ETH zürich

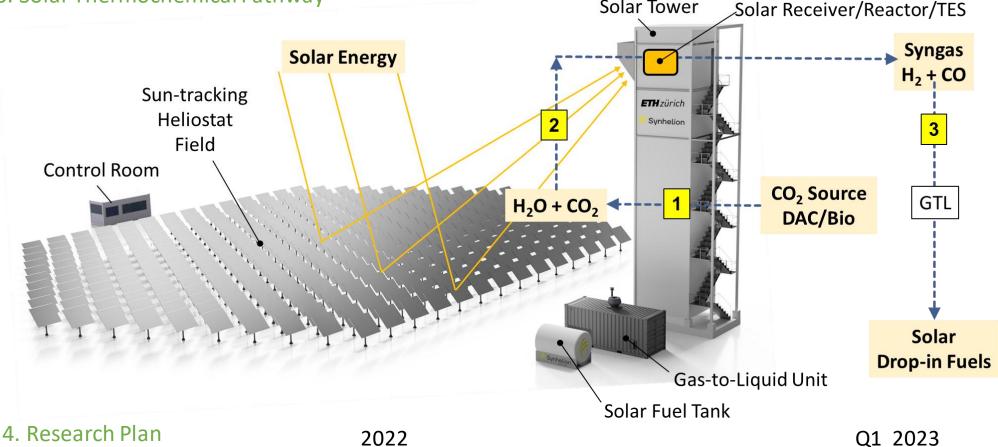
Project SUNFUELS:

Towards commercial solar thermochemical production of sustainable drop-in fuels

Dr. Vikas Patil Prof. Aldo Steinfeld

Dr. Christian Moretti **Prof. Anthony Patt**

Solar Tower


1. Motivation

- Long-haul aviation, shipping, and trucking are heavily dependent on liquid hydrocarbon fuels \rightarrow high energy density and existing global infrastructure for their storage & distribution.
- Production of drop-in fuels from CO₂ and H₂O using solar energy → carbon-neutral substitutes for fossilderived hydrocarbons
- Thermochemical pathway using concentrated solar radiation \rightarrow high thermodynamic efficiencies and industrial scalability

2. Project Main Goal

Determine the techno-economic feasibility of industrial-scale production of drop-in transportation fuels using concentrated solar energy

3. Solar Thermochemical Pathway

[2022	(— <u> </u>
Technological examination	Economic and environmental assessment	Identification of R&D needs	Comparison with other pathways	

5. Key Stakeholders

- Federal and regional governments for ensuring carbon neutrality and energy security
- R&D institutes and industrial developers in the area of fuels for transportation and industrial processes
- Businesses involved in transportation, storage, distribution, and sale of liquid hydrocarbon fuels
- Users: airlines, public transport, commercial fleets, railways (diesel traction, shunting)

