZAkUk]
gk
Finally, differentiation of (11.24) gives

*Qr;  dAy,
ZQ’LJ 1 = dt +2AijAjk7
J

dt?

which when substituted in the last expression gives (11.27).

Ezercise 11.6
Normalizing time by h?/D12, spatial position by A, and solute mass fraction
by Mio/(2h?B), we can write (11.39) and (11.42) as

0 0p 1 Pp1 | OPp; O
1— 220 A
* )8561 N2 oz ol T omy

301
ot

dp1 oP (5

17:t1 t) = _ATpl(:i‘lai]-Jt%
2

where Np, = 3Vh/(2D12) and Ar = DpAT/(2D;2), and we have rescaled
the flow direction coordinate Z; = x1/Npo. Applying the transverse average
defined in (11.44) to each term we obtain

) 1 ) 1/1 (- 2)3p1
1

= d
ot N2, 0: 2 e

where we have used the boundary conditions given above. This result can
be written as a generalized dispersion equation of the form given in (11.45)

with,
P = / fi1 da72

To find the equations governing the f;, we substitute (11.43) in the equation

above for py, which gives,
=0 f]
5 o Zf o

=0
aj+2 Pl - f]
Zf] OF J+2 Z 2

=0

Pej()

o1 py)
Z fj 8 ]+1

z one
0xa Oml '

1_:
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For the second term on the left-hand side, using (11.45), we can write

oo a]p
ijat a] Zfﬂajz i ZZKfJ —i 83;11.

Y =1 7=01=1

Substitution in the previous result, and rearranging terms, we find

ofj < 2 1 52fa af;
— K;fi; 1-— 1= —=Ji_ At .
ot +Z¢:1 Fimit (L= 22)fj NZ 2t s Ay,

For t > 1, the equation governing fy is given by

& fo dfo
A =
8362 T 9z, Oy 0,

which has solution
fo = coexp(—Arxa).

To find ¢, we use the normalization
1t
— dro =1
2 /1 fO x2 )

AT eXp(—ATZCQ)
sinh(Ar)

which gives

fo=

Now, to find K7, we have

_ L AT exp( ATiL'Q) 2
=— / fo(1 — x3)dxy = ~5 /_1 Snh(A7) (1 — x3)dxs.

Evaluation of the integral gives (11.47).

Ezercise 11.7
To obtain the solute concentration profile that is independent of Z; and
time, we write

dp1 dr

(Jj1)2=0= —D12d — Drp1—
2

dl’Q
which can be rearranged to obtain
1 dp1 DT dT
==L = —Ar,
p1 dxa D1y dxo

where Ay = DpAT/(2Dq3). Integration gives

p1 = cexp(—Arxzs),
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where ¢ is a constant. Substitution in the expression for the retention ratio
gives,
4
Rret = _F[l - AT COth(AT)]7
T
which, from (11.47), we see Ryt = —2K7. The retention ratio increases with
decreasing Ap, or increasing retention parameter 1/A7p.

Ezercise 11.8
Substitution of p; = (p1)+Jdp1 in the solute concentration evolution equation
gives

{p1) | 9p 9{p1) dop1 19 3dpry | 9*(p1) | 8*p
ot ot %o, %o, _D”L«ar(’" or >+ 922 T 922 ]

Application of 2/R? fOR(...)rdr to this equation gives

d(p1) _|_V8<Pl> dép1 9% (p1)
ot 0z 0z 022 7
where we have used (dp1) =0, (v,) =V and 9dp1/0r(R, z) = 0. Subtracting
the second result from the first gives

9dp1 dp1) , 9dp1 dopy, 19/ 96p1\  8*p1
ot 0z T 0z (vz 0z ) =Dz {;5@ or ) + 022 ]
Now, for t > R?/Ds2, we have |dp1| < (p1), and we further assume diffusion

in the z-direction is negligible compared to diffusion in the r-direction. This
leads to

+ (v, ) = D2

+ (v, — V)

}Q(T&Spl) N L(T B 2?"’) 9(p1)
ror\ 9r / D R2) 0z
Integrating twice with respect to r gives
V 0p1) (r? ot
opr = 5= (L - Inr).
M= D 0 \1 sm tatens

Enforcing regularity at r = 0 requires co = 0, and since (dp1) = 0, we find
c1 = —R?/12. Hence, we have

2
n=51py or 1°(7) ~ (%) 2

Differentiation with respect to z, multiplication by w,, and integrating

2/ R? fOR(...)rdr gives

LT V2R? 9%*(p1)
* 0z 48D19 022
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Substitution in the equation for (6p1) gives

p1) |, 0p1) _ V2R 8*(p1)
ot "V er T (D12+48D12> 922

where Kq = Dia[1 + (1/48) N3] with Np, = VR/D;s.

Exercise 11.9
From the Nernst-Planck equation (6.45) we can write for constant p

. Do M,
= —pD19Vp1 — - 21V ).
J1 PPV = pi—r =2 Gel

The electric field across the channel is uniform so that Voo = A¢/(2h)do.
Substitution in (11.32) gives

h

op1 3 {1_(372)2}(%1_1)12{8%1 82/)1} Dm(z1A¢M1>6p1

T ve = -
ot 2 D1 02 " 021 T h ok Jomy

where the last term contains the parameter Ay = 21 A¢M; /(2RT).

Exercise 12.1
For ~(t) = o sinwt, from (12.1) we can write

t
T2 = —vow/ G(t —t') cos(wt')dt',
—00

or, using the change of variable s =t — ¢/

Ti2 = —Yow /000 G(s) cos[w(t — s)]ds

- f'yow{ /0 " G(s) cos(wt) sin(ws)ds + /0 ~ G(s) sin(wt) cos(ws)| ds
— —70[G (w) sin(wt) + G (w) cos(wh)
where G/ and G” are given in (12.6) and (12.7). Now, we write
19 = —7gsin(wt + §) = —7o[cos() sin(wt) + sin(6) cos(wt)].

Comparing with the last expression, we have
Ecosé:G', EsimézG",
70 70
which gives the expression for the phase lag § in (12.18b). Now, using (12.8),
we can write
2
‘G*P — (G/ + iG”)(GI o iGI/) — (G/)2 + (G//)2 — (E) ,
70
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or |G*| = 19/70, which gives (12.18a).

FExercise 12.2

After using e~ ™! = coswt — isinwt in (12.9), we obtain

n'(w):/ G(t) coswtdt,
0

7" (w) —/ G(t) sinwtdt.
0

Exercise 12.3
From (12.13), we have for simple elongation

t t
T11(t) — T33(t) = —3é/ Gt —tdt' = —3&/ G(thdt'.
0 0
Equation (12.4) thus implies

i (t) = 30" ().

The factor of 3 between ng (t) and 7™ (t) is known as the Trouton ratio.
Similarly, for equibiaxial elongation, we have From (12.13), we have

() — Tea(t) = —6¢ /O "Gt #at = 6 /0 Gy

Equation (12.4) thus implies

FExercise 12.4

It is sufficient to consider a single mode (7;/A;) exp{—t/A;}; the 7 con-
tribution corresponds to a vanishing relaxation time. With the indefinite
integral

N —t/\, —t/)j
/)\ze t/ idt = —nje b2

we obtain 57 (t) and 7~ (t). From the more general formula

/We—iwt—t/)\jdt __ " o iwt—t/X;
)\j 1 + iLU)\j ’

n*(w) is obtained from (12.9). The real and imaginary parts n’(w) and 7" (w)
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defined in (12.19) can then be read off from

n; n 1 —iw);

1-— iw)\j

Lty Ltiwh 1 —iwh; P 1+wiA?

83

According to (12.8) and (12.9), G*(w) is obtained as iwn*(w), and hence

G (w) =wn’(w) and G"(w) = wn/(w).

FExercise 12.5

After inserting the expression for 7'(w) from Table 12.1 into the Kramers-

Kronig relation (12.28), we obtain

2w A2 o
! _ = . J
7w = 2 e |
J J
By substitution, we find the final result

2w i > 1
" _ o . J
0= |, e

Exercise 12.6
By means of (12.24), we obtain

Gt;T) = ZJ ((§§
j J

n;(To)

)

e—tN D 4 Gy

S

=~ A

Equation (12.6) then implies

G'(w;T) = w/ G(t;T) sinwtdt = w/ G(t/ar;Tp) sinwtdt
0 0

1
1+ w’2)\?

dz=Y n;
j

d

/
W .

w)\j

1—|—w2)\?'

et/ (M)l L Gy = G(t/ap; Tp).

= aTw/ G(t'; Ty) sin(agwt’)dt' = G' (agw; Tp),
0

where the substitution ¢ = apt’ has been used. Equation (12.32) follows in

the same way. Finally,

0(T) = /0 T G Tt = ar /O TG Tyt = apn(Ty).
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FExercise 12.7
From the expression

N JoT tG(t)dt
M TGt
it is clear that A\avg can be considered as an average weighted by the memory

function of the stress—strain rate relationship. In terms of the spectrum
(12.24), we have

\1110:227)7\]"/ teft/)‘jdtZQan/\h
g o0 j

and thus
. Zj NiAj
avg Zj n;

So, in the average Aavg, each relaxation time is weighted by its viscosity

A

contribution. For single-mode relaxation, we have ;g = A1.

Ezercise 12.8
From the given velocity field, the rate of strain tensor takes the form

0 0 O
¥={(0 0 % [,
0 4 0
where
dw

5(6) = sin(6)
where w(f) must satisfy the following
w(mw/2) =0, w(m/2 — B) = sin(w/2 — )2

The stress tensor takes the form

@7

Trr 0 0
T = 0 T060 Togp s
0 740 Toop

where, since 4 = 4(0), all the components of 7 depend on 6.
For steady, creeping flow of an incompressible fluid, the r-, 8- and ¢-
components equations of motion (5.33) can be written as
apL 10 2 n 700 + Top OTpy 1

2
= ———(rm,) — -, -
or r2 8T< ) r' r or r

(Nl + 2N2),
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Ipl 1 9 ) o
;9 = @) 59 70 S0 (0) + 70 cot(0) = — g~ Cot(®)N1,

opt 0

Tqﬁ T (81n2(9)7'9¢) ,
where gravity has also been neglected. The second equalities in the r- and
#-components follow with the definitions N1 = 744 — 799 and No = 199 — Ty
Since pY(r,0,¢) = p"(r,0,¢ + 27), the ¢-component can be integrated to

obtain
C1

Top = —5
o0 sin?(9)

where ¢ is a constant. The torque M exerted by the fluid on the stationary

plate is obtained from (7.15), which we write as

M= 7 / r x (n-m))(r, 7/2, 6)rdrdg
/ s / 18, x (89 - m))(r, 7/2, )r2drds
_ /O 7 /O 18, X (108, + 70080 + T84 (1, /2, §)r2drde
_ /0 " /O " roads — mas8)|( /2, )2 drde

R
:27T/ Too(r, 7/ 2)rdrds
0

where the second line follows since r = 78, and n = dy(f = 7/2), and
the fifth equality is obtained by replacing the spherical base vectors with
rectangular base vectors. Substitution for 794 and performing the integration
gives
3M;
2R3

The r- and #-components are incompatible unless + is independent of 6,
which holds for 5 <« 1. In this case, integration of the differential equation
for w(f) gives

Top =

Qsin(7w/2 — ) Q

~

7= In[sin(7/2 — 8)] — In[1 + cos(7/2 — B)] T

Integration of the r- and #-components leads to

0

700(r,0) =m0 (R, 7/2) — No + (N7 + 2N3) In (%) — N, / / cot(6')de,
/2



86 A Modern Course in Transport Phenomena

Setting 7,.-(R,7/2) = pg, the ambient pressure, gives the following expres-
sion for the pressure tensor on the plate

700(r,7/2) = po — Na + (Ni + 2N5) In (%) .

The force on the plate is obtained by application of (8.39), which gives
2 R 2w R
Fom [ [ e memszopdrdo= [ [0 w2 6)rdrds
o Jo 0o Jo
27 rR
= / / (M- 81 + To900 + Topds)(r, 7/2, ¢)rdrde
0o Jo

R
—27?/ oo (T, /2)rdrds.
0

Substitution for mpg(r, 7/2) and performing the integration gives, after sub-
tracting the contribution of the ambient pressure pg, the following

B 2F
- 7TR?

From N7 and the pressure distribution on the plate, No can be found.

Ny

Ezercise 12.9
For a generalized Newtonian fluid (12.38) in shear flow with shear rate 7, the

second invariant of 4 is \/(% : ¥)/2 = 4. The parameters in (12.39) can be
estimated as follows. For 4 — 0, we find n — 1y &~ 49,000 Pas. For ¥ — oo,

n o< 4"~1, which gives n ~ 0.15. Shear thinning occurs for Ay =~ 1 so that

A~ 0.85 s.

Table C.4 PS 200 kDa viscosity data at 180°C from Figure 12.5.

s~ n[Pas]
0.051 47832
0.10 46670
020 50433
0.51 46670
1.0 38338
2.0 24630
50 14341
100 7757
20.0 4516

47.0 2057




Solutions to Exercises 87

FExercise 12.10
For a yield stress fluid (12.40) flowing with velocity field v; = vi(x2), the
rate of strain and stress tensors are

0 ’)/ 0 0 T12 0
"}’Z ’7 0 0 y T = T12 0 0 5
0 00 0O 0 O

where 4 = dv; /dxe. The equations of motion (5.33) reduce to

dpt __dmp
dwl N d$2

Setting the pressure gradient equal to Ap"“/L and integrating gives

Aph

Tig = ———T9.

12 I T2
For x9 = b we have 119 = 20, which gives
B 20

- ApL/L”

For a Bingham fluid, (12.40) with G — oo, we have 1193 = —[o + ndv1/dx2]
for \/(7:7)/2 = 112 > 20, and dvy/dze = 0 for 112 < 20. Since, 112 > 20
for b < |x9| < B, substitution for 75 and integrating gives

it T
v = x5+ —xo + ¢
1= g et T2t e
Since, v1(B) = 0, we have
Ap'B? o
Co = — _——
2 2nL n

which leads to the following for the velocity
—AplB? b2 0B

gl (3)] -2
—Ap-B? oB

- ()] -2
FExercise 12.11

From the definition of ¢ in (12.57) and the evolution equation (12.45) for 7,
we obtain

&l

V1 =

)} for 0 <|zg| <,
2

8

)} for b < |x2| < B.

o

Jc r 1
a——v-VC—i-hrc—i-cwc —X(c—é).
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The chain rule

05 kg 0f Oc

ot  m dc It

leads to (12.58). The first term on the right-hand side of (12.58) represents
convection for the scalar entropy per mass. The third term describes the
entropy production rate due to conformational relaxation, as indicated by
the occurrence of the rate parameter 1/\. The second term can neither
be convection (not of divergence form) nor production (relaxation is the
only dissipative process). It rather describes the exchange between confor-
mational and thermal forms of entropy. Therefore, the second term has to
cancel the stress contribution to the entropy source term in (6.2) so that,
for a complex fluid, o in (6.2) can no longer be interpreted as the entropy
production rate. This cancelation requires

p Of

2kgT—c-~=17=G(0 —c).
BEm © o ( )

The modulus G can naturally be identified with kgT'p/m (this can actually
be taken as the definition of m), so that we find

of 1 _,

—=-c -(0—c¢).

dc 2 ( )
This identity holds for the expression given in (12.59), where the integration
constant is fixed such that f(d) = 0. The tensor ¢ is assumed to be invertible
and must be positive-definite to guarantee the positivity of the last term on
the right-hand side of (12.58).

Ezercise 12.12
Taking the convected derivative of 7 = 7° + TP gives the following

Multiplication by A and adding 7 = 75 + 7P gives
_ \S P
ATy + T = ATy + 70+ Ay + 70
Now, since 7° = —n°%, and )\T(pl) = —71P — nP4, we have
ATy + T = =AYy — 0"y — 1P,

which, since n = 7% 4+ 1P, can easily be rearranged to give (12.60).
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Ezercise 12.13

To obtain the viscometric functions given by (12.61), we must evaluate 4,
Y1) and 7 -7 in homogeneous shear flow. For the velocity field v; = vy (z2),
the velocity gradient and rate of strain tensors are

0 00 0 % O
Vv=xl=|4%00], A=|% 00|,
0 00 0 0 0
Since the flow is steady and homogeneous, D+ /Dt = 0. Hence, the convected

derivative contains only

420 0
ky=%-rl=[ 0 0 0],
0 00
and for 7 - v, we have
20 0
F-4=1 0 4* 0
0 0 0
Hence, for (12.61), we can write
0 4% 0 420 0 20 0
T=-bi| ¥ 0 0 |+2 0 0 0 | —=biz| O 4% 0
0 0 0 0 00 0 0 0

This gives
T2 = —b17, 11 = (2b2 — b11)?, 22 = —b11¥?,
so that for the viscometric functions defined in (12.34)-(12.36) we have
n=b1, U= -2y,  Uy=bp.

Hence, the second-order fluid predicts non-zero normal stress coefficients,
but shear-rate independent viscometric functions.

FExercise 12.14

We can split the covariant equations (12.74) into the energy balance 9, TH° =
0 and the momentum balance 8HTW = (. These balance equations can be
further expanded into

9,00 _ 9 ko
BtT N 8kaT ’
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and

We can hence interpret T as the energy density, ¢cT*° as the energy flux,
T% /¢ as the momentum density, and T*i as the pressure tensor. Indeed,
according to (12.91), T*/ has an isotropic contribution given by pr. The
contribution pec?uu’ = ~2c prv? to T in (12.91) is crucial to recognize the
momentum density in 7% /c.

By considering (12.91) in the comoving reference frame of the fluid we
realize that o, contributes only to the pressure tensor. The four-vector w,
characterizes the non-convective part of the heat flux, but also contributes
to the pressure tensor.

FExercise 12.15

The derivatives of the entropy sy = —(1/2)H&,aM" @, are given by
Osg 1 st
o _ s ~
Dodi? ——2kuw,,, %, =—-Ho"w,.

By inserting into (12.86) we obtain the following structural contribution to
the energy-momentum tensor,

TiH (M%Aw” T oM oya — w%“) ~T2H <a#mw” + u“d;,w/‘”) ,
which is symmetric.

