

Autonomy-enabling Infrastructure for Future Mobility Systems: An Inside-Out Approach

Gioele Zardini, Andrea Censi, Emilio Frazzoli (collaboration with SBB and Siemens)
Institute for Dynamic Systems and Control, Department of Mechanical and Process Engineering, ETH Zürich

Motivation

Everybody is talking about **Autonomous Vehicles** (AVs) and their usage in **Autonomous Mobility-on-Demand** (AMoD) systems in future cities.

Things that are *unclear*, include **service requirements**, **autonomy requirements**, and needed **infrastructure**.

Challenges

We study the rationale of **autonomy-enabling** infrastructure

Autonomy fully on the vehicle

VS

Some autonomy on the vehicle, some on the infrastructure

This helps solving three main challenges:

1. Efficient planning for **investments** in the next 50 years

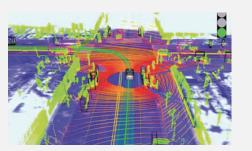
Public transit investments? Autonomy-enabling infrastructure investments? What can be outsourced? Scalability? Sustainability?

2. Active **control** and **regulation** of mobility providers

Infrastructure control determines public resources usage Enforcement of inclusivity, sustainability, efficiency How to cover expenses?

3. Clarification of **requirements**, to speed up introduction of AVs

Lack of clear requirements for AVs and AMoD systems Standardization procedures should start early (see SBB)



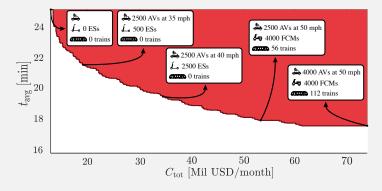
Research plan

The plan features four working packages

1 - Analytical studies for autonomy-enabling infrastructure

Impact of city topology, demand, and operational conditions of AMoD systems on **costs**, **efficacy**, and **scalability** of the approach

Costs: operations, depreciation, investment (hardware + software)


2 – Development of simulation tools targeted to the problem

Modular autonomy-enabling infrastructure changes Network re-sizing AMoD operations

Assess impact of interventions vs. efficiency, cost, sustainability

3 - Optimal infrastructure planning via co-design

Solve multi-objective optimization problem Modular and flexible (cost structures, time horizons) Find rational investment solutions and important trade-offs

4 - Detailed case studies

Swiss and international case studies Leveraging data from SBB AG and Siemens Mobility

5 Conclusion and expected impact

This project is important for three stakeholders:

Authorities - Investment planning, policy making, regulation
Mobility companies – service design
Academia – gap filling in the literature

References

Visit Gioele's homepage to see/read/hear more: https://gioele.science

