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ABSTRACT 

This contribution discusses requirements, challenges and solutions for simulation-based design optimization of 

climate adaptive building shells. We compare the different needs of this approach with design optimization of 

conventional, static facades, and do this with a focus on achieving energy savings while improving indoor 

environmental quality in terms of thermal comfort and dynamic daylight performance. The solution we propose 

couples ESP-r with Radiance through the Building Controls Virtual Test Bed, and employs a receding horizon 

model-based control approach with evolutionary optimization algorithms to ensure high-performance operational 

façade adaptation. 

INTRODUCTION 

Climate adaptive building shells (CABS) are seen as a promising design concept for achieving low-energy 

building operation, while offering potential for improving levels of indoor environmental quality (Davies 1981; 

Heiselberg 2009). The number of CABS applications in the current building stock is nevertheless limited, with a 

focus on bespoke projects rather than larger-scale solutions (Loonen et al. 2013). In research and development 

settings, however, efforts that investigate the potential of innovative adaptable facade components are rapidly 

increasing. Furthermore, in many technology roadmaps, CABS are recognized as a notable strategy for achieving 

forthcoming targets for design and operation of nearly zero-energy buildings (IEA 2013; EC 2013). 

To facilitate the transition to a more prominent future role for CABS, there is a need to move away from costly, 

custom-built solutions towards concepts that enable affordable application of adaptable building envelope 

components at a much wider scale. Computational performance prediction can form an essential resource in 

supporting, stimulating and accelerating this development process, by functioning as a virtual test-bed for new 

technologies (Loonen et al. 2014). Optimization methods can, in addition, support design space explorations and 

help in getting a better understanding of the theoretical performance potential that is achievable with CABS.  

In the context of static facades, numerous studies have successfully demonstrated the potential value of 

combining building performance simulation (BPS) tools with optimization techniques, such as genetic 

algorithms (GA), to find the set of building envelope design parameters that leads to the best performance with 

respect to a specified cost function (Evins, 2013). Currently, however, there is no framework available for 

extending this type of multi-criteria performance optimization to the domain of CABS. 

CHALLENGES AND REQUIREMENTS FOR OPTIMIZATION OF CABS 

The multi-domain, multi-scale and inherently time-dependent nature of the problem makes that the assessment of 

CABS’ performance potential by means of optimization is a complex task. Instead of optimizing for a single 

facade configuration, the goal of the optimization procedure in CABS is to find the sequence (i.e. time series) of 

dynamic facade properties that best satisfies a set of performance criteria over time. Such information can then 

be used to identify high-potential CABS design concepts. Compared to design optimization of conventional, 

static facades, this poses unique requirements for the performance prediction framework: 

 

 Modelling dynamic facade properties: Facade properties need to be changeable during simulation run-time 

to properly account for transient heat transfer and energy storage effects (Loonen, Hoes, and Hensen 2014). 

In the majority of BPS tools, the options for modelling of adaptable facade actuators are limited (Crawley 

et al. 2008); ESP-r forms an exception although code modifications are required for more flexibility. 

 Modelling the operation of facade adaptation: The dynamic interactions in CABS introduce a strong mutual 

dependence between design and control aspects. Performance of CABS fully depends on the control 

strategy for facade adaptation during operation. To identify the characteristics of optimal CABS concepts, 

not only design considerations, but also insights into high-performance operation of the dynamic facade 

shall be taken into account. Previously developed workflow procedures for optimization of building 
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envelope design, however, lack capabilities to support performance optimization of the short-term 

adaptability in CABS, as they are focused on the optimization of properties that remain constant throughout 

the year (Evins 2013). 

 

PROPOSED OPTIMIZATION APPROACH 

Figure 1 introduces the principles of the optimization framework that we developed in response to the points 

raised above. Various components of the framework can be distinguished: 

 

 Integrated performance prediction with time-varying construction properties by coupling ESP-r with the 

Radiance three-phase method through the building controls virtual test bed (BCVTB) (Wetter, 2011). 

 Model-based building shell control with receding optimization horizons, coordinated by algorithms 

implemented in Matlab, to optimize façade adaptation in multiple successive steps. Explicit state 

initialization in ESP-r ensures consistency of thermal history effects between the different models. 

 Multi-objective optimization with an evolutionary algorithm, enhanced with seeding of initial populations 

and soft constraints to aid optimization efficiency. 

 

 

CONCLUSION 

This short paper has introduced the considerations and requirements for simulation-based performance 

optimization of buildings with adaptable facades. The presentation during the workshop will provide more 

details on implementation aspects, the implications for optimization algorithms, and will present further points of 

attention on the basis of results from a case study. 
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Figure 1. Overview of the optimization framework for CABS. 
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Abstract 

The development of adaptive building envelope technologies is considered a crucial step towards the 

achievement of the nZEB target. This paper presents a method to devise an ideal adaptive façade and evaluate its 

energy saving potential. This is based on the minimization of the total primary energy consumption, by means of 

single-objective optimization, and applied to a case study of an office reference room in the climate of London. 

The results show that the shorter the time scale of the adaptive façade mechanism is of higher energy saving 

potential. A more accurate method is required for devising a product for a faster adaptiveness. 

Introduction 

The requirements for the façade elements are conflicting and transient, e.g. maximising natural light 

transmittance whilst minimising unwanted solar heat gain in the cooling season, while allowing solar heat gains 

and minimising heat loss in the heating season. It is evident that an exclusive approach, aimed at excluding the 

outdoor environment from the indoor one, achieved by means of an optimized static facade cannot successfully 

satisfy all these conflicting and transient performance requirements. Thus the employment of smart 

materials/technologies, in order to adapt to varying outdoor and indoor boundary conditions/requirements, is 

considered a necessary development towards the achievement of the Zero Energy/Emission building target 

(Perino et al., 2007).  

Many research efforts are currently being carried out in the area of adaptive facades, but many issues remain 

unaddressed. In particular it is not yet clear: (a) to which extent the adaptiveness of the façade can reduce the 

energy demand of a building compared to a static façade; (b) to which building properties and time-scale of the 

adaptive mechanism of the façade is the building energy consumption more sensitive to. The answer to these 

issues could provide a significant step towards the definition of an ideal adaptive façade: a façade which is able 

to minimize the total energy consumption of the indoor space by means of adapting to varying outdoor/indoor 

environmental conditions (i.e. solar radiation, air temperature, wind velocity, internal loads, etc…). To date most 

of the research efforts aimed at evaluating the performance of adaptive building envelopes are technology 

specific, that is they numerically and/or experimentally compare the performance of a specific adaptive system 

with a state-of-the-art static façade technology. This approach is not able to give an answer to the research issues 

above, as it evaluates a specific case of adaptive mechanisms (in terms of time scale of adaptive mechanisms and 

adaptive façade properties) and technology. In contrast an inverse approach could be used: given a climatic and 

building context, the optimal adaptive façade properties and reactivity of the façade are found.   

Method 

The evaluation of the ideal combination of adaptive façade properties, in terms of U-value [W/m
2
K], g-value [-] 

and vis [-], is performed by means of a single objective optimization with a variable time horizon. The 

optimization problem for the whole year is considered as a summation of subsequent equilibrium ideal states 

with a shorter duration (i.e. monthly and daily), which can be simulated separately, as shown in equation (1): 

                                                                                                                        (1) 

where X=[x1,x2,..,xn] is the vector identifying the ideal façade properties at each time horizon ti, and f is the cost 

function (i.e. the energy consumption of the building enclosed by the façade with property X). This is based on 

the assumption that the effect of the thermal mass of the building is negligible (ISO EN 13790, 2008). This 

method can quantify in sufficient details the potential of adaptive facades only for long time scale adaptiveness 

of the façade (seasonal and monthly), while it can be used to highlight the trends towards increasing energy 

saving if a faster reactive façade is employed (daily). The definition of the constraints on the control variables 

(Loonen et al., 2011) as well as the definition of the cost function is of primary importance. The ranges of ideal 

adaptive  properties of the façade are defined so that each single property can vary in a domain that is physically 

feasible: U-value ranges between 0.2 and 5.14 W/m
2
K, g-value between 0.01 and 0.84, vis ranges between 0.01 

and 0.98. The cost function is the total primary energy consumption of a South oriented enclosed office room 
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located in London, as in equation (2). The cost function is modified by a barrier function in order to include the 

physical limit in the ratio vis/g-value (3): 

                                                                                                                           (2) 

            
       

     
                                                                                                                             (3) 

The workflow for the optimization is described as follows: (a) Matlab RA2013 is used to generate the parametric 

model with variable time horizon and to analyze the results; (b) the parametric model is fed to GenOpt (Wetter, 

2011), which runs the optimization; (c) the objective function is evaluated by EnergyPlus. PSOGPSHJ (Particle 

Swarm Optimization with Generalized Pattern Search Hookes and Jeeves implementation is used in GenOpt. 

The evaluation is carried out for different time scales of the adaptive mechanism, namely, monthly (M) and daily 

(D). As a term of comparison the primary energy consumption of a reference office with a reference façade (R), 

and of a reference office with the yearly optimized façade (Y) is considered.  

Results and conclusions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Specific primary energy consumption.           Fig. 2. 3D plot of M (white) and Min adaptive properties..  

 

An ideal static glazing façade technology (Y) could decrease the primary energy consumption of the enclosed 

office room located in London with 40% WWR by 12%. While a monthly ideal adaptive glazing façade (M) is 

able to provide an additional 10% energy saving compared to the yearly one. The limitations of the proposed 

method are highlighted in the case of a daily adaptation of the façade (D), in particular the difference in the air 

and mean radiant temperature among one optimization starting conditions and the precedent optimization ending 

conditions does not assure optimal results to be reached. Therefore an approximation method is proposed in 

order to reach a result (Min) which is closer to the daily optimal solution, by means of choosing the control 

variables resulting in always the minimum daily primary energy consumption comparing the monthly (M) and 

daily (D) optimizations. Finally a daily ideal adaptive glazing façade (Min) is potentially able to save an 

additional 14% energy compared to the monthly case study, 24% compared to the ideal static glazing (Y) and 

36% compared to the reference static façade (R).   Future work will expand the case studies analyzed to different 

climatic conditions, WWRs and orientations. Moreover different time frame of the adaptive mechanisms could be 

analyzed, i.e. seasonal,  or with different starting/ending days (for the monthly adaptiveness). In order to provide 

more accurate results for the daily adaptiveness a method will be proposed to reduce the effect of the difference 

of starting boundary conditions, while in order to evaluate the effect of the reduction of the time-scale of the 

adaptive mechanisms, model-base predictive control of the façade thermo-optical property will be explored.  
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ABSTRACT 

The complexity of modern buildings requires that a significant number of specialised disciplines are able to 

collaborate to ensure the success of a building’s design. Furthermore, within teams, there is a need to be able to 

efficiently design various aspects and components to conflicting requirements. By performing research within a 

practising engineering consultancy, the aim is to develop an understanding of how computational methods can 

be used more effectively to find optimised solutions to multi-objective problems in the early design stages. To 

explore this, a prototype framework using Grasshopper for Rhino has been outlined. 

INTRODUCTION 

Modern buildings are highly complicated structures. There are many often-conflicting constraints in their design, 

including cost, structural strength and durability, environmental footprint, and comfort. BIM exists in part to help 

manage the large amount of data, but the complexity and detail that BIM offers does not favour rapid exploration 

of ideas in the earlier stages of design. In industry, there remains a gap for early-stage, multi-objective, multi-

disciplinary optimisation tools and frameworks at the intra- and low-level inter-team levels. 

This research is being carried out within a multi-discipline engineering consultancy environment. The wider aim 

of this research is to integrate the most relevant existing tools (Attiaa et al., 2013) and methodologies 

(Lapinskiene & Martinaitis, 2013) using a Systems-based approach, as discussed by Geyer (2012), into a general 

framework that will assist consultancies in generating a range of optimised solutions for a given design problem 

early into a conceptual design stage. 

DISCUSSION 

A prototype framework is being developed (Figure 1) that will allow geometry and construction properties to be 

defined parametrically, and for an optimisation loop to improve a user-specified range of these parameters. This 

loop currently supports multi-objective optimisation with scalarisation, and can be adapted to optimise based 

upon a Pareto analysis, but in order to fully balance the conflicting needs that occur in holistic design, a strategy 

such as MDO (Multi-Disciplinary Optimisation) is required, as summarised in (Ren et al., 2011). However, 

because of the requirement to ensure that any solution remains accessible and ultimately time-saving for end 

users, the focus for the immediate future shall be to employ the simpler system in Figure 1 on a number of 

projects and studies, and to use learning from this experience to drive the next stage of research. 

Grasshopper studies 

Grasshopper is a plugin for the Rhino NURBS modelling tool that provides an intuitive, visual way of 

parametrically defining geometry through graphical programming. It has a wide community developing third-

party tools for analysis and creating geometry, including tools which link to existing analysis packages. These 

benefits have made Grasshopper a prime candidate for applying the framework above.  An example of how 

Grasshopper has been used to optimise simple structures is shown in Figure 2. Arbitrary cost functions were 

applied to geometry and scalarised to solar gain, and the geometry was optimised to minimise the total cost. A 

key outcome of this was the challenge of concisely and rapidly defining geometry; a number of components 

were consequently developed to allow users to quickly define rooms and windows. 

To further enhance geometry creation and analysis, a platform-independent geometry DLL SMART Form has 

been written in-house at Buro Happold, and links are being made between this library and Grasshopper, and with 

Dynamo for Revit. The generic nature of this library means that it is relatively simple to create new analysis 

links with other external programs as required in the future. The components written for Grasshopper as a result 

of this development have been applied on a number of projects, including panel analysis on a major development 
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for Singapore Changi Airport (Figure 2). These components can be used seamlessly with all other components 

available in Grasshopper, including the Galapagos optimisation component. 

 

Figure 1A simple optimisation procedure to be used as the basis for current and future work 

 

  

Figure 2 Analysis of a parametically-defined structure using DIVA daylighting analysis of a room with one 

window (left) and using in-house software to analyse panel planarity on a real project (right) 

CONCLUSION 

A gap has been found in industry in using computational tools and frameworks to assist in early stage multi-

disciplinary design process. An optimisation procedure has been demonstrated and implemented in Grasshopper, 

and the benefits of this are currently being explored. Future work will include exploring more sophisticated 

frameworks to handle the conflicting requirements that come with holistic design. 
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ABSTRACT 

This paper discusses several case studies of simulation-assisted optimal design and control: office-building 

design, blinds control, double-skin control and selection of double-glazing system. The optimization algorithms 

used in the case studies are Genetic algorithm, gradient-based search, Pareto, etc.  In the paper, the following are 

discussed: issues, limitations, and lessons learned by the use of simulation-assisted optimization.  

