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We simulate a piecewise deterministic Markovian jump process that represents an unraveling of a
nonlinear quantum master equation describing the evolution of a quantum subsystem in contact with
a heat bath. This process relies on running ensemble averages and state vectors normalized only on
average. The latter causes the normalization of a small subset of trajectories to grow exponentially
resulting in numerical instability. We propose an efficient solution to this problem and illustrate the
general ideas for a harmonic oscillator and a two-level system, each of them being weakly coupled to
a heat reservoir. Our findings lay the foundations for a powerful simulation technique for dissipative
quantum systems surrounded by general classical nonequilibrium environments.
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I. INTRODUCTION

In nanoscale technological applications [1] we rarely
deal with perfectly isolated quantum systems. The the-
ory of open quantum systems [2–5] provides the proper
framework to study the emergence of dissipation and de-
coherence phenomena when a quantum subsystem starts
to interact with its surroundings.
Among the numerous available methods for open quan-

tum systems [6], many rely on linear quantum master
equations for the evolution of a reduced density operator
(obtained after eliminating the variables of the environ-
ment) of the Redfield [7], Lindblad [8, 9], or Caldeira-
Leggett type [10, 11]. However, it has been argued that,
especially when handling quantum subsystems weakly
coupled to memoryless cold environments, linear equa-
tions do not lead to relaxation to the proper equilibrium
state [5, 12]. Moreover, hot and noisy environments [13]
as well as anharmonic oscillators [14] or composite quan-
tum systems [15] are also problematic when employing
these linear approaches. An alternative description based
on a thermodynamically consistent nonlinear quantum-
classical master equation [16] has recently been devel-
oped. It allows us to treat arbitrary classical nonequilib-
rium environments, including time-dependent ones, with-
out giving up the Markov assumption. Moreover, the
corresponding quantum master equation relaxes properly
even at very low temperatures [12, 17].
As suggested in the companion paper [18], one can fo-

cus on the wave function ψt of the reduced Hilbert space
and model its dynamics through a stochastic differential
equation instead of working directly with the quantum
master equation. The key ingredient of this unraveling
procedure is to reproduce the evolution of the density op-
erator ρ(t) of the quantum subsystem using the covari-
ance E

(
|ψt⟩ ⟨ψt|

)
obtained by averaging over many real-

izations of a stochastic process [3]. Alternatively, one can
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apply a pair of stochastic processes ψt and ϕt and simi-
larly reconstruct the density operator with E

(
|ψt⟩ ⟨ϕt|

)
.

In general, two main procedures are used to gener-
ate ensembles of state vectors: The continuous quan-
tum state diffusion technique based on Wiener processes
[19, 20] and the discontinuous quantum-jump method
relying on Poisson processes [21, 22]. We here rely on
the latter approach which produces quantum trajectories
using a smooth deterministic time evolution driven by
a modified Schrödinger equation, randomly interrupted
by discontinuous jumps, as described in the compan-
ion paper [18]. This approach is often equivalently de-
scribed as a Monte Carlo wave function propagation [21],
a stochastic Schrödinger equation or a piecewise deter-
ministic jump process [3]. The main difference compared
to standard stochastic unravelings is that the nonlinear-
ity imposes a coupling among the different trajectories
[18]. The fact that the normalization of the state vectors
is conserved on average only in this process is known to
lead to an exponential growth of the norm of a small num-
ber of state vectors [14, 23–25] and to generate numerical
instability in long-time simulations.

We begin with a brief review of the stochastic unrav-
eling for the nonlinear thermodynamic master equation
(Sec. II). We then present the harmonic oscillator and ex-
plain how to handle numerical instabilities (Sec. III). The
next section is devoted to the two-level system (Sec. IV).
All simulation results are compared to the results of the
deterministic approach [17]. We conclude with a few re-
marks and discuss some perspectives (Secs. V and VI).

II. STOCHASTIC PROCESSES

In the companion paper [18], two unravelings for the
nonlinear thermodynamic quantum master equation have
been constructed following a mean-field approach. We
here present these stochastic processes in a form directly
suited for simulations. Whereas a single operator is used
for the coupling between a quantum system and its en-
vironment in [18], we here describe the equations for an
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arbitrary number of coupling operators.

A. One-space process

In a stochastic unraveling, we represent the time evolu-
tion of the density matrix ρ of the quantum subsystem in
contact with a classical environment through a stochas-
tic process |ψ⟩ in the Hilbert space of the open quantum
system by means of ρ(t) = E

(
|ψt⟩ ⟨ψt|

)
. The time evolu-

tion of the trajectories |ψt⟩ is given by Eqs. (7) and (8) of
[18]. These two equations can be cast into the compact
form

d |ψt⟩ = − i

~
H |ψt⟩ dt+

∑
j

Λj |ψt⟩ dt

+
∑
j

(
αjQ̃j |ψt⟩ − |ψt⟩

)
dN j

t , (1)

composed of a reversible Schrödinger-type equation of
motion in terms of the Hamiltonian H and an irreversible
part consisting of the friction and jump operators, Λj and

Q̃j , respectively. The latter pair is present solely due to
the interaction of the quantum subsystem with the en-
vironment. The continuous motion of the trajectories
|ψt⟩ is from time to time interrupted by discontinuous
jumps happening in one of the various channels j asso-
ciated with the jump operators Q̃j . The occurrence of
these jumps is modeled by the independent Poisson pro-
cesses N j with rate γj . Options for the choice of the free
parameters αj are discussed below.