Ezercise 15.1

As the temperature T is constant throughout the system, it does not depend
on the location of the dividing surface. We can hence evaluate the derivative
of f3(T, p*) with respect to p° for fixed T in terms of derivatives with respect
to £,

OF(T,p) _df/dt _ dw/dt _ ds/dt
ops  dps/dl  dps/dl dps/de

With dp®/dl = p' — p'! and similar results for the energy and entropy densi-
ties implied by the gauge transformations (13.1)—(13.3), we arrive at (13.5).

FExercise 13.2
From differences of the equations collected in the lines before (13.7), we get

U-U' -t =7(5 - ' — ") + a(N — N' = N 4 ~A4,
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and

(8 — 8t —sMdr + (N — N' = N dj + Ady =0,

where V' = VI 4+ VI has been used. After dividing by the surface area A,
introducing the various excess densities, and passing from the number to the
mass excess density (and hence from fi to fi), we obtain the desired results.

Exercise 15.3
After performing the gauge transformations (13.1) and (13.3), (13.8) be-
comes

[+ £(s' — s™AT + dy + [p° + £(p" — p"))dja = 0.
By subtracting the original form of (13.8), we obtain
(s' = sMdT + (p" — p")dp = 0,
which is the condition for the gauge invariance of the Gibbs-Duhem equation;
it implies (13.9).

Similarly, after performing the gauge transformations (13.1)—(13.3), (13.7)
becomes

U+ 0(ut — uth) = T[s® + (s" — s + v + fa[p® + (" — p™)].
By subtracting the original form of (13.7), we obtain
u— T = Tt — ) 4 (= ),

which is the condition for the gauge invariance of the Euler equation; after
using (13.9) for the entropy difference, it implies (13.10).

Ezxercise 13.4
The vector n has only a radial component which is equal to unity, n, = 1. By
writing the divergence of a vector field in spherical coordinates, we obtain

10,

V.-n= ﬁa(r ny) =2/r.

Noting that n does not change in the radial direction and specializing to the
the sphere r = R, we obtain V| -n = 2/R, which is a special case of (13.24)
for equal radii of curvature, R = R = R.

Alternatively, we can perform a more explicit pedestrian calculation based
on Cartesian vector components expressed in terms of spherical coordinates
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to obtain V| - n as

cos 6 cos ¢ —sing sin 6 cos ¢

cos @ sin ¢ + cos ¢ L 9 sin 6 sin ¢
— in — — — in 6 sin
R —sinf 09 0 sinf ¢ cos 6

cos f cos ¢ 2 —sin¢
= — cos @ sin ¢ + cos ¢ = 2
R : R
—sinf 0

Ezercise 13.5
From Exercise 13.4, we have V| -n = 2/R so that from (13.25) we can write

2
| | 0
p =D R
Since we have equilibrium, we have
(T, ph) = g™(T,p").

Assuming ideal gas behavior, using (4.22c) we can write

!
_ _ —
T, p") = 7°(T,pp) + RTIn

0

For the liquid, we use (4.20) to write

i
7 = (85;9)T ’

which, assuming that the density of liquid drop p'! = MM /o' is constant,
can be integrated to give

(T, p"y = @7, po) + 91" - ph) -

Substitution in the equilibrium condition for chemical potential and using
the first expression gives the desired result. For a drop of water with R =
107" m in air v = 0.072 N/m ar T = 298 K, neglecting the second term
inside the square brackets, we obtain p' / pé = 1.01.

Ezercise 13.6

As all interfaces are assumed to be planar, the pressure is constant through-
out the entire system. Therefore, work is only done against the interfacial
tension when changing the sizes of the various interfaces. For a horizontal
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displacement Az to the right and a length L perpendicular to the plane of
Figure 13.5 , the work is given by

L(—Az*yl’s + Amvﬂ’s + Az cos 971’11) .

At equilibrium, we cannot gain work by any displacement Ax because other-
wise the system would rearrange. Vanishing work implies Young’s equation
(13.29).

FExercise 13.7
The unit normal to the meniscus is given by

dh 1 1
n—=——— o1 + 03
dxq 1+ (dh/dxq)? 1+ (dh/dxq)?
so that
d’h 1
Vi-n=

~da? (1+ (dh/dz1)?)3/2
From (13.25) we can write
C 1
Pr=P =02 (U1 (dh/de )23

Now, since g = —gd3, we have from Vp = pg,

p" =p' — pgas.

Combining the last two results gives ,

2 d*h _ [1+ ( dh )z}sm%.

P dx? dxz;

From Figure 13.6 it is clear that,

dxrq dzs .
Tg:COSQ, TC:—SIHCM,
so that
% = —tana.
dx

Setting h = x3 in the previous result and substitution gives

drs oo, 0 Ge T3
¢ LA By

which can be written as
T3 do do dzs

T2
lcap
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Integrating subject to o = 0 for x3 = 0 we obtain

23 = leap/2(1 — cosa) = 2lcapsina /2,

which, for «(0) = 7/2 — 6, gives (13.30). For water in air, v = 72 mN/m so
that lcap &~ 2.7 mm, and for water in contact with ordinary glass, 8 ~ 7/6, so
that h(0) ~ 3 mm. Finally, substitution of this last result in the expression
for dzs/d(, gives

; da  sina

“PAc T cosa)2’

which, when integrated subject to a = «/(0) for { = 0, gives

a=4tan"! | tan CKELO)S_C/ZCap} )

FExercise 14.1
We start with

V- (v*a®) =a’V) - v° +v° - V@
=@’V - V3er + @V - v, + V3 - V)@© + 05 - V)@
= V| - (vgeea®) + @V - Vi, + 5, - V)@

where we have used the general velocity decomposition in (14.11) to go from
the first to second line. For the normal-parallel splitting in (14.13) we have
vy, = vyn. Hence, we have n - V| = 0, so that for this case the last term in
the third line vanishes and (14.13) is obtained.

Exercise 14.2

The unit normal is n = §, and the velocity in the bulk phases is purely radial
so that v = v,.6, and © = ©,.d,. Since the interface velocity is v*-n = dR/dt,
the expression in (14.17) is easily obtained from the jump mass balance
(14.5). The momentum densities in the bulk can be written as follows: m =
pv-0, and T = pu,.d,.. Hence, the normal component of the jump momentum
balance (14.6) with 7 = —v4; can be written as

dR
pur (B) (0r(R) = ) + p(R) + 73 ()

= ﬁﬂr(R> </l_)T(R) - %

The extra stress in the bulk phases is given by (6.6) which take the form:

ovy 2_8@
Ty = —
or’ " T or

) +]5(R) + 7__1”7"(R) - 'VVH 'n,

Tryr = _277
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Substituting these along with V| -n = 2/R from (13.24), and using (14.17)
gives the expression in (14.18).

Ezercise 14.3

Since there is no mass transfer across the liquid-gas interface, we have (14.6)
with the further condition that v® - n = 0 since the interface is stationary.
The unit normal to the liquid-gas interface defining the shape of the liquid
jet is given by?

1 dR/dz

VI+ dR/dz)? T 1+ (dR/dz)253

Y. .n 1+ (dR/dz)? — RA’R/dz* _ 1
T R[4 (dR/d2)?2)32 T R’
where the approximation follows from Rd*R/dz? < dR/dz < 1. Since the

gas is inviscid and we are neglecting viscous effects in the liquid, the normal
component of (14.6) simplifies to

so that

L_ 1,7
p—p—i—R.

Now we write (5.54) for constant p between for a streamline beginning at
z = 0 to an arbitrary point along the jet

Lou2(2) + po(z) + 0 (2) = = pu2(0) + po(0) + p(0),

2 2
Substitution for p" and noting ¢ = —gz, we have
L, y_ Ll o
- _ L2y L
5PV=(2) = pgz+ 5 = SpV %

which can be rearranged to obtain

For the mass flow rate, we have

R
W = pﬂ'R(Q)V = 27r/ pvrdr = prR%v,
0

which can used to find the desired expression for R(z). This expression can
be rewritten as

RIS e e (b DI

4 see Appendix B of Slattery et al., Interfacial Transport Phenomena (Springer, 2007).
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where N = V?2/(gRp) and Nwe = pV2Ry/7.

FExercise 14.4

Since we are neglecting viscous forces in the liquid, the momentum balance
we must solve is Euler’s equation (5.40), which neglecting gravity, can be
written as

p(aa:: +v- Vv) = —Vpt

subject to V - v = 0. We write the velocity and pressure fields as

~  wtt+ikz _ ~  wttikz
Te 9 Ze 9

vy =D v, =D Lem&—i-zkz7

L L, =
p =po+p
where the perturbation amplitudes are functions of . The constraint on the
velocity takes the form

di -
I ik, =0,
dr r
The - and z-components of the momentum balance are given by
d~L
perr — _i’ pwaZ — _ZkﬁL7
dr

where we have neglected nonlinear terms because the velocity perturbations
are small. Differentiating the constraint on velocity and using the momentum
balance, we obtain

o d2%, N a0,
dr? dr

which is a modified Bessel’s equation having solution

— [L+ (kr)*)5, =0,

?~)7~ = 01[1 (k?“),

where we have enforced regularity at the origin. From the r-component of
the momentum balance, we have

o 0y
pL = —%01]0(]{27‘).

To find ¢y, we consider the liquid-gas interface, which has unit normal
given by
1 dR/dz

Vit (dR/dz)26T I+ (dR/dz)25’z‘

Since there is no mass transfer across the liquid-gas interface, we have (14.6)
so that

v(R,z,t) - n=17°"n.
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Since |[dR/dz| < 1, we can write this as

on

D wttikz
= wRe"
ot ’

Clll(k‘Ro)ewt-i—ikz ~
which gives ¢; = wR/I1(kRp). Since the gas is inviscid and we are neglecting
viscous effects in the liquid, the normal component of (14.6) simplifies to

pL(Ra Z, t) = IYVH ' n,
where we have absorbed p' into p". The curvature is given by

1+ (dR/dz)? — R&*R/dz?
~ R[l+ (dR/d2)2]3/2

VH‘TL

which for an unperturbed surface is simply V,-n = 1/ R so that p} = v/ R.
Again, since |dR/dz| < 1, we can write

1 d®R 1 R e 9wt
. ~ — — ~ _ wt+ikz Rk2e¥ +'Lkz'
V“ R dZZ RO R%e + €

Combining the above results, we obtain

L pw? R Io(kRyg) wttikz _ T ﬁewtﬂ‘kz + Y RE2ewtikz

Ry  k IL(kRo) Ry R2
which can be rearranged to give

WQZLh(kRO)
pR3 Io(kRo)

ERo[1 — (kRo)?].

This result shows the liquid cylinder is unstable to disturbance having k Ry <
1, or having wavelength that is larger than the circumference of the cylinder
2r/k > 2mRy. The wave number for the most unstable (fastest growing)
disturbance is kRg ~ 0.697, or a wavelength 27 /k ~ 9.02Ry.

Ezxercise 14.5
From (14.23) with e® = u® we can write
o*u®

ot

=V (03ept® + Jy) — WV - vh — 7 Vo' — 0 V)

1 .
in. [(vn — o) (W 4 §pII,UII o) 4l Tt +J;1

1
— (v —v*)(u! + §pl'vI ol — !

-vl—jﬂ.

Multiplication of (14.10) by v®- and substitution for the last term in the first
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line above gives the following

osu
Ot

= =V (3’ + Jy) — wV) - v — 7 Vo
1
+n- (’UH _ ’US)(UH + 5pII,vII . ’UH . pH'UH . ,US) + 7TH . (’UH . ,US) +-7q

1
_ (,UI _ vs)(ul i ipI,UI ol — ol o) — . (UI . jﬂ’

which can be rearranged to obtain

8SUS
o = Vi Waet +4g) = wVy v — s Vot
1
+n- (’UH _ US)(hII + 5pH,UH . 'UH _ pH’UH . ’US) + TH . (UH o 'US) +J;I
1
— (' =) (' + sp" vt = plot ) — 7T (0] = %) — 5|

2

or, using (14.5), we have

osu®

ot

= =V - (vges® + Jg) — 0V - vf — 7 Vo
+n. [(,UII - ,US)hH +j;1 _ (,UI - ,US)hI 7j;
+ TH i (’UH _ ’US) _ 7_I i (’UI . ’US>

1
4 ! — o) .nb(vn ol ol ) — o (ol = o))

Decomposing the velocity difference between the bulk phases into normal

and tangential components
o — ol = (W — o), F nn - (v — oY),

and using (14.8) and (14.9) in the fourth line, the expression in (14.24) is
obtained.

Ezercise 14.6
First, we rewrite (14.25) as

n- (nfx - vspg) =n- ('naI - vspg) e R 74

where we have used (5.13). Dividing by M, we obtain

jS
n - (NCI! —v%&) =n- (NCIXI —vscg) -V ]\Zaa + Xifa ;
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which can be written as
n- (N(i - vscz) =n- (NgéI - vscg) — V- JS ST,

where JS = jS /Maba, 75 = v, M5/ M,, and T' = T'/M;. Using (5.20) in this
expression gives (14.27).

Ezercise 14.7
As in Exercise 14.2, we have n = 6,, and v = v,.0,, and © = ¥,.0,.. For this
case the jump energy balance (14.26) can be written as follows:

()~ ZOVR 4 o () = (a0 () — 4

(-2) g i

As in Exercise 14.2, we use (6.6) for the extra stress in the bulk phases. For
the diffusive energy flux in the bulk phases we use (6.4), which gives

. oT - 0T
(]q)r = *)\E» (]q)r = *)\E,

where A and \ are the thermal conductivities of phases I and II, respectively.
Substitution of these expressions and using (14.17) gives

dR)BI— or (R)

p(vr(R) = S5 )W = AS-(R) = p(o(R)

B e2) G- i

Tt + 25 ) (o) - ).

dR\;y <OT
B dt)h _)\87“

—2v

which, using Ah = A — bl is easily rearranged to give (14.28).

Taking the densities of both the particle and surrounding liquid are con-
stant, the continuity equation (5.36) for the particle simplifies to the follow-
ing: v, = f(t)/r%. Since the velocity must be finite at the origin, f(t) = 0
and hence v, = 0. Similarly, for the surrounding fluid, v, = f(¢)/r?, and
using (14.17), we obtain the following

= umo( By
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where € = p/p. Substitution in (14.28) gives

or oT dR

SAG-(R) = “AS-(R) + p [Ahl 2(1—6)(dt — (-9

We now compare the magnitudes of the terms in square brackets for the
melting of solid HoO and vaporization of liquid HoO. The table below has
the necessary physical properties. For the solid-liquid phase change, € ~ 1

dR) 1dR

and the second and third terms inside the square brackets are negligible. For
the liquid-vapor phase change, € < 1. The kinetic energy term is significant
for dR/dt ~ 10° m/s or larger, and the viscous stress term is significant
for 1/RdR/dt ~ 10'%~! or larger. Hence, the enthalpy change dominates
mechanical energy effects in all but the most extreme cases.

Table C.5 Physical properties of HoO at atmospheric pressure.

state (T) Ah x 1073[J/kg = m2/s?]  plkg/m®] v x 10%[m?/s]

solid (0°C) -334 917 -

liquid (0°C) - 1000 1.8
liquid (100°C) - 958 0.3
vapor (100°C) 2260 0.598 2.0

Exercise 14.8

From the problem statement, we postulate the temperature and velocity
fields in the solid and liquid to have the form T = T(x1,t),; = 0 and
T = T(x1,t),v1 = vi(x,t), respectively. The normal vector to the solid-
liquid interface at x1 = H(t) is n = §1, so that the jump balance for mass
(14.5) gives

vi(H,t) = (1— 7)% ~0

and the jump balance for energy (14.26) simplifies to
~dH 8T oT

pAh— — A— —\—(H,t
where Ah = A — BL. Since the liquid density is constant, we have
81)1
- = 0
(91’1 ’

which combined with vy (H,t) = 0, means v; = 0.
For convenience, we normalize temperature as follows (T'—11)/(To—T1) —
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T and (T —Ty)/(Ty — T1) — T. Writing the temperature equation (7.21) for
the solid phase, we have

or T

81‘1 X 8:6% ’
which is solved subject to the boundary conditions

T(0,t) =0, T(H,t)=0,

where © = (T, — T1)/(To — T1). Similarly, writing the temperature equation
(7.21) for the liquid phase, we have

or  9°T

81‘1 X 3%% ’
which is solved subject to the initial and boundary conditions

T(z1,0) =1, T(H,t) =0, T(o00,t) = 1.

The jump energy balance becomes

pAh_dH _\OT o 30T
To — Ty dt axl(H’t)_ )\8331 (1)

The similarity transformation & = x;/1/4xt implies

H = B/4xt,

where (8 is a parameter to be determined. Transforming the jump balance

for energy, we have
26 AdT dT

- 3O =%

where Ngy = é,(Tp — T1)/ Ah. Transforming the problem for T, we have
d*T dT
— +2—=0
dg? * gdf ’

which is solved subject to the boundary conditions
T(0)=0, T(8)=6.

The solution for this problem is

- ©
T = erf(ﬂ)erf(f).

Similarly, transforming the problem for 7" we obtain

A>T dT
i Q€ — =
a2 + afd& 0,
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where oo = \/x, which is solved subject to the boundary conditions
T(B) =0, T(x0)=1.

The solution for this problem is

T=1- erfc(fﬁ)erfc(fg)

Substituting the temperature fields in the transformed jump balance for
energy leads to the transcendental equation that must be solved numerically
for 3.

FExercise 14.9

The analysis involves isothermal diffusion in a two-component ideal gas so it
is reasonable to assume the pressure in the gas is constant. Hence, the molar
density of the gas phase ¢ is constant, and therefore we use a molar based
concentration and the molar-average velocity v* as our reference velocity.
From the problem statement, we postulate the concentration and velocity
fields to have the form zp = xa(x1,t),v] = vj(z,t), respectively. Combining
(5.23) and (6.27) we obtain mass balance for species A

Oxp ~ ,0xa TN
- vV — = 5
ot lom P oa?
which is subject to the initial and boundary conditions
xa(x1,0) =0, 2A(0,1) = TAeq, xA(o0,t) =0.

