ETH zürich

REASSESS – Early Detection and Assessment of Railway Substructure Moisture Using Remote Sensing

Project Team:

O. Frev. P. Bernhard. M. Luck Earth Observation & Remote Sensir

A. Wieser, P. Ruttner, N. Meyer

E. Chatzi, G. Arcieri, C. Hoelzl nsors and Engineering Ge

Partner: O .Schwery, D. Haener chanics and Monitoring. D-BAUG. ETH Zu

SBB CFF FFS

1 Background / motivation

Problem statement:

 A frequent cause for deterioration of railway tracks is water intrusion leading to subsurface ballast moisture/wetness.

Potential of remote sensing:

- Remote sensing (satellite, drone, mobile mapping platforms) offers large potential for automated monitoring of railway infrastructure.
- Potential cost savings for SBB if ballast moisture can be detected and mitigated timely: up to 35 MCHF/year (estimate by SBB).

2 REASSESS project goals

Efficiently and timely **detect** and verify **hot spots** affected by subsurface ballast moisture by a synergistic use of three remote sensing approaches:

- spaceborne synthetic aperture radar (SAR), for 1.
 - \rightarrow network-level proxy-based detection of railway sections affected by moisture,
- 2. (airborne) laser scanning, for \rightarrow assessment of deformation and ballast moisture proxies,
- 3. train-based ground penetrating radar (GPR), for → local assessment of ballast moisture.

SBB CFF FFS

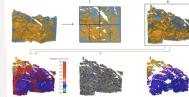
DBAUG

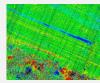
3 Satellite SAR for network-level proxy-based detection

Analysis of time series of Copernicus Sentinel-1 imaging radar data to identify suitable proxies for ballast problem areas:

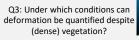
 \Leftrightarrow

4 Laser scanning for deformation and moisture proxies


• Orthophoto and displacements orthog. to surface (algorithm: M3C2)


+0.3 m (2020 higher

Extending information content of analysis results ٠

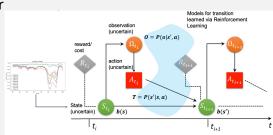


rail tracks?

Q2: How can deformation be distinguished from surface changes due to other reasons (track maintenance, vegetation, ...)?

Q1: F2S3: ML-based approach to calculate dense 3D displacement vector field. Transferable for monitoring

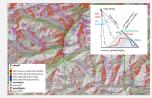
Geosensors and Engineering Geodesy

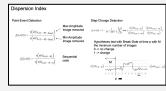

5 Ground penetrating radar for ballast assessment

Extraction of quantifiable indicators of condition for the ballast, using on-board GPR mounting using 2 approaches:

1. Multiple datasets in a single vehicle run \rightarrow treatment of measurement noise, etc \rightarrow extract robust condition indicator

2. Multiple measurements over time \rightarrow use evolution of inferred condition indicator for decision support on maintenance planning (Reinforcement Learning)

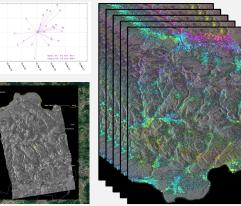



Structural Mechanics and Monitoring

1. Change-detection in buffer region around SBB network.

2. Interferometry-derived ground subsidence/uplift as a proxy.

Visibility map in alpine terrain


Change detection (amplitude dispersion)

Earth Observation and Remote Sensing

Persistent scatterer interferometry / InSAR-based analysis of surface displacements

SIEMENS

6 Next steps

Satellite imaging radar:

- Cont'd investigation of suitable proxies.
- Consolidation & choice of detection algorithm(s).

Laser scanning:

- Extending information content of point cloud analysis results. ٠
- Automated selection of best point cloud analysis algorithm.

Ground-penetrating radar:

- Planning of an on-site experiment, with controlled wetting conditions.
- Refinement of the GPR based indicators.