For a proper choice of the operators Λj and Q̃j as well
as the rate parameters γj , the second moment of this
process reproduces the thermodynamic quantum master
equation [18]. The friction operator Λj and jump opera-

tor Q̃j must be chosen in a complementary way

Λj =
γj
2

(
I− αj

2Qj
2 + αj

2β2
j

(
[Qj ,H]ρ ρ

−1
)2)

, (2)

and

Q̃j =
(
Qj + βj [Qj ,H]ρ ρ

−1
)
, (3)

where the coupling operators Qj are given through their
occurrence in the thermodynamic quantum master equa-
tion. The operators Λj and Q̃j are not self-adjoint, the
parameters αj can be chosen freely and the nonlinear
term is defined by

Aρ =

∫ 1

0

ρλA ρ1−λ dλ. (4)

For a heat bath, the rates γj are given by

γjα
2
j = 2MQj

e (Te), (5)

and the parameters βj must be chosen as

βj =
1

2kBTe
, (6)

where the temperature Te and the dissipation rates

M
Qj
e (Te) completely characterize the heat bath and the

strength of its interaction with the quantum system. For
a more complex classical environment, the parameters βj
and γj would be given in terms of a dissipative bracket
(see [18]).

For the equation of motion (1), the normalization
⟨ψt|ψt⟩ of the trajectories |ψt⟩ is not preserved; however,
the average E

(
⟨ψt|ψt⟩

)
remains normalized to unity. We

fix the still unspecified phase parameters αj by the con-
dition

αj
2
[
tr(QjρQj)−βj2tr

(
[Qj ,H]ρ ρ

−1[Qj ,H]ρ
)]

= 1, (7)

which implies that the average normalization of the
trajectories during the deterministic evolution and the
jumps are conserved separately. Optimization of the scal-
ing parameter αj can be achieved without breaking the
stochastic formulation and can lead to more stable evo-
lution [26]. As a consequence of the nonlinear nature of
the thermodynamic quantum master equation, the ap-
pearance of the density matrix in Λj and Q̃j leads to a
coupled evolution of the trajectories of the process. In
the simulation of stochastic trajectories, the mean-field
density matrix ρ(t) = E(|ψt⟩ ⟨ψt|) can conveniently be
calculated as a running ensemble average.

Finally, when using the Hamiltonian H as a single cou-
pling operator Qj , we obtain an unraveling in the mean-
field spirit for Milburn-type of master equation [27] be-
cause the nonlinear term [Qj ,H]ρ vanishes. This equa-

tion then describes a non-dissipative or phase decoher-
ence process. Otherwise, by employing the linear ap-
proximation [Q,H]ρ ≈ {[Q,H], ρ}/2, an unraveling is
obtained for Caldeira-Legett-type of master equations.
Moreover, for small β we recover the high temperature
limit giving rise to a non-normalized Lindblad type of
unraveling.

B. Two-space process

As an alternative to the stochastic process of the pre-
vious section, we can write ρ(t) = E

(
|ψt⟩ ⟨ϕt|

)
in terms

of a pair of ket-vectors |ψt⟩ and bra-vectors ⟨ϕt| [18]. The
evolution equation (1) then needs to be replaced by the
following two equations:

d |ψt⟩ = − i

~
H |ψt⟩ dt+

∑
j

Λj |ψt⟩ dt

+
∑
j

ujt

(
αjQ̃j |ψt⟩ − |ψt⟩

)
dN j

t

+
∑
j

(
1− ujt

)(
αjQj |ψt⟩ − |ψt⟩

)
dN j

t , (8)
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and

d |ϕt⟩ = − i

~
H |ϕt⟩ dt+

∑
j

Λj |ϕt⟩ dt

+
∑
j

(
1− ujt

) (
αjQ̃j |ϕt⟩ − |ϕt⟩

)
dN j

t

+
∑
j

ujt

(
αjQj |ϕt⟩ − |ϕt⟩

)
dN j

t . (9)

The independent random variables ujt assume the values
0 and 1 with probability 1/2; note that they are required
only at the discrete jump times of the Poisson processes.
Instead of the friction operator (2), we now use

Λj =
γj
2

[
1− αj

2Qj
2
]
, (10)

and the coefficients βj must be chosen as

βj =
1

kBTe
. (11)