The normal vector to the liquid-gas interface at 1 = 0 is n = §1, so that
the molar form of the jump balance for species A mass (14.27) gives

v7(0,t)ea(0,t) + (JA)1(0,t) = 07(0,t)ca(0,t) = v7(0,¢)¢(0, ),

where the overbars indicate quantities in the liquid phase. Similarly, for
species B we have

v1(0,8)e(0,1) + (Jp)1(0,¢) = v7(0,1)eg(0,t) = 0.
Adding these equations we obtain
v7(0,t)c = v7(0,t)e(0,1).
Substitution in the balance for species A gives

1 Dap  Oxa

v1(0,1) = m(ﬂ)l(oﬁ = - (0,7)

1 TAeq OT1
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where we have used the boundary condition at 27 = 0 and (6.27) to obtain
the second equality. Now, since c¢ is constant, from (5.22) we have

ovy
81'1

which leads to v} = v} (). Hence, substitution in the species A mass balance
gives

=0,

O0xA 0% A
0,t = Dagp——5
( ) )6£B1 AB 833% )

oxA Dap Oz
ot 1 — Tpeq 011

Applying the similarity transformation £ = x1/v/4Dapt we obtain

d2xp dza
A 2) A
where
1 dra
—_ 0 ,
B O

which is subject to the boundary conditions

2A(0) = ZAeq, xa(00) = 0.
Integrating, we find
d
B

where z = £ + (/2. Integrating a second time and using the boundary
condition at £ = 0 gives

§&+8/2
TA — TAeq = C1 /,8/2 e Vdr = cl\é%[erf(g + B/2) —erf(8/2)].

Applying the boundary condition at £ = oo we obtain

iUAeq = _Cl/ e_xzda? - _Clﬁ[l - erf(ﬁ/2)]7
8/2 2

so that the solution is

A erf(€ + B/2) — eri(8/2)
A - .
T Aeq 1 —erf(8/2)
Substitution in the expression for § gives
8 T Aeq e—(8/2)*

2 V(L = Taeq) 1 —erf(8/2)’
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which must be solved numerically for 5. Note that —3/2 = v]\/t/Dag is
the dimensionless molar average velocity.

The evaporation rate is proportional to molar flux of species A at z1 = 0.
Using (5.20), we can write

(Na)1(0,8) = v} (H)en (0, 8) + (J3)1(0, ) = cDAgz‘jjl‘w,t).

Using & = z1/v/4Dapt and substitution of the expression for x5 gives

(Na0,0) = (= D ym)ey /222,

where the quantity in parentheses is a factor that takes into account con-
vective transport. For xaeq = 0.25, —3/2y/m =~ 1.1, and for xpeq = 0.5,

—B/2/7 ~ 1.3.

FExercise 14.10
This analysis is similar to that in Exercise 14.9. Hence, the mass balance for
species A is given by

oxA LA D axa
= LJAB 81‘% y

8t + 1 81)1
where v} = v} (). The initial and boundary conditions are
xa(z1,0) =0, zA(h,t) = Taeq, xA(H,t) =zAH.

Choosing n = 81, the normal component of the interface velocity is given
by n - v® = dh/dt. The molar form of the jump balance for species A mass
(14.27) gives

x « - dh
U1 (t)CA(Oa t) + (JA)l(Oa t) = (NA)1(07 t) = [CA(Ov t) - p/MA]E
Similarly, for species B we have
x x dh
vi(t)es(0,1) + (Jp)1(0,8) = (N)1(0,2) = [c — ca(0, )] -
Adding these equations and applying ¢ < p/ M we obtain
R p_dh
v{(t) = ——=——.
=2
Substitution in the jump balance for species A and using (6.27) gives
% DAB 6$A
U1 (t) = 3 _ (Ov t)’

1 — Tpeq 071
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where we have also used the boundary condition at x1; = h. We also find

@_CJ\;IA DA Oza

= t).
dt p 1 —Tpeq Ox1 (0,%)

Invoking the quasi-steady state approximation, the mass balance for species
A can be written as

Oxa

SA) = S (Na =0,

(Ul cxa —cDap o
1

Oxy
r (Na)1 = (Na)1(t), which implies

@_CMA Dap Oxa
dt — p 1—x 0xy’

Integration over xy from h to H gives

dh  cMx. /1 —xap
ln( )

H-h .
( )dt 0 1 —Zpeq

Integration over time with h(0) = hg gives the desired result.

Ezxercise 14.11
For a two-component system with constant Dag, we have the mass balances

Op 0 _ 0
ot " Pows  Pory

/(G gs) = Pangy ()

Multiplying the second by 9p/dwp gives

( dp Owp ap 8wA> — Dan dp O (p%ﬁ;?)

Plows 0t " " ows o B Dwa O3
or

(& o) =t = D 220 (08),

ot + s Ox3 63; BwA Oxs
where we have used the first mass balance. Now, since
l/p =0 =wpba + (1 — wA)f)B

we can write

op _00/5) 1 00,
dws  Owx 020w p7(0a = p).
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Substitution in the previous result gives

ovy 0 Owa
9% _p _ JWAN
O3 AB(0a ”B)ax?,( ax3)

The expression on right-hand side can be written as

0 Owp O?wa dp Owa D?wa Op [Owa\?2
(7 5ms) =P 5a2 * 5y Gy =" a2 B Caimy)
(91:3 oxs Ox3 Oxs oxs Owa \ 0x3

0 ( 8wA> [82wA B A — OB <8wA)2]

013\ 0z ) ~ Pl 022 wa(in — i) + i \ s ) )
Substitution in the second mass balance the rearranged form of the first
mass balance gives the desired results.

83;3

or

Ezercise 15.1
Starting from pf, in any gauge, we determine ¢ in (13.4) such that

k
chﬂrf — )l =" +Lp" = p) = 0.

With the solution for £, we obtain the definition

Ta:pz ps pa :Ooc
pt—plt

By definition, we have

Exercise 15.2
From the decomposition of the surface pressure tensor in (15.9) we can write

Vi w ==V -(v§)+ V-7 =7(V, n)n - Vy+ V.7

where we have used V- (§)) = —(V) - n)n. According to (6.3), the pressure
tensor in the bulk phases can be written as wh!l = pl1§ + 7111 Substitution
in the jump momentum balance in (14.10) gives the expression in (15.21).

Exercise 15.3
In the absence of mass transfer at z = h with n = 4., we write (15.21) as

0—7'116 +’TH(5 +pH(S _VH 75 —|—V||'Y
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where we have treated the gas (I) as an inviscid fluid (7! = 0) and set p! = 0.
Since n = é., we have
0 by 0

5H - 5r57» + 69607 V” - 67‘5 + 7%

For 7 we use (15.12) with v°® = v}(r)d, so that

10
="+ ni);g(rvi)(&& + 0699),
and
< s o O0/1o
V=~ +nd)&<;5(rvr))5%

Hence, the jump momentum balance becomes

0 r1
I 11 11 s | .8 4 s
0=7,,0,+7.,0.+p 0.+ (n°+ nd)f?r <7“ o (rvr)>6r +

Using (6.5) for 7!, the z-component gives

P = bl h) = 2052 ).

and the r-component gives

vy v, s 010, | oy
0=-n E(T’ h) + E(Tv h)} + (1 +Ud)§(;§(”&«)) + o

which is the desired result.

Ezercise 15.4
For a uniform (constant ) interface with ° = 0 across which there is no
mass transfer, the jump momentum balance (15.21) can be written as

pntn- -t =pntn. (8 n)n.
Since n - ) = 0, the transverse component simplifies to
nTI(s” :n'TH'(SH.

For this example, n = d,, so that the 8-component of the above equation is
simply 7.9(R,0) = 7,9(R,0). From (6.5) we can write

e (2) e ira()

which gives the desired result.
Now, from (15.17) with & = &ipdy, we can write

o -™-n & -7-n 1 1\
11 I || I I
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where the second equality follows by using the transverse component of
the simplified jump momentum balance given above. Again, since n = §,,
the f-component of the above equation is simply vgp(R,6) — vg(R,0) =
&aipTro(R, ), which gives the desired result.

Ezercise 15.5
For a uniform (constant v and 7°%) interface with both n°* = 0 and \° =
across which there is no mass transfer, (15.20) simplifies to

I I -1
. .11 I I T T 1 1
s =il o= (G ) e ()

Using the results from Exercise 15.4, the above expression can be written as

n- jé =n 'j(III + §S1ip(7'1 ‘n) - (TI ‘n).

For this example, n = §,, so that the above equation is simply jg, (R, 6) =
Jar (R, 0) + EaipTro (R, 0)?. Using (6.4), we can write

. or - 0T
(]q)r - _AE’ (]q)r - _)\57

which gives the desired result.
In the absence of mass transfer, the expressions in (15.13) and (15.14)
take the following form:

T'—T%=—Rgjy-n, TV -T°=Rg n.
Subtracting the second from the first, we obtain
T'—T" = —(Rjy - n+ Ri&jy - n),
or, using the results from the first part
TH—T" = —(RQ + Bid)jg - n+ Ril&ap (7 - m) - (71 m),
giving the desired expression.
Ezercise 15.6

We use the gauge p®* = 0. Substitution of (14.21), (14.23) and (15.6) in
(15.22) gives

=V - (V3eg€® + gy + 7 - V7)) — V) v,

in. [(UH_US)QH_’_J-;I_’_WH_UH_( I_,vs)el_jé_ﬂ,I.,vI

k
1 /. J
= TS{ -V [vflefss + s (JZ - Miﬂi)] — Vv +0°
a=1
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[ S
—(vl—v)s—*( Zﬂaaa)”

Y N{ Y, (W 4 55) — PV - v+ AT

a=1

e (o= o)l 48 = (ol = o)l — ] |

where we have used (6.9) to replace the entropy fluxes in the bulk phases
and, similarly, j5 = (j; — 22:1 [, gs)/Ts for the entropy flux within the
interface. Solving for ¢°, we obtain after some rearrangement of terms

k
TS0 = _VH . ('Uzefes) + TSV” : ('Ufsiefss) + Z ﬂiv\l ’ (U(Slepr)
a=1
- k

k
. 1 . 2 .
a=1

a=1

k
—v°- (V- 7m°) =7 Vjo© — <€S —T°s° - Zﬂiﬂi)vu FU

a=1

+n- {(,UH_,US)<6H_TSSH _ Zﬂipg)
(v =) (- Tl - Zﬂzpa)}
1 1 1 1
1 .1
+Ts'n,-_7q <TS_TH> Tn - Jq <TS TI>
S (i i
e () e Yt (- )
+n- w7l (v —v®) -7l (v =)+ n - (7 = wh) 0t

Using (15.9), along with (15.3) and (15.5), we further obtain

TPo® = T3, VIITS Vo —TSZJa VHTS ZVaMa
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k
+n- {@H _ ,US)(eH sl _ Zﬂng)

a=1
— (0" =) (=TS - Zuapa)}
1 1 1 1
11 1
+Tsn -7(1 <11S—1_‘H>—Tsn Jq <1”S_TI>

i} AH I&s /ll

S 8] S &) o

-T Z" Ja <TS_TII>+T Z” Ja<Ts—T1>
+’I’L'[7TH-('UH—’US)—7TI-(’UI—’U)]—I—n-(Tl'H—TrI)-US—US‘(V“-TFS).

As a next step, we rewrite the second line of expression above in terms of
bulk intensive variables and use (6.3), which leads to

k
. 1 1 .
USZJZ'VHTS =T ALK —Zﬂa Vn ﬁZ’@MZFS
a=1 a=1
1,11 s\ 1112 T/,.1 sy 112
+in-|p (v —v)ifv —p(v —'v)iv
1
+n- [TH~('UH—US)—TI-('UI—'US)] }TS
in. [(,UH — )T -II] 1 1
Jq Ts TII

—n [0 — )Tl + 41 (TI :/{I>

e i i, AL
(63 o . « o
—Z"[(” v")pa (TS—TS>+3a (TS—TH>]

a=1
AN
o (0% . (07 (0%
*Z" [” — e (z«‘w)“a@f@)]
1
+[’I’L'(ﬂ'H—ﬂ'I)"US—’US'V”'ﬂ's]ﬁ,

where we have used e+p—Ts—ZZ:1 fiapa = 3pv°. Using (14.8) and (14.9)
in the second and third lines and (14.10) in the last line of the expression
above, we obtain

. 1
0°=Jqg Vigs — TS VHU_ZJoc ”TS TSZVaMa
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1 1 1 1
I s\p I | IO I I
+n~[('v —v°)h +gq]<s—n>—n~[('v —v°)h +gq]< S I)

L/ AN 4y
+(—) {(v — o)
s \ P~ 21— pll

1 I
T T

+n - (— - —) n}n (vt = oh)
P

1 1 1\ ! R I I

o () G et
k i il
=3l el (4 - )

5 fig
+Zn ,U_U poa—i_.]oz} <;1—z_jf;>7

where we have also used T's = h — 2221 flapo and decomposed the velocity
difference into normal and tangential components. This equation coincides
with (15.23) when we first eliminate m and then the flat averages i!, ',
and £° from (15.23).

Ezercise 15.7
For a two-component system, the entropy production terms resulting from
energy and mass transfer in the first line of (15.23) can be written as
S
7

1 ps — p° 15 —
o =Jy- V”Ts —Ji- V“T—JS'VH =Jg Ts

where the second equality follows from 3§ + 75 = 0. To ensure nonnegative
entropy production, we write

1 5 u
LaVigs + La Vit

- 1 I M
Ji= ZanﬁJFL 1V 2 L

where L, L7, L}, are coefficients of a symmetrlc matrix. Writing
Py — fu Los oy M5 — 1 1 Py — [
d(P 1) = =) T = o (ST ) = AT

where the second equality is obtained using (13.17) with p° = p§ + p5 = 0.
Now, since v = (1%, iif), we can write

1= (575) T+ (g )
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S S S 8[:[/5 S S aﬂs ~S
= sl +p1(8T25>ﬂsdT A [1 B (8/12)1@}61”1’
1 1

where the second line follows using (13.21) and (13.22). Substitution in the
previous result gives

S

(B - (), Jo— - (), o

Substitution in the expression for jj gives
1 ofis
S I3 I3 |:AS_'~S_TS< 2) } v, T8
J1 ng{ qq T L1 (M — 1y a7 ) s I
L Oy
7= [1- (5 )] Vi
T [ oy )l V1

VHT D12VHP1,

P1 Ts

- S (), ),

- e e <[ 045
L+ L1 [M% — [ - Tb(ai}z) ]
CH Hy )
ql pbiTs

where

Similarly, substitution in the expression for jy gives

.5 LS 497 s _ ~S s 8ﬂ% v, T°
Jq - T52 I Ts2 Ha2 oTs a5 I

-G (2;:;>Tsv.pa.

Now, since

[ - é+Tb(§i%)ﬂJﬁ
= Tsz{L ey - () |
I3 [ - S - TS(g;%)ﬁi]z}V||Ts
Tls{qu + 215, [ - it - Ts(ggz;)ﬂ?} } 1- @2%] (f)f;s?)pwi

vl (), 1C8),
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o [as s L (03 N U T
Lo+ 205 |3 — i =T (G2) | + oha | — i - (532
1

!
A= Ts2

s

)

Exercise 15.8
Writing the first term on the right-hand side of (14.21) as V| - (v508) =

Vier - ViPo T 06 V) - V3, for two-component interface we can write,

8Sp:sl S S S S *S STS
ot + Vg - Vip1 = —p1 V)00 = Vg7 + 4T
R [ AR CaER W H

where we have used (14.11). From (14.24) with 7w = —vd; +7° we can write,

8SUS
ot + Vet - VU = = (0 =)V 0° = V- gp = T Vot

. , . , 1 1\
. [(vH—v )hH+J;I — (v —w )hI—JH + (H - I)
Pt
11 I
T T).n]n-('vﬂ—’vI)

1ph+ o 1\2
X< |z —= (v —v)+n-(———
{ [QPI_pII o

11 I
T T 11 I
+n-<———)~(v —v)}.

Pl Pl I

In the gauge p* = p§ + p§ = 0 we can write (13.16) as

ut =T + v+ (fu — fi2)p]
6[@) } S
a3

oy s .
ZV—TS<a7)ﬂ1+ [Ni—M*’TS(aTS P15

where the second equality follows using (13.21). Taking the differential of u
and using (13.17) we obtain
. 7 0%y 0% iy , , , . Ofi5 ;
=52, A o v () o
b oTs2 )y TI\OTS2) py Tl oTs/ jns i

Substitution of the last two results in the balance equation for u® gives

-7 [(5%),. - ?ﬁg;’:ﬁ)ﬂj (% + v ViT")
+[ﬂ§ — 5+ Ts(g/ﬁ)ﬂi} (82? + Vet - VHP?) = Ts(g;)ﬂlvn - v°
- [ﬂi — s+ Ts(ggas)ﬂsjpﬁw =V gy =717 Vv°

S
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+n - [(vH —v%)Rl + jél — (vt —v*)Al - jﬂ

1 AN (1 40 P
+(H—I) {[ (UII—UI)2+n-(H—I)-n]n‘(vn—vl)

P p 2l — pll P p
11 I
T T

Substitution of (15.36) in the second line of the result above gives, after the
cancelation of terms, the expression in (15.37).

FEzxercise 16.1
For 4 = 10 s, we have from Figure 12.5 (N1)g = 365000 Pa and 75 =
365000 Pa, so that (16.8) gives

%:o.13+[1+1(

: 365000 Pa>2} 1/6 ~ 137

79500 Pa

Ezercise 16.2
The total mass flow rate through the die of radius R can be written as

2 R R R
W = / / pv,(r)rdrdf = 27rp/ v, (r)rdr = 7r,0/ A(r)ridr.
o Jo 0 0

where the third result is obtained from integration by parts using —(r) =
dv,/dr. Now using (16.4), we make a change of variable r = (R/7Tgr)7;, so

that we have
w 1 [™r
W = 7_3/0 ,Y(TT‘Z)T'?szTZ'
R
Differentiation with respect to 7r gives
d W 3 [T, > Y(7r)
i) =73, i+ 28

which is easily rearranged to give the desired expression.

