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Abstract We investigate the behavior of open quantum systems interacting
with classical time-dependent environments. As a simple example of a quan-
tum system we employ a two-level quantum system, and a thermodynamic
oscillator serves as an environment. We analyse how the relationship between
parameters of the classical environment and the quantum subsystem changes
the evolution. Using the nonlinear thermodynamic master equation we demon-
strate how the energy and the coherence of the quantum system evolve in time
and how effects of a feedback from a quantum to a classical system influences
its dynamics.
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1 Introduction

In recent years there has been a growing interest in the physics of open quan-
tum systems. It is of crucial importance for understanding and developing the
quantum computer [1]. Also it is widely used in a field of quantum optics [2],
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transport phenomena [3,4], the theory of photosynthetic complexes [5] and
even for the theory of a gravity [6].

The main idea of the theory is very simple: we investigate the dynamics
of only the small quantum system of interest, whereas all other degrees of
freedom are considered to be an environment, dynamics of which is included
implicitly [7]. This approach simplifies calculations a lot, instead of solving the
Schrödinger equation for ∝ 1027 quantum particles, one has to solve so-called
master equation only for few of them, which dynamics is the most important.

The problem that arises: how should the environment be treated? Usually
it is stated that the environment consists of an infinite number of quantum
harmonic oscillators which do not interact between of each other [8]. However,
this so-called harmonic bath assumption is still unjustified [9]. The second ap-
proach, which is widely used in chemistry (vibrational relaxations in liquids,
electron and proton transfer etc.), deals with the environment as a classical
mechanical system [10]. The relaxation rates are calculated with the help of
molecular dynamics. This method is very powerful but it requires serious com-
putational calculations. Therefore, we suggest to discuss a more coarse-grained
version of the environment and apply methods of modern nonequilibrium ther-
modynamics [11] to it. We would like to describe a classical environment as
a thermodynamic system and investigate the interaction between quantum
system and environment using the nonlinear thermodynamic master equation
[12,13].

In this article we review the nonlinear thermodynamic master equation.
With a simple example (Fig. 1) we show how the time-dependence of the
environment changes the dynamics of a quantum system. Also we show how the
reaction of the quantum system on the classical environment can be quantified.

The plan of this paper is as follows: in Sec. 2, we describe our tool for inves-
tigating quantum-classical dynamics — the nonlinear thermodynamic master
equation which describes the evolution of a density matrix of a quantum sys-
tem. In addition, we formulate a feedback equation which quantifies how the
quantum system affects the classical one. In Sec. 3, we describe the two-level
quantum system, introduce the most important definitions from quantum me-
chanics, and show the energy relaxation of a quantum system coupled to a heat
bath. Also the thermodynamic oscillator is introduced here and its behavior is
analyzed. In Sec. 4, we show the main results for a two-level quantum system
coupled to the thermodynamic oscillator. Finally we discuss our results and
give conclusions.

2 Nonlinear thermodynamic master equation

Quantum master equations are useful tools for exploring open quantum sys-
tems [7,14] and are usually assumed to have a linear form (e.g. Lindblad form
[15,16])

dρ

dt
= −iLρ, (1)
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Fig. 1 Model of quantum system coupled to time-dependent thermodynamic environment.

where L is a superoperator. However two-time correlation functions of two ob-
servables calculated with the “quantum regression hypothesis” and the fluctuation-
dissipation theorem of the first kind are different. This means that the linear
form of the superoperator causes the failure of the “quantum regression hy-
pothesis” for quantum dissipative systems [13,17,18]. Motivated by this fact,
Grabert derives a nonlinear master equation which, in the Markovian limit,
has the following form [18]

dρ

dt
=
i

h̄
[ρ,H]− M

kBTe
[Q, [Q,H]ρ]−M [[Q, [Q, ρ]], (2)

with a suitable parameter M describing the strength of the dissipation and
an observable Q describing the interaction between quantum subsystem and
its infinite quantum environment. The temperature Te is the only parameter
characterizing the state of the environment, which hence acts as a heat bath.

