
Appendix D

Discrete Symmetries

Three discrete symmetries play an important role in modeling the funda-

mental interactions of nature: charge conjugation, parity, and time reversal.

We here discuss these symmetries in the context of quantum electrodynam-

ics. In the spirit of this book, our focus is on a concrete implementation

of these symmetries given our choice of the Dirac matrices (3.5), (3.6) and

the spinors (3.27)–(3.30). There is only a small number of fundamental in-

teractions we are really interested in (the count may go down when unified

theories are found or up when some phenomena are not properly described

by existing theories; ideally it should end up at one). More general discus-

sions of discrete symmetries in quantum field theory can, for example, be

found in Sections 15.10 to 15.14 of [34] or Section 3.6 of [65].

D.1 Charge Conjugation

The basic idea of charge conjugation is to exchange the role of particles and

antiparticles. It seems natural to assume that a systematic switch of matter

and antimatter would not change the laws of nature.

The exchange of electrons and positrons can be described most conve-

niently in terms of the creation and annihilation operators introduced in

Section 3.2.1. A self-adjoint, unitary, linear operator, C = C† = C−1, is

introduced by

CbσpC = −sgn(σ) dσp , CdσpC = −sgn(σ) bσp , (D.1)

where the phase factors −sgn(σ) are a convenient choice for our spinor def-

initions (3.27)–(3.30). As the photon is its own antiparticle, we extend this

definition by the transformation rule

CaαqC = −aαq , (D.2)
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where the phase factor −1 is introduced because we expect that the electric

current density four-vector changes sign under charge conjugation and we

want the interaction Hamiltonian (3.89) to be invariant. Note that, for any

phase convention in the definitions (D.1) and (D.2), the free Hamiltonians

(3.87) and (3.88) are invariant under charge conjugation. Finally, one should

note that the (D.1) and (D.2) leave the canonical commutation and anticom-

mutation relations for creation and annihilation operators invariant, which

is a general requirement for all discrete symmetry operations. Whenever we

introduce further particles into our basic Fock space, we must extend the

above transformation rules for electrons, positrons, and photons.

The explicit construction of the linear operator C on Fock space is a

straightforward exercise. We assume that the vacuum state possesses charge

conjugation symmetry, or more precisely, C |0〉 = |0〉. If |φ〉 is any Fock

space base vector obtained by acting with electron, positron and photon

creation operators on the vacuum state |0〉 [see (1.11) and (1.17)], then C |φ〉
is obtained by replacing all electron by positron creation operators, and vice

versa; moreover, we must introduce a minus sign for every photon operator

and for every electron/positron operator with positive spin. The extension

from base vectors to arbitrary vectors is given by the linearity of C. The

properties C = C† = C−1 are obvious from this explicit construction. It

often is more convenient to specify the rules (D.1), (D.2) than to describe

the explicit construction of C, which directly reflects these rules.

The definition (D.1) implies the following transformation behavior for the

spinor field (3.82),

CψxC =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 ψ̄Tx , (D.3)

where the matrix occurring in (D.3) is given by −iγ2γ0. For the electric cur-

rent density four-vector (3.91), the definition (D.1) implies the anticipated

transformation behavior

CJµqC = −Jµq , (D.4)

where the symmetry properties required for verifying this identity,

sgn(σσ′) ūσp γ
µ uσ

′
p′ = ū−σ

′

p′ γµ u−σp , (D.5)

and

sgn(σσ′) v̄−σ−p γ
µ uσ

′
p′ = −v̄σ′p′ γµ u−σ−p , (D.6)
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follow directly from Table 3.1.

With the additional transformation rules

CBqC = −Bq , CDqC = −Dq , (D.7)

for the ghost photons, we can keep both the ghost contribution to the free

Hamiltonian (3.111) and the BRST charge operators of the interacting the-

ory in (3.125) and (3.126) invariant under charge conjugation. We have thus

established the full charge conjugation symmetry of quantum electrodynam-

ics in the BRST approach.

D.2 Parity

The unitary linear operator P describing the parity transformation, or point

reflection at the origin, should reverse the momentum of every particle with-

out flipping its spin,

PbσpP = bσ−p , PdσpP = −dσ−p , (D.8)

where the relative sign between the two parts of (D.15) is very important

for obtaining proper transformation formulas for the current density and the

field operator. This transformation implies

PJµqP = −J−q µ , (D.9)

for the electric current density four-vector. Note that lowering the in-

dex µ implies that only the spatial components of the four-vector are re-

versed, whereas the temporal component (i.e., the charge density) remains

unchanged under the parity transformation. Invariance of the interaction

Hamiltonian (3.89) requires the same transformation behavior for the four-

vector potential Aq µ or, in view of the definitions (3.73) and (3.78), the

somewhat more technical rules

Pa0
qP = a0

−q , Pa1
qP = a1

−q , Pa2
qP = −a2

−q , Pa3
qP = a3

−q . (D.10)

Invariance of the BRST charge operators in (3.125) and (3.126) under the

parity transformation requires the transformation behavior

PBqP = B−q , PDqP = D−q , (D.11)

for the ghost photons. We have now established the full symmetry of quan-

tum electrodynamics under parity transformations in the BRST approach.