FExercise 16.3
The normal vector to the interface between the fluid and die is n = 4§, so
that & = dgdg + 6.0,. Writing (15.17) with & = &ipd; we obtain

II I —1
I T T 1 1
h - 5 ! (S| ' < - > o ( - > ‘
I ship®| pH pI pH pI

The jump balance for momentum (14.6), in the absence of mass transfer,
simplifies to n - 7wl = n - 7!l so that,

6“.’7-:[-”?’:6”-1-1:[.”
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Combining these expressions gives
I — caind) - T8 n = Eqip (8909 + 6.6,) - 71 - n = Egip o (R)6
UH fshp W T n éshp( 909 + 0 z) T n fshp'rzr( ) P2

where the third equality follows from (16.2). Now, from (16.4) and (16.5),
we can write

dv,\"  —Apq
m=K(-G) =5
which can be integrated to give
— Apaie\ Y/ RV
V, = —( ) — C1
2K L 1/n+1

From previous results, the boundary condition at the tube wall can be writ-

ten as

_Apdie
2L

UZ(R) = fslipTzr(R) = fslipK R,

which leads to the following expression

(%

nR (—ApdieR>1/n [1 B (r )1/n+1} N —ApdiefshpR'

“1+n\ 2KL R oL

Integrating over the die cross section gives the desired relationship between
pressure drop and flow rate.

Exercise 16.4
Combining (16.3c) and (16.5) we obtain in the absence of an imposed pres-

sure gradient
wl(-7) =0

which can be integrated twice to obtain

ncl/n
UV, = #T*]-/n*ﬁl _

= Co.
1—n

Applying the boundary conditions
v,(R) =0, v,(BR) =V,

we obtain the desired velocity. Integrating over the cross section between
the die and wire gives

27 rR 2
pT RV 2n “1/n
W:/O /ﬂvaz(r)rdrdezﬁll/n_l (1= Umy —(1-8%)].
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Now, since the gas is incviscid, the coating on the wire has uniform velocity
V so that the mass flow rate of the coating is given by

2T
W= / / pVrdrdd = prR*V (k* — ?).
0 BR

Combining the last two expressions gives the desired relation for the coating
thickness.

Ezercise 16.5
At steady state, the mass flow rate through the extruder is constant and
given by W = pBH (v3), where

I ApetH? 1
== dry = ==L 4y cosg
(v3) H /0 v3aT2 120 Lot + 7 cos 0,
The steady state form of (9.34) is given by
WAh =W,

where we have neglected changes in kinetic and potential energies and set
Q = 0 since we are assuming adiabatic conditions. The expression for W is
given in (8.47)

. Lext B/2
W= —/ (- v) - 1 Agpn)dA — / / v)(H)dzdzs
Asm B/2
= VBL,QXAC [sm 07’21( ) — COS 97’23(H ]

where the second line follows from v(H) = —V(sinfd; — cos6d3). From
(16.11) and (16.12) we have

81}1

To1(H) = —77372(

H) :4%sin9,

Jus

HApex V
rag(H) = =gy (H) = =500 =

7 coso.
e H O

Hence, we can write

202 D? DH Apey
WT(l + 3sin? 0) + FTeXfetcos@}
where we have used V = wDS). Now, for the extruder-die system we have
Ah = ¢, AT + Ap/p = ¢, AT, so that the energy balance gives the following
expression for the temperature rise

BLext [ Q2 D? . 92 WDHApext
143 )+ — 9} .
o | (s 0) e cos

W = BLoy [

AT =
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Exercise 16.6
Applying (16.23) to (16.14) we obtain

2 1d, R B
EUT(R, z) + ﬁ%u{ (v.(R,2))) — 2EUZ(R, 2) =0.

Using (16.18) the first and third terms cancel, which gives (16.24). Setting
the left-hand side of (16.16) to zero, and multiplication by r? and integrating
gives,

R 5 L R
B op~ / 10 Too ~ OTrz] o
0= /0 5" dr ; [r 8T(TTW) " + 9, }7’ dr
R

R R R g,
= —/ r2dp" —/ rd(r.) —i—/ Togrdr —/ —Zr2dr
0 0 0 o 0z

R R R
= —[R2pL(R, z) — 2/ erdr} — [RQTW(R, 2) —/ Tr,ﬂrdr} +/ Togrdr
0 0 0

b R
_02/0 Trar2dr + R/R2T7«Z(R, z).

Dividing the last result by R?, we obtain

1
0= _pL(Ra Z) + <pL> - Trr(Rv Z) + §(<7—rr> + <7—60>)
1o
R2 0z
Substitution of (16.21) and (16.22) and neglecting terms of order (R')? gives

(16.25). Multiplication of the left-hand side of (16.16) by r and integrating
gives

R R
ov, ov,
T d z d
/Ovarrr—i-/ovazrr

R
/ Tror2dr + R'7..(R,2)
0

— Ruy(R, 2)o. (R >—/R 9 >d+/R 00 g

= Rv,. (R, 2)v,(R, 2 ; vzarrvr r ; vzazrr
RaUZ

_ / 2 z

= RR'v,(R, 2) +/0 B rdr

_Lld po o

- 2dZ(R <vz>)a

where we have used (16.14) and (16.18) to obtain the second equality. Mul-
tiplication of the right-hand side of (16.16) by r and integrating gives

R opl Br19 0T R
— ; azrdr—/o [;EO’TM)-F P }rdr—i—/g pgrdr
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1d 1
= 3 IR + (7o) + REX((0) 4 (120)) — Brve(R,2) + 5 Rpg
_ 1d 2 L / 1 2
= =5 B (") + (7)) + 7R + 5 Rpg

where we have used (16.21) to obtain the third equality. Combining the last
two results gives (16.26).

Exercise 16.7
For steady flow, (12.45) can be written as

T4+ ANv-VT4+k-7+71-67) =5k +r")

—

For the flow given by v, = v,(r, 2),v, = v,(r, z), we have

% 0 g o0
b g 0
which lead to the following for the non-linear terms
N L
K-T= 0 Too " 0 ,
o S
oS + v, 0 0 v B + v 5
v VT = 0 v 20 4, 000 0
o O + v B 0 v B + v, O
Hence, we can write
0Ty 0T ov, ov, ov,
Trr + A |V +v —2(7’ — +7 —) =-2 ,
" [ " or * 0z " or e 0z Tor
o o v v
o9 + A vrﬂﬁ-vzﬂ—zmgl = —277l,
or 0z r r
OT4» 0T ov, o0v, ov,
Toz + A |V +v —2(7‘ — +T —) =—
= [ " or * 0z " or 0z "oz
or, or, v v Ov ov
ov,  Ov
ool 22)
0z or
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Now, since we are assuming the dependence of v, on r can be neglected, we
can integrate the continuity equation (16.14) to obtain

_rov
2 0z

In this case, we have 7., = 0, and 7.~ and 7., are independent of r so that

[ 0Ty 8vz] Ov,
Trr F A |Vs— + T =

Uy =

0z oy | T oz
0T ov. | ov,
Tez + A |:'Uz ) - QTzza:| = —2n EeR

Taking the radial average of these results and assuming the terms in square
brackets can be written as the product of averages gives (16.33) and (16.34).

Exercise 16.8
Differentiation of (16.32) and substitution in (16.33) gives

d(Ts2) N pFr, d(vz>>

(ree) + 2L wa) + A tea)

w dz W dz
{2 ) <]

Subtracting this from (16.34) gives (16.35). Differentiating (16.35) we obtain

Ad(Tez) _EAPFL d{v.) 1pFp (d(vz))—l 1pFy (v >d2<vz> (d(vz))—z
n dz 3 ngW dz 3ngW\ dz 3gW 7 dz? dz '

Substitution of these in (16.34) gives (16.36).

Exercise 16.9
It is convenient to rewrite the second-order ODE in (16.36) as two first-order
ODEs by introducing the new variable

% Simulation parameters

N=100; % Number of grid points along 0<z<I
Dz=1/(N-1);

Z=0:DZ:1;

V=zeros (1,N);

U=zeros (1,N);

D_R=20;
N_DE=0.05;
EPSILON=0.0685;
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% Initial conditions
U(1l)=1/(3*EPSILON) % (1-2/3*N_DE/EPSILON) "~ (-1);
V(l)=1;

for I=1:N-1
V(I+1)=V(I)+DZ+*U(I);
U(I+1)=U(I)+DZ/V(I) "2%...
(V(I)* (1-N_DE*U(I))*U(I) "2+1/N_DEx (V(I)-3*EPSILONxU(I))*U(I));
end

ERROR=V (end) -D_R;
% Plot of simulation results
plot (Z,V,'k")

ylabel('$\langle v_z \rangle$','FontSize',l4,'Interpreter','latex');
xlabel ('$z$', 'FontSize',14, 'Interpreter', 'latex"');

Exercise 16.10
Integrating (16.24), we obtain

R*(v,) =1,
where we have used R/Ry — R. From (16.33) and (16.34) with A = 0, we

have
d{v,)
dr
Substitution in (16.27) and using W = prR?(v,), we obtain
d{v, d d{v,

ilz> - 377@(]# ilz>>
Using the first result to eliminate R and the normalizations z/R — z and
(v2)/V — (v,), the desired result is obtained.

<TzZ> - <Trr> =—=3n

pR* (vz)

Ezercise 16.11
The temperature equation (6.7) using Fourier’s law (6.4) has the form
. oT oT 10, 0T 0*T
pin (v 0o 5;) = Mo (70 ) + )
where we have assumed the thermal conductivity A is constant and neglected
viscous dissipation. If we further neglect axial conduction, and take the radial
average (see Exercise 16.6), we obtain

1d, L aT
iy o (R2(0.T)) = AR (R 2)

The boundary condition at the interface between the liquid filament and
ambient gas is formulated assuming local equilibrium and the absence of
interfacial resistances. In the absence of mass transfer and continuity of
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both velocity and stress reduces (14.26) to the continuity of the energy flux
across the interface: n - jé =n- jg. Thermal transport in the gas phase (I)
described using a heat transfer coefficient and Newton’s law of cooling (see
Section 9.3). Using (9.27), we have

or

“Ag(R.2) = h[T(R.2) — T,

where h is the heat transfer coefficient. Combining these we obtain

ey 5 (R (T)) = RUT(R,2) ~ T,

where we have used the approximation (v,T) = (v,)(T). Since the mass flow
rate is constant, we can write,
d(T)

WL = _9nRh((T) — Ty),

where we have used T'(R, z) ~ (T').

Exercise 17.1
Substitution of (17.5) and (17.6) in (17.8) gives

>[4 = Byn+ DR (€)= B AR (0
n=0 n=0

from which we find By = 0 and the following

— n
B, = (A, — BAn)n—HRZ”“

for B,, > 1. Similarly, substitution of (17.5) and (17.6) in (17.9) gives

n=0 n=0
+ AR i [AnnRH — Bp(n+ 1)R*<"+2>} P, (¢),
n=0

which gives

Ap

An(1 — Na) + B[l + (n + 1) Nga] R~ +Y)
4 (1)1 = Nka) +n[1+ (7 + 1) Nkl
n 1+ Bn[l+ (n+1)Nka]

where Nk, = R} A/R, and the second line is obtained by eliminating B,
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using the expression above. Now, since A; = |V T |, and A,, =0 for n > 2,

we obtain

- 1—p56(1—N

A= ’ A, Bi= &l Ke)
2+ B(1 + 2Nka) 2+ B(1 + 2Nka)

A R?

and A, = B, = 0 for n > 2. Finally, since Ag is arbitrary, we set Ay = Tp,
which gives the expressions in (17.10) and (17.11).

FExercise 17.2
Substitution of (17.11) in (17.9) gives

_ 1 - B(1 — Nka
T(R,0) = T(R,0) + RK)\[l o é(l - 2]3{3)}5VT100
S ) R C—

2+ B(1+2Nka)

which, since & = cos ), clearly gives the desired expression. The temperature
jump is proportional to the magnitude of the temperature gradient at the
interface (r = R), which is largest at the poles (6 = 0,7), and is zero at the
equator (6 = 7/2).

Ezercise 17.3
For this problem, (15.20) can be simplified to

I

O:—VHJZ‘FTLJ;I—’TLJQ

Using (6.4) and (15.11) we have
0=XV,-V,T° —n - \'VT! 4 n. \NVT!

where we have treated A\° as constant. Now, since n = §,., we have

10 5¢ 0

0y = 690 + 504, V= 59@% T Rsinf ¢’

and we can write this as

or or A0 [8TS

Ay B 0) = A5 (R.0) = p7 =556 | 0

(R,0)sinf|.

Ezercise 17.4
Using (VT) = |VT|x6; in (17.15) and combining this with (17.14) we
obtain

3
2+ 5(1 + 2NKa)

(dg) = —MVT) — (A=} (VT)
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3(6—-1)
2 + ﬁ(l + 2NKa)

which, when compared to (17.13), gives the expression in (17.16).

=-A1+0 (VT)

FExercise 17.5
Substitution of (17.19) in (17.21) gives

op" 2/, 1 o 1 9/. .0 1 oy
or [37‘2 (sme 69) +Sin9%<81n9%r2sin9%)]
n 0% sinf 0 1 0O n 0 9
= R ) | By
rQSin9[86(8r2>+89< T 5 08)) = emg et Y
where the last equality follows from (17.20). Similarly, substitution of (17.19)
n (17.22) gives

opl 0 0 5} ) 00 9 5

% N _g{g (T237“2T811n081f) * %(rsin@%%) B 2%<r2slin0877é’))}
9 60 1 0 9

~analor(59) + 5 o sgmn 09)] = gt

Differentiation of dp“/dr by 6 and dp"/06 by r and equating the two ex-
pressions gives

2
2¢ _‘LiEZT/,

sin @ Or2

10 1
r2 8081n980

which is easily rearranged to give (17.20).

Exercise 17.6
Substitution of 7w = p“8 + 7 and n = §, in the expression for the force on
the sphere gives

2m
Fom= [ [ (0" + 7ol RS, + R0+ 7r6(R)65) 2 sin s

= —27rR2/0 ([pL(R) + 77 (R)] cos 0 + T,9(R) sin 9) sin 0d6 d3,

where we changed base vectors from spherical to rectangular coordinate

systems in the second line. Now, using 7 = —n [Vv—i— (VU)T] and the
expressions in (17.30) and (17.31), we obtain
nvV o Ag 3nV 1 "
R) = —6— 0 R no,
e (R) Rivsng ot ol =0 R
which, when substituted with (17.32) in the last result above, gives
3mRnV

T / ([1 + 6A¢] cos® 0 + sin? 0) sin 6d6 3
¢ Jo
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14 2A¢

:67TR7]V1—{—3A§ 3,

which is the desired expression. Since V' = V3, the above result is inde-
pendent of coordinate system.

For a sphere moving with constant velocity through a fluid that is other-
wise at rest, we have v(R) = vy, (here we assume no slip) and v(oc0) = 0. In a
coordinate system that moves with the sphere, we use (11.23) with Q;; = d;;
and write

v':'v+—c:v—vb.
dt
Hence, the boundary conditions become v'(R) = 0 and v'(c0) = —wy,. For
steady creeping flow of an incompressible fluid, we can write (11.3) as
2
v =V + o %—% X1 —2wxv —wx (wxr)

where gravity has also been neglected. Now, since vy, is constant d?¢/dt? = 0.
and since w = 0, all the terms in the square brackets vanish. Hence, we
recover (17.18), and the expression for Fg holds for this case if V' — —wvy,.

Ezercise 17.7

We have a sphere moving with constant velocity vy, = v,d3 through a qui-
escent fluid. First, we modify (17.21) and (17.22) by including the gravita-
tional force pg. Since g = —gd3, we can write g = —g cos 09, + g sin 0dg. The
gravitational contribution to the pressure can added to (17.32), which gives

_§%1+2A5(R

2
- - o — 0
2 R 1+3A; 7‘) CosY — pgr cos

p(r,0)

When this is substituted in the expression for Fg in Exercise 17.6, the fol-
lowing is obtained

1424 4
e 2R3 g,

Fo= —OmBnon 7R % 1 g

where the negative sign in front of the first term reflects the fact that the
sphere is moving through a quiescent fluid. The second term is the buoyant
force, which is in the direction opposite the gravitational force. For a sphere
moving with constant velocity, the sum of the gravitational force on the
sphere and the force of the fluid on the sphere must vanish

1+ 2A 4
+ 5(53 + —7R3pgds =0

4 3
N 0002 — s
371R pPgos 67(R7]’Ub1 3 . 3
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where p is the density of the sphere, or

14 2A¢
1+3A¢

4
gWRg(P — p)g = 6mRnvy,
This leads to the desired expression for the terminal velocity vy,.

Exercise 17.8

For rewriting the pressure, we only need the elementary formula r -V =

rV cos 6. For rewriting the velocity field, we further need to realize that the

r-component of V' is V cos, whereas the 6-component of V' is —V sin 6.
For a direct verification of the solution, the basic working horse is

or 0 2 5 5 1 T;
= A\t xs s = 2, = —,
Ox; Ox; V't 208 2¢/x% + 23 + 23 o

which implies

or" 4 0r
a.%i - 03:1

= nr" 2,

and

o 90 ,
8xi8$ir _63:,-

If we write the velocity field in the component notation

3R 1R? R R3
(1—4r 4r3>V_4<7“3 7‘5>x%vj’
we find

ov; 3R3 R R3 9 R R®
oz, <47‘3 )xlv—i— (3—5 ) ijj—Z (7‘3 — T5>4$]Vj
0,

so that the velocity field is indeed divergence free. For r = R, the velocity

0 n—2

V2 = "2z, = n(n—2)r" "2 4nr" 23 = n(n+1)r" 2

field clearly vanishes. We further get the Stokes equation,

3R 3( R _ R R R
. . .
V=55 Vio g <6rﬁ —2%) mirVi ( r ) .
3/ R R3 0
+5 (35 - 57 ) o many )
3R 9R 0 ( 3R 1 0p*
= _§T—3‘/Z—|— 57 5xzx]V 8*3% <—2 77333] J)

_ﬁaxi.
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Ezercise 17.9

The stationary spherical gas-liquid interface at » = R has unit normal n = 4§,
so that v® = v, = vjdg. There is no mass transfer so that from (14.7) we
have

v (R,0) =v(0) = 0.
Assuming no-slip, we have from (15.18)
vo(R, 0) = vp(0).
In the absence of mass transfer and setting 7° = 0, we write (15.21) as
7.8, + T8 + '8, = p'8, — (V) - n)d, + Vv

where we have treated the gas (II) as an inviscid fluid (7!! = 0). Now, since
n = §,, we have

10, 8 0

RO0 ' Rsinfd¢p

0 = 0p0p + 5¢5¢, = 0p—

The r-component of the jump balance for momentum becomes

2

R?

where we have used V| -n = 2/R. The 6-component of the jump balance
for momentum can be written as

8v9 UG(R?H) _ 7ldl _ 7’}262

where the second equality follows using 7 = dvy/dT®. For the case of no
mass transfer and no-slip, (15.20) can be simplified to

p(R, 0) = ﬁ(R7 9) -

2

d™y
—Tsﬁvief VT® =

s 4

-1
TorsYiv —ndg

where we have used j; = 0 and treated the gas as an insulator (j;I = 0).
Since vr is constant, the left-hand side vanishes, so that using (6.4) we have

0=

dTSVH 'U +n- )\IVTI

Now, since v°® = vj(#)dp, we can write this as

. ")/TTS 8 8
= Remg g oSO+ A5

which, using vj(6) = vg(R, 8) and T°(0) = T'(R, ), gives the desired result.