Recently, the nonlinear master equation was generalized to more com-
plicated classical nonequilibrium systems as environments. Based on purely
thermodynamic considerations and a generalization from classical to quantum
systems inspired by a geometric formulation of nonequilibrium thermodynam-
ics, the following master equation for the evolution of the density matrix or
statistical operator ρ has been proposed [12,13]

dρ

dt
=
i

h̄
[ρ,H]− 1

kB
[He, Se]

Q
x [Q, [Q,H]ρ]− [He, He]

Q
x [Q, [Q, ρ]]. (3)

It is important to note that (3) characterizes a quantum subsystem in con-
tact with an arbitrary classical nonequilibrium system acting as its environ-
ment. The first term describes the free evolution generated by the Hamiltonian
H and two other terms have irreversible nature and are caused by coupling
a quantum subsystem to its environment. Whereas the type of coupling is
given by the self-adjoint coupling operator Q, the strength of the coupling
is expressed in a dissipative bracket [, ]Qx defined as a binary operation on
the space of observables for the classical environment. If the equilibrium or
nonequilibrium states of the environment are characterized by the state vari-
ables x, classical observables are functions or functionals of x which is indicated
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by subscript. The classical observables He and Se in eq. 3 are the energy and
the entropy of the environment, respectively. Properties of dissipative brack-
ets are explained in details in [13]. In our work we will use following form of
dissipative brackets

[Ae, Be]
Q =

dAe
dHe

M(Te)
dBe
dHe

, (4)

where M(Te) is a positive function of a temperature of environment and de-
fined later.

The master equation (3) describes the influence of a classical environment
on a quantum subsystem. Of course, in response the quantum system also
has an influence on its environment. The thermodynamic approach provides a
corresponding equation for the evolution of environmental observables,

dAe
dt

=

(
dAe
dt

)
class

− 1

kB
[Ae, Se]

Q
x 〈[Q,H]; [Q,H]〉ρ

+[Ae, He]
Q
x 〈[Q, [Q,H]]〉ρ.

where canonical correlations are given

〈A;B〉ρ =

∫ 1

0

tr(ρλAρ1−λB)dλ = tr(AρB). (5)

To integrate the nonlinear thermodynamic master equation we apply the
fourth-order RungeKutta method according to the procedure described in [13].
Alternatively, stochastic simulation technique [19] has been developed and can
be applied.

3 Models of quantum system and classical environment

Quantum system. The two-level system is the simplest quantum system
and it has two possible quantum states. Many areas of a modern science use
this simple model. Examples from a quantum chemistry include the electron
and proton transfer as well as isomerization reactions. In a quantum optics
the model successfully describes nuclear magnetic resonance and spontaneous
emission. In quantum computing it is called “qubit”, and two states are ac-
cordingly denoted |0〉 and |1〉.

Any two-dimensional Hermitian matrix of trace one can serve as a density
matrix of two-level system. It is fully defined by three parameters. Hence, one
can always write the density matrix of a any (mixed or pure) state of the
two-level system as

ρ =
1 +m1σ1 +m2σ2 +m3σ3

2
=

1 + m · σ
2

, (6)

where the σi are the Pauli matrices.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (7)



Open quantum systems coupled to time-dependent classical environments 5

The vector m which is used to parametrize the density matrix is called the
Bloch vector. in addition to conserving the trace equal to one, the density
matrix is positive semi-definite, which restricts the length of a Bloch vector
m ≤ 1, where equality holds only for case of a pure state. The expectation
value for any observable A is given by

〈A〉 = tr(ρA), (8)

therefore information about the dynamics of the Bloch vector allows to de-
scribe the dynamics of any observable. Hence, our main goal is to find the
evolution of m. The initial values of the Bloch vector are following: m1 = 0.0,
m2 = 0.4, m3 = 0.5. Firstly, we demonstrate an evolution equation of a quan-
tum system coupled to a heat bath. As a Hamiltonian of a two-level system
we choose H = 1

2 h̄ωσ3, where ω is the angular frequency associated with the
energy difference between two levels of the system. Two coupling operators
as defined as Qj = σj ,where j = 1, 2. The heat bath is characterised by its
energy He and the temperature is implied by the thermodynamic relationship
Se(He). We assume dissipative brackets of the form

[Ae, Be]
Qj

He
=
dAe
dHe

γ0
kB
Te

dBe
dHe

. (9)

The energy of a qubit is proportional to the m3 = 〈σ3〉 and its relaxation
caused by coupling to a heat bath is shown in Fig. 2. In case of any temperature
of a heat bath there is always monotonic behavior of the curve. The final value
of energy of a quantum system coupled to a heat bath is defined by the Gibbs
distribution.

