ETHZürich

Center for Sustainable Future Mobility (CSFM)

Empirical use and Impact analysis of MaaS (EIM)

Henry Martin^{1,3}, Daniel J. Reck², Kay W. Axhausen², Martin Raubal¹ ¹Institute of Cartography and Geoinformation, ETH Zurich; ²Institute for Transport Planning and Systems, ETH Zürich; ³Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna

Abstract

We conducted a tracking study during the roll-out of yumuv [1, 2] - a new Mobility as a Service (MaaS) offer in Zürich. We collected the world largest empirical MaaS dataset (work package 1 (WP1)) to analyze how MaaS bundles affect mobility behavior (WP3) and propose a representation for individual mobility (WP2) that enables the development of prediction and analysis methods that generalize across heterogenous datasets (WP4).

WP1: Data elicitation

inpiegs	571 000	
Staypoints	248'000	65'000
Labels	Mode of transport + activity label	
Tracking time	3 - 4 months	
Total km tracked	3.9 M km	1.5 M km

Development of a graph representation of individual mobility based on visited locations [3, 4]:

- Efficient ╋
- Privacy friendly ╋
- Few dataset specific ╋ assumptions

Preprocessing methods are open source: https://github.com/mie-lab/trackintel

Analysis of MaaS usage and impact:

- Effect of yumuv bundles on transport mode choice [5]:
 - e-scooters (++); public transport (+)
 - own e-bike (--); Own bicycle (-)
 - No significant effect: Private vehicle; shared e-bikes; own e-scooter
- Shared scooter often replace low emission modes in Zürich [6]

Analysis and prediction:

- Graph based method to identify user groups with similar mobility behavior [7]
- Graph based mobility prediction is planned for the remainder of 2022

References

1. https://yumuv.ch/en

- 2. Martin, H., Reck, D.J. and Raubal, M., 2021. Using Information and Communication Technologies to facilitate mobility behaviour change and enable Mobility as a Service. GI_Forum Journal for Geographic Information Science.
- 3. Martin, H., Perez-Cruz, F. Raubal, M., 2021. A graph-based representation for human mobility data (in preparation).
- 4. Martin, H., Wiedemann, N., Suel, E., Hong, Y., and Xin, Y., 2022 Influence of tracking duration on the privacy of individual mobility graphs (under review).
- 5. Martin, H., Reck, D. J., Axhausen, K. W., & Raubal, M. 2021. ETH Mobility Initiative Project MI-01-19 Empirical use and Impact analysis of MaaS. ETH Zurich.
- 6. Reck, D.J., Martin, H., Axhausen, K.W., 2021. Mode choice, substitution patterns and environmental impacts of shared and personal micro-mobility. Transportation Research Part D: Transport and Environmental.
- 7. Martin, H., Wiedemann, N. Reck, D.J., Raubal, M., 2022. Graph based mobility profiling for longitudinal and cross-sectional tracking studies (under review).