(R, 0),
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Ezercise 17.10

For large 7, the terms in (17.37) decay as 1/r? and 1/r%. For r = R, the
terms with prefactors 5/2 cancel each other and the only remaining term
is —Iig-))l‘j. For the further calculations, the representation (17.39) of the
velocity field is more convenient, which has been verified in Exercise 17.11.

We get

Ovi _ 1 0 o 0 ot r R
9z 6 (’% 02:02,00,00, 9% 0z0zi0a,0m5 ) "R T 7)) TV

so that the velocity field is indeed divergence free. With the differentiation
rules given in the solution to Exercise 17.8 and the results in the solution to
Exercise 17.11, we further obtain

1 o2 92\ 9 10
20 _Loaf © L0 10
Vi =GR (“z’f dx;0m; Ik axiax) Dy R

5 3 (OEZ] (0) TiTj Tk
— 2R (—6/% 4 +15n); 7)

T‘7
_ 0 s (TjzE\ _ 19p"
= axz (—5R ij 7'5 ) - n 61131‘7

which means that we have verified that the proposed velocity field solves
the Stokes equation.

Ezercise 17.11
With the differentiation rules given in the solution to Exercise 17.8 we get

9 9 9 ,.n_ 9 9 ,.,.n—2 _ 0 J,.n—25. _ n—4,.. _
ox; T%Txkr T Oxz; Oxy nr Tk = ”axi [’l“ 5]]9 + (TL 2)7" CL'jiL'k] -

n(n — 2)r" @0k + ;0 + 26i5) + n(n — 2)(n — 4)r" Sz 24,

which leads to

/{(0) 783 — /{(.O) 763 r" =
ik O0x;j0x;0xy, gk O0x;0x;0x,

3n(n — 2)r"1 /Qg.])xj +n(n—2)(n— 4)7‘"_6(7‘2/62(2)% - CCZ'SU]'H§-(])€)I‘]C) =

n(n —1)(n — 2)r"* mz(?)xj —n(n—2)(n—4)r"" mﬁ)xixjxk.

The corresponding results for n = 1 and n = —1 are
(0) LiTj Tk (0) Ly (0) LiLj Lk
—3/1jk 5 and — 6k;; ps —|—15/£jk e

respectively. By multiplying these results with (5/6)R? and (1/6) R, respec-
tively, and adding them, we recover (17.37).
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Ezercise 17.12
We first calculate the viscous stress associated with the asymptotic form of
the velocity perturbation (17.37) given by the first term,

R3
) = el [nmm;(z)) + ﬂﬁ?)”a‘”l + (61 — 5”1'"1)”3“;'2)”’“} :

The integrals in (17.36) consist of the following three contributions:

dA
—/ vEl)wglO)nl dA = —577/4;2(?)/£§k)R3/ MM — 5
A A r

eff

dA
_/ 1)1(0) L(1 )n dA = 517,@5])5;3)}%3/ n;NiNgny 2
Aett

eff

and
_/ NONGIN dA—5nR3/ (32D — Dy aa.
AEH Aeﬁ T

The first two contributions cancel. To evaluate the third contribution, we

dA 1
gy — = A = 5.
/Aeffn]nk T2 7r3 ]k

The 47 results from the surface of the sphere, the ¢;;, arises for symmetry
reasons, and the 1/3 is required to reproduce the correct trace. We similarly
obtain

consider the average

dA 1
/ NNGNEN —5 = 4T — (5ij5kl + 5ik6jl + 5z‘l5jk) .
Aegt T 15

By combining all these results, we indeed realize that (17.40) follows from
(17.36),

W—217/<;( )n( )fo—l-ﬁli() ()37TR3.

FExercise 17.13

We assume that, after a proper choice of the z-axis, the
Cartesian coordinates of x and «’ are given by (0,0,7) and
(r’'sin @ cos ¢, r’ sin 0 sin ¢, 1’ cos #), respectively. We then have

|z — x'| = \/7"% 4+ 12 — 2r7/€,

where we have introduced £ = cos . We hence have

Reﬂ 1 9 9
/ |z — 2| = 271/ dr’/ dér’=(r'* + 1% — 2rr’§)Z/2.
Vest 0 -1
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The integration over £ could be performed easily. The remaining integration
over 7', however, would require some help from tables of integrals. We hence
leave the entire integration to Mathematica ®):

flZ.,rp-, x1_]1:=24Pi*rp 2% (rp " 2+r"2-2+r*rp*xi) ~(Z/2)

Il=Integrate[f[l,rp,xil,{rp,0,Reff}, {xi,-1,1},
Assumptions->Reff>r && r>0];

I2=Integrate[f[-1,rp,xi],{rp,0,Reff},{xi,-1,1},
Assumptions—->Reff>r && r>0];

Simplify [ (5+I1/R+R*I12)/ (4*Pi*R"3/3)]

Exercise 18.1
The jump balance for solute mass (14.25) takes the form

dR

p1(R) [U(R) v

. _ _ dRr| = -
|+t = gty o) - 5| + .
Since the bubble is treated as a single-component (solvent), p; ~ p and

j1 ~ 0. Hence, we can write

() [o() = G|+ n() = gt ot - ]
polun() =11 [o() - G| = =100 = mD A 1),

where we have used (18.8) and p;(R) = powi(R), and the second equality
follows from (6.24). Using (18.9) and rearranging terms gives (18.12).

Ezercise 18.2
In the absence of mass transport, the right-hand side of (18.12) vanishes so
that from (18.3) and (18.9) we have

_mar
o2 4t

Substitution in (18.2) gives,

w[(7) G () (@) 20 ()] =5

Integration over r leads to

R 3 (dR

Pl + B E)Q} = p(R) — p(c0).

Po [R
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Now, using (18.10) to eliminate p(R), we obtain

R N

which gives (18.13).

Ezercise 18.3
For the isothermal case, T =T = T® = Ty. From (15.27), we have

o) — () — 1, — ] =
-t { [m(m) - S (o) - %) + a0
Tl [m(m) - S (o)~ ) + a0
— -2 {3 [m(r) — pa()] (o) - ) + ()

where we have used RS, = —R,. Setting a = 1, we obtain

fir(R) — iy — [fiz(R) — fi3] =
Is dR -
—2ToRy3 [m(R) - Pz(R)} v(R) = —= | + 2j1(R)
— e lun(R) - 1] (o) - 5 ) 20 ()}
where R® = 2Ty RY,. Similarly, setting o = 2, we obtain

fio(R) — ji3 — [ (R) — i3] =

dR .
21t { [pa(0) - ()] (o) - ) + 200}
dR 6w1
=R 2 -1 —— | —2D—
{2 - 1) (v(m) - 5 ) - 205 ()}
where the second equality follows since Ry} = R = —RY. Hence, one

constitutive equation is obtained for a two-component system. Now, from
(15.28), we have

fo(R) — A(R) — 1, — ] =
-t { [m(m) - 3o()] (o(0) - 5 ) + i
-] [pa(r) - o] (o8 - G ) + a0
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1 dR
= 2ToR™ -5 ( 5(R) — =
ortte (o8 - )

where the second equality follows since p; ~ p, p2 ~ 0 and j; ~ 0. Setting
a =1 and using (18.8), we obtain

=)
=
|
=
=
|
=

() = i8] = o (o(7) - ).

where R® = 2Ty RIY, and this is the expression in (18.15). Since solvent is
not transferred to or from the interface, we can set ji2(R) = fi§ = fi(R) in
(18.14) and (18.15). Using (18.9) and (18.12), we obtain (18.16) and (18.17).

Exercise 18.4
Setting € = 1 in (18.25) and rescaling time as ¢ = N,,t, we obtain

Nw%_ 1 a <T28w1>

ot~ r2or ar
dR 8w1

— = _—2"2(R,1).
dt or (R.1)

For the case |N,| < 1, we neglect the left-hand side of the first equation
and integrate twice, which gives

f1(?)

W= + fa(t).
Applying the boundary conditions in (18.26), we obtain
R
wp = —.
r

Substitution in the second equation gives
dR _ 1
at R’
which, when integrated subject to (18.28) gives
R? =1+ 2t,

which is the desired result.

Ezercise 18.5
For a single-component fluid, the temperature equation (7.6) can be written
as

or  foT  x 0 [ ,0T

ot ﬂm_ﬂmGaﬁ’
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where we have used (18.3) and neglected viscous heating. The jump balance
for total mass (14.17) can be written as

o [o(m) = | = ot - 4.

For diffusion-controlled growth (collapse), the pressure within the particle
is constant p = py and the density p = pg, so that (18.9) becomes

J ) = 4R
R2 - ’U(R) - (1 6) dt )
where € = pg/pg. Combining these, we obtain
oT dR (R\20T  x O [ ,0T
509 () % =% (75 )

which can be written in the desired dimensionless form using Ry and 7 =
R% /x to normalize radial position and time, respectively.

The jump balance for energy (14.26), neglecting mechanical energy effects
interface (see Exercise 14.7), can be written as

dR7 » oT T dR1%
po [v(R) = = [h(Tea) = A5-(R) = po |5(R) — | h(Teo).
which can be rearranged to give
dR7 - ~ dR oT
£0 [U(R) — %} Aheq = —poAhequ = _)\E(R%

where Aheq = ;L(Teq) — h(Tyy). Normalizing temperature, relative to Tp,
by Teq — Tp leads to the desired equation, which involves the dimensionless
parameter Ngi = ép(To — Toq)/(€Aheq).

Ezercise 18.6

From the problem statement, it is clear that the temperature within the
solid is T = T, eq- As in Exercise 18.5, we write the temperature equation for
the liquid shell as

OT SOT_x 0 (L0
ot r2or  r2or Tar '

The jump balance for total mass (14.17) can be written as

plom - | = otm - 5.

Since v(R) = 0 and p = p, we have v(R) = 0. Also, from (18.3) and (18.9),
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we find f = 0. The jump balance for energy (14.26) can be written as

dR. 0T dRz 0T
P T A gy () = pgh+ A (),
which, since T is uniform, can be rearranged to give
~ = dR oT
h—h)— = -2—(R
plh— )5 = A5 (R),

Using Rg and 7 = R% /X to normalize radial position and time, respectively,
and normalizing temperature relative to Ty by Teq — Ty, we have

or 19 (r28T>

ot r2or \' or
T
T(R,1) =1, gr(l,t) + NiT(1,8) =0,
dR orT
E — Nstg(R? t)a R(O) - 1a

where Np; = hRo/X and Ng; = ¢,(Tg — Teq)/(fL - }:L) Using the quasi-steady
state approximation for Ng; < 1, must solve

0 (0T _
or or)

Integrating twice and applying the boundary conditions gives

14 Ni(1/r—1)
1+ Ngi(1/R-1)

Substitution in the evolution equation for R gives

dR NBilVst

dt — (1— Ngj)R?+ NgiR’

which, when integrated subject to the initial condition, gives the desired
result. Setting R(tmelt) = 0, we obtain

b 1+ 2/Np;i
melt — 6NSt .

Exercise 18.7
The given change of variables z = r/R and w; = u/z lead to

(%)= 7l G) =)
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@ﬂ>_lu@)_£%%@)+y@]
ot Jr  xl\0t/)z Rdt\ox/t Rdtl
Substitution in (18.25) gives

ou dR ou 10u wu d%u
2 _
R+ R [o—agr +1-9(5 5, — )]

The initial and boundary conditions in (18.26) become

_@.

u(z,0) =0, u(oo,t) =0, u(l,t) = 1.
Similarly, substitution in (18.27) gives

% - —Nw[%(l,t) -1].

which can be integrated subject to (18.28) to give
to
R2 =1+ 2Nyt — 2Nw/ T, dt'
0 333

Combining the above results, we obtain

[1 £ ONt — 2N, /t gz(l,t/)dt/} ?;;
0
N[0 [e-gtra-a (g - 5) = 5

Using the perturbation expansion u = u(® + N,u™ + ..., we obtain

Ou0) 824,(0)
ot 0x2

which is solved subject to
u(z,00=0, uQ(cc,t)=0, wV1,8)=1,

giving (see Exercise 7.11)

uO(z,t) =1— erf(g;_\/;)

Substitution in the expression for R? gives (18.29).

FExercise 18.8
The similarity transformation £ = r/ VA4t leads to

ow & du own 1 du

ot 2tde’ Or  \Jarde’
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and further suggests

R =20Vt
where [ is a constant to be determined. Transforming (18.25) we obtain
dwy |1l 5?1 dwy
2|z e-(1-95| 22 =0,
@ et 9al e =

and (18.26) gives
wi(o0) =0, wi(f)=1.

Similarly, transforming (18.27), we obtain

dwy B
gy =2
Tz (8) N,
Setting Y = dw; /d¢ we have
ay r1 B2
Yl re—a-oZ]y=o0
"t { fré- (-0 52} 0
Integration gives
_dwy B3

_digzg—Qexp[—g—Q(l—e)?}

Setting £ = 3, we obtain

= —25—3 expl(3 — 2€)57]
Ny
Integration gives
=2 (3 2)52]/001 [ 2_9%1 V14
=2—ex — 2¢ —exp | — 1" — —€)—|dx
Ny P g a? P x

which gives the desired result.

Ezxercise 18.9
From the given concentration field, we have,

owy _2 1—T_R for R<r <R+,
o ) O o

0 for r > R+ 6.

Multiplication of (18.20) by r? and integrating over r from R to R+ J gives,

R+
/ O 2y — —(1 = ) 2 R2fun (R + 6,8) — wn (R, 1)
r Ot dt
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+ (R+5)28w1 (R+6.1) — RQawl (R.1)
iR 0wy
— (-0 R - RS (R ),

where the second equality follows from the assumed concentration profile.
Exchanging the order of integration and differentiation on the left-hand side,
we obtain

d R+96 dR

wirldr = —e—R? —

d 20w own 1 —eN,, dR?
dt Jr dt or

(B.t) = 3N, dt’

where the second equality follows using (18.27). Integration gives

R+6 1 —eN
2 w 3
wir‘dr = ———(R° —1).
/R ! 3Ny ( )

Evaluating the integral using the given concentration field leads to

3 1<é)2 1(5)3:1—6NwR3—1‘

T 2\R 10\R N, R3
For 0/R < 1, we have
§ 1-eNy,R -1
R~ N, R’

=

which can be combined with (18.27) to obtain the desired expression.

Exercise 19.1
To introduce the radial average temperature, we write (19.3) as follows:

19 /0T L g2
2/0 7"87‘( 8r>rdr 0 Wrdr 0,

which can be written as

oT ok !
2 (L5t + 5 [2/ Trdr] =0,

where we have used the boundary condition in (19.4). Using the definition
(T) =2 fol T rdr, and the boundary condition in (19.6), we obtain

d*(T) hyg
e —2R/\[T(1 z,t) — Ty] = 0,

which, setting T'(1, z,t) =~ (T), gives (19.12). The same procedure leads to
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Figure C.14 Normalized temperature gradient from two-dimensional (solid
curve) in (19.11) and one-dimensional (dashed curve) in (19.14) solutions
for L = 10R.

the boundary conditions in (19.13). The solution of (19.12)—(19.13) is given
by

(T) — T,  cosh[y2Npi(L — x)/R] + \/Npi/2sinh[y/2Ngi(L — z)/R]
Ti—-T, cosh(v/2Ng:L/R) + /Ngi/2 sinh(v2Ng; L/ R) ‘

Differentiation of (T') with respect to z and setting z = 0 gives (19.14).

To evaluate (19.11) we need «,, which are given in the table below. Com-
parison of the temperature gradient at the solid-melt interface for the one-
and two-dimensional models in Figure C.14 indicates the fin approximation

is valid for Np; < 1.

Table C.6 Roots of anJi(a) — NpiJo(ay,) = 0.
n  Ng; 0.1 0.3 1.0 3.0 10.0

0.4417  0.7465  1.2558  1.7887  2.1795
3.8577  3.9091  4.0795  4.4634  5.0332
7.0298  7.0582  7.1558  7.4103  7.9569
10.1833 10.2029 10.271  10.4566 10.9363
13.3312  13.3462 13.3984 13.5434 13.958
16.4767 16.4888 16.5312 16.6499 17.0099

O T LN -
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Ezercise 19.2
Substitution of V' = dL/dt and replacing (9T /0z) ~ d(T)/dz in (19.10)
gives

~1 o Al d(T)

At — A — = —A—-(0) + A (Ts — T

p(t = R = AL (0) 4 b (T2~ T)

Using R, R?/x and Ty — T, to normalize length, time and temperature,
respectively, gives

Ts - Tm

— = Ng¢| — —%(0) + Np;
St (0) + BTS_Tg

dt dz

dL [ d(T)

where Ng; = ¢,(Ts — Ty)/(h' — hY). For L > 1, the expression in (19.14)
is independent of L, and for Np; = 1, we obtain —d(7T")/dz(0) ~ 1.4. With
Npi =1, (Tm — T3)/(Ts — T;) = 1.1 and Ng; = 0.1, we obtain dL/dt ~ 0.13,
or L =~ 0.13t. For L = 20, t ~ 154 so that the time required to growth a
crystal with R =5 cm and y = 0.1 cm?/s is =~ 10 hrs.