CASE STUDIES  

Case study #1: Heuristic vs. meta-heuristic approaches for energy optimization of a post office building  

In this study, application of heuristic and meta-heuristic to energy optimization of a post office building is 

presented. The target building was first optimized by a heuristic approach which was based on the expertise, 

experience and intuition of experts as well as the use of a whole building simulation tool, EnergyPlus. Then, 

such heuristic approach was compared to one of the meta-heuristic approaches, Genetic Algorithm (GA). The 

meta-heuristic approach was conducted in MATLAB platform where EnergyPlus and GA are coupled. M-script 

files were made by the authors to automate execution of simulation runs (reading output files and writing input 

files) with GA. It should be noted that in this study, most design and simulation parameters were fixed and given 

by the client. Therefore, the authors were not allowed to make any significant change to the original design of 

the building. It is not surprising that GA performs much better in finding a global optimum than the heuristic 

approach but it takes significant simulation run times and programming effort. The heuristic approach has 

advantages that it considers design context in decision-making and allow fast result analysis between building 

stakeholders (Suh et al, 2011). 

Figure1Comparison of annual heating and cooling energy (post office building) 

Case study #2: Static vs. optimal control for interior and exterior blinds  

Blind systems have been introduced to provide visual and thermal comfort, as well as to reduce energy use in 

buildings. A wide variety of such systems exist in terms of thermal and optical properties, location (exterior, 

interior), and physical configuration (size, distance between blind slats). The current problem with blinds is that 

their operation is not based on the dynamics of the room (space), but on the static or manual control operated by 

occupants, although many studies have recognized that dynamic control can far outperform static control. One 

reason for the lack of dynamic control is that it is not easy to combine the room dynamics with any possible 

optimization algorithm. Hence, in this study, a whole building simulation tool, EnergyPlus, was integrated with 

MATLAB optimization toolbox to solve for optimal control of blind systems. This study addresses the 

difference between static vs. optimal control of interior and exterior blind systems in office buildings. (Kim and 

Park 2012) 
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Figure 2 Simulation model and optimal control approach  

Case study #3: Local vs. integrated optimal control of double-skins 

This study presents the follow-up in the development of occupant responsive optimal control for double-skin 

systems that was previously published. In the aforementioned approach, the double-skin façade system was 

viewed as an ‘isolated’ system and hence treated as a local control problem, i.e., based purely on information 

about the state of the façade and its immediate environment. This study extends the local control problem to an 

integrated control problem in which room environmental control and façade control are dealt with 

simultaneously. It was found that the local control leads to sub-optimality, albeit of moderate proportions (Park 

and Augenbroe 2013).  

 

Figure 3 Various levels of couplings for façade control 

Case study #4: Gaussian emulator for stochastic optimal design of a double glazing system 

This case study presents the use of a Gaussian Process (GP) emulator for optimal design of a double glazing 

system. In general, stochastic Pareto optimization requires significant simulation run-time. With this in mind, the 

authors developed a simple and quick prediction model based on Gaussian Stochastic Process (GASP), Bayesian 

approach, and a dataset of observations. The GP emulator can be regarded as a surrogate model of Building 

Performance Simulation (BPS) tools. For design optimization, the Gaussian process regression model was 

iteratively computed inside an optimization routine in MATLAB optimization toolbox. It was found that (1) the 

GP emulator produces outputs almost identical to BPS tools, (2) requires significantly less computation time 

than BPS tools, (3) thus can be used beneficially for stochastic Pareto optimization. The approach reduces 

computational demand for stochastic optimization and contributes to rational decision making (Kim et al 2013). 

Figure 4 Non-dominated Pareto solutions 
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ABSTRACT 

Different aspects of building performance should be simulated using appropriate methods, and similarly different 

the optimisation of different aspects of performance are best approached with specific types of algorithm. One 

aspect of performance (e.g. annual performance of a proposed design) may depend on another (e.g. the way in 

which the building is controlled), leading to a nested or hierarchical problem. This paper discusses the 

implications of such system-level interactions in the phrasing of optimisation problems. 

INTRODUCTION 

For design problems, heuristic methods like genetic algorithms provide a powerful means of optimising black-

box problems. This is particularly true for multi-objective problems, where the NSGA-II algorithm [1] is a 

popular choice. 

For scheduling problems with many timesteps, programmatic methods like Mixed Integer Linear Programming 

(MILP) provide a more robust and rapid means of optimisation. The energy hub model [2] formulates a MILP 

problem to describe the energy conversion and storage between multiple energy carriers, such as in a co- or tri-

generation scheme. 

Deb and Sinha [3] have developed the idea of bi-level optimisation, where the objectives or constraints of one 

optimisation problem depend on a nested sub-problem. They used a multi-objective evolutionary algorithm for 

both levels, adapting the selection procedure of the NSGA-II algorithm to account for non-domination rank and 

crowding distances at the two distinct levels. 

EXISTING FORMULATION 

Figure 1 shows a bi-level arrangement combining a multi-objective genetic algorithm for plant, storage and 

renewables at the design-level, and an energy hub model for scheduling at the operational level [4]. The MILP 

energy hub formulation is used as the evaluation step in the GA iterations, taking the variable values for 

capacities to use as constraints. Because the demands to be supplied are fixed, these are given as external 

information to the energy hub process, along with data on efficiencies, carbon factors, storage losses etc. The 

process is also shown in simplified form in Figure 2(a), with the causality highlighted: fixed demands are used to 

calculate operational schedules, which are aggregated to get annual energy use. 

 

 

Figure 1. Bi-level optimisation of plant design (GA) and scheduling (MILP) [4]. 
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ALTERNATIVE FORMULATIONS 

Two alternative formulations are proposed, which add the ability to optimise building demands using the GA, 

and the coupling of control and scheduling. 

 

Figure 2. Three ways of formulating the system to be optimised. Dashed line shows the optimisation process. 

Optimising building demands 

Figure 2(b) extends the formulation so that design variables which affect demands (fabric properties, geometry 

etc) can also be optimised, as the demands are calculated at each GA iteration using EnergyPlus, as in many 

building optimisation formulations. The specific demands of each building configuration are then used for the 

operational optimisation using the energy hub model. An archiving strategy can be used to avoid rerunning 

costly EnergyPlus simulations when only plant options are changed. 

Coupled schedule and demands 

The above approaches are only suitable when specific energy demands can be calculated for a particular building 

design, i.e. when fixed set points and control choices are used within the building. The energy hub model can 

then find a schedule that optimally supplies these demands. Figure 2(c) includes a coupling between the demand 

and scheduling calculations, such that building operation can be adjusted in order to facilitate a better energy 

supply schedule within the constraints of thermal comfort. 

CONCLUSIONS 

A variety of formulations are proposed for multi-level building optimisation problems. The coupling of demand-

side and supply-side performance optimisation is highlighted as an important aspect of the scheduling problem. 

An iterative process could be used to link building control with energy supply scheduling. The nature of such an 

iterative process should take advantage of the information available from MILP solutions regarding binding 

constraints and sensitivities. 
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ABSTRACT 
The building design optimization process should result in a number of robust and innovative design solutions 
that simultaneously optimize one or more design criteria and provide the designer with information that aids the 
selection of a particular design solution for construction. This paper describes a four-stage optimization 
workflow: problem identification, implementation, solution, and analysis. The state-of-the-art and possible future 
research directions are considered in each of the four stages. In particular, future research should focus on 
optimization during the early design stage, on the integration of model uncertainty within the optimization, and 
methods of solution analysis that aid decision-making. 

INTRODUCTION 
Early research into the model-based optimization of buildings was often driven by the desire to find design 
solutions that minimised the buildings annual energy use or capital cost. A recognition that the design process 
involves the resolution of conflicting design goals resulted in the research shifting towards a multi-objective 
optimization approach. Even though there has been a six-fold increase in the number of research publications per 
annum over the last two decades (Nguyen et al, 2013), a number of open research questions remain unanswered. 
The questions are a result of: an increasing acknowledgement of the range of useful information obtainable from 
the optimization process; the differences in the design focus and problem specification across the design life-
cycle and the application of the optimization process to both an urban as well as single building scale; and the 
continuing need for an improvement in the computational effectiveness and robustness of the optimization tools. 
This paper presents a reflective summary of the state-of-the-art of building optimization research. The summary 
is presented in three parts: a commentary on the output required from the optimization process; the specification 
of a simplified generic framework for the optimization process; and a summary of the state-of-the-art in each 
element of the framework. 

DISCUSSION AND CONCLUSIONS 
Over the last two decades, building optimization research has been focused on the solution of multi-objective 
optimization problems in which two design criteria are simultaneously optimized. The approach results in 
multiple optima that lie on the trade-off between the design criteria. These provide the designer with a choice of 
solutions, with the selection of a single design for construction being made a posteriori to the optimization; the 
design-decision is derived from the information extracted from the candidate solutions. Implicit in this approach 
is an expectation that innovative design solutions will also result from the process. However, since by its 
nature, an innovative solution is atypical and perhaps beyond the designers’ experience, the decision-maker 
needs to be confident that the solution is robust and is not a result of a computational or modelling error. The 
robustness of the design solutions is a function of the uncertainty in the performance predictions (de Wit, 
2001) and the sensitivity of the solutions to changes in the design parameters. Therefore, at any stage of the 
design life-cycle, the optimization process should result in a number of robust and innovative design solutions 
that simultaneously optimize one or more of design criteria, and provides the designer with information that aids 
the selection of a particular design solution for construction.  
 
The state-of-the-art in model-based optimization is considered here 
through a four-stage optimization process of: Problem identification, 
Implementation, Solution, and Analysis (PISA). Although in general 
the process is followed sequentially, the four-stages are not 
independent (Figure 1), and can involve iteration between the stages. 
The simplicity of the PISA optimization process means that it is 
applicable to any stage of the building design life-cycle. 
 
Problem identification: is concerned with a high-level definition the 
design variables, the design criteria to be optimized, and the design 
constraints. Both topological and parametric optimization problems can 
be found in building optimization literature. The topological Figure 1, PISA Optimization Workflow 
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optimization includes layout-planning optimization, HVAC system configuration optimization, and district 
energy network optimization. Parametric optimization has been the most widely applied in the specification of 
design detail (the choice of construction materials, glazed areas, supervisory control setpoint, etc). There is a 
wide range in the scale of optimization problems found in the literature, with the majority of research focusing 
on problems having fewer than 100 problem variables.  Problems that attempt to optimize the control setpoints, 
or multiple buildings on an urban scale, can however result in hundreds or thousands of problem variables. More 
research is required for the efficient solution of large-scale (many variable) building optimization problems. 
There are generally three categories of design criteria: a criteria relating to capital expenditure, a second relating 
to the operation of the building (operating cost, energy use, or carbon emissions), and a third for client/occupant 
satisfaction (which includes occupant thermal comfort for instance). The specification of sub-criteria in each of 
these categories requires more research. Further, there are two key design stages: the early concept design stage 
in which the form and layout of the building are designed; and the second stage in which design detail is 
optimized. The two stages are distinct in that during the early concept design, the criteria may include subjective 
measures such as the aesthetic appearance of the building, with a desire by the designer to interactively guide the 
direction of the search. The criteria during the scheme and detailed design stages are quantitative with the 
designer only interacting with the process at the problem Identification and Analysis stages. The majority of the 
research to date has been focused on the scheme-detailed parametric design optimization, with more research 
required on early design stage optimization. Finally, while there is some progress on integrated design (Meuller 
et al, 2013), there is a need for research on design optimization that simultaneously considers multiple domains 
(the form, structure, and thermal performance for instance). 
 
The Implementation stage: is concerned with a low-level specification of the optimization problem and the 
development of models for quantifying the design criteria (including the uncertainty in the modelling process). 
The form of Solution process is often the drives the specific Implementation (particularly in the case of 
topological problems). In the case of a parametric optimization, there is scope for research into categorizing the 
problem variables, and implementing the problem in a way that allows problem-specific operators to inform the 
search direction (for instance, established control rules could be used to seed the search with viable control 
setpoints). More research is also required on the development of capital cost models that incorporate model 
uncertainty. 
 
The Solution process: is concerned with solving the optimization problem, evaluating the solution uncertainty 
and the sensitivity of the solutions to changes in the design variables. The majority of research to date has been 
focused on the use of Evolutionary Algorithms, most commonly in the solution of bi-objective problems. The 
computational load associated with simulating the building performance has also resulted in the use of a number 
of fast executing surrogate models. Although some work exists (Hoes et al, 2011), more research is required on 
integrating the solution uncertainty and sensitivity analysis within the optimization. More research is also 
required into suitable methods for solving problems having more than two objectives 
 
The Analysis: of the solutions provides information in a form that aids decision-making. This includes the trade-
off between the design criteria, the function of the variables in driving the trade-off (Brownlee and Wright, 
2012), the sensitivity of the criteria to changes in the design variables and the uncertainty in the criteria. To date, 
the analysis has been focused on the analysis of bi-objective problems, with more research required for problems 
having three or more objectives, and for integrating the analysis of the solutions uncertainty and sensitivity to the 
design variables. 
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ABSTRACT 

In this paper we report on our work in the past years on model predictive control of office buildings with focus 

on experimental applications and the modeling of buildings. 

INTRODUCTION 

Model Predictive Control (MPC) is a promising alternative to standard strategies for building control. MPC uses 

a mathematical model of the building and predictions of disturbances (e.g., ambient temperature) over a given 

prediction horizon (e.g., two days) for defining an optimization problem that is solved such as to maintain 

thermal comfort for the occupants while minimizing some objective (e.g., energy use or monetary cost). This 

makes it possible to integrate all available actuators and their interactions as well as predictions of weather, 

internal gains and electricity prices into a coherent, mathematical control framework that can handle constraints 

on control inputs and room temperatures. MPC relies on having a model of the building dynamics. 

SIMULATIONS, EXPERIMENTS AND SOFTWARE 

Simulation-based potential assessment of MPC [Oldewurtel 2012] 

In a first project (OptiControl-I, www.opticontrol.ethz.ch), the potential of model predictive control strategies 

was assessed in simulations. For a large set of building/systems/weather combinations, whole year simulations of 

industry standard rule-based controller (RBC) and MPC were performed. Validated one-zone bilinear resistance-

capacitance type models developed at EMPA [Lehmann 2013] were used. The simulations showed that 

(assuming no model-mismatch), MPC can in many cases save significant amounts (~20%) of control energy 

compared to conventional RBC. 

 
Figure 1: MPC room temperature performance (2012). EN15251 comfort constraints shown. 

Model predictive control of a Swiss office building [Sturzenegger 2013] 

The OptiControl-II project (www.opticontrol.ethz.ch) provided a proof-of-concept for the integrated control of  a 

whole office building. It addressed problems such as the modeling of real buildings, plant-model mismatch and 

compatibility with pre-installed control systems. On a typical Swiss office building with a conditioned floor area 

of ca. 6000 m
2
, five office floors were controlled for a total period of seven months. The MPC provided 

integrated control of the TABS, the air handling unit (including energy recovery/heating coil/evaporative cooler), 

radiators and centrally controlled blinds. The modeling approach is described in the next section. MPC was 

implemented as a high-level controller, sending set-points and operating modes to the existing low-level control. 

