Co-design and Coordination of Future Mobility Systems

Gioele Zardini

Institute for Dynamic Systems and Control ETH Zürich

ETHzürich

gzardini@ethz.ch - http://gioele.science

The Frazzoli Group at the Institute for Dynamic Systems and Control

- We do research in **autonomous systems**
- We have a particular expertise in **autonomous vehicles**

Industry experience: nuTonomy (now Motional)

Academic research: Self-driving go-karts, autonomy, and future mobility systems

Outreach: Duckietown

Mobility systems are very complex socio-technical systems

Mobility providers (CEO SBB) Policy makers Politicians (Mayor ZH)

Academics Tech developers

Complexity due to multiple stakeholders: Public sector view

Questions

How to meet sustainability goals while accommodating urbanization? How to define public investments for the next 50 years ? How to guarantee quality of life related to transportation? How to handle private companies which use public resources?

ToolsPolicies and regulationsPublic transit pricingIncentive and taxation systems

Complexity due to multiple stakeholders: Private sector view

Questions

Larger demands: which new business models?

How to react to government rules?

What do the customers want?

In which technology should we invest?

How to get a certain return on investment?

ToolsPricingService designFleet sizesFleet compositionsTechnology design

Co-design at various scales

Single service level

City level

Implementation in the component level

0bs

Optimal fleet choice

Optimal sensor and control choice

Optimal resource allocation for computation of algorithm

We leverage co-design and game theory to solve complex socio-technical problems

Large interconnected system

Mathematical theory of co-design applied category theory

Complex socio-technical system

Many agents, many (often conflicting) interests

Modeling the mobility system as a co-design problem

Subway:

Fun: *number* of trains to buy **Fun**: *speed* of the vehicle **Fun**: *performance* of the vehicle **Res**: *costs* and *externalities* **Imp:** acquisition *contracts*

Micromobility:

Res: costs and *externalities* Imp: vehicle *models*

AV:

Res: costs, *externalities*, *performance* **Imp:** vehicle *models* and autonomy

In submission to TNSE: <u>https://bit.ly/35a5Wyx</u>

Co-Design produces actionable information for stakeholders

incomparable, minimal solutions as cost, time, and externalities

Convert **externalities** into **cost** and interpret the results:

Which one is the best? Depends on what is at the upper level (policy-making, etc.)