Ezercise 19.3
For steady conduction in a stationary system with a line source at x3 = 0,
we have V - j, = Pyd(z1)6(x2). When combined with (6.23) we obtain

o*T o*T 9T
ki1—= + koo——= + k3zs——= = —Pyd 1) .
11 8:3% + Koo 890% + K33 8953 00(z1)d(x2)

The boundary conditions far from the source are given by
T(+o0,x9,23) = T'(x1, 00, 23) = T).

Heat transfer at the surfaces of the slab are governed by Newton’s law of
cooling, which leads to the boundary conditions

T
—k33g(x1, o, ﬂ:d/2) = :i:h[T(.’L‘l, o, ﬂ:d/?) - T()].
x3
Introducing the average temperature (1) = filc/132 Tdzxs/d, we can write
0*(T) oXT) _h
k k —2-[{T) — Tv) = —Poo(x1)0
15,2 + ko2 012 SU(T) = To] 06(21)6(22),

where we have used the last pair of boundary conditions and set
T(x1,22,+d/2) =~ (T). Using the normalized variables z;/d — x; and
(T) —To)/(Po/ o) — (T), we can write

0X(T) 0*(T)

o g + o 5u3 —2Ngi(T) = —6(x1)d(x2),
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which is solved subject to the boundary conditions
(T)(+00,x2) = (T) (1, £00) = 0.
Using the change of variables: © = x1/,/a1 and y = x2/,/a2, we have

OT) | OHT) 5(@)3(y)
62 T N = A

(T)(Fo00,y) = (T)(x, £o0) = 0.

To obtain a solution, we use the double spatial Fourier transform

i(5,7) / / alwg)e e Wdady = [ a8, )e
Hence, we find
<ja> _ 1 1
-~ Joqas 82 +9% 4 2Ng;

so that the solution is obtained from double inversion

1 7 70 (T)e*revdgd : 7 7 s
— ere = —— .
2 v 472 109 52 + ’72 + 2NBi "

—00 —00 —00 —O0

Using e** = cos z + ¢ sin z, we can write

cos(fx)

T = \/ole/ /ﬁ2+’v 2 Ny,

_ 1 / e VIR cos(yy)
Coryees) P aNe
- 1
2m\[arag
where the second and third lines were found with the help of integration
tables.

From Figure C.15 it is evident that isotherms are circular for the isotropic
case and elliptic for the anisotropic case.

dB cos(yy)dy

Ko( 2Np;(x? + y2)>,

FExercise 19.4
We begin by writing (5.20) for Og

(002)2002 = Uzcoz + (‘]82)2
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2 - - - 2 ; - :
/ 0.10 0.10
0.15 \
1t i 1f 0.15 b
0.250'20 0.20
o - 0.25

><N O I~ 1 ><N O o 1
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x,/d x,/d

Figure C.15 Normalized temperature isotherms ((T") — Tp)/(FPo/Mo) with
Np; = 0.1 for isotropic (a; = as = 1, left) and anisotropic (o = 1.3, g =
0.98, right) conduction cases.

0x0,
0z

= [1'02 (UOQ)Z + (1 - 5502)(”8102),2]002 —cD

9(co,/c)

= T0O, (voz)zco2 -D 0z

0co,
0z’

= $02(U02)Zco2 - (1 - xOQ)D

where we have used the definition of v* and (6.27) to go from the first to
second line, (vsio,): = 0 and zo, = co,/c to go from the second to third

line, and ¢ = co, + csio, Where cgio, is constant to go from the third to the

fourth line, which gives (19.16).

FExercise 19.5

We wish to transform derivatives of a function u(xs,t) to derivatives of
u(Z3,t) using the change of variable 3 = x3/h. The differential of u(Zs,t)

1S

ou ou

du = —dzx —dt
b 03 T3+ ot
The differential for z3(z3,t) is
_ 0T3 0T3 1 T3 dh
dz3 = —=d —2dt = —dx3 — ——dt
T8 0ms 3t o RS T
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Substitution gives

1 du ou T3dh Ou
du= 3 gm-des+ (G = 3 g a4
so that
ou 1 0u ou Ou ZTgdh Ou

dxz  hdzy Ot 9t h dt 973
Setting u = co, and substitution in (19.19)—(19.22) gives (19.23)—(19.26).

Exercise 19.6
For D/K'" — 0 we write (19.19)(19.22) in terms of dimensional position
and time variables
0co, _ D82002
ot ox3 '

c0,(0,t) =1, co,(3,0) = co,(h,t) =0,

dh Jco
= — _¢D 2
dt c 8x3

(1),

Using the similarity transformation £ = z3/v/4Dt, we obtain

d*co,
dg?

dco,
23

+26-22 =0,

€Oz (0) =1, COq (ﬁ) =0,

dh | D Oco,
E = —¢€ @ 85 (ﬁ)v
where 8 = h/v/4Dt. The solution for co, is
. erf(§)
02T al(B)

Substitution in the evolution equation for A gives the desired expression for
B, which can be written as

expl— 2
52:smze[l—+0(ﬁ3)

so that 8 ~ \/¢/2, and h = v/2eDt, which is equivalent to (19.28).
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Ezercise 19.7
For convenience, we make the change of variable ¢ = et. Substitution of

co, = ) +ecy) + .. and b = h© + b + . in (19.23)(19.26) leads to

following zero-order () problem

2 (0)
0 o,
oz3

=0,

0,8 =1,

(0)
202 (1,1 + hOeD)(1,8) = 0,

dn(0)

The solution of this problem is given in (19.27) and (19.28)

o 1+1- @3)h(0) 0 _ =
0 = TR0 RO = /142t 1.

The first-order (') problem is given by

0 0 _
82082 _ h(o)Qacg; 86(02) (1 t_)a ( ) h(03z,
o0x3 ot 8373 (1 + R(0)3”

) (0,8 =0,

5082)
03 (

D) (1,8 + hOc5)(1,8) =0,

dh®
dt 02(1 b

Integrating the first equation and applying boundary conditions leads to

S MO a4 hO/3)3 h(Dzs
€0, (1+h(0))3[ 1410 (1 + A2

Substitution in the evolution equation for A1) gives

dh ¢y, 1(0)3

& TR0 31+ R0y
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or

dh®  pM (1 -1+ 2t)3

dt 14+2t  3(1+2t)2

Solving subject to h(1)(0) = 0 gives the desired expression.

Ezercise 19.8
The differential for the stream function ¢ (r, z,t) is given by

oY Ly
5 dr+ —dz.

From the constraint on v, and v, in (19.38) we obtain

19y 10y
UVp = —F— Vy = ——F—

r 0z’ r Or

so that the differential becomes

dy =

dy = —rvdr + rv.dz.
Substitution of (19.43) and (19.44) setting 0h/Or = 0 gives
AR Y AN o[ (2) _ L2}
ao=r(G) = 5() [par e [() =5 () I
Integration from (0, 0,¢) = 0 gives (19.49).

Ezercise 19.9
Integration of (19.40) gives

aQ'UZ avz avz
n 022 dz AE Bz At - 0z

P(r,z,t) —P(r,h,t) = (ryh,t)].
and(19.44) integrating with the boundary condition in (19.42). Setting g =
~V¢ = —gd,, we can write P = p* + z/(BNg), where Ng, = (Qho)?/g.
This allows us to rewrite the last expression as

z—h ov,

Ov,
BNgy B { 0z

pL(r,z,t) —pL(r, h,t) + P —(r,h t)}

(r,z,t) —

Now, using the boundary condition in (19.42), we obtain

h—=z Ov, 1 0%h

L Uz
p(r,z,t) = ﬁNFr_’_B[aZ (TZt)_{—E(T’h’t)}—FTNWeW'

Substitution of (19.44) gives (19.50).
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Ezercise 20.1

At low temperatures, a system occupies low-energy states. If there is a single
ground state of lowest energy, the formula (20.3) implies that, for 7" — 0, the
entropy becomes zero. The same conclusion holds if there is a small number
of ground states or if the number of ground states does not increase too
strongly with system size.

Ezercise 20.2

The key step for relating the canonical and microcanonical ensembles is to
replace sums over microstates by sums over possible energy values and to
introduce the number of microstates for a given energy value,

Z(T,V,N) Ze ’fBT>—Ze /BT (U, V, N),

where, for simplicity, we have assumed that the indistinguishability correc-
tion is included into €2. By differentiation, we obtain

o) kgT U oQU, V,N)
kT Z(T,V,N)| = ———BL /) ALV, V)
gy [T InZ( )| = (T,V,N)Ze av
- LS evmnou,y, ;23U L T
Z(T,V,N) v
1 ~U/(ksT) v v v
S U, V, N)p(U,V,N) = —p(T, V, N).
Z(T,V,N)ZU:e ( ) p( ) = —p( )

The differentiation with respect to N can be carried out in an analogous
way. For the derivative with respect to T" we finally obtain

kgT  9Z(T,V,N)
Z(T,V,N) oT

o7 | keI Z(T,V, N)} = kg Z(T,V,N) —

1 ¢~ Ei/(kaT)

j ) Y

- 1 -
= ~kpInZ(T,V,N) = ZU(T,V,N) = =S(T.V,N).

Ezercise 20.3

At 25°C and standard pressure, we have Cy = 75J/K for 1 mol of water.
For T = 298 K, we further have kgT = 4.1 x 10721 J. According to (20.12),
these values imply temperature fluctuations of 1.3 x 10710 K.
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Ezxercise 20.4
By using U = uV and Cy = Vpé;, which follows by comparing the defini-
tions in (4.35) and Table A.1, we obtain

kT?
,Oé{, 7

24,
(aut) = PTG () =

In obtaining this result, we have used that the volume of the open subsystem
in Figure 20.4 does not fluctuate.

Ezxercise 20.5
For fixed V and T', (20.11) leads to

o [10*F(T,N)]™
(AN7) = ks {T ON? ’

which implies

-1
<Ap2> _ & f(p,T) keT _ p kT _ krp*ksT
0p? \%4 C2T Vv 1% ’

where, for the last two equalities, we have used the results of Appendix A.

Exercise 21.1
The Gaussian distribution can be given in terms of the second moments,

3 \%? O R
o (v2) Pl 202
We hence obtain

[ (ta) )
[ (8) e ()

The second part of (21.5) follows from (1/2) m (v?) = (3/2)kgT.
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Ezercise 21.2
The frequency of collisions between gas particles for hydrogen under normal
conditions is given by

Job _ [8 V@) [8 1810 1 gl
37 '

ltp  V 370.15-10-6s s

l mfp

Ezercise 21.3

With m = 14g/]\7A, d=25A, and T = 293 K, we obtain n = 1.9-10~° Pas
from (21.12). The measured values are n = 1.75 - 10~° Pas for nitrogen gas
and n = 1.81 - 1075 Pas for air.

FExercise 21.4
By integrating (21.22) we obtain

J5] o

/w(q,q’\p,p’)[f(r,q)f(ﬂq’) — f(r,p) f(r,p)|dpd*p d*qd*

which can be written as the difference of two integrals. If, in the second inte-
gral, the integration variables p, p’ are interchanged with q, ¢/, the symmetry
(21.20) leads to the first identity in (21.41). To prove the second identity in
(21.41), one needs the additional step

1

/pw(q,q’\p,p’)f(r,q)f(r,q’) =3 /(p+p')’w(q,q’\p,p’)f(ﬂq)f(nq’),

which is based on the symmetry (21.21), and the conservation of momentum
expressed in (21.18). The third identity in (21.41) can be obtained in the
same way, now based on the conservation of kinetic energy expressed in
(21.19).

Ezxercise 21.5

Boltzmann’s kinetic equation (21.17) in the absence of an external force
and the results of Exercise 21.4 imply that the time-derivatives of the
left-hand sides of (21.33)—(21.35) are obtained by replacing f(r,p) by
—(p/m) - 0f(r,p)/0r. To verify (21.36)—(21.38), one only needs to real-
ize that some of the resulting higher moments can be rewritten in terms
of the hydrodynamic variables introduced in (21.33)-(21.35). For example,
from the time-derivative of (21.34), we first obtain

aat['u(r)p(r)} = —;,-/;ppf(r,p)dgp,
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and it can then be verified that the right-hand side of this equation coincides
with the more complicated looking right-hand side of (21.37) [by means of
(21.33) and (21.34)].

Ezercise 22.1
By multiplying (22.6) by Q;Q) and integrating over all Q, we obtain after
some integrations by parts

09, = /p (leQm _ Qz> i(Qj@k)de

ot ¢ oQu
2]{7]37w 8 8 3
iQr)d°Q.
¢ ) Pogag YN Te
With
0
aTgl(Qij) = 0jQk + Q0K ,
and, after a further differentiation,
0 0
(O — 95
5050, Q) = 205

we obtain the desired result (22.7) in component form.

Exercise 22.2
If we fix the units of time and length by the conditions (/(4H) = kgT/H =
1, the stochastic differential equation (22.5) for shear flow becomes

~1/2 5 0
Q= 0 -1/2 0 | -Qdt+dw.
0 0 -1/2

In the simulation code, we ignore the irrelevant component )3 and use the
parameter SR for the dimensionless shear rate A7.

% Simulation parameters
NTIME=5000; DT=0.01; SR=3.;

% Initial conditions
Q1=0; Q2=1;
QlR=zeros (NTIME, 1); Q2R=zeros (NTIME,1);

% Generation and recording of trajectory

for J=1:NTIME
Q1=(1-DT/2) *Q1+SR+Q2+DT+random ('Normal', 0, sqrt (DT)) ;
Q2= (1-DT/2) *Q2+random ('Normal', 0, sqrt (DT)) ;
QIR (J)=0Q1; Q2R(J)=Q2;

end

Q1M=max (Q1R); Q2M=max (Q2R); % For plot axes
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% Plot of dumbbell trajectory
for J=1:NTIME

plot ([0 QIR(J)1, [0 Q2R(J)],'k-", " 'linewidth',5); hold on;

plot ([0 Q1R(J)1, [0 Q2R(J)]1, 'ko', 'markersize',15, 'markerfacecolor', 'r');
title ([num2str (round (100xJ/NTIME)) '%']);

xlabel ('Q.1"); ylabel('Q.2");

axis equal; axis([-Q1M Q1M -Q2M Q2M]); hold off; pause(0.001);

end

% Plot of distribution of dumbbell end points

plot (Q1R,Q2R, 'k."); hold on;

plot (0,0, 'ko', 'markersize',15, 'markerfacecolor', 'r');
xlabel ('Q_1"); ylabel('0Q.2");

axis equal; axis([-Q1M Q1M -Q2M Q2M]) ;

Ezercise 22.3
By means of the Taylor expansion of the exponential function we obtain

t t 1 t t
exp {/ n(t”)dt”} =0+ [ dtyk(t1) + 2|/ dty [ dtsk(ty) - k(t2)
t/ t/ . tl t/

1 t t t
+ ? dty / dto dts f‘\'/(tl) . I{(tz) . Ii(tg) +....
. t/ t/ t/

Instead of extending all integrations from ¢’ to ¢ and multiplying the nth term
by 1/n!, we use only one of the n! possible time orderings of the integration
variables t1, to, . .., t,, which is the one with ¢; > t5 > ... > t,,. In taking the
time-derivative of the right-hand-side of (22.12), the left-most integration of
each term disappears and t; is replaced by t. Therefore, x(t) multiplies the
expansion (22.12) of E(t,t") from the left. The time-ordering guarantees that
the factor k(t) indeed appears on the left.

Ezercise 22.4

If k(t) is diagonal for all ¢, the product of any number of factors k(t;) is
obtained as the corresponding product of diagonal elements. Time-ordering
hence doesn’t matter, and any function of a diagonal matrix is obtained as
the function of the diagonal elements. For example, from (12.20) we obtain

exp{(t —t')é} 0 0
E(t,t') = 0 exp{—(t — t')¢/2} 0 ,
0 0 exp{—(t —t")¢/2}

for steady simple elongational flow.
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Ezercise 22.5

As the linear stochastic differential equation (22.5) contains only additive
noise, it can be solved by the methods for deterministic ordinary differential
equations. By the method of variation of constants, we obtain

4kpT (1 )
Qi = e 2HYCB(t,0) - Qo + | k? / e 2HEC Bt 1) - AWy .
0

By averaging the dyadic of @, using the independence of dWy and Qq, and

reducing the double stochastic integral to a single time integral (by means
of (AWpdWy) = 6(t —t') § dt'dt), we find

(QiQ:) = eV E(t,0) - (QoQo) - E (t,0)
4kgT [ /
B | Bty ET (4 dt
¢ Jo
The tensor B(t,t') = E(t,t')- ET (t,') occurring under the integral is known
as the Finger strain tensor.

Ezercise 22.6

We start from equilibrium, that is, from the expression (QoQo) = (ksT'/H)d
given in (22.8). By inserting the second-moment tensor of Exercise 22.5 into
the pressure-tensor expression (22.9), we obtain

¢
T 5 — e MHYCB(0) - 4H/ e HE=/C Bt ') dt’ .
npkBT ’ 0 ’

The factor 4H/( in front of the integral can be obtained by differentiating
the exponential under the integral with respect to . An integration by parts
then gives the more compact expression

T _ /t 674H(t7t/)/< aB(t, t/) dt/
npkBT 0 at/ '

This result is a nonlinear generalization of the basic equation (12.13) of
linear viscoelasticity for a single exponential shear relaxation modulus and
deformations beginning at t = 0. It is also known as the integral formulation
of the upper convected Maxwell model.

The sparseness of the matrix

X

Il
o oo
oS O
o oo
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for shear flow implies that k™ = 0 for all n > 2, so that we find
Ett)=6+t-1t)k,
for steady shear flow, implying the Finger strain tensor
Bt,!)=6+(t—t)(k+6)+(t—t)k &,

or, in Cartesian components,

1L+ (t—t)%2 (t—t)y 0
B(t,t') = (t—t')y 1 0|,
0 0 1
6B(t, t/) 2(t _'t/)’}./g '7 0
o v 00
0 0 0

According to the above integral formulation of the upper convected Maxwell
model, the shear stress coincides with the linear viscoelastic prediction. In
addition, we obtain the time-dependent first normal-stress difference

T t t
11 — _27'/2 e (t t/)//\ t— t/ t/ = -9 2)2 ] — + —J]e t/>‘
TlpkBT /0 ( ) d ()\fy) ( A ’

with A = {/(4H), which we previously found from the differential formula-
tion of the upper convected Maxwell model in (12.53). For small ¢, the first
normal-stress difference is a second-order effect in ¢.

