Vehicle charging infrastructure for the future transportation system

Hua Cai, Ph.D., P.E.

Purdue University

Industrial Engineering

Environmental and Ecological Engineering

April 20, 2023

PURDL

Existing transportation section is carbon intensive

2

Many countries are incentivizing electric vehicle adoption to decarbonize road transport

Many countries are incentivizing electric vehicle adoption to decarbonize road transport

4

Building public charging infrastructure to support EV adoption is critical

Dream

Number of EV Fast Charging Stations World Wide

Empty charging stations - a waste of public resources

http://english.cri.cn/11354/2014/03/21/3441s818546.htm

Electrification is not the only "revolution" that is happening in the transportation sector

Different sharing and autonomous driving adoption pathway may need different charging infrastructure

Key elements to consider in charging station siting

- Charging is different from refueling
- Optimizing station capacity while siting charging station
- Multi-period development of charging infrastructure
- Tradeoffs between adding a new charging station vs. upgrading existing ones need to be evaluated
- Queueing at charging stations
- Budget is often limited

Integrated simulation and optimization model to site charging stations

Case study: Siting charging station for NYC taxi fleet

- High demand (474,000 trips/day)
- High sharing potential
- Parking lots for potential charging development
- Build new stations vs. expand existing

Three development pathways:

- Case P (present): traditional fleet (no sharing, no AV) with increasing EV adoption
- Case F (future): shared autonomous taxis with increasing EV adoption
- Case M (mixed): switch halfway

Lokhandwala, M., & Cai, H. (2020). Siting charging stations for electric vehicle adoption in shared autonomous fleets. *Transportation Research Part D: Transport and Environment*, 80, 102231.

Preference and Parameterized Shared Autonomous Electric Vehicles (PP-SAEV) model

Optimization model to site charging stations

Objective:

Minimize : $T_W = \sum_{i=1}^{N} (T_{Q_i} + T_{T_i} \times 2)$... total wasted time

Subject to :

- New charging station locations: selected from parking lots
- Old Charging station locations
- Parking lot capacity
- Budget constraint: $C_{new}N_{new} + C_{upg}N_{upg} \le B$

(cost of new satiations and new ports under budget)

- T_w total wasted time in charging (function of CS location)
- T_{Q_i} time spent by taxi *i* in queue (function of CS location)
- T_{T_i} time spent by taxi for a round trip to the charging station

 C_{new} ; N_{new} - cost to build up a previously un-electrified parking lot and place 1 charging station; Number of parking lots chosen

 C_{upg} ; N_{upg} - cost to add additional charging stations at a parking lot that has been electrified; Number of added parking stations. $C_{new} = 2C_{upg}$

Autonomous driving and sharing will change spatial and temporal charging demands

Traditional fleet with 100% EV adoption (13500 taxis)

Shared autonomous fleet with 100% EV adoption (5500 taxis)

Charging infrastructure development needs to consider the emerging trend of sharing and autonomous vehicle use

Optimal charging was able to support similar level of system performance

Conclusions

- Different development pathways do have different charging infrastructure needs
- Electrifying the taxi fleet did not significantly impact service level
- Shared autonomous fleet has advantages in reducing vehicle-miles-driven and carbon emissions
- The proposed modeling framework can also be used to study other fleets

Urban Sustainability Modeling & Analysis Research Team (uSMART)

Dr. Hua Cai (huacai@purdue.edu)

School of Industrial Engineering, Purdue University, West Lafayette, IN Environmental and Ecological Engineering, Purdue University, West Lafayette, IN

Motivation

- Half of the global population now lives in urban areas
- Can emerging technologies improve urban sustainability?
- The power of "Big Data" and high performance computing

Ride Sharing Systems

- The average vehicle occupancy rate is 1.8
- Sharing rides can reduce energy use and emissions

What do we do?

 Our research interests include energy-water nexus, emerging transportation systems, energy policy, sustainable consumption.

Optimal Battery Size for Electric Vehicles

- EVs with larger batteries are more expansive
- Different EV models have different battery sizes
- How big a battery do I/you need?

We have built an agent-based simulation model and used the New York Taxis as a test case to study the advantages and disadvantages of ride sharing using shared autonomous taxis using agent based modeling.

Energy Efficiency of Drone Delivery Systems

- Drones are geeing more and more popular!
- · A potential solution to the "last mile" problem
- How to design and operate a truck + drone system?

We are developing optimization models to study how to design and operate a truck and drones system to most energy efficiently deliver all packages.

Autonomous Vehicle Systems

- Self-driving cars are coming!
- What changes will they bring?

We are evaluating the optimal fleet size in a shared autonomous vehicle (SAV) system to satisfy known travel demands and evaluate the tradeoffs between fleet size and environmental performance.

How?

- Agent-based modeling
 - Big data analytics
- System dynamics

Impact of Eco-Labels

- What information goes into consumer's decision making?
- Are eco-labels (e.g., USDA Organic) promoting sustainable consumption?

eve-tracking glasses to real-world consumer or data during their ng to study the eness of eco-labels.

Bike Sharing Systems

- How are shared bikes used?
- Are they making the cities more sustainable?

We are analyzing trip data from bike sharing programs in 8 U.S. cities. Integrating multiple data sets from different sources, we aim to estimate the primary transportation modes replaced by bike sharing. We conducted a Monte Carlo simulation to determine the replaced mode based on several factors such as trip purpose, trip distance, and accessibility of public transit service.

Interested in Being Involved?

- Checkout our website (scan the QR code)
- Contact Dr. Cai via email (Please include your resume)

Thank you!!!

- Life cycle assessments
 - Geospatial Information System 10 Optimization