The jump operators Q̃j and the rate parameters γj are
still given by Eqs. (3) and (5), respectively.
The differences in the evolution of the pairs of bra and

ket trajectories appear only in their jump parts. When-
ever a jump event occurs in one of the processes N j , for
one of the two trajectories, which is selected randomly
with probability 1/2, we still apply the jump operator

αjQ̃j , whereas the other jump is performed with αjQj .
A possible choice for the free parameters αj leading to
the conservation of the overlap ⟨ϕt|ψt⟩ on average during
the deterministic and jump evolution separately is given
by

α2
j tr(QjρQj) = 1. (12)

This alternative solution strategy based on two processes
has its advantage in simpler and self-adjoint friction op-
erators Λj at the expense of having to simulate two pro-
cesses simultaneously. In numerical Monte-Carlo simula-
tions of the pair of processes |ψt⟩ and |ϕt⟩, where only a
finite number of simulated samples can be used, the den-
sity matrix defined by ρ(t) = E

(
|ψt⟩ ⟨ϕt|

)
is in general

not self-adjoint. Yet, this can be guaranteed without
modifying the drift- and jump operators by using the
symmetrized form ρ(t) = (1/2) E

(
|ψt⟩ ⟨ϕt| + |ϕt⟩ ⟨ψt|

)
instead.

C. Nonlinearity

The unraveling procedure requires the calculation of
the nonlinear term [Qj ,H]ρ occurring in Eqs. (2), (3)

and (7). For an explicit calculation, one can make use
of the spectral decomposition of the density matrix ρ =∑

k pk
∣∣πk

⟩ ⟨
πk

∣∣ where pk and
∣∣πk

⟩
are its eigenvalues and

orthonormal eigenvectors. By performing the integration
in Eq. (4), one obtains the following identity [17],

Aρ =
n∑

k,l=1

pk − pl
ln pk − ln pl

Aπ
kl

∣∣πk
⟩ ⟨
πl
∣∣ , (13)

where Aπ
kl =

⟨
πk

∣∣A ∣∣πl
⟩
are the matrix elements of A

in the eigenbasis of the density matrix. Note that the
factor in front of Aπ

kl possesses well defined lower and
upper bounds [28],

√
pkpl ≤ pk − pl

ln pk − ln pl
≤ pk + pl

2
, (14)

so that no problems occur for pk = pl. If pk or pl (or
both of them) go to zero, also this factor goes to zero.
Moreover, like the bounds, the factor in the middle of
Eq. (14) changes monotonically with pk, pl ∈ [0, 1] [29].

As, in general, the eigenvectors of the density matrix
change with time, they should be represented in terms
of a fixed orthonormal basis. A convenient choice is the
eigenbasis of the Hamiltonian or an appropriate approx-
imation to the Hamiltonian. The matrix elements Aπ

kl
are then obtained from the matrix elements of A in the
fixed basis by a time-dependent unitary transformation.
To avoid the diagonalization step one could choose the
eigenvalues pk according to the aimed Boltzmann dis-
tribution at the expense of generating an approximate
relaxation process.

D. Discretization of the unraveling

We give here a short recipe for handling the one and
two-space unravelings (see Sec. II A and IIB). The so-
lution of Eq. (1) is a stochastic process |ψ⟩ with con-
tinuous trajectories interrupted by discontinuous jumps.
We seek a solution for all times t in the interval [0, T ],
where each trajectory solves Eq. (1) for the correspond-
ing realization of the set of independent Poisson jump
processes N j . In numerical simulations we work with dis-
crete time points equally spaced by a time step ∆t so that
0 = t0 < t1 < . . . < ts < . . . < tT/∆t = T , on which we
try to approximate the states of the stochastic trajecto-
ries. For computational purposes we use a finite number
N of discretized trajectories

∣∣Ψ l
⟩
, where l = 1, . . . , N .

We here make use of the fact that, for weak dissipation,
only a few state vectors jump whereas the others evolve
according to the same deterministic equation. We group
all identical trajectories into blocks (

∣∣Ψ b
⟩
;Nb), where Nb

is the number of identical state vectors
∣∣Ψ b

⟩
, and evolve

each block as a single trajectory.

1. Initialization procedure

Initially, we have to produce an ensemble of state vec-
tors that represents the initial density matrix. To do so,
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we construct as many blocks (
∣∣Ψ b

t0

⟩
;Nb) at time t0 as the

dimension n of the Hilbert space, each of them contain-
ing Nb state vectors

∣∣Ψ b
t0

⟩
= ab

∣∣πb
t0

⟩
proportional to the

eigenvectors
∣∣πb

t0

⟩
of the density matrix for b = 1, . . . , n.

Because we need to represent the inverse density matrix
in Eqs. (2), (3) and (7) with sufficient accuracy, it is im-
portant to guarantee sufficiently large ensembles also for
small eigenvalues pb. The most natural choice is then
to impose equal numbers Nb = N/n for the n blocks by
choosing ab =

√
npb.