The control algorithm ran in Matlab on a PC, connected through a BACnet-OPC client to the building 

automation system. Figure 1 shows the spring/summer experimental period. The maximum (over all rooms) 

measured integrated comfort violations were approximately 10 Kelvin-hours, mostly stemming from the end of 

June when the cooling system was overwhelmed. Comfort also was maintained in the heating season  

experiments (not shown). This was underlined by the facility manager’s feedback.  
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BRCM Matlab Toolbox: Model Generation for Model Predictive Building Control [Sturzenegger 2014a] 

Creating an accurate building model that is simple enough to allow the resulting MPC problem to be tractable is 

a crucial task in the control development. The building resistance-capacitance modeling (BRCM) Toolbox 

(www.brcm.ethz.ch) provides a means for the fast generation of bilinear resistance-capacitance type models 

from basic geometry, construction and building systems data. It also supports the generation of the 

corresponding potentially time-varying costs and constraints. The full building model is constructed in a 

stepwise procedure: i) Automated generation of the building’s linear thermal model (describing the heat transfer 

between zones, walls and ceilings) from construction and geometry data;  ii) modeling of external heat fluxes 

(e.g. solar gains, building systems, internal gains etc.) using parameterizable modular sub-models; iii) 

discretization. Several comparisons with the widely used building simulation software EnergyPlus have shown 

average model discrepancies of around 0.5K over three days (a typical MPC horizon). Moreover it is possible to 

construct the thermal model directly from EnergyPlus input data files. 

Frequency-Domain Identication of a Ventilated Room for MPC [Sturzenegger 2014b] 

System identification methods have been used to model a ventilated room (with either constant air flow or 

constant supply temperature). An office type test room was instrumented for experiments and three models for 

the room were derived: i) an empirical transfer function estimate (ETFE) derived from a  pseudo-random binary 

sequence input signal; ii) an ETFE derived from a relay feedback approach; iii) a model generated with the 

BRCM Toolbox. Using additional validation data, the different models and approaches were compared in terms 

of accuracy and efficiency. The effect of air mixing dynamics was demonstrated in a further experiment to be 

one of the main differences between the experimentally identified and the RC model. An additional pole can be 

added to the RC model in order to compensate for the differences. 

DISCUSSION 

For MPC to become an interesting alternative for wide-spread commercial use, the modeling effort must be 

small. Hence, there is need for reliable and efficient methods for generating MPC suitable models of buildings. 

Key decisions in building MPC are the form of the model (linear / bilinear / nonlinear) and how it is obtained 

(physical modeling / identification). The obvious downsides of nonlinear models are that in the resulting MPC 

problem the “solution” time is long and it is usually intractable to find the global optimum. This makes it hard to 

test the algorithms in longer simulations. However, while modeling the building’s thermal dynamics linearly is 

usually a good approximation, some of the necessary simplifications in modeling building systems linearly may 

be too inaccurate. The best choice depends on the problem at hand but many cases can be covered by bilinear 

models. We believe that a physics-based modeling approach is better suited for integrated MPC of multiple 

actuators because it avoids time consuming identification experiments for potentially nonlinear multi-input 

multi-output systems. Moreover, it allows the physical interpretation of input-output relationships and can be 

easily adapted to changing zone geometries, HVAC systems etc. The obvious downside is that building data 

must be available. However, we believe that – if unavailable -  the use of  “best guess” data is sufficient to set up 

a conservatively tuned MPC that can be refined during operation once measurements become available.  

MPC has been shown in simulations to be a promising alternative to standard building control. However, upfront 

development costs – in particular for modeling - are currently too high for a widespread adoption in industry. A 

potential solution is the automated modeling implemented in the BRCM Toolbox. It was used in a proof-of-

concept project for the long-term integrated control of an operational office building under fully realistic 

conditions.  
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ABSTRACT 

As mandated by several directives issued by the European Union, starting from 2020, new buildings have to 

fulfil demanding low-energy standards. This new restrictions require the installation of renewable energy 

technologies, storage systems, and improved insulations. Due to the stringent requirements for such future 

building systems, the complexity of the design process will increase inevitably. Therefore, this paper presents a 

design framework for the optimal selection and sizing of such building systems. Various building components 

are implemented in the framework using mixed-integer linear programming techniques. In order to enable a 

reasonable comparison of various configurations, the problem solver computes an optimal operating strategy 

simultaneously. Finally, the impact of regulatory policies and variable pricing systems on the design of the 

building components are examined. 

INTRODUCTION 

Increasing energy prices and the more stringent legal regulations for the use of fossil fuels and CO2 emissions of 

buildings will result in the introduction of more building-integrated production. In Addition, with the 

introduction of a “smart grid” on the supply side, the impact of the interactions between the building and the 

supply grid increases. Introducing renewable energy sources such as wind and solar power plants will result in a 

fluctuating electricity production, raising a significant need for balancing power. The so-called “smart buildings” 

could provide a significant part of this ancillary service. 

The design of such smart building systems and its services is a computationally complex task. The variety of 

building applications, local weather conditions, governmental restrictions and energy tariffs makes it even more 

difficult to generalize the process of optimal component design. Based on these conditions, the building designer 

must assure an optimal selection and sizing of the building components, while pursuing the goal of an optimal 

operation of them.  

MODEL FRAMEWORK 

The process of simultaneous design and selection of building services is based on a framework previously 

described by the authors in [Ashouri et al., 2013]. The tool is called the smart building designer (SBD). Figure 1a 

shows the implemented devices in the SBD framework and the interconnections among them. Certain devices 

are installed in the building in order to convert the available resources into the appropriate deliverable types of 

energy. The outputs of the converters are transferred to the building envelope in the form of heating or cooling 

power, or electricity. However, the energy management system or the optimizer (in the design phase) decides 

how the power flows are distributed among the converter devices and other parts of the system. The optimizer 

controls the total input and output energy flows, as well as the internal flows between any two converters.  

The storage devices provide an energy buffer between the converters and the consuming devices. In addition, the 

external block provides gas and electricity to the building system. 

The principal optimization problem of the SBD framework is to find the optimal selection and sizing of building 

components in order to minimize a multi-criterion cost function. Since the optimal design and the corresponding 

operating problem are correlated, the SBD uses an optimal control approach. Hence, the design process is 

separated from the control problem. This separation means that if the suggested design is used, no other control 

strategy yields better results (i.e. a lower cost function). Vice versa, if the building is operated using the 

suggested optimal control strategy, no other component design is advantageous. Such an approach is referred to 

as a simultaneous optimization of control and design [Bansal et al., 2002]. The simultaneous optimization of the 

design and operation is performed for a full year, while the objective is extended to 20 years, which represents a 

typical life-time of the building services. The total objective function to be minimized consists of three monetary 

cost terms associated with investment (𝑂𝑖𝑛𝑣), operating (𝑂𝑜𝑝𝑟), and discomfort (𝑂𝑑𝑐𝑚), as well as a term 
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a)                                                                                         b) 

Figure 1  a) Overview of the SBD blocks, subsystems and energy flows: gas flow (black), electricity flow (dark 

grey), heating flow (light grey) and cooling flow (white). b) Component selection and sizing for 

different restrictions on maximum energy consumption. 

 

representing the subsidies (𝑆) for all devices: 

𝑂𝑡𝑜𝑡 = 𝑂𝑖𝑛𝑣 + 𝑂𝑜𝑝𝑟 + 𝑂𝑑𝑐𝑚 − 𝑆 (1) 

RESULTS AND DISCUSSION 

As concepts such as zero-energy buildings are being introduced by governments, a constraint on the annual 

energy consumption (𝐿𝐸) is introduced. This constraint ensures that all calculated optimal control strategies lead 

to a maximum annual energy consumption smaller than or equal to the energy limit, within the building 

envelope. The effect of applying such limitations on the design of the building is shown in Figure 1b. For values 

of 𝐿𝐸 greater than 50
𝑘𝑊ℎ

𝑚2∙𝑎
, the constraint is not affecting the optimization results considerably. Standard devices 

such as gas boilers (BGA) and heat pumps (AHP) and vapour compressions systems (VCS) are selected. As the 

external consumption limit becomes tighter, local energy production is needed. For a value of 𝐿𝐸 smaller than 

40
𝑘𝑊ℎ

𝑚2∙𝑎
, a photovoltaic system (PVS) and solar thermal collectors (STC) are integrated. However, the installation 

of storage devices such as battery systems (BAT) or thermal energy storages (TES) does not seem to be 

necessary until a very bounding constraint of 𝐿𝐸 smaller than 20
𝑘𝑊ℎ

𝑚2∙𝑎
 is applied. In addition, when the dimension 

of the STC becomes large enough, an absorption chiller system (ACS) replaces the vapour compression system 

(VCS). 

CONCLUSION 

The potential for the optimization of building services is increased due to the development of renewable energy 

sources and storage technologies. In this paper, a modular framework called the Smart Building Designer is 

described, which enables the derivation of an optimal component design and operation strategy of the building 

system. The investigations show that the SBD is able to solve the optimization problem for one year in less than 

10min on a typical computer. This ability is mainly due to the accurate but control-oriented formulation of MILP 

models. The SBD precalculates the required boundary conditions using the raw data such as those gained from 

meteorological measurements (temperature and solar irradiation), occupancy schedule, and spot-market 

electricity rates. Due to the modular and flexible framework, the user of SBD are able to optimize arbitrary 

building systems. The sensitivity analyses also demonstrate how increasing energy-carrier prices or 

governmental legislation results in different optimal designs. 
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ABSTRACT 
A toolbox for performing system identification on reduced order building models is presented. It allows 
automating the different steps in the system identification procedure such as data handling, model selection, 
parameter estimation and validation. A Modelica package, FastBuildings, containing a set of low order models is 
included in the toolbox. The toolbox is implemented as a Python module that wraps the functionality of 
JModelica.org to perform the optimization. This on-going work is followed by future plans to derive reduced 
order models directly from a Modelica model’s system of equations. 

INTRODUCTION 
As more computing power and low-cost sensors become available, more sophisticated methods can be used to 
design and control buildings. Model Predictive Control (MPC) is such a method. This methodology incorporates 
a controller model into the optimal control problem (OCP), which contains the most important characteristics of 
the controlled system. Constructing these low-order controller models often requires a lot of manual work. Ways 
to automatically derive controller models could therefore improve the practical usability of these methods.  
In this paper we discuss two approaches to do this. The first is a newly developed data-driven grey-box toolbox 
that fits parameters of low-order models to measurement data. The second is future work: a methodology for 
deriving low-order models from detailed Modelica models. 

GREY-BOX BUILDING MODELS FOR MODEL ORDER REDUCTION AND CONTROL 
In this section a toolbox is described that facilitates and automates the different steps of a system identification 
procedure. It estimates the parameters of a series of low-order building models using easily obtainable 
measurement data such as the ambient and zone temperature and electricity consumption.  
The toolbox consists of four major components: 

1. a Modelica library FastBuildings which contains predefined low-order models for thermal zones, 
HVAC components and buildings; 

2. several .mop files specifying the possible model structures and parameters to estimate; 
3. JModelica.org is used for compilation of the .mop files and solving the optimisation problem; 
4. the Python module greybox.py that contains the user interface and top-level functionality. 

The relation between these components is shown in 
Figure 1 and is further explained. 
The FastBuildings library contains multiple low-
order Modelica components, typically using RC-
networks. These components serve as the building 
blocks for the construction of the .mop files. The 
.mop files are very similar to ordinary .mo files but 
they contain two models: one for optimizing, called 
Parest and one for simulating, called Sim. Custom 
.mop files can be added using this structure. The 
FastBuildings library is distributed with the Modelica 
license 2 and can be found in the open-IDEAS source 
code repository on Github (KU Leuven and 3E). 
The Parest model contains the parameter estimation 
problem. The model parameters are free optimization 
variables and measurement data serves as input. The 
optimization problem is solved using JModelica 

grey-box modelling for buildings and the development
of a toolbox combining Modelica and Python. The re-
sulting framework will be referred to as the toolbox in
the remainder of this paper.

The aim of the toolbox is to identify low-order mod-
els from (limited) building monitoring datasets. When
the dataset is generated by a detailed building simula-
tion model instead of an existing building, we speak
of model order reduction. The obtained models can
be used in order to set up Model Predictive Control
(MPC) or to scale up simulations from single build-
ings to neighbourhoods and districts.

This paper describes the methodology of the tool-
box and presents some results of the application to a
model order reduction of a single-family dwelling.

2 Methodology
2.1 Overview

A high-level overview of the toolbox is shown in Fig-
ure 1. The toolbox is composed of four major compo-
nents:

1. Modelica library FastBuildings with thermal
zone models, HVAC components and building
models;

2. different .mop files specifying the model compo-
nents and which parameters to estimate;

3. JModelica.org as a middle layer for compilation
of the .mop files as well as formulation and solu-
tion of the optimisation problem;

4. Python module greybox.py delivering the user in-
terface and top-level functionality.

Figure 1: Overview of the grey-box buildings toolbox

2.2 Modelica

Modelica is gaining importance in the building simula-
tion community [5, 6]. The choice of Modelica for the
construction of the models is based on two major ar-
guments. First, Modelica allows for linear, non-linear
and hybrid model formulations and therefore it does
not limit the model structure as such. Second, Model-
ica is equation-based, thus allowing efficient Newton-
type solvers to be used as an alternative to for exam-
ple genetic algorithms. Moreover, as shown in Sec-
tion 3, the interfaces of the low-order models are iden-
tical to the detailed building model used in the IDEAS
library [7], enabling easy model exchange.

2.3 Models

Every model structure for which the parameters have
to be estimated is characterized by a different .mop file,
of which the format is very similar to an ordinary Mod-
elica (.mo) file. The .mop file extension is specified
by JModelica.org, which is described in Section 2.4.
Each .mop file has the same structure and has to define
two models: one model for simulation, called , and
one for parameter estimation, called . By de-
fault, the models are based on the FastBuildings Mod-
elica library, which has been developed in conjunction
with this toolbox. However, this is not required for the
toolbox to work, as long as some naming conventions
are followed. The FastBuildings library is introduced
in Section 3. Any parameter present in the model can
be estimated, including initial values of the states.

2.4 The JModelica.org platform

The toolbox relies heavily on the JModelica.org [8]
platform, which is an open-source tool for modelling,
simulation and optimisation of dynamic systems de-
scribed by Modelica code. For simulation purposes,
JModelica.org relies on the Functional Mockup Inter-
face [9]. For optimisation purposes, JModelica.org of-
fers various algorithms and also supports the Model-
ica language extension Optimica. Optimica allows for
high-level formulation of dynamic optimisation prob-
lems of the type presented in Section 2.5. The file for-
mat .mop is used for Optimica code.

The optimization algorithm used by the toolbox to
estimate the parameters is collocation-based and is
presented in Section 2.6 and described in more de-
tail in [10], where in particular optimal control is
also treated. IPOPT [11], built with the MA27 solver
of HSL [12], is used to solve the non-linear pro-
gram (NLP) that arises from the collocation method.

Figure 1: Overview of the grey-box buildings toolbox (De 
Coninck, 2014) 

COLEB Workshop, 6 & 7 March 2014, ETH Zürich 
Computational Optimisation of Low-Energy Buildings

23



(Åkesson et al., 2010). The optimization algorithm is collocation-based and is discussed in more detail by 
Magnusson et al. (2012). 
The Sim model has fixed parameters and is used to evaluate the performance of the estimated parameters based 
on a set of measurement data, which may or may not be the same data as used for the parameter estimation. 
The Python module greybox.py defines the GreyBox class. An instance of this class is made for the system 
identification of every building. This class keeps track of all attempts to identify the model using the Case class. 
Cases can for instance use different .mop files or can use different initial guesses for the parameter estimation 
problem. Cases can also be generated automatically by exploring the parameter initial guess solution space using 
Latin hypercube sampling.  
The cases of a GreyBox instance can be compared using the Sim model. The comparison includes predefined 
graphical and quantitative validation methods. Based on these methods the best set of parameters and type of 
model is then selected. This solution can then be used as the low order model for an MPC controller. 
For a more detailed description of the toolbox, its further possibilities and results we refer to De Coninck et al. 
(2014). 