FExercise 22.7
By multiplying (22.14) by Q;Q}, and integrating over all Q, we obtain after
an integration by parts in the convection term,

00
ot

0
— [ 2R Qg QR A+ [ (e~ QG

By means of

0
TQI(Qij) = 0;Qk + Q0K ,
and (22.15) we then obtain
00,

1
5 KjmOmk + O jmbKrm + 3 (L2 Ojk — ejk> ’

which is the component version of (22.16).
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Ezercise 22.8

Assuming that we start the deformation of a previously undeformed material
at t = 0, we can use the integral formulation of the upper convected Maxwell
model found in Exercise 22.6 with the parameters for the temporary network
model,

G ot

In the limit A — oo, the exponential factor does not decay and can be
replaced by unity, so that we get the following explicit pressure tensor for a
neo-Hookean material,

oB(t,t') .,
G/ i dt_G[a—B(t,O)].

This can be nicely compared to (12.17), which we write as

T(t) = —G7(t,0),

T(t):/t ~-tyn 0BT
0

as the deformation begins only at t = 0. For steady shear flow as an example,
the solution to Exercise 22.6 gives

5% ty 0
§-B(t,0)=—| t7y 0 0
0 00

The difference between the neo-Hookean and the Hookean material is con-
tained in the additional diagonal entry. As this entry is of second order in
the deformation, it can be neglected for small deformations. For the large de-
formations possible for rubbers, however, the second-order modification be-
comes essential. For elongational flows, the nonlinearity of the neo-Hookean
law is even more essential. According to Exercise 22.4, any linear elongation
€ gets replaced by the exponential e — 1.

FExercise 22.9
The temporary network model is a single-mode Maxwell model with G(t) =
G e >, According to Table 12.1, we have
w2\? wA
—_— G'Ww) =G —"5—.
1+ Wi’ @) =61 e
For small w, one can nicely observe the slopes 2 and 1 for G’ and G” in
Figure 12.3. The modulus G can be obtained as the prefactors of w?\?

or wA, respectively, where A can be found from the fact that wA = 1 for
G’ = G". More directly, one could obtain G as the limit of G”?/G’ for small

G'w)=G
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w. Alternatively, G’ should reach the plateaux value G for large w (but
not too large, because the model then becomes inapplicable). Still another
alternative is based on the observation that, for w\ = 1, we have G’ =
G" = G/2. Finally, the formula G = ngzkpT provides the network strand
density of the temporary network model, which is of the same order as the
entanglement number density of the reptation model.

FExercise 22.10
By integrating (22.14) over all Q we get

d 1
o pd?’Q://\(peq—p)de-

If 1/M\(Q) depends on @, this factor cannot be pulled out of the integral,
the integral on the right-hand-side can be nonzero, and the normalization of
p can change with time. Physically this means that the number of network
strands changes. Only in the final approach to equilibrium, the number of
network strands becomes a constant.

Ezercise 23.1
Substitution of (23.3) in (23.5) gives,

1
d?rs.
i Jy e

(Va)s = V(ela)s) +

Setting a — 1, we obtain

1
0=Ve+ / nd’ry,
‘/eﬂ‘ Afs

which is the desired result. In (23.5), we set a — r¢, to obtain

1 / 9
nrid°r;.
‘/zeff Afs

(Vre)s = V(rg)s +

Since ¢ = r + y, we can write this as,

nd“rer + nyd“r;,
Vett J A, Vett J A,

where we have used Vy = 0 and Vr = §. Using (23.3), we can write
(6)s = €6 and (r)s = er so that

(0)s = V(r)s+ V(y)s +

0= (Ve)r+ Vy)s +

nd“rir + nyd-ry,
‘/eﬂ Afs ‘/eﬂ‘ Afs

Using the first result to rewrite the first integral, we obtain the desired result.
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Ezercise 23.2
Assuming the particles are sufficiently dilute, we can write the integral as

1
Vesr

k

27 s
/ nT(r +y)dA = — / / 8, T(R,0)R? sin 0dfd e,
Afs ‘/eff 0 0

The temperature field in (17.11) with § = Nk, = 0 and setting r = R is
3
T(R,0) =T+ §|VT|OORCOS0.

Substitution gives

1
Vesr

27 ™
/ nT(r + y)dA = — h ToR? / / d, sin 0dOd¢
Ag Ve o Jo

eff

L 27 i
_F 3er o3 d, cos 0 sin 0dOde
Vet 2
eff 0 0
= — —27R3|VT|R383 = —=¢| VT |03,
Vet 2

where ¢ = k(4/3)7R3/Veg. As in Section 17.2, we write |V T |o03 = (VT) +
O(¢), so that

() = —A(1- 26)(VT).

This leads to Aeg/A = 1 — (3/2)¢, which is consistent with the result in
(17.16).

Exercise 23.3
Integration of

ds1 d
& () =0
gives
d
%(ﬂb;) = c1r?,
and a second integration leads to
oo=Lrp 2
. 3 r+ 2

Applying the boundary conditions gives

3
1 ry

=, Cp= ——
! 1+ 2(r1/r0)3 2T 14 2(r1/ro)?
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\ \\y /
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-1 0 1 -
xllr1 xl/r1

Figure C.16 Contour plots of b} /r1 in z1—x2 plane from (23.35) for ¢ =
0.875 (left) and e = 0.657 (right).

so that we obtain (23.35), which is plotted in Figure C.16. Using (23.35) in
(23.30) gives,

_ 3 27 s
Dot = DA |6 + ———— b 2 sin 0dd
eff AB | + i (3 —13) /0 /0 nb' (ro)rg sin (;S]

- 21/ 27 T
_ Dag s Zrat(ro) / / 5,6, sinﬁdedqﬁ}
- 0 0

471'7”‘1)’
-1 — 2
— Dap|1 = 5—|8 = Dapz——8 = Dt
L 3—¢ 3—¢

which is the result in (23.36) with Deg = Dapf(e) with f(e) = 2/(3 — ).

Exercise 23.4
For convenience, we write (23.38) and (23.39) as

dl{c i 10 d{c i
G = e (PG Noalen)
(ca)i(r,0) =0, a<§?>i(0,t) =0, (ca)i(R,t) =1,

where we have used the normalizations (ca)i/cag — (ca)i, r/R — r and
Degt/R?> — 1, and where Np, = kegR%/Deg. From Exercise 10.6, we can
write

o
(ca)i = / Ofeals exp(—Npat')dt’,
. ot
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where ( A); is the solution to the problem above with Np, = 0. From Exer-
cise 7.12 we have

o0

(ca); =14+ —= Z (_:L)n sin(n7r) exp(—n?mt).

Differentiation with respect to ¢t and substitution gives
t
= —2m— Z " sin mrr)/ exp[—(n*n? + Npa)t']dt,
0

which, when the integration is performed, gives (23.40).

Ezercise 253.5
Since H/R < 1, the diffusion is one-dimensional so that (ca); is governed
by

o
Leli) 0, feantin =1,

which has the solution
(ca);  cosh ( NDa%)

CAg cosh( NDa) ’

where Np, = ke H2/ Dogg. Substitution in (23.42) gives
/ cosh (v Npa%) cosh (VNDagr) , _ tanh(v/Npa)
T H cosh NDa) B VNpa
which gives (23.42) with N, = v/Npa, with L = V/A = H.

Exercise 23.6
Using the results from Exercise 10.8 we can write the boundary condition
d CA)i l;:m
~Dan U () = P ep) () — en)

C

Using the normalizations (ca)i/cag — (ca)i and /R — r, the equations
governing (cp); are given by

1 d (7“2 d<CA>i

r2dr dr
Meadigy =0, 80— Ny ffears(n) - )
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where Np, = kegR%/Deg and Ng, = l%mR/ (¢Degt). To solve (see Exercise
7.12), we use u = {(ca)i/r, so that

;ljj;_NDau 07
w@=0, S0 = [0+ Nopu(1) - 1].

The solution for u has the form

u = c1 exp(/ Npar) + c1 exp(—+/Npar) .

The first boundary condition gives co = —c;1 so that

u=cy [exp(\/JEr) - exp(—@r)] = 2¢1 sinh(y/Npar) .
Using the second boundary condition leads to
Ngh
(1 + Ngp,) sinh(v/Npa) + v/Npa cosh(v/Npa) '

261 =

so that
u Ngp, sinh(v/Npar)
r 7[(1 + Ngp) sinh(v/Npa) + v/ Npa cosh(v/Npa)] -
Substitution in (23.42) gives
_ 3Nsh[v/Npa coth(vNpa) — 1]
Npa[(1 + Nsp) sinh(v/Npa) + v/ Npa cosh(v/Npa )]’
which, using N, = v/Npa/3, gives the desired result.

(ca)i =

Ui

Ezercise 23.7
Using (v)s = e, (v); and kK = Kpd, we can write
Kb
8b<’v>i = —?V<'P>i + I{bv2<’v>i .
Following the approach used in Section 8.1, we postulate the intrinsic average
velocity to have the form (v,); = (vg)i = 0, (v,);i = (v)i(r, 2). Applying the
constraint

a<’l)z>i
=0
0z ’
we have (v;);i = (v:)i(r). From the constrained velocity, the r- and 6-
components of the momentum balance imply (P); = (P)i(z). This allows

the z-component of the momentum balance to be written as

w?%_nd@W@%)wiywxzc,

dz  rdr dr
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where C' = A(P);/Ly. Introducing

£
u= —gﬂ—‘;@zx—l,

we can write

L) s

where we have normalized radial position r/Rp — r, and introduced N =
\/ebR2 /Ky Using the no-slip condition (v.);i(1) = 0 and enforcing regularity
at r = 0, we find

<U > _ _A<P>i’fb [ . IO(NT)}
o nLpey Io(N) 17

where Iy(x) is the modified Bessel function of the first kind. To find the
mass flow rate VW we write

! R2kpA(P); 21, (N)
W:27rR2/ va)erdr = = ‘[1— }
by P 0L Ny (N)

For e, RE /K > 1, we obtain

B pm RE kL A(P);

W =
nLy

Ezercise 23.8
Flow in the liquid film is governed by the constraint on velocity (5.36),

10 ov,
rar) T 5 =0,

and r-component of the Navier-Stokes equations (7.8)

0%, dp

T2 T ar
where the lubrication approximation has been invoked. Boundary conditions
at the impermeable disk are given by

’UT(Tv 0) = 07 ’UZ(Ta 0) = 07
and at the permeable disk by
U’I‘(TﬂH) :07 UZ(TvH): <UZ>S(T7H)+H7

where (v)s is the superficial average velocity in the porous disk. Integration
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of the Navier-Stokes equation with respect to z and applying the boundary
conditions for v, gives

2
vyl ()

Substitution in the constraint on velocity and integration over z from 0 to
H with the boundary conditions for for v, gives

ra ()=

which is Reynolds equation.

[(v2)s(r, H) + H],

Flow in the porous disk is governed
V - (v)s =0,

and Darcy’s law, which is obtained by dropping the second term in (23.54),

K
(v)s = ==V (p")i,
n
Combining these, we can write

10 (Té’<pL>i) 9% (p")i

— =0.
r or or 022
The boundary conditions for (p~); are given by
0 pL i
ot =), PPy =o
Ly.
8<apr>l(0, z) =0, (PM)i(R, z) = 0.
Also, using Darcy’s law, we can write Reynolds equation as
1d s dp 12k O{p"); 121 .
I () = 228 H —H.
rdr (rdr) woo: I

The solution for (p); can be written as

(pL>i = Z ApJo(au,r) coshlay, (b+ H — 2)],

n=1
where the «,, are the roots of Jy(a, R) = 0, and

2 R
e nr)rdr,
R2J}(an R) cosh(ayb) /0 p(r)Jo(anr)rdr
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which follows from the orthogonality of Jo(ay,r). Substitution of (p~); in
Reynolds equation, we obtain

1d dp 12n 12k
o ( dr) e —TH+ Z Apay sinh(apb) Jo(anr).

Integrating with respect to r using the boundary condition p(R) = 0, gives

= —377R2 [1 - (%)2} ﬁg A— sinh(a,b)Jo(a,T).

Substitution of p in the expression for A, gives

1 [1 12k R tanh(o,b) } -1
H3 (anR)3J1(an R) cosh(apb) H3  ayR ’

so that the pressure in the liquid film is given by,

. 3 _
pz—?’”Rzgs{[ ()] 82 anJOi%iTT%R) P*limanﬁfmb)} 1}'

The applied force Fg is obtained by integrating p over the surface of the
porous disk, which gives

R
Fs = 277/ prdr = —*777TR4 {1 —16
0 H* nzl( WR

A, 24nR2

1

nR
) [1 + 12/{R tanolél(anb):|

Exercise 24.1
If N is the number of completed cycles and ¢ the elapsed time, the formula
for conditional probabilities implies

P(N|t) = ¢(t) p(t|N),

where ¢(t) is a normalization constant and N is assumed to be uniformly
distributed (over a very large range). The probability p(¢|/V) describes the
sum of the dwell times for independent cycles. Its Fourier transform can
hence be obtained from the product of the Fourier transforms of the indi-
vidual cycles and steps, where the Fourier transform of exponential decay
with rate I' is I'/(I" + iw). We hence have

~ oo F]_FQ N+1
P(N|t) = é(t wwt d
(V) C()/ ¢ [(Fl—kiw)(I’g—kiw) W,

—00

where I'y = I'y + I‘E and 'y = FX + I'y are the rates for going up and
down in Figure 24.2. Note that the power IV + 1 has been chosen because
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N completed steps require that we are performing step N + 1 (without a
completed cycle, we have the dwell time distribution of the first cycle).

It is now straightforward to calculate the desired moments of P(N|t). If
we multiply the above expression by 2z and sum up the geometric series
over N, exponential decay with rate I" is I'/(I" + iw). We hence have

Gi(z) = Z ZNP(N|t) = &(t) /oo picot 'y

N=0 o

dw ,
(T'1 +iw)(Te + iw) — 2"y

the normalization constant, first moment and second moment can be ob-
tained by differentiation zero, one and two times with respect to z and then
setting z = 1. For the respective Fourier transforms we find:

rnr
Gi(1) = melt) g |1 = 2e” T

(T1Iy)?

Gi(1) = Wé(t)m

{(n 4 To)t — 24 2[([y + Do)t + 2]e—<F1+F2>t} :
and

G;’(l) _ Wé(t) (F1F2)3 ' {(Fl n F2)2t2 o G(Fl + Fz)t +12

Ty +T2)°
— 2[(Ty + T2)*t* + 6(T'y + Ta)t + 12]6—<F1+F2)t} _

After neglecting exponentially decaying terms for large times, G5(1)/G¢(1)
and G/ (1)/G¢(1) coincide with (24.12) and (24.13).

Exercise 24.2
By means of the d-function, the double integral in (24.18) can be reduced
to the single integral

t
p(t) = FIFQ/ dtle—rlhe—FQ(t_tl) ’
0

which corresponds to the convolution integral associated with the sum of
independent random variables. The remaining integration of an exponential
is straightforward,

—(Fl—Fg)t

t
1—
p(t) = F1F26F2t/ dtlef(rlfFQ)tl — F1F2€7F2t6—7
0 I'n =T

which can be rewritten as the desired result.
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Ezxercise 24.3
From the ansatz we have p(t,z &+ 1,5) = p(t, 2, j) e, By inserting the
ansatz into the master equations (24.4) and (24.5) we hence obtain

—iwCy = C1(Dfe ™ + T3) — Co(T'y +T4)
—iwCy = Co(T et 4 TE) — O (T +Tg).

In matrix form, this equation can be written as
< —iw+T3 +Tg  —(Cre ™ +Tg) > _ < Co ) _ ( 0 >
—(Tye**+Tf) —iw+T}{ +Tg Ch 0
Nontrivial solutions Cp, C] exist only for zero determinant of the matrix,
(—iw + Ty +TH)(—iw +TL +Tg) = (Tfe % 4 Tg) (D™ +TF).

With the definitions (24.7), (24.14) of T', T'yst and the further definition
I'(k) = (Tfe @ + T'g)(I'ye?*® + '), we find the solution

1 .
wik) = 5 [\/4(r —TV(k)) — T2, — Tt
For small k, the Taylor expansions e*™*® ~ 1 + ika — %(ka)z lead to
1
I'(k) =T —ika(T{T; — T, Tg) — i(ka)%r;rg + T TR).

By inserting this result into w(k) after expanding the square root, we obtain

I'(k)-T (I"(k)-D)* kar;rg - Iy

w(k)=1 —1 =
( ) IWtot Fgot I‘tot
. e 2
B E(ka)Q DATE + 1.0 _ 9 (AT —Talg)
2 Ltot F1£;)’ot

In view of the definitions (24.15) and (24.16), this is the desired result. We
have thus found an alternative derivation of Ag and Dy.

FExercise 24.4

For a rough estimate, we assume that 1kg of muscle contains 0.5kg
of myosin. For a molecular weight of about 500kg/mol, we would have
0.001 mol of myosin per 1kg of muscle. If each molecule performs 10 steps
per second or 36000 steps per hour, 36 moles of ATP are hydrolyzed in an
hour. This corresponds to some 260 kcal. A racing cyclist can burn more than
1000 kcal per hour, which would corresponds to 4 kg of muscle at maximum
work rate (to be compared to a total muscle mass of about 30kg).
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Exercise 24.5

The required energy is 10J or 2.4 cal. According to Exercise 24.4, 5kg of
muscle mass can provide 1300 kcal per hour. The required minimum time
hence is 2.4/(1.3 x 105)h or 7ms. As the world record in weightlifting is
more than 250 kg, more muscle mass must be involved.

FExercise 24.6
Differentiation of (24.29) with respect to Z and setting this result equal to
zero, we obtain

For ideal solution behavior we have Afic, = RT In(zk, /z8,). Combining
with the last expression gives the desired result. Since A® < 0, L a4, Lcaca
are positive, and ¢ < 1, then xlca/xlcla > 1.