2. Time-evolution

As time evolution takes place, jump events generate
additional blocks shrinking the original ones. A block can
also consist of a single trajectory. We then distinguish
“large” blocks which have only undergone deterministic
evolution (and contain the majority of the state vectors)
and “small” blocks produced by jumps (and containing
only a small fraction of the state vectors). To obtain the
number ∆Nb of state vectors of the block (Ψ b

ts ;Nb) which
jump at time ts in case there is only one jump channel,
we can use binomial random numbers with the number
of trials being Nb (the number of elements of a block b)
and the probability of jump p = 1 − exp(−γ∆t) ≃ γ∆t
as probability of success in terms of the jump rate γ.
Alternatively, we can approximate the number of jumps
for each block b through Poisson random numbers with
mean pNb. Due to the small jump probability p≪ 1 the
approximation is justified although ∆Nb > Nb could be
obtained in principle (we would then set ∆Nb = Nb, that
is, all trajectories jump). In case of J multiple equiproba-
ble jump channels, we use the total jump rate Γ =

∑
j γj

for the jump probability p ≃ Γ∆t to generate the to-
tal number of jumps ∆Nb =

∑
j ∆N

j
b of a block b with

j = 1, · · · , J . This total number can then be distributed
among the J channels using a multinomial distribution
with probability of success pj ≃ γj/Γ for channel j to

find the different ∆N j
b at time ts so that the block b is

split in at most J + 1 small blocks:

(Ψ b
ts ;Nb) → {(DΨ b

ts ;Nb −∆Nb),

(α1Q̃1Ψ
b
ts ; ∆N

1
b ), · · · ,

(αJQ̃JΨ
b
ts ;∆N

J
b )}. (15)

The new small blocks (αjQ̃jΨ
b
ts ;∆N

j
b ) containing ∆N j

b
state vectors are evolved through the application of the
jump operator αjQ̃j . The block (DΨ b

ts ;Nb −∆N j
b ) con-

taining Nb − ∆Nb state vectors is evolved with the op-
erator D = I − (i/~)H∆t where H = H + i~

∑
j Λj is

the deterministic evolution operator. We reconstruct the
density matrix with

ρ(ts +∆t) =
∑
b

wb

∣∣Ψ b
ts+∆t

⟩ ⟨
Ψ b
ts+∆t

∣∣, (16)

where the weight of block b is defined through the value
wb = (Nb/N)

⟨
Ψ b
ts+∆t|Ψ b

ts+∆t

⟩
. In this block, we can

FIG. 1: Illustration of the one-space scheme. At time ts a
given block (Ψ b

ts ;Nb) containing Nb identical state vectors Ψ
b
ts

is splitted due to the parallel action of the drift (arrows) and
the jumps (dotted arrows). Here we have used only a single

jump operator αQ̃; each supplementary jump channel would
need an additional dotted arrow.

define the weight of a single state vector lb by wlb
b =

wb/Nb where lb = 1, · · · , Nb. A block disappears if it
contains no state vector.

Note that the operators D and Q̃j in Eq. (15) depend
on the density matrix ρ(ts), which needs to be evaluated
as the ensemble average in Eq. (16) (with ts instead of
ts+∆t). The sum over all blocks in the ensemble averag-
ing procedure (16) implies that all trajectories, or blocks
of trajectories, become coupled, which is a characteristic
of the simulation of nonlinear master equations.

For the two-space process, we proceed similarly but
now each block (

∣∣Ψ b
ts

⟩
;Nb) is associated with another

block (
∣∣Φb

ts

⟩
;Nb). Both undergo the same drift. For the

multichannel jumps, we have to consider that each chan-
nel can undergo two types of jumps, namely αjQ̃j or
αjQj , occurring with equal probabilities (see Sec. II B).
Contrary to the one-space process, a given block b pro-
duces here two new blocks per jump channel j. The den-
sity matrix is reconstructed through

ρ(ts +∆t) =
1

2

∑
b

(
wb

∣∣Ψ b
ts+∆t

⟩ ⟨
Φb
ts+∆t

∣∣+
w∗

b

∣∣Φb
ts+∆t

⟩ ⟨
Ψ b
ts+∆t

∣∣ )
, (17)

where wb = (Nb/N)
⟨
Ψ b
ts+∆t|Φb

ts+∆t

⟩
.

3. Reinitialization procedure

As time goes on, additional blocks are generated and
their number grows exponentially with time so that at
the beginning the simulation is very fast, then becomes
progressively slower, and finally converges to the situa-
tion where all state vectors evolve individually. The fre-
quency at which the blocks are split depend on the total
jump rate Γ. It is possible to reinitialize the state vectors
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using the current density matrix to reduce the number of
blocks to its minimum value, i.e. n, boosting the numer-
ical time evolution considerably and setting the memory
storage for the state vectors to its minimum.

III. HARMONIC OSCILLATOR

In order to test the validity of the proposed stochas-
tic simulation schemes we study, as a first example, a
quantum harmonic oscillator coupled to a classical heat
bath at temperature Te through a single coupling opera-
tor [17].