REDUCED ORDER MODEL EXTRACTION FROM MODELICA MODELS 
Secondly we present future plans to derive a methodology to complement the data-driven approach described 
above with a methodology that uses the equations from a detailed Modelica model to construct a reduced order 
controller model.  
Modelica allows describing component and system models of buildings in high detail. This amount of details can 
be necessary to be able to assess the performance of a system accurately. However it is computationally 
impractical to use these detailed models to perform optimal control. Therefore a controller reduced order model 
needs to be derived, which can be obtained in different ways. The Modelica model could for instance be used to 
generate ‘measurement data’ that can serve as an input for the toolbox described above.  
However, since the Differential Algebraic Equation (DAE) system is available in Modelica, mathematical 
techniques such as model order reduction could be applied. The resulting reduced order system model or a 
collection of reduced order component models can then be used as the controller model in an MPC problem.   
Using this methodology the same Modelica model can serve as the basis for both the emulator and controller 
model of a typical MPC problem. Ideally the objective function and constraints for this MPC problem can also 
be incorporated into the same Modelica file. This would allow automating the setup of MPC for building models, 
as components can be switched in and out of the model and the correct MPC problem is derived automatically.  
Eventually these methodologies and further developments could evolve towards a collection of packages that 
form a tool chain for easily evaluating the performance of buildings based on dynamic simulations using optimal 
control in Modelica models. 

CONCLUSION 
This extended abstract first presents a toolbox for deriving grey-box low-order building models based on 
measurement data. Its different components are explained. Secondly future plans to complement this data-driven 
approach with a model-based approach are discussed. The goal of these methods is to be able to easily derive 
building MPC problem formulations based on Modelica models. 
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ABSTRACT 
Assessing the performance of advanced climate controllers for a complex building is a difficult task. 
Experimenting in occupied buildings is cumbersome and accurate comparison of the performance of different 
control algorithms is often impossible, due to different boundary conditions and assumptions. An alternative is to 
test the algorithms on dynamic building models using energy simulation platforms. However, until now no 
benchmark for climate control of complex buildings seems to exist with which academics and companies could 
compare their algorithms in an objective and unbiased way. The purpose of this extended abstract is to propose 
such a benchmark model, written in Modelica©, that would be freely available and that can be run in the open-
source software OpenModelica. The authors will also organize a competition, including both companies and 
universities, where the energy use or cost and thermal comfort of the office building will be compared for the 
different control algorithms developed. An online platform should also be created in order to share the results 
and information about the control strategies. 

INTRODUCTION 
In the last decades, building design and climate control have received increasing attention, in order to reduce 
primary energy use or in order to shift the peak energy loads. This trend results in more and more sophisticated 
buildings, with hybrid heat and cold production (e.g. the combination of a geothermal heat pump, a gas boiler 
and a dry-cooler), the use of thermal storage (e.g. storage tank, thermal use of the building structure, etc.) or 
special attention to the building envelope and solar shading. Traditional rule-based-controllers struggle to control 
this level of complexity with satisfactory results regarding both the users’ thermal comfort and the minimization 
of energy use. 
(Near) Optimal Controllers such as Model Predictive Control have been developed in order to use the dynamics 
of the building in a smart way, as well as the possibilities offered by hybrid systems or the information provided 
by weather forecast. Even though the improvement potential of these advanced technics has been proven both by 
energy simulation platforms and in some real buildings, quantitative comparisons between the state-of-the-art 
controllers used by control companies and the more advanced strategies being studied in research are still 
missing. To the authors’ knowledge, no benchmark exists for the climate control of complex buildings, which 
are both accessible and recognized by companies and academics. 
The purpose of this work is to propose a freely available detailed Modelica© model of a representative office 
building to serve as benchmark for building climate control algorithms. Companies, as well as academics are 
invited to test and compare their algorithms for different scenarios and publish their results for comparison. The 
authors would also like to organize a competition including different universities and companies where the 
energy use or cost and the thermal discomfort of the building are compared for each control algorithm. 

DESCRIPTION 
The choice of the building model is crucial as it should represent a typical office building but without 
unnecessary complexity. The proposed model is based on an existing building. The following sections describe 
the building, the boundaries and constraints of the system, the cost function that should be minimized and some 
technical details. 

Building description 
The building under investigation is a recently built Belgian office building with a floor area of 5000 m2. The 
building is well insulated (U-value of 0.25 W/m2K). The window-to-wall ratio is 0.36. All windows are retreated 
from the façade and they are equipped with solar shading devices. The building is divided into meeting rooms, 
open working areas, technical rooms (e.g. server room) and an underground garage. Besides space heating, 
cooling and ventilation, domestic hot water (DHW) is also taken into account. 
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Three different configurations of emission and production systems are proposed. Scenario 1 represents a 
conventional system using radiators, ventilo-convectors, a central air-handling unit with heat recovery and VAV 
devices for meeting rooms and for the server-room. A gas-boiler and a dry-cooler supply heat and cold and three 
storage tanks are available (for hot water, cold water and DHW). In scenario 2, a geothermal system is 
considered. The major part of the heat and cold demand is supplied by a ground-coupled heat pump with the 
possibility of passive cooling. A small gas-boiler and a dry-cooler are used for the DHW, to cool the server room 
and to cover peak demand. Thermally activated floors/ceilings replace the radiators but the ventilation stays the 
same. Finally, scenario 3 represents a more cost-driven building where the geothermal part is sized to cover the 
base load only. A condensing gas-boiler and a dry-cooler produce the remaining heat/cold. The emission and 
ventilation systems are the same as for scenario 2.  

Boundary conditions, cost function and constraints 
It is important to define which information will be accessible to the participants, what are the boundary 
conditions and constraints and what is the basis for comparison. 
The goal of the control algorithm is to minimize the primary energy use or cost (i.e. the electricity used by the 
heat pump, the circulation pumps, the fans and the dry-cooler and the gas used by the gas-boiler) and to 
minimize thermal discomfort (using Predicted Mean Vote or other methods). Day/night electricity tariffs will be 
taken into account. The constraints are the limited power of the heating and cooling devices, the nominal flow 
rate of the pumps and, only a limited thermal unbalance is allowed in the ground to ensure long-term sustainable 
operation of the heat pump system. 
We will provide to all participants a detailed description of the building and its hydraulic circuit. The developed 
algorithms will be tested considering two different cases. In case a, perfect knowledge of weather forecast and 
internal gains is assumed. In case b, we will provide weather forecast with a realistic accuracy and the internal 
gains will be stochastic. Afterwards the cost functions are evaluated using real weather data. 

Reduced order model 
Advanced control algorithms such as MPC need reduced order models to compute their predictions. In order to 
get such a model, the participants can set up virtual experiments for the model to gather the necessary 
identification data. We will also provide an identification data set and a proposal for a reduced order model. 

Technical details 
The model will be implemented in Modelica© using the IDEAS library (Baetens et al. 2012) developed at KU 
Leuven. The participants will get an FMU of the model that they can run in the free open-source platform 
OpenModelica. The participant can then write the controller in this platform, or couple OpenModelica to other 
software such as Matlab or Python. To lower the learning curve, a basic rule-based-controller implemented in 
OpenModelica will also be provided as an example, as well as guidelines for coupling to other software. 

Copyright policy 
All participants of the competition will be asked to share their results and algorithm description with the 
organizers (not necessarily with the other participants), so that we will be able to write a report about the 
comparison. The presented results can be anonimized upon request or a detailed description of the algorithm can 
be omitted.  

CONCLUSION 
In this extended abstract, a realistic office-building model is proposed as a benchmark for building climate 
control algorithms. Different scenarios are proposed by changing the production and emission systems, as well 
as by changing the level of accuracy of the weather forecast and internal gains. The general framework of a 
competition has been described where companies and universities would be able to compare building climate 
control algorithms with each other and assess their saving potential in a convincing way. 
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ABSTRACT 

In this extended abstract, we give a short overview of the lessons learned from reduced-order modelling and 

model-based control applications to minimize the total energy use of a hybrid ground-coupled heat pump 

(HyGCHP) system under operational constraints. The HyGCHP system investigated incorporates a ground-

coupled heat pump, a gas-fired boiler, a passive cooler and an active chiller. The applied control methods are 

prediction-based dynamic programming, non-linear model predictive control and linear optimal control. Our first 

finding is that the borehole thermal prediction dynamics can be modelled very accurately either by a low-order 

nonlinear autoregressive exogenous (NARX) model or by a low-order state-space model obtained by application 

of proper orthogonal decomposition approach to a finite-volume based emulator model. Second, the solution of 

the global optimal control problem of total energy use minimization does not depend on future states, on inputs 

and on disturbances. Finally, the results from application of the linear optimal control show that the controlled 

system is not strongly sensitive to heat pump coefficient of performance.  

INTRODUCTION 

For ground-coupled heat pump (GCHP) systems with vertical borehole heat exchangers (BHEs), the large 

investment cost for the BHEs represents a major bottleneck. This explains the trend towards compact, hybrid 

GCHP systems (HyGCHPs), which combine smaller boreholes with supplementary heating, or cooling devices 

such as gas-fired boilers and active chillers (see Figure 1). 

 

 
Figure 1: Hybrid system (gb=gas boiler, hp=heat pump, pc=passive cooler, ch=chiller, CT=cooling tower). 

 

The first step towards developing a model-based intelligent control algorithm for HyGCHP systems is the 

reduced-order modelling of borehole/borefield thermal dynamics. To this end, first, a borefield is modelled as a 

single equivalent borehole, which is sized according to the specified building loads. Second, for the equivalent 

borehole an equivalent diameter approach (Chiasson, 2007) is used. In the equivalent diameter approach, the 

heat transfer from the U-tube is approximated by the heat transfer from a single pipe with a hypothetical 

diameter through which the heat exchanging fluid circulates. After these two steps, grout and ground  regions are 

discretized and a finite-volume, large-scale model for the thermal dynamics is developed, for which the input is 

the net heat transfer rate to the ground and the output is the mean temperature of the heat carrier fluid in the U-

tubes of the boreholes. The temperatures of nodal points in the grout and ground regions together with the mean 

temperature of the heat carrier fluid constitute the state variables. The model obtained in this way is called the 

emulator model of the system. The emulator model is used for two purposes, (a) to obtain reduced-order models 

and (b) to assess the performance of different control methods. Two reduced-order models are derived from the 

emulator model. The first one is a NARX model: 

 

                                         ( )       ( (   )  (    )  (   )  (   )),                                                 (1) 

 

where       is a wavelet network.  This model is used as the control model for dynamic programming. The 

second control-oriented model is the following state-space model (SS) obtained from the emulator model via the 

proper orthogonal decomposition (POD) model-order reduction technique: 
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                                         (   )    ( )    ( )         ( )                                                                         (2)  

 

In both models,    is the heat carrier fluid mean temperature (  ) and   is the neat heat transfer rate to the 

ground. Multi-sine inputs are applied to the emulator model with a sampling period of 4 h to create the data for 

the construction of the above two models. The normalized root mean-square error (NRMSE) performances of the 

two models against the emulator model are as follows: 

 

                      
                                  

            
          

 
          

                   
                   

               

 

where the superscripts “id” and “val” are used to denote  identification and validation cases. The NARX model is 

used in a dynamic programming control and the SS model is used in a non-linear model predictive control 

(NMPC) method. The control objective is the minimization of total energy used by all components while 

guaranteeing that    remains in the range [0.5, 19.5] °C.  Interestingly, the results of dynamic programming and 

NMPC are indistinguishable implying that the instantaneous energy use minimization is the same as the energy 

use minimization over the whole period, which was one year. Figure 2a shows that the heat carrier fluid 

temperature bounds are hit (but not crossed), while Figure 3b suggests that the highest cost is associated with the 

heating regime.  

  
                                                               Figure 2:  Evolution of    and accumulated cost. 

 

Next, a series of linear optimal control (LOC) problems with constant heat pump COPs are tested. The results for 

total annual cost for LOC are very close to the result for dynamic programming or NMPC cases (Figure 3, left) 

but the heat carrier fluid temperature bounds are crossed  to some extent for some COP values in LOC (Figure 3, 

right). 

 
Figure 3: Total cost and temperature bound violation versus heat pump COP in linear optimal control (LOC). 
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INTRODUCTION 

The HVAC research group at Aalto University (former Helsinki University of Technology) has been developing 

combined use of building simulation and optimisation since the beginning of this millennium. The first trials 

were simple single-objective problems but soon the approach was changed into multi-objective. From the 

beginning, the goal has been to develop and use a true combination of a simulation software and an optimisation 

algorithm. Another goal has been the transfer of knowledge and skills to Finnish companies who would have 

huge benefit of using optimisation. 

 

TOOLS 

The main tool for building simulation has been IDA-ICE which is best known in the Nordic countries, but which 

nevertheless is among the most advanced building simulation programmes globally. In single-objective 

optimisation GenOpt package was first used. However, because there is no multi-objective algorithm included in 

GenOpt, an in house NSGA-II algorithm was coded and combined with IDA. The latest development is Multi-

Objective Building Optimisation package (MOBO) which is a generic type algorithm selection and can be 

combined virtually with any software, which is producing values for the objective functions. 

 

OPTIMISATION METHODOLOGY 

Different optimisation methods have been used for building energy optimisation starting from Hooke-Jeeves and 

similar single-objective algorithms. However, GA-type algorithms in different variants have proven to be very 

useful for most building energy optimisation cases. GA has been used as such but also in stages with a 

preparation phase to have a good initial population or a refining phase to draw some solutions closer to the true 

pareto front. In addition, some variants of the original NSGA-II have been developed. One variant with a passive 

archive strategy and another with an active archive strategy. The results indicate that the active NSGA-II has a 

better repeatability in finding optimal solutions with a high convergence than the original or the passive type 

algorithm. Finally, some trials in dividing the optimisation process into several stages from the decision 

parameters point-of-view has been made. In the first stage the building’s thermal performance is optimised, in 

the second stage the heating and cooling systems are optimised and in the third stage the renewable energy 

systems are attached and optimised. 

 

IMPLEMENTED CASE STUDIES 

The most common case has been a residential detached building or dwelling. The decision variables mainly used 

are some features of the building construction like insulation thicknesses, envelope tightness, window types or 

solar shading. The primary system variables have been the type of heating system, the type of ventilation heat 

recovery, the cooling options and the size of the renewable energy productions systems. Objectives are usually 

energy demand or CO2 emissions on one hand and investment or LCC cost on the other hand. In a Nordic 

climate, the heating system is dominating the solutions compared to the influence of the other variables. The 

summer time thermal conditions have been ensured by using an hour-degree constraint which rejects the 

solutions with not acceptable thermal conditions. 