For completeness, we also specify the transformation behavior of the spinor

field (3.82),

PψxP = γ0ψ−x , (D.12)
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which reflects the character of a simple point reflection at the origin most

clearly.

D.3 Time Reversal

In our Hamiltonian setting, time reversal is more difficult to express than

charge conjugation or parity. We take reversal of both the momentum and

the spin of every particle as a hallmark of time reversal. If |φ〉 is any Fock

space base vector obtained by acting with electron and positron creation op-

erators on the vacuum state, T |φ〉 is obtained by reversing all momenta and

all spins and by introducing a minus sign for every originally negative elec-

tron spin and positive positron spin. The extension of the operator T from

base vectors to arbitrary vectors is now achieved by assuming antilinearity

rather than linearity [see (1.3) vs. (1.4)], which is a general alternative op-

tion for expressing symmetries (according to Wigner’s theorem (1931), any

symmetry transformation is represented either by a linear and unitary or

by an antilinear and antiunitary transformation of Hilbert space). It can be

shown that a linear unitary operator cannot express time reversal (see p. 67

of [65]) whereas, for any antilinear T , linear H, and real t, the invariance

condition [T,H] = 0 implies the operator identity

T eiHt = e−iHt T , (D.13)

which provides the best link to time reversal symmetry for Hamiltonian

dynamics. If we define the adjoint T † of any antilinear operator T by

scan(T |φ〉 , |ψ〉) = scan(|φ〉 , T † |ψ〉)∗, (D.14)

for all vectors |φ〉, |ψ〉, the above antilinear time reversal operator T has the

properties T = T † = T−1, just like the previously defined linear operators

C and P .

After clarifying the detailed construction of the antilinear time reversal

operator, we can now turn to the transformation behavior of the electron

and positron annihilation operators under time reversal,

TbσpT = sgn(σ) b−σ−p , TdσpT = −sgn(σ) d−σ−p . (D.15)

The occurrence of two antilinear factors of T on the left-hand side of these

equations implies that linear operators are properly transformed into linear

operators and that the adjoint of these equations can be formed in the usual

way.

The definition (D.15) implies the following transformation behavior for
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the spinor field (3.82),

TψxT =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

ψx , (D.16)

where the matrix occurring in (D.16) is given by γ1γ3. By combing (D.5)

with (3.44) and Table 3.1, we find the symmetry property

sgn(σσ′) (ūσp γ
µ uσ

′
p′)
∗ = −ū−σ−p γµ u−σ

′

−p′ , (D.17)

and similarly

sgn(σσ′) (v̄−σ−p γ
µ uσ

′
p′)
∗ = −v̄σp γµ u−σ

′

−p′ . (D.18)

These identities allow us to derive the following transformation behavior for

the electric current density four-vector (3.91),

TJµq T = −J−q µ . (D.19)

In view of the antilinear character of T , this transformation behavior actually

translates into

TJµxT = −Jxµ , (D.20)

so that the flip of the sign of q now does not express a point reflection at

the origin.

As the transformation law (D.19) for time reversal coincides with (D.9)

for the parity transformation, we can immediately write down the transfor-

mation laws for photons and ghost particles,

Ta0
qT = a0

−q , Ta1
qT = a1

−q , Ta2
qT = −a2

−q , Ta3
qT = a3

−q , (D.21)

and

TBqT = B−q , TDqT = D−q , (D.22)

which should be compared to (D.10) and (D.11). These equations complete

our discussion of the time reversal symmetry of quantum electrodynamics

in the BRST approach.

D.4 CPT Symmetry

From the transformations given in the previous sections, we realize the prop-

erty

CPT X TPC = −X , (D.23)
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for all photon or ghost creation or annihilation operators X. The same trans-

formation behavior is inherited by X = Aq µ. If a CPT invariant Hamil-

tonian contains a bilinear form in Aq µ and Jµq , then also X = Jµq must

transform according to (D.23), as implied by (D.4), (D.9), and (D.19) for

quantum electrodynamics. For the electron and positron annihilation oper-

ators, we have

CPT bσp TPC = d−σp , CPT dσp TPC = b−σp . (D.24)

The transformation laws (D.23) and (D.24) are the basis for a very deep

symmetry under CPT transformations, which is believed to hold for all

fundamental interactions in nature. All the individual discrete symmetries

are violated by at least one of the fundamental interactions. Most notable

is the violation of CP symmetry, and hence of T symmetry, in the decay

of neutral kaons. The CP violation is predominantly, or even exclusively,

caused by the weak interaction.