To understand typical values of energies and work with dimensionless units
we discuss superconducting qubits [20]. The frequency of transitions between
the excited and the ground state ωexp is of order of 10 GHz . In our simulations
we work with ω ∝ 10 that means that one dimensionless unit of time [t]
∝ ω

ωexp
= 10−10 [s]. One unit of temperature in Hz is [T] ∝ ωexp

ω = 109[Hz]

Recalling that 1 K corresponds to about 20 GHz, one dimensionless unit of
temperature can be written [T] ∝ 0.5 · 10−10 ωexp

ω = 0.05 [K].
Classical environment. Now we discuss the simplest possible example of

a nonequilibrium thermodynamic environment. It consists of two subsystems
exchanging heat and volume through a separating wall of mass m (see Fig. 1
left side). We use x = (q, v, E1, E2) as variables for the system, where v is the
velocity of the wall. For our simulations we assume that initially the wall is
at rest (v = 0). Assuming that the subsystems contain the same number of
particles N1 = N2 = N we can derive time-evolution equations describing the
system [21]

dq

dt
= v, (10)

dv

dt
=

1

m
(p1 − p2)Ac, (11)
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Fig. 2 Relaxation of energy of a two-level quantum system coupled to a heat bath. Tem-
perature changes only the slope of the decay which is always monotonic.

dE1

dt
= −p1Acv + α

(
1

T1
− 1

T2

)
, (12)

dE2

dt
= p2Acv − α

(
1

T1
− 1

T2

)
, (13)

where the parameter α is responsible for the heat exchange between the two
volumes. Energy and pressure of the subsystems are functions of temperature
and volume. In order to show some numerical results we can apply ideal gas
laws and solve the closed system of equations. However, it should be mentioned
that (10-13) are valid for any real system inside the two volumes. For more
complicated models we can not obtain an analytical system of equations and
should perform simulations.

Depending on the values of initial temperatures, heat exchange and other
parameters, there exist two different kind of solutions of (10-13). The tem-
peratures of the subsystems can either change monotonically or show damped
oscillations. The typical patterns are shown in Fig. 3.

Quantum-classical coupling The coupling a quantum system to the
thermodynamic oscillator is shown in Fig. 1. The quantum system interacts
only with the volume which has the energy E1. In addition, the volume V2
knows about the quantum system through the wall. The dynamics of our cou-
pled quantum-classical system is defined by many parameters and variables.
The evolution of the classical environment plays an important role, however,
the relationship between certain parameters of systems is even more impor-
tant. The first such ratio is β1 = γ

α which shows how different the quantum
and classical coupling are; the second parameter β2 = m

Nmp
, where m is a mass

of a wall between the two volumes and Nmp is a total mass of the volumes.
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Fig. 3 Thermalization of the thermodynamic oscillators. Because of the exchange of the
energy, the two volumes of thermodynamic oscillator which initially have different temper-
atures will equilibrate to the same one.

Of course, the ratio between the quantum and classical energies is important;
however, not only this value defines the evolution. If the energy of the quan-
tum system is greater than kT but the mass of particles of the environment is
much larger than the wall, it still plays a role of a heat bath.

4 Results

Fig. 4 shows how different dynamics of the quantum subsystem for the case of
different parameters can be. Line 3 shows how quantum system behaves in the
case of small β2. This situation is similar to the heat bath and we see monotonic
decay of the energy of the quantum system. Lines 1 and 2 appear when the
mass of volumes is comparable to the mass of the wall between of them. In
this case we see oscillations caused by exchange of energy between quantum
and classical systems. Lines 1 and 2 reflect different initial temperatures of
the volumes. If the temperature of volume coupled to the quantum system
is larger than the temperature of the other part we get line 2, otherwise the
quantum system evolves according to the line 1.