A. Basic equations

In terms of the position operator q and the momentum
operator p, the Hamiltonian of an isolated particle of
mass m in a harmonic potential V (q) = mω2q2/2 is H =
p2/2m + V (q), where ω is the angular frequency. This
quantum oscillator is coupled to a heat bath assuming
that the interaction is mediated through the position q
of the particle as the only dissipative coupling operator,
Q1 = q. The dissipation rate introduced in Eq. (5) is
given in terms of a simple scalar friction coefficient ζq,

Mq
e (Te) =

ζqkBTe
~2

. (18)

When simulating the harmonic oscillator, it is quite
natural to use the truncated energy eigenbasis |k⟩, k =
0, 1, . . . , n − 1. Using the matrix representation of the
position operator given by

q |k⟩ =
√

~
2mω

(√
k |k − 1⟩+

√
k + 1 |k + 1⟩

)
, (19)

the truncation for |k⟩ = |n− 1⟩ is obtained by omitting
the contribution

√
n |n⟩. Knowing that the truncated

diagonal Hamiltonian is H |k⟩ = ~ω(k+1/2) |k⟩, the mo-
mentum operator is obtained through the commutation
relation [q,H] = (i~/m)p and the operator pρ occurring
in the friction and jump operators is then computed by
resorting to Eq. (13).

B. Stabilization procedure

1. Stopping criteria

For a one-space process with individually normal-
ized trajectories, all trajectory weights wl

b are con-
stant at all times. Difficulties arise for stochastic pro-
cesses normalized on average only, when the weights
of state vectors vary over time. More precisely, with
time the number of small blocks generated by the
jumps increase exponentially and it can happen that

the weights of a tiny fraction of them start dominat-
ing the propagation of the density matrix ρ. This
fact, known as the exponential growth of the norm Fel-
binger1999,Ulrich2002,Breuer2004,Jacobs2009, leads to
intractable statistical errors for times much smaller than
the relaxation time. To track down the emergence of this
instability, one can simply compute the contribution of
the dominating state vectors R(t) =

∑
b∈G(t) wb(t)−R0,

where G(t) contains the 1% of all the state vectors hav-
ing the largest weights wl

b(t) at time t. The offset R0

is defined such that R(0) = 0. In our simulations we
avoid instabilities by applying the reinitialization pro-
cedure (see Sec. IID 3) if R crosses a predefined upper
bound Rc. After applying the reinitialization R can be
imposed to restart from zero by adjusting the offset R0

correspondingly. The numerical value of Rc depends on
the structure of the stochastic equations and on the size
of error bars one can afford. However, R itself depends
only on the evolution of the distribution of the norm of
the state vectors. This reinitialization procedure insures
stable long time simulation.

For the two-space process one cannot uniquely define
real positive weights and we therefore adopt the follow-
ing one: w̃b = ϖb/

∑
b′ ϖb′ , where ϖb =

⟨
Φb
ts |Φ

b
ts

⟩
+⟨

Ψ b
ts |Ψ

b
ts

⟩
. Thereby R and G are analogously defined as

for the one-space process by replacing wb by w̃b. The def-
inition of w̃b permits to track the evolution of the norm
of |Φ⟩ and |Ψ⟩ simultaneously contrary to the absolute
value of the overlap of |Φ⟩ and |Ψ⟩.

2. Illustration

We now consider the relaxation of a quantum harmonic
oscillator with n = 10 energy levels between the temper-
atures kBTe = (3/2)~ω and kBTe = (1/2)~ω using a di-
mensionless time step of ω∆t = 0.0001 and N = 2· 105
trajectories (see Fig. 2). We use a coupling constant of
ζq = mω/10 to be in the weak coupling regime. The
large blocks represented by the ten plateaus generated
by the initialization procedure at time ωt = 0 are dis-
solved into the intermediate non-flat regions (see Fig. 2).
For the harmonic oscillator simulated with the one-space
process, we see that Rc = 2 induces a reinitialization
after time intervals of ωt ≃ 2.0 (the relaxation process
takes some ωt ≃ 40.0) giving a time evolution which co-
incides with the deterministic evolution (see Fig. 3). To
reproduce the overlap of the three lowest energy eigen-
states (see Fig. 4), it is necessary to use a lower bound
Rc = 1, producing more frequent reinitialization every
ωt ≃ 1.0, because the range of values of the overlaps is
much smaller than the range of the observables so that
error bars have a bigger impact. At any fixed time the er-
ror bars become independent of Rc for Rc < 0.5. For the
two-space process, we apply a boundary Rc = 5, which
produces a first reinitialization after a time of ωt ≃ 0.5,
and indicates that the evolution becomes unstable much
faster.
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FIG. 2: Evolution of the norm | ⟨Ψ |Ψ⟩ | = Nw
lb
b proportional

to the weight of the individual state vectors (ordered with
decreasing weight from left to right) for a harmonic oscillator
with n = 10 energy levels. The ten plateaus represent the
large blocks generated by the initialization at t = 0. With
time, the plateaus vanish due to the appearance of small
blocks resulting from the random jumps. The insert shows
a blow-up of the 1% of all the state vectors having the largest
weights wl

b (domain under the curves left of the arrow).