Also some office and shopping center cases have been optimised. An office case easily gets quite complicated as 

there are many energy related systems to consider and system features on different parts of the building might 

need to be treated as separate variables. The simulation model of a large building must also usually be 

streamlined by merging adjacent spaces to keep the simulation time in reasonable limits. An experience with a 

LEED certified shopping centre showed that with a detailed model and long simulation time the GA population 

has to be kept rather small. Because of that, the pareto-front remains sparse.  
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May be one of the most important lessons learned is that the largest potential for optimisation in the building 

process is in the very beginning of the planning. During the conceptual design stage, there are the best 

opportunities to influence the building performance. Every decision made before the optimisation reduces the 

number of freedoms and the possibilities for finding prominent improvements.  

 

 

 

 

 

 

COOPERATION WITH COMPANIES 

There have also been some projects with Finnish consulting companies dealing with optimisation. One major 

goal has been to push the knowledge of optimisation to be integrated in the building design work. This however 

has turned out to be a very difficult task. The majority of the companies have so established design routines that 

it has been practically impossible to change the old conventions. The best method for knowledge transfer seems 

to be to include building optimisation in the master thesis done in cooperation with a company. When the 

company then employs the new master, they directly get a person who has an understanding of the 

methodologies. Still this does not guarantee that optimisation will be taken into use, because there always is 

resistance against new conventions inside the company. 

 

CONCLUSIONS 

There is a potential for improving the performance of evolutionary algorithms (speed and results quality) by 

combining them with deterministic algorithms and/or suitable archiving strategies. 

Performing the optimisation in several stages can remarkably save the total time for the optimisation task. 

In a cold climate the type of the heating system is a dominating decision variable determining the location of the 

solution points on a macro-level. 

The absolutely largest potential for optimisation in the building process is in the conceptual design stage. During 

later stages the possibility to influence important decisions is lost. 

The potential of multi-objective simulation-based optimization approach is not sufficiently exploited in current 

building design practice. The deployment and integration of a new approach has been proven to be difficult. 
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ABSTRACT 

Building performance simulation (BPS) is a complex domain, covering multiple objectives, comprising 

numerous parameters, and introducing many sources of uncertainty. Computational optimization using different 

algorithms has been introduced to building performance simulation in order to analyse the effect of often 

conflicting objectives. The implementation of optimization in practice however is often limited to assessing 

trade-offs between two objectives, e.g. energy consumption and thermal comfort. In this discussion paper, we 

present an idea to aggregate multiple objectives to a single objective problem, by grouping objectives into 

different categories. One of the advantages of this approach is to improve visualisation (as with a dimension of 

3-4 or higher objectives it becomes very difficult to interpret the Pareto front. The second advantage is to reduce 

the memory space that is needed for high resolution approximation sets in Pareto optimization. 

INTRODUCTION 

This paper discusses a modelling and visualisation approach based on multi-objective optimization in standard 

building performance simulation (BPS). Major obstacles for integrating and using optimization in BPS have 

been identified by Attia et al. [2013] as follows:  

(i)“requirement of high expertise”. Necessary input parameters such as number of design variables, number of 

objective function evaluations, population size, etc. can already be too complex to define for a standard BPS 

user. If there is high uncertainty in the input files for the optimization and the optimization process is often 

described as non-transparent or as a black box approach, consequently that leads to  

(ii)“low trust in the results“. The user has no impact on the outcomes, and his/her preferences are not taken into 

account. Optimal solutions with respect to a limited number of objectives may be rejected, as they are not 

compromised solutions.  

An environment is needed that integrates and links simulation and optimization, that is simple but still useful for 

the novice but can be complex for the more advanced user. It should provide a graphical user interface with 

which the user can interact and understand what giving preferences with respect to one objective may cause for 

changes in the design.  

The approach presented here provides a means to address these obstacles by presenting a new methodology of 

aggregating multiple objectives. The concept of aggregating objectives is not new and has been shown, for 

instance, in [Kruisselbrink et al, 2009] but what will be new in the field of BPS is the use of a desirability index 

that allows a more controlled and user influenced approach of aggregating the objectives. 

METHODOLOGY 

Pareto optimization as shown in [Hopfe, 2009; Hopfe et al., 2012; Emmerich et al., 2008] is limited to a small 

number of objectives. With an increasing number of objectives, it becomes computational expensive as the 

number of solutions tends to grow exponentially; further, the visualisation of results becomes very difficult. 

A desirability factor is introduced [Harrington, 1965; Kruisselbrink et al, 2009] in order to compare between 

different criteria. As such the designer can assign weighting values between 0 (poor quality) and 1 (high quality). 

For multi-objective optimization, this provides a means to easily aggregate a number of objectives to a single-

objective (comparable to a weighted sum method, however, based on non-linear users preferences). 

 

CASE STUDY 

A Passivhaus has to comply to a large number of criteria related to energy consumption, thermal comfort and 

others. It will be used to demonstrate the methodology. The number of criteria defining our case study can be 
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divided into fuzzy/ soft constraints (restricting to a number of overheating hours, compliance to building 

regulations) and a number of design objectives.  

min   ( )         

  ( )           ) 

 

RESULTS 

There is not just one “optimal” solution but rather a variety of solutions that are representing different trade offs 

in the objective space. As a consequence not all of these are optimal with respect to all objectives, and that 

means they do not optimally comply with all of the requirements. But decision makers may consider some 

constraints as soft constraints that he/she will be able to resolve at a later point.  The boundary between 

constraint violation and satisfaction is therefore fluid for some criteria. 

 

 

Figure 1 Resulting Pareto front with three objectives and subset of solutions depended on user’s desirability.
1
 

 

 

REFERENCES 

Attia, S., Hamdy, M., O’Brien, W.,Carlucci, S., Computational optimization for zero energy buildings design: 

interviews results with 28 international experts, in Proceedings of BS2013: 13th Conference of International 

Building Performance Simulation Association, Chambéry, France, August 26-28 

Harrington, E.C.: The desirability function. Industrial Quality Control, 21: 494-498,1965. 

Kruisselbrink, J.W., Emmerich, M.T.M, Bäck, T., Bender, A., IJzerman A.P, and van der Horst, E., 2009. 

“Combining Aggregation with Pareto Optimization: A Case Study in Evolutionary Molecular Design” in 

Lecture Notes in Computer Science, Editor Ehrgott, M., Fonseca, C. M., Gandibleux, X., Hao, JK, Sevaux, 

M, Vol 5467, pg 453-467, isbn 978-3-642-01019-4 

Emmerich, MTM, Hopfe, CJ, Marijt, R, Hensen, JLM, Struck, C, Stoelinga, P, 2008. Evaluating optimization 

methodologies for future integration in building performance tools, Proceedings of the 8th Int. Conf. on 

Adaptive Computing in Design and Manufacture (ACDM), 2008 

Hopfe, CJ, Emmerich, MT, Marijt, R, Hensen, J. 2012. Robust multi-criteria design optimisation in building 

design Proceedings of the building simulation and optimization conference, Loughborough, UK 

                                                           
1
 SHL=Specific Heating Demand, PL=Peak Load,  

COLEB Workshop, 6 & 7 March 2014, ETH Zürich 
Computational Optimisation of Low-Energy Buildings

32



MULTI-OBJECTIVE OPTIMISATION TO SIMULTANEOUSLY ADDRESS 

ENERGY HUB SIZING AND SCHEDULING USING A LINEAR FORMULATION 

Georgios Mavromatidis
1,2

, Ralph Evins
1,2

,
 
Kristina Orehounig

1,2
, 

 

Viktor Dorer
2
, and Jan Carmeliet 

1,2
 

1 
Chair of Building Physics, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, 

Switzerland 
2 

Laboratory for Building Science and Technology, Empa, Dübendorf, Switzerland 

 

ABSTRACT 

Multi-energy systems are expected to play an important role in future global energy mix. Effective design and 

operation of such systems is crucial for the realisation of the benefits they promise. This paper details an 

optimisation problem dealing with the simultaneous element selection, sizing and optimal operation of an energy 

hub using multiple objectives and a linear formulation. The approach is applied on a UK commercial building as 

a case study. 

INTRODUCTION 

The ‘energy hub’ concept, introduced by Geidl and Andersson (2007), is a framework to model the interactions 

between multiple energy carriers, energy converters and storage technologies. There are two types of problems 

where the energy hub is applicable: the first one is the optimal dispatch of energy between demand and supply or 

between different energy hubs. The second type is the design optimisation. The latter could be further subdivided 

into problems dealing with the optimal layout of elements inside an energy hub out of a series of options (Geidl 

and Andersson, 2007) and problems dealing with the optimal sizing of all the components that have been 

selected for an energy hub (Sheikhi et al, 2012). The aim of this study is to combine all the aforementioned 

approaches into a single methodology that will simultaneously consider which elements should be place in the 

energy hub, what their capacity should be and how they should be operated. 

MAIN PART 

Problem formulation 

The methodology developed for the purposes of the optimal energy hub layout sizing and operation will be 

presented through an example. A series of potential energy systems and carriers for the energy hub of a small 

UK commercial building is presented in Fig. 1 and includes renewable as well as conventional energy units, 

connection to the national electricity grid and thermal storage.  

 

Figure 1 Energy hub layout illustrating all potential energy carriers and converters   
 

The objective functions of the analysis involve the minimization of cost (both investment and operating) as well 

as carbon emissions. The two objective functions are presented below: 

  

Cost objective function: 
 

Carbon objective function: 

   ∑                 ∑           

   ∑               

(1) 

(2) 

i ∈{PV, solar thermal, ASHP, GSHP, biomass boiler, CHP, thermal 

storage}, j ∈{grid electricity, natural gas, biomass} 
 

where the decision variables are yi, a binary variable denoting the installation or not of technology i, capi that 

represents the rated capacity for the energy conversion technologies in kW and thermal storage in kWh or the 

area of PV and solar panels in m
2
 and Ij representing the consumption of different carriers. In terms of 

parameters, ai and bi represent the fixed and the linear cost of the cost function for the potential technologies, cj is 

Igrid

Isol
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Lh
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GSHP
Solar thermal
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Ibio
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the cost for the different energy carriers, and carbonj is the carbon factor for the different carrier. The energy 

balance of the energy hub and the thermal storage module are shown in Eq. (3-4): 
 

[
  

  
]  [

 
 

             

        

             

 
            

  
       

  
]   [                  

         
    ]          ,     (3) 

                                                                                                 (4) 
 

where Lh and Le represent the building’s thermal and electrical energy requirements, nsol and nPV are the 

conversion efficiencies of the solar thermal and photovoltaic system, nbio is the efficiency of the biomass boiler, 

COPASHP and COPGSHP represent the conversion efficiency from electricity to heat in the ASHP and GSHP 

respectively,      
     and      

     are the electricity consumption by the heat pumps, and the variables Q represent 

the energy leaving or entering the thermal storage module.  

Other problem constraints include non-violation of the maximum capacity, roof space availability for solar 

technologies, minimum part load during operation, maximum thermal storage charge and discharge rates, and 

non-concurrent charge and discharge of the thermal store. 

Multi-objective optimization solution strategy 

In this study, the ε-constraint method (Clark and Westerberg, 1983) is used to solve the multi-objective 

optimisation problem. Mathematically it can be expressed as follows: 

     
          ∈ {                 }

 (5) 

where f1 and f2 are the two objective functions, ε
L
 and ε

U
 are the values of the objective function f2 for the single-

objective minimization problem of functions f2 and f1, respectively. The region between ε
L
 and ε

U 
 into a set of N 

intervals. 

RESULTS AND DISCUSSION 

The results of the case study are presented in the Pareto front of Fig. 2. The cost optimal solution results in a 

configuration that includes a CHP engine and a thermal storage to cover the demand of the building, while the 

carbon optimal solution involves the installation of a biomass boiler with thermal storage as well photovoltaic 

panels on all of the available roof area. Intermediate solutions, moving from cost to carbon optimality, 

correspond to energy hub configurations with increasing PV area and biomass boiler capacity, while CHP 

capacity is reduced until it is eliminated from the energy hub configuration. Grid imported electricity is part of 

the operation in all different energy hub designs. 

 

 
 

Figure 2 Pareto front showing cost and carbon emissions for different optimal energy hub layouts  
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ABSTRACT 

We think that there is a need for a new building optimization tool that should be a generic freeware and can fill 

the shortages recognised in available tools. MOBO (Multi-Objective Building Optimization) is a generic 

freeware able to handle single and multi-objective optimization problems with continuous and discrete variables 

and constraint functions. It can be coupled to many simulation programs.  It has a library of different types of 

algorithms and is able to handle multi-modal functions and have automatic constraint handling. This is a brief 

about the features and implementations of MOBO. 

 

MAIN FEATURES OF MOBO  

 

 MOBO is a generic freeware able to handle single and multi-objective optimization problems with 

continuous and discrete variables and constraint functions 

 MOBO can be coupled to many external (simulation) programs 

 It has a an extendable library of different types of algorithms (evolutionary, deterministic, hybrid, 

exhaustive and random) 

 It is able to handle multi-modal functions and has automatic constraint handling 

 The input is fed by a GUI for defining the optimization problem 

 The user can write the input by algebraic formulas using standard symbols 

 The output can be viewed by two graphs that show the progress of the optimization 

 Allows parallel simulation 

 Portability: MOBO can be used with different other platforms in addition to Windows. 

 

The input (the optimization problem and simulation software parameters) is given through the Graphical User 

Interface (GUI), which checks that the input is correct interactively. For both the continuous and discrete 

variables, a pre-processing function can be added using standard algebraic symbols. The software supports 

approximately 50 functions that can be used in the formulas. Examples of these functions are sin, cos, sqrt, 

exponent etc. There is a library including different optimization algorithms. Currently there are 10 algorithms of 

different types: evolutionary with real and binary coding, deterministic, hybrid, exhaustive and random. Table 1 

indicates the available algorithms and their features. MOBO can make parallel computations by running multiple 

simulations threads on parallel. All the algorithms can make use of the parallel computing feature except the 

algorithm of Hooke and Jeeves. 

We have implemented MOBO in solving various optimization problems that we previously solved using other 

programs. Such problems include bi-objective and tri-objective problems with continuous, discrete or a mix of 

continuous and discrete variables, and with/without constraint functions. An example of the on-line results of 

MOBO is presented in Figure 1 for a bi-objective optimization problem for the minimization of the space heating 

energy and investment cost for a single-family house. The results in Figure 2 include the whole history of the 

brute force and random search method and the non-dominated solutions from two runs of a GA algorithms with 

a constraint (6000 additional investment cost) and without. The GA results are from running the algorithm once 

with 600 iterations. It can be noticed that the GA results capture the optimal solutions in the brute force with a 

good diversity of the points on the front. At this stage, MOBO implementations and testing are mainly targeting 

IDA-ICE, TRNSYS and E+ simulation programs. 

The software is available for download from the following link http://www.ibpsa-nordic.org/tools.php. More 

information about MOBO can be found in this paper http://www.ibpsa.org/proceedings/BS2013/p_1489.pdf. 
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Table 1. Algorithms in MOBO 

 

 

 

 

Figure 1. MOBO on-line results.  