FExercise 24.7
The given reaction involves (n = 2) two reactions: E4+S & ES, ES — E+4P.

The stoichiometric coefficients for reaction 1 are vg; = g1 = —1,0ps1 =
1,0p1 = 0; for reaction 2 they are g g = 52 = 0,Vgg2 = —1,0p 2 = 1. The
reaction fluxes I'; = —L;(e® — e¥) for each reaction are

= HES HE + fis
I'n=-L [ex (~ )x —ex <~7>xac}:k:):m—kx ,
1 1 p BT ES p BT ETS 1fTETS 1rTES

= fip HES
I's=-L [ex (f)x —ex <~ )x }:k TES ,
2 2 p BT P p BT ES 2 TES

where second equalities follow using (4.60) and Ko > 1, that is, the second
reaction is ‘irreversible.” The species mass balances in terms of the species
mole fractions from Exercise 5.6, assuming both convective and diffusive
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mass transport can be neglected, can be written as

dx - = .
e ]Z—; Va,jl'j = Val't + Vapls.

Hence, we can write

dzg
c—— = —kitrprs + k1, 7ES ,
dt
dzgs
= kitxgrs — k1rrEs — kofTES ,
dxp i
c = korTEs .
gt 2t TES
Now, setting drgg/dt = 0, we obtain
klf -1
Tps = ———xprs = K\, TpT
ST ket ko M 5

where Ky = (kir + kor)/k1s. Adding this to zp and substituting in the
expression for dzp/dt gives the desired result.

Exercise 24.8
By changing the normalization, we can rewrite (24.53) as

) @(7)} } -@(7)} 1 0G(v)
— 4 €X — = X = = .
87{ p[RT r(7) p_RT p(v)RT Oy
By means of the definition (24.41), we further obtain

Efy{exp c0) }—exp Gl)

RT RT
which is an immediate consequence of the chain rule. The second identity in
(24.53) follows by once more using the definition (24.41).

1 9G(v)
RT Oy

Y

Exercise 24.9

In the absence of slippage, the cross effect reaches its maximum possible
value and the Onsager matrix in the force-flux relations (24.39), (24.40)
becomes degenerate, which means

laa(y) lcaca(y) = laca(y) lcaa(y) = 0.

According to the definitions (24.46) and (24.47) this implies n = n’. It has al-
ready been argued in the text that, without slippage, we have n = 2 because
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the ATPase has two binding sites for Ca?* ions. A positive determinant of
the Onsager matrix implies n/n’ < 1, where n and n’ have the same sign.

Ezercise 24.10
According to (2.20), we have the normalized equilibrium solution

Peq(7) zeXp[_Z(;)] {/Olexp[_q};;,)] d’Y’}l |

If we insert ¢} o (7) = " Peq(7) into (24.51), the exponential factors cancel

and we obtain (24.54).

FExercise 24.11 ) 3 .
Equations (24.42) and (24.43) imply G(1) — G(0) = A°. For small A%/(RT),
we hence find the linearization

G(1)

G(0)

G(0)
RT

AS
RT’

exp

where G/(0) in (24.41) can be evaluated at equilibrium,

G(0) &~ ®(0) + RT Inpeq(0) = —RT{/Olexp {—2(;)] dfy} .

In the last step, the equilibrium solution given in the solution to Exer-
cise 24.10 has been used. With (24.54) we obtain

G(1)
[3]

By comparing the linearized version of (24.48), (24.49) with (24.26), (24.27),
we finally find the relation (24.52).

G(0)
RT

~ ./\/:gq AS
St pT

Ezercise 25.1
For a Newtonian fluid with memory function ((t) = {ypd(t) we obtain from
(25.1) a Langevin equation
Lro(t) = G ()l + Fo (1)
m—rp(t) = —(o—7 .
2" Ul B
so that from (25.11) we have

5 N 2dkgT
<Ar%[W]>eq N _w2 (CO + mZW) )
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Taking the inverse Fourier transform gives the following

2dkgT
(A1), = Cf (gw),

which is diffusive for t > m/(p.

FExercise 25.2
With the definition of h(t), we obtain the two-sided Fourier transform

/ / f(t—t)g(te “tat dt
— / / f(t _ t/)g(t/)efiw(tft/)fiwt’dt/dt

- /0 - /_ O; F(8)g(t)e ™ qt'ds = flw] glw],

where the substitution s = ¢t — ¢’ has been performed.

Exercise 25.3
From the definition of ([w] in the footnote on p.441 we obtain

- / " ) tdt = {[-wl,
0

where the memory function ((¢) is assumed to be real. We further have

— /_(; (e tdt + /00O C(t)e™tdt = /000 C(=t)e™dt + ([w]

- /0 et + ] = Cw] + Cw] = 2R {T]}

Ezercise 25.4
Substituting the last line of (25.7) in (25.6) gives

ATkpTO R {{w]} d(w + ') '
| H + o (o] + miw) | [ H + e’ (Cw] + i) |

<7’b [w]'rb [w/} >eq =

The 0 function implies w’ = —w. We hence obtain
4mkgTd R {([~w]} 0(w + ')
[wf[u}] + i(mw? — H)] [wf[—w] — i(mw? — H)} ,

where, for the reformulation of the numerator, we have used the identity

<rb [w]rp W] >eq =
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([-w] = ¢[w]*, which implies R {¢[w]} = R {{[-w]}. We rewrite this last
expression in the slightly more complicated form

, AmkpTé R {w([-w] — i(mw? — H)} §(w + ')
<rb[w]rb[w ]>eq = — ] )
w [w([u}] + i(mw? — H)] [w([—w] —i(mw? — H)}

so that, after bringing all the real factors into the real-part operator R and

canceling a common factor, we obtain (25.8).

Ezercise 25.5
The sphere moves with velocity vy, = vy, (t)d3. For the position vector ¢
relating the stationary and moving coordinate systems we write

dc

dt
For the time-dependent creeping flow of an incompressible fluid, we can write
(11.3) as

= —Up (t)ag.

o'’ l dv
/ _ 2,0~/ LT b
iy =nV<v' —Vp —dt d3,

where we have neglected gravity and set w = 0. Since the pseudo pressure is

arbitrary, we combine it with the last term to define the modified pressure

, dup
P = p + p:c3 T
Hence, we can write our momentum balance for time-dependent creeping
flow (dropping the primes) as
ov 9
— = - VP.
P oy nV<v P
Using the expressions for velocity in (17.19) and the results from Exercise
17.5, the r- and #-components become
oP _ 1 B — 7( P aw)
Or  r?sinf (99 r2sinf 90
oP n 0 o/ p OY
0P 10y, O p 00y
00 sinf Or v ot (sin 6 or

Differentiation of 9P /0r by 6 and 9P /00 by r and equating the two expres-
sions gives

19,1 9 1 02 19,1 0 1 0210y

Bl il — B2 = p| = = il I
n[r260<sin989)+sin08r2} v [ r2 00 (sin689)+sin08r2} ot’
which, recognizing E? as the operator in (17.20), is easily rearranged to give
the desired result.
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Ezercise 25.6
Neglecting the second term in (25.17) gives

_ 6 Riw G (w) = 6mRg\ ¢
Cl4 w1+ Aiw
where the second equality follows for a single-mode Maxwell fluid where
G*(w) = gAhiw/(14+Niw), and the third from setting ( = 6w Rg\. Substitution
of this result in (25.11) and setting d = 3 gives
b eq  C(iw)2 14 (T /A)2(Niw) + (T /A)2(Niw)?2’

Clw] =

w?

where 7, = \/mA/(. Using the equivalence between the one-sided Fourier
transform and the Laplace transform, we set iw — s. Inversion to the time
domain gives

6kT’

(ATE(t)) o = AN o2 (4)\3(25 +A) = (t+BNATE + T

_t

—e X {(4)\4 — 5272+ 1) cosh(wmt) — 2w A2 (302 — 72) sinh(wmt)] >,

where wy,, = /4\%2 — 72,/(2\7,). Simplifying this expression for 7, < A

gives

kT t —t 3T,
2 - B v m .
<Arb(t)>eq ~ R {1 + o exp (2)\) {cos(wmt) + 5 sm(wmt)} } ,

where wy, & 1/7,.

Ezercise 26.1
We begin by writing

2
2 p2 2 _ p2 ri BTV 2 rji R
|R—r; P=R*—2R-7;+r> =R (1_25'5+ﬁ) ~R (1—25-5)
where the last expression follows since R > r;. Taking the square root of

the above result gives

_fr].i

.

s
R-r %R(l—Q—J-—
‘ J | R R
Using this result, we write
¢iks| Brj| o cilheReri B R/R) _ giksRo—ker;

where the last result follows since ks = ksR/R. Combining these results the
expression in (26.13) is obtained.
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Exercise 26.2
Using (26.23) to eliminate pressure, the evolution equations given in (7.1),
(7.7) and (7.3) can be written as follows

g§+v Vp=—-pV v,

((’?91;+1Vv —vxw) = —anw—F(nd—an)V(V'v)—pcj ( VT+VPP)

where w = V x v and we have neglected the gravitational force and,

orT oy —1
pé{,(— to- VT) _awep Pl =l
ot ap
where we have neglected viscous dissipation. Substitution of (26.24) in the
above equations and retaining only linear terms gives

0
50 = —
5P = poV - v,
which is clearly (26.25),
ov 4 Pocs’ Vép
Pogy = —nV x (V xv)+ (nd+§77)V(V-v)— 5 ( VoT + P )

which, after dividing by po, gives (26.26), and
0 oy — 1
oo —8T = A\V26T — P =g v,
ot ap
which, after dividing by poéy = poéy/7y gives (26.27).

Ezercise 26.3
From (26.29) we easily obtain

o 197 2, 10
o ot VVTTom

Substitution in (26.30) with 67" = 0 gives (26.32). Now, using dp = c4dp,
we have

V26p,

1 02
2 atQ

v 0

2
op,
8V

—0p=V3p+ —
If we use L to rescale length and L/cp to rescale time, we obtain

0y
o2 zzavﬁ%

which will be consistent with (5.55) from Exercise 5.15 if L > 1y/cp. For

(5p V26p +
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air v & 1.5 x 107° m?/s, er =~ 340 m/s giving L > 4 x 1078 m. Similarly,
for water 1 ~ 4.3 x 107 m? /s, er &~ 1500 m/s giving L > 3 x 1072 m. For
both fluids, this critical length is roughly ten times larger than the mean-free
path [y, which is consistent with the mean-field assumption of transport
phenomena.

FEzxercise 26.4
The velocity is decomposed into a sum of longitudinal and transverse parts:

v=-V{+V xa,
Taking the divergence of the expression above gives
Vow=1=-V%,
since V - V x a = 0 for any vector a. Taking the curl of v gives
Vxv=w=VxVxa=V(V-a)-Va,
since V x V& = 0 for any scalar £. The second equality follows from (5.74).

Exercise 26.5
The eigenvectors e;, i = 1,2,3 are found from

A- €e; = (;€;.

Hence, for i = 1, using (26.39) we can write

v 2 0 02 2 Po P0
2 ~ . . . .
et —nq? W . cziq f1(iq) = cziq f1(iq) ,
0 y—1 2 =1 _ fa(iq) y=1 _ fa(iq)
Ty TX4 ap & ap o
or
—pocsq.fi(iq) . Po
—viegiq® f1(iq) + csq? — afiﬁfﬁ(@) = icsqf1(iq)
y=1..; : =1 2 yxd® s, =1 _ fa(iq)
— &, csigfi(iq) — I=yxg” + 5 faliq) a &

The first line gives
a1 = —cziqfi(iq),
while the second and third lead to the results in (26.42) and (26.43),
filiq)? =1 — (n/cs)iqfi(iq) — (ap/vés) f2(iq),

(y-1é& =g
Qp fl(iQ) + %Zq

fa(iq) =
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Next, for i = 2, using (26.40) we can write

pocsqfi(—iq) P0

. . 52¢2 . .
nesiq® fi(—ig) + es®q® — = s —ZC§Qf1((—lQ))
-1 . . 1 . ~y—1 fa(—iq
—Icsiqfi(—iq) — Tovxd® + B fa(—iq) i e

The first line gives

ag = csiqfi(—iq),
and the second and third lead to,
fi(=ig)® = 1+ (n/cs)igfr(—iq) — (ap/vés) f2(—iq),
(v —1)é w4
ap  fi(—iq) — Piq’

fa(—iq) = —

which are consistent with (26.42) and (26.43) setting —iqg — iq. Finally, for
i =3, using (26.41) we can write

__ poxg®
f1Giq) f1(=iq) p02
ca’q® _ __wxgt o=l e¢® | _xq*
v f1(iq) f1(—iq) v ARG A(—ig—1 | T 93 fi(iq) f1(—ig)
=l oxgt =l eatq? __ O=D/ap
ap  f1(iq) f1(—iq) ap vf1(iq) f1(—ig)—1 vf1(ig) f1(—ig)—1

The first line leads to
Xq°
f1(iq) f1(—iq)

a3 = —

The third line can be written as
B 1 n v _ 1
Nig) fi(—iq) ~ vhig) fi(—iq) =1 fi(iq) fr(—ig)[yf1(iq) fr(—ig) — 1]’

which, by simple algebraic rearrangement, is true. The second line can be

written as
cs?[f1(iq) f1(—iq) — 1] vxq? 2q?

vhig) fi(=ig) =1 flig)fi(=iq)  fi(ig)2fi(—ig)*
To verify this expression, we note that the eigenvalues «;, ¢ = 1,2, 3 for the
system of equations in (26.37) are found from

-« —po 0
2.2
det(A — ad) = %i)‘éz —uq® -« 2 =0,
0 - WX -«

or

o® + (1@ +vxa®)a’® + (s + myxat)a + xes’q* = 0.
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Substitution of a3 in this result verifies the last expression.

Ezercise 26.6
Using (cicj) = ¢;0;;, we can write (26.50) as
x (q,0)x(qg,t)) = ciejere™” + cheseqse™?" + cgeszeze
* 0 11 »1< a1t /2 ; ast g § ast
Substitution of (26.45) and (26.46) gives

£0

. -1 .
(" (q,0)z(q.t)) = ¢ | —icsq (Po,icéq, 7 )6(_’C§q_rq2)t
y-1 Qp
Qp

Po
+ 0/2 lc§§] <p07 _iC§Q7
N
ap
£0 1 ,
+c5| O (po, 0, —)efxq L,
1 Qp

Qp

v 1)€(i05q7Fq2)t
P

Hence, for the density fluctuations, we can write
(59" (@, 0080(a.)) = g3 chel o3 TN 4 el isa TN ]
Using the constants obtained from (26.47) and (26.48) leads to,
(69" (q,0)0p(q, 1)) = —LLOTBZ0 j’éBTO [% (e*“s’qt + e"%qt> e Tt 4 (y - 1)e*’<q2t} ,

which is easily rearranged to obtain (26.51). Substitution in (26.21) gives
the expression in (26.52) for the dynamic structure factor S(q,w).

Ezercise 26.7
From the data in Figure 26.9, the Brillouin doublet shift is wg/(27) ~ 7.4 x
10° Hz and the half-width at half maximum Awg/(27) ~ 0.31 x 10° Hz,
Using wp = czq, we find

_wp _ 2m(7.4x 10 s7Y)

=B ~ 1550 m/s.
%= 3.0 x 107 m—1 m/s

For water, we have x = \/poép ~ 1.43 x 1077 m?/s, v = n/py =~ 1.00 x
1076 m?/s and v ~ 1.01. Hence, ' = 3[(y — 1)x + 1] = 511 = 5,0 (57 + na).
Using Awp = I'¢?, we have

2Awppy 4
q 3

Na
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27(0.61 x 107 s71)(998 kg/m?) 4 3
= - (1. 1073 P
(3.0 x 107 m-1)? 5 (100 1077 Pas)

~3.0x 1073 Pas.

Exercise 26.8
For mixtures, (26.29) and (26.30) are unchanged, so we write

0
a(sp - _p0¢7

T L oo
Y =uVY pov op,

where ¢ = V - v, and we have written the last term of (26.30) in terms of
pressure fluctuations p = py + dp. We now write the balance equation for
solute mass (5.14) as

dp1

E:—U‘Vﬂl—mv'v—v']’h

and the temperature equation (6.7) for a two-component, ideal mixture as

or 1 1 -
E iovr=-1"(V.ov)-—vVv.j -2

Lo .0 .
07 —05)V - 91,
ot ap pCs a o (01 2)V -1

where we have excluded chemical reaction, neglected viscous dissipation and
used (6.20). Neglecting cross effects, from (6.18), we can write

gy =N VT.

For j;, we combine (6.11) and (6.17) and write,

. Afu\ 1 h1 — ha PN
=D Di2( G ), |
J1 pD12Vwi + pwaDio Buor )yl T

which, for a dilute, ideal mixture, can be written as

, My D1o 1h? — hY 20 — 69
J1=-D12Vp + 1]%12[ 1T2 2p VT — 1T 2p1Vp]

Substitution for j; in the solute mass balance and retaining only first-order
terms in the fluctuating variables we obtain,

0
—bp1 = — + D15V%65p; —
e P10V 12V70p1 BT

p10D12M; [il(f —h

0
29257 — (80 — @g)v%p} .
To
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Substitution for j; and jl’] in the temperature equation and retaining only
first-order terms in the fluctuating variables we obtain,

o -1
ZoT = V2T + =29 — 69) D15 V26,
at p Oép
v—1,0 opioDiaMih —hy_, S0 A0\ T2
——— (07 — 0 = VT — (v] — 05)Vp|,
ay (07 2) RT, To it 2) p

For many systems of interest 11/D12 > 1 so that for sufficiently long times,
pressure fluctuations can be neglected dp = 0, which leads to ¢ = 0. In this
case, we have

My (h) — h3)

0

0
—8p1 = D12V?6p1 — proDi2 V24T.

ot

RTg

O 51 = yv2er + 2130 — ) Dy, [v%m pro(hf
ot ap

If we further neglect the enthalpy of mixing fz? — ﬁg ~ 0, then the solute
mass balance simplifies to

9 2
ﬁ(;pl = D1sV=dp;.

Taking the Fourier transform, we obtain

9 — N
8t5,01(q7 t) = —¢*D12dp1(q,t),

which has the solution given in (26.53).