C. Simulation results

To check whether the deterministic and simulation ap-
proaches agree, we initially thermalize the oscillator at
kBT0 = (3/2)~ω, then immerse it in a heat reservoir with
a lower temperature kBTe = (1/2) ~ω, and let it relax to
ρeq ∝ exp[−H/(kBTe)]. For the integration of the deter-
ministic nonlinear quantum master equation (given by
Eq. (56) of [17]) we use the Euler scheme with a dimen-
sionless time step ω∆t = 0.0001. For the integration
of the one-space stochastic process given by Eq. (1) we
use the same time step and average over 20 independent
runs, each of them containing N = 2· 105 trajectories (see
Sec. IID). As pointed out previously, we apply a reinitial-
ization procedure (see Sec. III B). We follow the average
of the observables q2, p2 and H (see Fig. 3) and the evo-
lution of the overlap of some low energy eigenstates of
the Hamiltonian with large probability eigenvectors of
the density matrix (see Fig. 4). One can easily see that
the two methods give consistent results for the one-space
process within the error bars. The same holds for the
two-space process.
We can numerically confirm some interesting features

of the nonlinear master equation by using the stochastic
process. We notice that the entropy production rate of
the total system when considering a heat bath environ-
ment can be expressed in terms of the canonical correla-
tion ⟨A;B⟩ρ = tr(AρB) such that [17]

dStot

dt
=

∑
j

M
Qj
e (He)

kBTe
2 ⟨i[Qj , F ]; i[Qj , F ]⟩ρ ≥ 0, (20)
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FIG. 3: Relaxation of a quantum harmonic oscillator cou-
pled to a low temperature classical heat bath. (a) Evolution
of averages (upper three curves) and canonical correlations
(lower two curves); the dashed lines indicate the steady-state
results. Subplot (b) is a blow-up of the marked area in (a)
showing that the deterministic curves (thin black lines) lie in
the shaded region representing the error bars of the order of
10−3 estimated from independent one-space stochastic runs.
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FIG. 4: Relaxation of a quantum harmonic oscillator coupled
to a low temperature classical heat bath. (a) Overlap of three
lowest energy eigenstates |k⟩ with the three largest probability
eigenvectors of the density matrix |πk⟩. Subplot (b) is a blow-
up of the marked area in (a) showing that the deterministic
curves (thin black line) lies in the shaded region representing
the error bars of the order of 10−5 estimated from independent
one-space stochastic runs.

where F = H−TeS is the Helmholtz free energy operator
and S = −kB ln ρ is the entropy operator associated with
the von Neumann entropy. For the dissipation rate we
use Eq. (18). Because the total entropy production rate is
proportional to tr(AρλA†ρ1−λ) with A = A† = i[Qj , F ],
it is a convex functional on the state space of open sys-
tems due to Lieb’s theorem on top of being non-negative
and upper-bounded [3, 30, 31], i.e. 0 ≤ ⟨A;A⟩ρ ≤

⟨
A2

⟩
ρ
.
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FIG. 5: Entropy evolution of a quantum harmonic oscillator
coupled to a classical heat bath. Cycle composed of a cooling
phase followed by a heating phase. The light-colored line
stands for the quantum subsystem whereas the dark-colored
one represents the composite quantum-classical system.

As a consequence of Eq. (20), the second law of thermo-
dynamics is respected.

We examine the quantum oscillator starting from a
temperature kBT0 = (3/2)~ω being cooled down to
kBT1 = (1/2)~ω and then, at ωt = 50, heated up back
to the initial temperature to construct a thermodynamic
cycle (see Fig. 5). We follow the evolution of the entropy
of the quantum oscillator as well as of the total system
and observe that the entropy of the quantum oscillator
diminishes during the cooling phase while the total en-
tropy increases (we set the initial total entropy equal to
zero). Moreover, we see that the total entropy increase is
larger during the cooling phase than during the heating
phase as one would intuitively expect for such an irre-
versible process.

Further, we observe that, at equilibrium, the canoni-
cal correlations ⟨p; p⟩ρ and ⟨q; q⟩ρ converge to the thermal

energy kBTe (the two lower curves in Fig. 3). This is a
direct consequence of the fact that the second moment
equation, which is equivalent to the master equation, ful-
fils a meaningful fluctuation-dissipation relation [12, 17].
This also implies that the evolution equation of averages
(see Eq. (10) of [16]) strictly respect the Ehrenfest theo-
rem, contrary to the Lindblad master equation [32].

IV. TWO-LEVEL SYSTEM

As a further test of the validity of the proposed stochas-
tic simulation schemes we examine a two-level system
coupled to a classical heat reservoir at temperature Te
through two coupling operators requiring the introduc-
tion of an additional jump channel compared to the har-
monic oscillator.