 

 

 

Figure 2. MOBO results of the four search/optimization runs. 
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ABSTRACT 

The built environment represents a major share of global energy consumption. To effectively reduce the energy 

consumption of urban conglomerations, concepts to sufficiently integrate and manage energy from renewables 

are necessary. In this paper the energy-hub concept will be applied, which describes the relation between input 

and output energy flows and can be used to optimize the energy consumption during planning and operation. The 

concept will be used to evaluate a number of future energy scenarios for a village in Switzerland which has the 

goal of eliminating the consumption of fossil fuels.  

INTRODUCTION 

This paper applies the energy hub concept to evaluate a number of different future energy scenarios 

integrating renewable energy technologies for a village in Switzerland. The modeling concept of an energy hub, 

(developed by Geidl et al. 2007) describes the relation between input and output energy flows and can be used to 

optimize the energy consumption during planning and operation. It has the advantage to optimize the energy 

consumption, costs, emissions etc. due to regulating conversion, storage, and distribution of energy. The basic 

concept of an energy hub, which will be applied in this paper, consists of multiple input energy carriers which 

will be converted by the hub to multiple outputs. The energy hub concept will be applied to a village which has 

decided to increase renewable energy sources, and reduce the consumption of fossil fuels. As a starting point the 

existing situation concerning the energy demand of the village is analyzed. In a next step the potentials for 

different means of decentralized energy production is evaluated. In a third step, different future energy scenarios 

towards an energy sustainable community are defined. Finally an energy hub model of the village is developed 

and used to evaluate the different future energy scenarios for the village.  

ASSESSMENT OF ENERGY SCENARIOS USING THE ENERGY HUB APPROACH 

The current energy situation in the village 

The village is located in Switzerland and consists of approximately 300 buildings, of which about 230 are 

residential and trade, and some additional buildings pertaining to agriculture, restaurants, industry, hotels, public 

buildings etc. As a starting point the existing situation concerning the energy demand of the village with respect 

to different uses, the different energy carriers, and their distribution and networks are analysed. To identify the 

energy consumption of the buildings, information pertaining to annual electricity, oil, and wood consumption 

and delivered energy from the district heating network was collected. Collected information was further analysed 

to identify the energy used for heating and for electricity. Based on this analysis the overall energy consumption 

of the village was 6 950 MWh electricity consumption for appliances and 13 888 MWh for net space heating. 

Potential assessment of renewables 

In the next step the potentials for decentralized energy production are evaluated. Decentralized energy 

production includes building integrated or local renewable energy production by photovoltaics. To evaluate the 

potential the simulation tool CitySim is applied (Robinson et al. 2009). In addition to photovoltaic, the potential 

to generate electricity by small hydro power turbines is explored. As an initial approach it is assumed that small 

water turbines could generate 680 MWh per year. An additional approach to increase renewables within the 

village is the extension of the current district heating network. First assumptions assume that the network is 

extended to cover also the city centre of the village.   

Energy Scenarios 

As a next step, five different future energy scenarios S1-5 are defined which will be explored with the 

application of the energy hub concept. As a starting point the focus lies on the integration of renewables in 

individual buildings, without integration into energy networks. It was assumed that the new village energy 

strategy is able to replace all existing energy carriers if required (connection to the electricity network, oil space 
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heating, district heating network fired by wood chips,  wood stoves). In the first scenario S1 the possibility of 

additional electricity from PVs is provided. It was assumed that electricity both from the electric grid and from 

PVs could be used directly to cover the electricity demand of appliances or it can be converted by the energy hub 

to heat. The other energy carriers (oil, wood chips, and wood) can be solely used to cover the space heating 

demand. The second scenario S2 takes the same energy carriers into account and additionally assumes the 

installation of a small hydro power plant. The third scenario S3 is similar to S2 but the feasible amount of 

photovoltaic is reduced to buildings outside the centre of the village. The fourth scenario S4 is also similar to S2 

but assumes that the current heating district network will be closed. And finally the fifth scenario S5 assumes 

that the district heating network is further extended to the core centre of the village, assuming an increase in 

biomass potential.  

 

Set-up of the energy hub model 

The next step is the set-up of the energy hub model for the village: the multiple-energy carrier optimal 

dispatch model. This model evaluates the optimal dispatch of multiple input carriers to effectively cover the 

required heating and electricity load at the output of the hub. For optimizing the proposed energy systems a bi-

objective function was assumed, aiming for minimal CO2 emissions and minimal energy costs. These two 

objectives were combined using a weighting factor.  

RESULTS AND DISCUSSION 

Figure 1 shows energy hub model results for the proposed scenarios S1 to S5. The pareto curves show 

optimization results for different weighting factors 0  ξ  1. Results indicate two to three times higher emissions 

for a weighting factor which prioritizes costs, whereas scenarios aiming for minimal emissions indicate a 40 to 

60% increase in costs. Comparing the five different scenarios, S5 showed the lowest values for both CO2 and 

costs. Scenarios which are optimized for costs consume mainly oil for space heating, whereas scenarios which 

are optimized for emissions do not take oil into account, but energy from renewables (photovoltaic and biomass), 

which clearly shows that emissions and costs are conflicting parameters. Pareto curves of scenarios S1, S2, S3, 

and S5 furthermore suggest that reducing the oil consumption is more effective in terms of reducing costs and 

emissions compared to other measures. The best-performing scenarios showed a reduction of 38% in CO2 

emissions compared to the current energy situation in the village. 

 

Figure 1 Pareto fronts (minimal costs ξ=1, minimal emissions ξ=0) of energy hub results for different scenarios 

S1-S5 (upper graphs).   
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ABSTRACT 

In this paper the principle of low temperature district heating and cooling networks bases on uninsulated, water 

bearing pipes and large borehole fields is illustrated based on one example. Furthermore, the need of 

optimization work for future design and control strategies is highlighted and interesting challenges associated to 

this kind of heat and cold supply system are pointed out. 

INTRODUCTION 

Novel neighbourhood-based energy concepts can find synergies in the “heat” demand of residential buildings 

and the “cold” demand of buildings from the industry or the service sector. The concept of a low temperature 

district heating and cooling network, where water-bearing uninsulated pipes serve as an “intermediate 

temperature” source for heat pumps as well as for chillers, is aiming to take advantage of these synergies in 

urban areas. Large borehole fields can compensate seasonal mismatches between ‘heat’ and ‘cold’ demand by 

some extent. several of these networks are under construction or have been realized in Switzerland in recent 

times (Sulzer & Gautschi 2008), (Ruesch et al. 2013). The dynamic behaviour during operation strongly depends 

on the individual “users” and is not well known and difficult to predict. Nevertheless it strongly affects the flow 

levels and pressure drops in the network and accordingly the needed pumping power as well as the temperature 

distribution in the network and with it the efficiencies of the individual heat pumps. This paper discusses 

possible optimisation approaches for design and control of such networks. 

AN EXAMPLE PROJECT 

One example of such a network is being built by a housing cooperative (Familienheim Genossenschaft Zürich 

FGZ) with more than 2000 flats and a space heat and domestic hot water consumption of 35 GWh. The same 

network is used for datacentre cooling by two companies. The first phase (Figure 1) has a network length of 1.2 

km, a borehole field of 153 boreholes with a length of 250m, a design energy demand of 9.5 GWh and an 

estimated cooling load of 15 GWh (more details in (Ruesch et al. 2013)). Three energy centers [E] constisting of 

circulation pumps, heat pump, conventional peak burners and local storages provide energy at the desired higher 

temperature levels for entire building blocks. 

 

Figure 1. Sketch of the FGZ low temperature 

district heating network. The first construction 

phase (blue line) is starting operation in Sept. 

2014 with three large heat pumps (E), cooling 

of a swisscom data centre and one large 

borehole field (3). Two further construction 

phases are planned for the future.  

SIMULATION SOFTWARE 

The software polysun provides a high level of hydraulic detail combined with fast simulation time and is there 

for well suited for optimization (Brönner et al. 2011). It is able to account for the highly variable flow 

distributions in such an undirected network guiding the interaction between energy sinks and sources as well as 

the pumping energy. Polysun can be called from external programs and was used for optimization studies by 

Bornatico et al. (Bornatico et al. 2012) who compared a particle swarm optimization and a genetic algorithm 
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programmed in Matlab for the optimization of a solar combi system. The same autor also used detailed annual 

simulations with polysun in order to build a surrogated or meta-model, which is then used for optimization 

(Raffaele Bornatico u. a. 2013).  

PHRASING OF AN OPTIMISATION PROBLEM 

As there are no established design guidelines for low temperature networks optimization at the design level is of 

high interest. At the user level the size of the pumps, heat exchangers, local storage, heat pump or chiller and 

conventional peak burners can be optimized. At the level of the network, the topology and size of the piping and 

borehole fields have impacts on short and long term storage capacities and on the overall available peak power 

from the network. At the design stage, optimization consists of a bi-objective problem with a trade-off between a 

cost and an energy function and one major constraint; To provide the desired heating and cooling loads.  

A further important field for optimizing low temperature networks is the control strategy. Most existing systems 

are controlled by the local demands with an overall control system able to block single consumers. Local short-

circuits are avoided by one major control parameter, the globally fixed temperature difference between flow and 

return (for example 4K). Also other control parameters as target values for the flow or return temperature (with 

possible seasonal or even daily variations) are possible. An optimization of these control parameters and a 

comparison of the different reference temperatures is in progress. The local storage possibilities for DHW and 

the thermal capacities of the buildings allow a certain amount of flexibility in the timing of energy withdraw. For 

that reason, strategies aiming to correlate heating and cooling demands could be favourable for the energy 

efficiency, and control algorithms adapted to more flexible future electricity price models could result in a 

financial benefit.  

It is evident that control and design optimization is interfering and control variables should be taken into account 

at the design level. However, an independent optimization of control issues for a fixed set of design parameters 

makes sense when existing networks are considered. For that case, the energy/cost trade-off is expected to be 

less pronounced and a single objective approach (energy) is supposed to be sufficient.  

A major difference of low temperature networks to ‘classical’ HVAC systems is the existence of different 

stakeholders with sometimes differing interest and with a certain freedom to optimize their ‘part of the system’ 

according to local objectives. To give an example: Residential buildings are interested in running their heat 

pumps with high source temperatures, even though, operating heat pumps for DHW preparation in summer at 

lower source temperatures could be favourable for the global system efficiency in order to enable free cooling 

for other users. The comparison of a local ‘stakeholder wise’ optimization to a global optimization approach is 

envisaged.  

Other peculiarities of such networks, as the strong long term effects of large borehole fields and the evolution of 

loads (connection of future construction phases, efficiency of future server technologies) extend the simulation 

times and complicate the formulation of a cost function. The large insecurities for future loads also amplify the 

need of a sensitivity analysis to justify optimization results. 

CONCLUSION 

As the principle of low temperature district heating and cooling is relatively new, there is a lack of knowledge 

about optimal design parameters and control strategies. Taking into account different stakeholders and their 

proper interest, the long-term effect of large borehole storage fields and insecurities in the evolution of heating 

and cooling demands are identified as the most challenging problems for this optimization work. 

ACKNOWLEDGEMENTS 

The mentioned project is finances by the Swiss Federal Office of Energy and is done in cooperation with the 

industry partners Amstein + Walthert AG and Vela Solaris AG. 

REFERENCES 

Bornatico, Raffaele u. a., 2012. Optimal sizing of a solar thermal building installation using particle swarm 

optimization. 23rd International Conference on Efficiency, Cost, Optimization, Simulation and 

Environmental Impact of Energy Systems, ECOS 2010, 41(1), S.31–37. 

Bornatico, Raffaele u. a., 2013. Surrogate modeling for the fast optimization of energy systems. Energy, 57(0), 

S.653–662. 

Brönner, P. u. a., 2011. Polysun Grundlagen: Übersicht über Numerik und physikalische Modelle. OTTI-

Symposium Thermische Solarenergie. Bad Staffelstein, Deutschland. 

Ruesch, F. u. a., 2013. Heat and cold supply for neighbourhoods by means of seasonal borehole storage and low 

temperature energetic cross linking. International Conference on Clean Technology for Smart Cities 

and Buildings CISBAT. Lausanne, Switzerland. 

Sulzer, M. & Gautschi, T., 2008. ETH Zürich, Hönggerberg Masterplan Energie. In 15. Schweizerisches Status - 

Seminar «Energie - und Umweltforschung im Bauwesen». Zürich. 

COLEB Workshop, 6 & 7 March 2014, ETH Zürich 
Computational Optimisation of Low-Energy Buildings

40



OPTIMISATION METHODS FOR THE DESIGN OF URBAN ENERGY SYSTEMS 

 

François Marechal 

Industrial Process and Energy Systems engineering Group 

Ecole Polytechnique Fédérale de Lausanne 
 
 
 
 
 

INTRODUCTION 

The design of urban energy systems involves the choice of the energy saving measures and of the energy 

conversion units to be considered in the energy system, their sizes and their corresponding operating conditions 

to be considered over the expected life time of the system’s equipment. The decisions cover different aspects 

from the buildings structure and infrastructure, the heat distribution, the energy conversion system and the 

harvesting of renewable local resources to the control system. The optimization problem is therefore a large scale 

problem with integer and continuous variables. Considering the uncertainties of the stochastic environmental 

conditions, behaviours of the inhabitant and energy market prices, the optimisation under uncertainty has to be 

considered. In the proposed approach (Fig 1) superstructure modelling approach is used to represent in a single 

model the possible interactions between technological options. The thermo-economic and environmental impact 

performances of the system are then modeled. A multi-objective optimisation finds trade-offs between 

efficiency, costs and environmental impact. Results are analysed to assess the sensitivity to uncertain parameters 

and to verify optimality. New problems are often formulated by enriching the system superstructure, extending 

the system boundaries or integrating additional constraints. 

SUPERSTRUCTURE MODELING 

A system superstructure is a model that aim at representing the technological options in a single model and to 

model its performances. The superstructure modeling defines the list of options and their thermo-economic and 

environomic models and the different ways they can interact. The presence and the size of the different options 

are parametrized and associated with decision variables. The thermo-economic model aim at representing the 

efficiency of the technological options as a function of the environmental conditions and deduce their 

corresponding investment. The environomic model aim at modeling the environmental impact of the options 

considering the life cycle impact over the phases of its life. It therefore considers the contruction, operation and 

dismantling phases. One of the difficulty of the model development is the modeling of the interactions they 

reveals to be highly combinatorial in complex systems. A typical approach is to use predefined system 

configurations that are compared. Instead one can use an optimisation strategy to calculate the system 

configurations. The superstructure model uses process integration techniques and automatic superstructure 

programming that models all the possible interactions. It then uses integer variables to extract out of the list of 

the possible options that one that minimize the objective function [5]. 

A MASTER/SLAVE OPTIMISATION APPROACH 

The problem is by essence a non linear non differentiable mixed integer non linear programming problem. A 

decomposition approach can be used to solve this problem ([6]). By partitioning the decisions variables into two 

sets, the optimisation problem is solved by solving a master optimisation problem that is using as an objective 

function the results of a slave optimisation problem. The decomposition strategy is such that the sub-problems 

(slave problems) can be solved using robust and efficient methods typically dealing with the combinatorial 

nature of the problem, while the master decision variables (the complicating ones) are calculated using heuristic 

optimisation methods like the evolutionary algorithms. 