One can argue how energy of quantum subsystem can be of the same order
(or even larger) then the energy of environment. However, “The energy of a
single quantum of a CO stretch is 10 times what kT is at room temperature.
In effect, shedding a quantum of vibration is equivalent to plunging a red-hot
iron into our cold liquid...” [22].

The nonlinear thermodynamic master equation together with the equation
which expresses the effect of feedback from quantum system to classical envi-
ronment describes the whole evolution of the closed quantum-classical system.
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Fig. 4 Energy relaxation of the two-level quantum system coupled to the thermodynamic
oscillator. The parameters are: ω = 150, (1)T1 = 75, T2 = 250, β2 = 1 , (2)T1 = 75 T2 =
10, β2 = 1, (3)T1 = 75, T2 = 250, β2 =0.0001.

The quantum system affects the environment a lot, as is shown Fig. 5, and
its dynamics is changed not only quantitatively, but also qualitatively. The
equilibrium value of the difference of the two temperatures is the same (they
are equal), but the dynamics is not the same. An interesting question arises:
why the difference between the energies of the two volumes becomes more
pronounced without the effect of the feedback. In order to understand this
we need Fig. 6. It is clear that the initial value of the energy of the quan-
tum system is much smaller than the classical one which cools the initially
colder volume. With the feedback effect the energy of the quantum system
flows to the classical system that diminishes the difference of the energies of
the volumes.

As it was mentioned before, the nonlinear thermodynamic master equation
guarantees the conservation of the energy and positivity of the total entropy
production. Figs. 6 and 7 demonstrate this.

5 Conclusions and discussions

As a conclusion, we want to say that we demonstrate the simplest example of
interaction between the open quantum system and its classical environment.
We show how the interplay between the energies of quantum and classical
systems is reflected by the dynamics. The main advantages of the nonlinear
thermodynamic master equation (positivity of the entropy production, the
conservation of the energy of the total system, and the feedback effect) were
shown. Now we want to discuss more interesting applications of the formalism.
The most natural practical application of our approach can be an investiga-
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Fig. 5 Effect of the reaction from the quantum system on the thermodynamic oscillator.
The parameters are: ω = 25, T1 = 3, T2 = 4, N = 1. The equilibrium value of the both
temperatures is equal (the diffetence goes to zero); however, the effect of the feedback changes
dynamics seriously.
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Fig. 6 The conservation of the total energy. The energy of the quantum system and of
the environment change in time, but total the energy is constant. The parameters are:
ω = 25, T1 = 3, T2 = 5, N = 1

tion of vibrational relaxations in liquids [23]. In the liquid phase in most cases
transitional and rotational degrees of freedom are clearly distinguishable from
vibrational ones. Vibrational frequencies are typically larger than the thermal
energy which results in a fact that only a few vibrational states are ther-
mally populated. On the other hand, rotational and translational modes have
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Fig. 7 The entropy of the total system always increases even though the entropy of the
quantum and classical system can diminish. The parameters are the same in Fig 6

lower frequencies and more states are thermally populated. As a result, clas-
sical physics can be applied to describe their dynamics. Thermodynamics and
hydrodynamics are the most suitable tools for this task. In addition, it is im-
portant to mention that vibrational phase and energy relaxation times can be
as short as a few picoseconds, and may thus be comparable to the relaxation
times of environment.

Another application is electron transfer [24]. This process is essentially
a change in the electronic charge distribution in the molecular systems (sol-
vent). Whereas electronic states are assumed to be a quantum system, the
surrounding dielectric environment can be considered to be classical. In the
Marcus theory of electron transfer the solvent is taken as a dielectric contin-
uum characterized by a local dielectric function. Methods of classical ther-
modynamics and electrodynamics can be applied to investigate Debye and
non-Debye dielectric relaxation of environment (solute). The same description
of the environment is valid for proton transfer [24].

One more application is a coupling of quantum degrees of freedom to a
classical chaotic system. During the last decades this approach to study open
quantum system has become very popular. According to our formalism, envi-
ronment can be described with the help of thermodynamics of chaotic systems
[25].
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