A. Basic equations

For a two-level system or single qubit, the Hilbert space
is commonly represented by the two-dimensional vector
space C2. Observables acting on the corresponding quan-
tum states can be expressed in terms of the three Pauli-
matrices σ1, σ2 and σ3 and the identity I playing together
the role of basis vectors. In view of a concrete physical
application especially focused on quantum optical sys-
tems [22, 33, 34], we choose the HamiltonianH = ~ωσ3/2
separating the system’s ground state and its excited state
by an energy amount ~ω. To take into account the inter-
action of the subsystem with the surrounding heat bath
(assumed to be at temperature Te), we use the transverse
magnetization directions Q1 = σ1/2 and Q2 = σ2/2 as
coupling operators. These describe for instance radia-
tion transmitted between the two-level system and its
surrounding [3]. To define dimensionless quantities we
choose the Planck constant ~, the Boltzmann constant
kB and the frequency ω. The dissipation rate is assumed
to be given by [17]

MQj
e (Te) = ζ0

kBTe
~ω

, j = 1, 2, (21)

with ζ0 the spontaneous emission rate γ0 characterizing
the strength of the interaction between the two-level sys-
tem and the environment.

B. Detailed simulation results

To solve the thermodynamic quantum master equa-
tion in the framework of our stochastic simulation tech-
nique, we proceed in a similar way as for the harmonic
oscillator (see Sec. III). The only difference is that we
need two jump channels, one for each coupling opera-
tor. To check the proper convergence of the simulation
results we can use the equilibrium solution of the quan-
tum master equation being of the Boltzmann form. Con-
sequently, the transverse magnetization and the mean
energy approaches their proper equilibrium values, i.e.,
⟨σ~ω,2⟩ρ → 0 and ⟨H⟩ρ → −(1/2) tanh (~ω/2kBTe).

To illustrate this, we examined the relaxation of a two-
level system initially in a overpopulated state character-
ized by ρ0 = 1/10 (5 I+ 2σ1 − σ2 + σ3). The tempera-
ture of the cold surrounding is given by kBTe = 0.2 ~ω,
where ~ω is the level splitting and the spontaneous emis-
sion rate is chosen as γ0 = ω/10. We performed the
integration of the deterministic nonlinear quantum mas-
ter equation (given by Eq. (44) of [17]) with the Euler
scheme with a dimensionless time step ω∆t = 0.005. For
the integration of the one-space stochastic process given
by Eq. (1) we used the same time step and average over
60 independent runs, each of them containing N = 5000
trajectories (see Sec. IID). Simulation results, based on
the one-space process, are illustrated in Fig. 6 and show
the consistency of the deterministic and stochastic ap-
proaches. The one-space process does not require the ap-
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FIG. 6: Relaxation of a two-level system coupled to a low
temperature classical heat bath. (a) Evolution of averages.
Subplot (b) is a blow-up of the marked area in (a) show-
ing that the deterministic curves (thin black lines) lie in the
shaded region representing the error bars of the order of 10−3

estimated from independent one-space stochastic runs.

plication of the reinitialization strategy because αj given
by Eq. (7) leads to a stable evolution up to the time the
system has relaxed. Nevertheless, one can reduce the er-
ror bars significantly by choosing Rc = 2 inducing around
3 reinitializations to reach equilibrium (relaxation time
is ωt ≃ 100.0). For the two-space process the evolution
becomes unstable even when using αj given by Eq. (12).
Hence, for a proper relaxation it is necessary to apply the
reinitialzation procedure. To reproduce the time evolu-
tion we have used Rc = 1 inducing a first reinitialization
after an elasped time of ωt ≃ 4.0.
As for the quantum harmonic oscillator (cf. Fig. 5),

we examine the entropy production for a cooling-heating
cycle with a cold reservoir at kBT0 = 0.2 ~ω and a hot
reservoir at kBT1 = 2.0 ~ω showing a perfectly monotonic
increase of the total entropy.

V. DISCUSSION

We carefully examined a thermodynamically inspired
extension of usual stochastic unraveling processes [3] rely-
ing on a nonlinear thermodynamic quantum master equa-
tion [18] by studying two standard quantum systems: the
two-level system and the harmonic oscillator. We have
shown that the application of a reinitialization procedure
splitting the time evolution into successive short time
simulations insures that the unraveling procedure works
perfectly fine although the norm of the simulated trajec-
tories is only conserved on average.
It is worth to notice that this method is not restricted

to the studied nonlinear stochastic process. On the con-
trary, it can be applied to any situation where the nor-
malization is not intrinsically controlled [14, 23–25], for
instance in the non-Markovian case or when resorting to
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FIG. 7: Entropy evolution of a quantum two-level system
coupled to a classical heat bath. Cycle composed of a cooling
phase followed by a heating phase. The light-colored line
stands for the quantum subsystem whereas the dark-colored
one represents the composite quantum-classical system.

a doubled Hilbert space (as for the two-space process pre-
sented in Sec. II B) where obtaining normalized equations
is far from being a trivial task. The only requirement is
to diagonalize the density matrix when the system starts
to be unstable to be able to regenerate the state vectors
from the current density matrix.