SLAVE OPTIMISATION USING A MULTI-TIME/MULTI-PERIOD APPROACH 

A mixed integer linear programming model is used to calculate system performance and decide system 

configurations. Integer variables are used to decide if a connection exist and if an option is in use in the 

configuration. A multi-time/multiperiod approach is used to calculate the operating performances of the system. 

The model account for the system dynamics and the optimal predictive control aspects. The model account for 

storage capacities, the stochastic gains and renewable energy inputs in the system. Representing the performance 

over the life span of the buildings and equipments is a challenge since it represents up to 220000 hours of 

operation. Instead of using a typical year simulation, a probability approach can be used. A set of typical periods 

represented by a certain time sequence with a certain probability of occurrence represents the demand ([2]). To 

this set, we add the extreme conditions to be satisfied by the system. The definition of the typical days can be 
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realised using clustering techniques and has proven to be more precise then the typical mean year approach while 

reducing the problem size by a factor 100. The time sequence (equivalent to one day of operation) is solved 

using a cyclic model, while the yearly operating cost is calculated by considering the yearly frequency of 

appearance of the period. Non linear equations (e.g temperature dependence) are modeled by discretising the 

operating conditions or by piecewise linearisation. The model is programed using AMPL and defines a mixed 

integer linear programing problem solved by robust branch and bound algorithm like CPLEX [3]. 

 

 
Figure 1: Problem-solving methodology [1] Figure 2: Pareto fronts for a urban energy system 

 

MULTI-OBJECTIVE OPTIMIZATION AND UNCERTAINTIES 

The master slave optimisation scheme uses the results of the slave optimisation to calculate the system 

performance, combining the estimation of the investment, the calculated yearly operating cost and the estimated 

environmental impact using the life cycle environmental assessment methods. For the later, a link with the 

ecoinvent life cycle inventory data base and the system model is created. An evolutionary algorithm is then used 

to generate thermo-economic and Environomic Pareto fronts. In urban energy systems, 3 objectives are used: the 

investment, the operating cost and the CO2 emissions. Example of such resulting Pareto curve is given on figure 

2. Multi-criteria and sensitivity analysis can then be applied to identify the more robust of the most preferred 

solutions. In addition, uncertainty analysis can be applied to deduce the most probable optimal solutions. This is 

done by applying Monte-Carlo simulation in the domain of uncertain parameters like energy and investment 

costs. 

CONCLUSIONS 

The optimisation strategy proposed for the design of urban energy system uses a decomposition based 

multiobjective optimisation approach. It allows to solve using a holistic approach the design of urban energy 

systems considering at the same time the energy efficiency measures, the energy conversion, the storage and the 

integration of renewable energy resources. The results of the optimisation leads to energy system design to be 

validated using more detailed dynamic simulation models that should integrate predictive control models. The 

method can be used to design the energy system of an geographical area considering not only the households 

application but the different energy services in a holistic approach as demonstrated by [4]. 
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In order to reach the goals of the mayor's convention, communities of all sizes undertake efforts in energy 

planning. The planning requires the knowledge of the current and future energy consumption. For the prediction 

of city or district wide energy demand, existing data is collected and building simulators are used. Ideally the 

planners get geo-localized heating or cooling loads to plan future installation or pathways. However, often the 

input data sets are incomplete and therefore completed with the help of assumptions. 

Tracking the quality of the energy demands when they are aggregated at district level is difficult. In the case of a 

centralized heating system over or under sizing is very probable. Once the sizing is not correct, additional risks 

such as bad performance predictions appear as the system is used out of the original planned range. 

Especially the prediction of the energy demand of each building is a difficult task as rarely precise information 

about the buildings physics are available. In addition, only few measurements such as annual energy, 

construction year and building usage consumptions exist. Therefore determining the real energy demand of 

building becomes a difficult task. 

The annual energy bill depends on  a mix of behavior, control and the technologies efficiency which often does 

not fit to the value that a physical building model estimates. Of course, both could be better calibrated, if 

individual visits were undertaken. On a city level, this represents a time (and money) consuming task rarely 

undertaken. 

The more complex the building modeling software gets, the more data needs to be prepared that is generally not 

available such as shown in (Perez 2013, chap. 5.4). This leads to parametric studies that are difficult to verify 

and cannot separate behavior and performance.  

The paper of (Rysanek, Choudhary 2013) shows a framework on the building level with the relevant elements 

calculating best and worst case scenarios. For the sake of simplification only the technical side will be discussed 

further. Each building has a three basic options:  

 Business as usual do nothing, integrate building as it is, 

 Refurbishment with impact on the energetic consumption (adding isolation, change windows,...),  

 Exchange of technology (multiple energy systems, storage systems, load shifting,...). 

These choices serve as input into the model. When these options are modeled as binary variables switching a 

certain option on or off, already millions of combinations are possible for a single building. They will grow 

exponentially on the district level with each building. Adding any sort of uncertainty into the technical 

parameters further increases calculation time (Rager, Dorsaz, Maréchal 2013). 

Currently a framework has been used that separates the non linear and the linear parts of the energy system into a 

master-slave or decomposition approach. The slave part uses a MILP model solved with AMPL (Fourer 2003) 

and Gurobi (Gurobi Inc 2013) considering power and temperature levels. An evolutionary algorithm (Eddy, 

Lewis 2001) implemented in Dakota (Eldred, Adams, Ebeida, Jakeman, Swiler, Bohnhoff, Dalbey, Eddy, Hu, 

Vigil, Bauman, Hough 2013) tries to find the best solution for the master problem looking to maximizing the 

performance of the system while minimizing the CO2 life cycle emissions. 

Therefore the question: How can such a framework be used to calculate realistic district energy systems while 

providing variances on the results in a promptly way? 

On a district level two sub question are to be answered that can insure significantly the planning accuracy: 

1. What is the energy and maximal power demand of a given building in a city? 

2. What is the impact of technical uncertainty on a district energy plan or district energy system? 

PROPOSITION 

In a first approach the model could run without any uncertainty model what so ever. Based on the pareto frontier 

found, individual points can be tested on robustness to ensure that slight variations of key parameters do not 
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significantly vary the result. Based on the conclusion of (Campolongo, Saltelli, Cariboni 2011) the following 

simplified approach is proposed:  

1. Determination of the uncertain input values. 

 a) Either big sample size if it can be evaluated quickly 

 b) small sample size if calculation time is high 

2. Quasi-random choice of uncertain input values, the rest of the values are chosen from optimal points 

3. Study the propagation of uncertainty on the results. 

4. If the variation of results is too big, new sample are made and added 

5. Define a stopping rule, at the latest when all points of the pareto frontier are have been tested. 

CONCLUSION 

The variation of inputs allows to study the changes in system configuration and performance on uncertain inputs. 

It limits the search space to the best solutions found in an approach assuming perfect information and can 

considerably reduce calculation time. As a result, the original pareto frontier can be shown with an expected 

variance considering the uncertainties of certain input values. 
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ABSTRACT 

Current methods of designing HVAC systems for residences do not take into account the potential energy cost 

savings of system components when optimal control is applied. This extended abstract presents a design 

approach that does consider this potential and discusses the additional advantages this implies, such as 

downscaling heat production systems or profiting from a fluctuating electricity price. Current implementations 

show promising calculation times, which should make the approach applicable to larger clusters of residences. It 

remains a challenge to quantify the performance of this design approach relative to other design procedures.  

INTRODUCTION 

Nowadays, design of HVAC systems in residences is still widely based on static methods, while researchers 

have clearly shown the benefit of employing dynamic simulations in the design process. Still, the latter design 

process typically focusses on one residence, neglecting the impact it might have on the global energy system, 

such as overloading the distribution grid feeder (Baetens et al., 2012) or peak electricity demand (Hasnain et al., 

2000). This extended abstract introduces an approach towards HVAC systems design that is computationally 

efficient such that it allows upscaling and tackling the above mentioned global energy system impacts. Key in 

this approach is to combine simulation, control and design in one optimization problem.   

METHODOLOGY 

The starting point for the new approach stems from the field of model predictive control (MPC) for HVAC. This 

control method employs simple physical models that represent the most relevant dynamics in the controlled 

system and give a good estimate of the real system performance (Ma et al., 2012). According to Verhelst (2012), 

this control strategy not only reduces energy costs by anticipating fluctuating electricity prices, but also in some 

cases completely avoids the use of back-up systems. This implies reconsidering certain aspects, such as peak 

load and thermal energy storage sizing, when designing HVAC systems that employ MPC. This can be 

illustrated by considering the following optimal control problem (Eq. (1)-(4)) of an MPC for a residential 

building with a heat pump. 

        
∑         

  
  (1) 

                               (2) 

                                 (3) 

                                   (4) 

In the optimal control problem, the dynamics of the system   along with the maximal power of the heat pump 

     are predetermined and depend upon the design of the system. In order to move from an optimal control to 

an optimal design problem as in Eq. (5)-(8), one can redefine      as a decision variable, without changing the 

complexity of the problem.  

             
∑                       

  
  (5) 

                               (6) 

                                 (7) 

                                   (8) 

Another modification is the cost function, as on top of the operational cost, the investment cost            also 

plays an important role. The result of the optimal design problem is the size (power) of the heat pump, which not 

only depends on the investment cost, but also on the system dynamics and a fluctuating electricity price.  
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DISCUSSION 

The optimal design problem combines both optimal control and design in one optimization problem, which 

allows exploiting certain dynamic aspects to obtain a better HVAC system design. One of these situations could 

be to activate the thermal mass of the residence to reduce peak heating and/or cooling demand, which could 

reduce the heat pump size. Another possibility is to include active thermal energy storage in the portfolio, which 

will automatically be selected and sized in case it becomes economically interesting. As the active thermal 

energy storage can contribute in covering peak demand, the heat pump can be downsized in its turn and 

contribute in the economic advantage. 

Verhelst (2012) found that optimal control of a heat pump system could already reduce energy costs with 20 to 

40%. This can make a heat pump a more appealing option compared to other technologies, however an honest 

comparison is only possible when the alternatives are also controlled in an optimal way. This problem does not 

arise in the proposed design scheme since it expands upon an optimal control formulation for each technology.  

An important boundary condition for optimal design is the electricity price, which will probably be more 

dynamic in the future. Static design methods do not consider the potential cost reductions that certain 

technologies might possess and hence underestimate their potential. When performing simulation based design 

procedures, generally rule-based controllers are used. These controllers can exploit a fluctuating electricity price 

with a limited number of tariff periods, such as preheating a residence or thermal energy storage. Given an even 

more dynamic electricity price, this controller becomes increasingly hard to tune and might give suboptimal 

results. The optimal design approach presented in this extended abstract inherently takes the full dynamics of the 

electricity price profile into account and automatically decides between all possible control actions.  

Current implementations of the presented optimal design approach show promising calculation times, which 

make it possible to consider multiple residences at once. On top of this, the model structure lends itself for a co-

optimization with the electricity production park and electric vehicles, similar to the work of Hedegaard et al. 

(2013). This allows studying the optimal HVAC system in the future energy system, taking into account 

interactions with electric energy storage and electric power generation and transmission. 

One of the major challenges of this optimal design approach is to quantify its performance. It is necessary to set 

up reference cases and compare the approach to other methodologies such as genetic optimization algorithms.  

CONCLUSION 

This extended abstract presents an alternative approach towards optimal design of HVAC systems for residences. 

The potential benefit compared to traditional approaches is discussed, however it remains a challenge to quantify 

and thus prove this. 
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NOMENCLATURE 

       Electricity cost in time step j (EUR)        Investment cost of a heat pump (EUR) 

  Weighting factor between costs (-)      Indoor air temperature at time step j (°C) 

   Control horizon (h)       Design horizon (h) 

   Heat pump electric power at time step j (W)       Maximal electrical power of the heat pump (W) 
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ABSTRACT
The increasing penetration of fluctuating renewable energy sources (RES) in the power grid increases the need for
ancillary services (AS), i.e. frequency reserves and voltage regulation. Traditionally, AS come from conventional
power plants. If properly aggregated and controlled, however, loads can also offer AS. Possible advantages are
lower cost and higher quality, sometimes even combined with a reduced environmental footprint. In this paper, we
address AS provision with an aggregation of large office buildings. We investigate upper bounds on the amount
of frequency reserves that can be extracted using a hierarchical control structure. Based on simulation results,
we discuss the technical and economic potentials of office buildings when they participate in the Swiss frequency
reserve market. Moreover, we point out challenges and open questions that are currently under investigation.

INTRODUCTION
Frequency reserves as an ancillary service
Maintaining the frequency close to a desired value, e.g. 50 Hz in Europe, is of paramount importance for the
reliable and efficient operation of power systems. The transmission system operator (TSO) is responsible for this
task, which is typically performed on three levels: primary, secondary and tertiary control. Primary control (PC)
stabilizes the frequency after a disturbance. Secondary control (SC) restores the frequency to the desired value
and maintains the scheduled exchanges between different control areas. Tertiary control (TC) releases secondary
control in case of large disturbances. PC is fully distributed, SC is centralized and automatic, while TC is also
centralized but can be activated either automatically or manually. Typically, the TSO procures the frequency
reserves in a market setting where power plants bid both their reserve capacity and price in auctions.

The role of buildings and related work
Thermostatically controlled loads (TCLs) such as electric water heaters, refrigerators, and heating, ventilation and
air-conditioning (HVAC) systems found in buildings can, in principle, provide frequency reserves. Due to their
inherent thermal storage, the power consumption of such loads can be modified slightly without noticeable effect
on the occupants’ comfort. This practice is known as demand response (DR). To participate in AS, individual loads
must be aggregated. In Oldewurtel et al. (2013), an overview of potential DR applications with aggregated loads is
provided. It has been found that office buildings are promising candidates for AS for two main reasons. First, they
can provide significant reserves even in small aggregations due to their high power consumption and large thermal
mass. Second, building automation systems (BAS), which are usually integrated with the HVAC control systems,
are installed in many office buildings and thus are, in principle, ready to react to signals sent from the TSO.

Goal of this paper
The aim of the HeatReserves project, funded by Nano-Tera.ch, is to investigate the potential for AS provision by
DR resources in Switzerland1. This paper presents some recent results and current research directions related to
the AS provision offered by a pool of office buildings, which is managed by an aggregator. Our goal is to describe
and develop a method to reliably provide frequency control reserves with buildings, while satisfying occupants’
comfort and respecting their privacy. In our analysis, we focus on SC and compare different reserve products for
the Swiss AS market.

MODELING AND CONTROL
Building modeling
We consider buildings equipped with two types of HVAC systems typically found in Swiss office buildings. System
A includes radiators for heating and cooled ceilings for cooling. In system B, heating and cooling are performed
using a thermally activated building system (TABS)2. Blinds and lighting are controlled in both systems. The
building thermal dynamics are described by a mathematical model that represents a single zone. The external

1The project partners are ETH Zurich (laboratories IfA and PSL), EMPA, University of St. Gallen (HSG), and Swissgrid.
2The building mass is incorporated as thermal storage for heating and cooling purposes and activated by a tube-system located in the slabs.
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disturbances, i.e. weather conditions and occupancy, are assumed to be known (perfect prediction). To model
the effect of reserve provision on building states, the requested reserve is modelled as an uncertainty. Moreover,
we constrain the room temperature and illuminance to lie within prespecified regions to guarantee occupants’
comfort, and also take actuator constraints into account. The remainder of this paper only considers heating/cooling
actuators for reserve provision.