Because most of the trajectories of the studied stochas-
tic process evolve similarly, we proposed an efficient im-
plementation of the stochastic process where the reini-
tialization can be used to speed up the simulation and
reduce the needed memory storage for the state vectors.
To avoid the diagonalization involved in the reinitializa-
tion procedure, we can alternatively enlarge the blocks
of the set G to dilute their weights so that in the follow-
ing steps many tiny jumps will take place instead of few
big ones inducing a more stable time evolution. When
R > Rc we increase the size of the blocks b ∈ G by a fac-
tor η and rescale the corresponding state vectors

∣∣Ψ b
ts

⟩
by√

η to leave the density matrix unchanged. R is decreased
by an approximate factor η. These techniques can be ap-
plied to any stochastic process and are opposite to the
“branching” technique [35, 36] which eliminates the state
vectors having a negligible contribution at the expense of
obtaining an approximate density matrix.

The discussed nonlinear unraveling reaches the asymp-
totic equilibrium state for any kind of Hamiltonian be-
cause the nonlinear master equation was derived for very
general systems [12]. On the one hand, we would like to
emphasize that the relaxation to the asymptotic equilib-
rium state for the present unraveling is mainly ensured by
the nonlinear structure of the equation and not through
the specific damping coefficients. On the other hand,
for the Lindblad quantum master equation, proper lin-
ear combinations of damping coefficients and coupling
operators are crucial for relaxing to the correct equilib-
rium state; even to construct a proper process for two
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qubits with an interaction term is very difficult [37, 38].
As a check, we simulated an anharmonic oscillator mod-
eled by a Kerr term λ(a†a)2, so that the Hamiltonian still
possesses the same eigenstates |n⟩, with the same damp-
ing coefficients as before. The system was found to relax
towards equilibrium as expected.
The positivity of the density matrix is guaranteed for

the one-space process because we can reconstruct the
nonlinear master equation from the stochastic process
through E

(
|ψt⟩ ⟨ψt|

)
[3]. It is a remarkable feature of

the one-space process that positivity can be guaranteed
even after introducing arbitrarily large time steps for the
purpose of numerical simulations (this is contrary to the
usual deterministic integration schemes). We have shown
that, for a Kerr oscillator with n = 10, the nonlinear
master equation when solved numerically with a deter-
ministic Euler or fourth-order Runge-Kutta scheme for
increasing λ more quickly produces negative eigenvalues,
even for small time steps. Hence, the stochastic approach
possesses a higher robustness compared to the determin-
istic one. Furthermore, at the level of thermodynamics,
it is especially noteworthy that for a quantum system
coupled to a heat reservoir the total energy is conserved
and that a positive entropy production is guaranteed. On
top of that, evolution equations of averages are perfectly
compatible with the Ehrenfest theorem.
As discussed in Sec. III B, it may be wise not to have

too wild jumps to limit the increase of the norm of the
individual state vectors. Because the precise structure of
the jump and friction operators given by Eq. (2) and (3)
is not crucial as long as they permit to recover the second
moment equation, we can push the nonlinear term out
of the jump operator Q̃j = αjQj and rewrite the friction

operator as Λj = (γ/2)(I−αj
2Qj

2−2αj
2βj [Qj , H]ρ ρ

−1).

These settings allow to relax the oscillator to equilibrium

with fewer applications of the reinitialization procedure.
This clearly shows that different stochastic formulations
are not equivalent for the numerical implementation [26].

In attempt to improve the stability of the two-space
process, we have reexpressed it in a different perspective:
we imposed a purely reversible drift by transferring the
friction operator into the jump part which then carries
all irreversibility. We tried various combinations of jump
channels and jump operators. However, none of these
combinations allowed to relax the subsystem to equilib-
rium without the reinitialization procedure. Neverthe-
less, we observed that the different unravelings possess
specific time evolution of R and the ones exhibiting a
slower increase are more stable. Therefore R can be used
to characterize the numerical stability of a given stochas-
tic process.

VI. CONCLUSION

The present unraveling producing the nonlinear ther-
modynamic master equation [12, 16, 17] will in the future
permit to study many problems of great interest like en-
tanglement in quantum information theory [2], nonlinear
optical setups [4], superconducting qubit, nanomechani-
cal resonators, cold atoms [1, 5], or dissipative quantum
field theory [39]. It will also open the door to go beyond
heat bath environments (like classical spins or oscillators)
as well as allowing feedback effects from the environment
through the dissipative brackets [16, 18]. Moreover, the
unraveling methodology introduced in the companion pa-
per [18] could allow to construct unravelings for many
different master equations as we have shown briefly at
the end of Sec.IIA where we unravel for example the
Caldeira-Leggett master equation.
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