Scheduling and control
We propose a hierarchical control structure for the participation of buildings in the AS market (Figure 1). Level 1,
the Aggregator Scheduling, is carried out centrally by the aggregator on a daily basis. Its goal is to determine the
reserve amount and its allocation among the buildings that achieves the best tradeoff between reserve provision
and electricity consumption. Reserve provision and comfort constraint satisfaction is guaranteed by techniques
from robust optimization. In Level 2, the Building HVAC controller is obtained by using techniques from robust
model predictive control. It calculates the HVAC set-points locally for each building every 15 minutes, preserving
privacy and reducing real-time communication needs. Level 3, the Signal tracking, is equipped with a proportional
controller to track the requested SC signal every 10 seconds. Details can be found in Vrettos et al. (2014).

Approach

• Reserve is provided by HVAC systems of buildings

• Hierarchical algorithm for scheduling, allocation and provision of LFC reserves

• Daily/hourly bids, symmetrical/asymmetrical bids

Freitag, 14. Februar 2014 2 PSL, ETHZ

Reserve scheduling 

and allocation

Computation of 

(robust) HVAC 

control inputs

Frequency signal 

tracking

BuildingAggregator

Level 1: daily Level 2: every 15 min Level 3: every 10 sec

TSO TSO

Reserve capacity Normalized signal

Figure 1: Hierarchical controller with task sequence and information flow.

DISCUSSION
Using an extract of the Swiss SC signal from 2012, we investigate in simulation an aggregation of 16 buildings
for winter and summer. We consider (a) hourly and daily reserves, where the buildings provide the same reserve
capacity over one hour and one day, respectively; (b) symmetric reserves, i.e. equal capacities for up and down
reserves, and asymmetric reserves, i.e. different up and down reserves. Results show that 16 buildings can jointly
provide a significant reserve capacity – up to 4 MW – both in winter and summer. However, this amount depends
on occupancy patterns and ambient temperature. Moreover, the reserve provision increases the energy consump-
tion, which can be significant in some cases. Aggregating the buildings increases the reserve capacity by up to
15%, compared to the case where each building participates in the AS market independently, due to the larger
flexibility. Interestingly, hourly reserves result in a capacity that is up to 14% higher compared to daily reserves.
In addition, asymmetric reserves are preferable from a building point of view because they result in a lower energy
consumption. Note that these results are optimistic and must be interpreted as upper bounds on the reserve capacity
due to the assumption of perfect prediction of external disturbances.

Current work concentrates on the following points: first, we are modeling the heating/cooling generators in more
detail to better evaluate the tracking performance of the frequency signal. Second, we are in the process of gen-
erating a larger set of models for typical Swiss office buildings. Third, we are extending the scheduling algorithm
to support reserves from multiple actuators within each building. Moreover, since loads are energy constrained
resources, we are investigating potential benefits from considering frequency signals that are zero-mean over a
certain time period, determined by the TSO. Additionally, we plan to investigate the effect of inexact prediction of
external disturbances.

CONCLUSION
This paper presents a framework to access the potential of buildings for providing ancillary services (AS). Simula-
tion results for different AS scenarios and products indicate that building aggregations are indeed able to provide
frequency reserves to the grid, which can be sold to the transmission system operator (TSO).
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ABSTRACT
The power grid has been going through drastic changes due to the increase of renewable energy sources. Since in
a power grid demand and supply must be balanced at all times, the uncertainty in renewable generation increases
the need for the so-called ancillary services. In Switzerland, ancillary services are prominently provided by hydro
or conventional power plants. Residential household appliances, such as electric water heaters and refrigerators,
referred to as thermostatically controlled loads (TCLs), if properly aggregated and controlled can serve as addi-
tional means for ancillary services. The potential benefits of using TCLs for ancillary services include reduced
reliance on power grid, less environmental footprint and better ancillary market liquidity. In this paper, we discuss
challenges in modeling and control of TCLs to serve for ancillary services and our approaches to address them.

INTRODUCTION
TCL population for ancillary services
Thermostatically Controlled Loads (TCLs) are household appliances such as electric water heaters, refrigerators
and air conditioners. They operate within a hysteretic temperature dead-band and as long as the TCLs are within
their dead-band they provide the service requested by the electricity consumer. A population of TCLs can be
manipulated by turning them on/off prematurely inside their temperature dead-band or by slightly adjusting their
dead-band, in order to achieve some system-wide objective of their aggregate power consumption [1].

Requirements on aggregate power
In order for a TCL population to be an ancillary service option, certain requirements on their aggregate power
needs to be guaranteed. If the population is to be used for the class of ancillary services referred to as secondary
control, the aggregate power needs to track the so-called Load Frequency Control (LFC) signal. The LFC signal
is provided from the system operator as a percentage of the total available power bounds of the population. The
proposed architecture for an aggregator to control TCL population is shown in Figure 1(a). Research needs to
address: 1. the total power bound that a TCL population can provide, 2. controlling the TCL population in order
to track a given trajectory within this bound while ensuring users’ comfort and devices’ warranties.

Challenges in modeling and control
The main challenge in controlling aggregate power dynamics of a TCL population is developing a system model
that is simple enough for optimization and control, while it is rich enough to capture the power dynamics and
constraints of the aggregate loads. Due to limited communication between TCL aggregator and individual TCLs,
model identification and control techniques needs to be achieved with partial measurements. Fig. 1(b) shows
result of our analysis on tracking performance of population of electric water heaters given an LFC signal [3]. This
work showed that including information of individual electric water heater parameters and measurements achieved
significantly higher control performance (top panel) compared to cases with partial information (bottom panel).

Figure 1: (a) Architecture for control of TCL population, (b) Population of water heaters tracking an LFC signal
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CONTROL-BASED MODELING OF TCL POPULATION
In this paper, we presents several frameworks that we have been exploring on modeling dynamics of a population
of TCLs subject to aggregate control signals.

Markov chain model
The temperature evolution of an individual TCL can be described by a stochastic hybrid differential equation, in
which stochasticity captures uncertainties such as probabilistic water draws in an electric water heater. Instead of
tracking the temperature evolution of each TCL in a population, we can track the fraction of population in each
temperature interval and on/off mode with a set of coupled Partial Differential Equations (PDEs). The discretiza-
tion of the PDE results in a Markov chain which well approximates the population power trajectories in case the
parameters of all TCLs are the same, that is a homogeneous population [2]. For heterogeneous parameters, we
are analyzing parameter sensitivity of the PDE to quantify the changes from nominal model. In addition, we are
modeling and identifying the closed-loop PDEs resulting from implementing a population control strategy.

Energy storage model
We can think of a population of TCLs as an energy storage unit, that is, a battery, with energy and power capacities.
For example, consider a population of air conditioners. If each device is operating at the lower edge of its dead-
band, the battery is fully charged and it can provide power to the grid by turning all devices off, until devices reach
their upper edge of dead-band. Conversely, if the population is operating at the upper edge of the dead-band, the
battery is depleted, the TCLs need to cool off in order to be able to provide power. In recent work, we derived the
time-varying power and energy capacity of such battery model analytically and through system identification [2].
We then used the model in an optimization framework to derive bounds on feasible power trajectories tractable by
a population. Currently, we are working on quantifying achievable performance and uncertainty of this model.

Autoregressive model
In this modeling framework, we excite the population of TCLs with a given control signal, such as a slight ad-
justment of their dead-band set-points. We then measure the output power consumption of the population. The
input/output mapping has been shown to follow approximately an Auto Regressive Moving Average with Exoge-
nous input (ARMAX) model [1]. While parameters of such model may be derived analytically for a homogeneous
population, we are using grey box system identification techniques for a heterogeneous population in order to
optimally quantify and control the population power.

DISCUSSION
In all frameworks, we need to quantify modeling uncertainty in order to provide provable guarantees on LFC
tracking performance of TCL population. We also need to develop parameter identifications and state estimation for
the aggregate model under realistic communication networks. Based on the results and comparison of the analysis,
we can recommend reasonable power capacities for TCL population to serve in the Swiss ancillary services.

CONCLUSION
While initial investigations have indicated potential of aggregate of TCLs to serve as ancillary services, full ex-
ploration and quantification of this potential is an open a problem that requires advancements in modeling, control
and estimation for large scale stochastic systems. In this paper, we highlighted some of the challenges in achieving
this objective and our current work in addressing the challenges.
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ABSTRACT 

The building sector is the largest energy consumer in the world. Achieving substantial energy reduction in 

buildings may require rethinking the whole processes of design, construction, and operation of a building. 

Control design and tuning is one interesting piece of the whole process. It is an extremely important step, which 

is often not properly addressed, resulting into energy inefficiency and occupant discomfort.  This short 

discussion paper highlights some of our efforts in introducing advanced control design to the building industry. 

INTRODUCTION 

Building controls design becomes challenging as practitioners move beyond standard heuristic controls 

approaches and seek to incorporate predictions of weather, occupancy, renewable energy availability, and energy 

price signals. Model predictive control (MPC) is a control methodology that can systematically use all the 

aforementioned predictions to improve building thermal comfort, decrease peak demand, and reduce total energy 

costs.  In buildings, performance improvement using forecasted information is possible due to two basic 

mechanisms. The first mechanism is referred to as load shifting or active storage. Load shifting consists of 

shaping the energy profile delivered to a building, exploiting the possibility of storing energy for later use. 

Thermal storage is inherent to a building’s structure and can be increased by including additional external energy 

storage devices. The optimal profile of delivered energy depends on various factors, which include time varying 

utility prices, availability of renewable energy, ambient temperature variation, and load shedding signals 

received from the utility grid. The second mechanism is component optimization. Buildings can be large systems 

with many control variables and degrees of freedom. Predictive models of building thermal dynamics and energy 

costs of control actuators allow computation of the optimal inputs to each actuator in order to deliver the desired 

energy profile.  

Implementing advanced building control strategies such as MPC in today buildings is not straightforward for a 

long list of reasons. Next, we highlight some of the issues and the approach we are using to address them. 

MODELING AND DATA 

Building heating, ventilation, and air conditioning (HVAC) systems convert and transport energy through 

working fluids, primarily air and water. The flow dynamics of air and water through distribution networks are 

described by nonlinear partial differential equations. The computational fluid dynamics technique is 

computationally intensive and requires a complete geometry description at all length scales. This level of detail 

is rarely available for a real building. Our approach is to approximate the velocity, temperature, and pressure 

distributions with reduced order lumped nodal models. The nodes in a nodal HVAC system model are thermal 

zones and components. Each node behaviour is described by nonlinear static and differential equation whose 

parameters are learned from historical building data. 

HVAC components are arranged into HVAC systems in a variety of different configurations because of evolving 

design practices. A handful of standard configuration types are more common than others, but virtually every 

building is unique. Therefore, the spatial locations, type of components, and methods used to implement a 

control action are highly dependent on the specific HVAC system. For instance, overhead air distribution 

systems use a different set of actuators from under-floor air distribution systems, and both differ from systems 

that use water-based radiators for conditioning. A tool which allows to easily configurea system into a nodal 

abstraction is a fundamental requirement for the scalability of any advance control approach. 

CONTROL DESIGN 

Most modern buildings employ some level of automated control. In the majority of cases, building systems are 

controlled by basic control logic that errs on the side of simplicity over subtlety. This simple control logic is 

implemented with distinct but interconnected proportional-integral-derivative (PID) control loops and switching 

logic. This logic responds to setpoints and schedules for building components such as chillers and cooling 

towers. 
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Advanced decision systems are available on the market to optimize the high-level system based on component 

modeling, feedback, and forecasts. A variety of proprietary control sequences for chillers, boilers, and cooling 

towers are available in the building industry. However, to the best of the authors’ knowledge, their 

implementation is not widespread and often limited to specific configurations and components of the cooling and 

heating systems. 

Once a nodal abstraction has been design and its parameters learned from data, a simple MPC problem can be 

easily formulated with the objective of minimizing total heating and cooling energy consumption, minimizing 

the peak power consumption, and maintaining zones within a desired temperature range despite predicted load 

changes.  For medium size buildings the resulting optimization problem has thousands of variables and 

constraints. We developed the Berkeley Library for Optimization Modeling (BLOM), a tool for optimization-

based modeling and control formulation implemented in Simulink (Kelman et al. 2012). The underlying 

structure for BLOM is a novel way of representing linear and nonlinear mathematical functions that allows for 

easy computation of closed form gradients, Jacobians and Hessians. This formulation provides an efficient 

problem representation for optimization-based modeling and is scalable to large optimization problems. With 

BLOM, an optimization-based controller for a dynamic system can be developed and exported from the same 

model that is used in forward simulation. BLOM is capable of solving several types of optimization problems, 

including static optimization problems and optimization problem with dynamics. Its intended use is for nonlinear 

model predictive control. 

DISCUSSION 

Prediction Uncertainty 

There are clear benefits in using MPC for buildings under the assumption that MPC has perfect knowledge of 

predicted disturbances and system dynamics.  In (Ma et al. 2012) the reader can find as simple building example 

where the MPC performance deteriorates as the uncertainty increase. In fact, MPC can fail to keep the zone 

temperature within the comfort constraints due to misleading predictions. MPC consumes more energy than a 

simple  proportional controller because MPC is performing precooling even if occupants do not enter the space. 

Stochastic MPC is a better approach to address this issue when probability distribution functions of the loads are 

available. In this case, one would minimize expected costs and satisfy constraints with a given probability. 

Computational Complexity of Model Predictive Control 

As the complexity of the building model increases, centralized MPC might become computationally intractable 

due to the limited computational resources available on current building control platforms. This limitation is 

critical at the low level of the control architecture where distributed inexpensive computing platforms are 

common. The limitation might be overcome by efficient numerical solvers tailored to the specific hardware or 

with the use of distributed MPC. In distributed MPC, the centralized problem is decomposed into a set of smaller 

problems which can be associated with different subsystems such as VAV boxes and AHUs. Each subsystem 

solves local small MPC problems with information from local and neighboring subsystems. The local MPC 

modules communicate with each other to converge to an optimal solution. 

Equipment Retrofitting 

MPC requires sensor data from a building in order to initialize simulations and make predictions. Additionally, 

there must be some way to communicate the computed optimal control inputs either to lower level controllers 

(for setpoint tracking) or directly to the control actuators. Modern digital building automation systems satisfy 

these requirements, but are only present in new buildings. In order to apply MPC to the existing stock of older 

buildings, HVAC equipment must be retrofitted for digital control and additional sensors need to be added or 

existing sensors replaced with digital versions. This can be prohibitively expensive, and must be offset by the 

operational energy cost. 

Thermal Comfort and Other Requirements 

The control objective of an HVAC system is occupant thermal comfort. Often comfort is treated as being 

equivalent to a specific range of spatial air temperatures. A large body of ASHRAE and other literature have 

investigated more complicated representations of occupant comfort. These more detailed comfort models take 

into account metabolism and biological factors, air velocity, humidity, heat transfer through radiation, free 

convection, and other effects. In addition to maintaining comfort and temperature regulation, HVAC controllers 

can have additional requirements on humidity regulation, proportions of fresh versus recirculated air for indoor 

air quality, flow rates for ventilation, and pressurization of spaces. 
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