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Changes in the characteristics of mobility data can significantly 
influence the predictive performance of deep learning models. 
However, there is still a lack of understanding of the degree of their 
impacts and the robustness of deep learning models against the 
variability of these characteristics. This hinders the development of 
benchmark datasets for evaluating different mobility prediction 
models. In this study, we use a causal intervention approach to 
evaluate the robustness of deep learning models towards different 
interventions of mobility data characteristics [1], using both traffic 
forecast and individual next location prediction as case studies. 

• SCM constructed with density-EPR and individual preferential 
transition (IPT) mechanistic simulators. 

• Causal interventions on population-level location attractiveness as 
well as user-specific exploration and return tendencies are used to 
simulate changes in individual behavior.

• We quantify network’s performance variations after interventions. 

• A SCM model is constructed based on the CTM macroscopic traffic 
simulator.

• Causal interventions on on-ramp flow, off-ramp flow, and free-flow 
speed are used to simulate different characteristics of traffic flow.

• The changes in prediction error under different interventions are 
used to evaluate the impact of each intervention.

Conclusions

• Traffic forecast: 1) The intervention on speed has minor or no 
impacts on the prediction accuracy. 2) The interventions on flow 
arrival rate and off-flow lowered the prediction accuracy and the 
extent of the accuracy drop generally aligns with the strength of the 
intervention.

• Next location prediction: 1) Prediction performance variations aligns 
with the strength of the intervention;  2) Interventions on Individual 
location preferences have more significant impacts than the ones in 
the overall population preference; and 3) MHSA performs better 
than LSTM no matter how intense the interventions are.

Impacts

• Enrich our understanding on the robustness of deep learning models 
towards different distribution shifts. 

• Provide key insights on the specifications of benchmark datasets for 
evaluating deep learning models for mobility prediction.
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Figure 1: Workflow of the Study. 
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Figure 2: Impact of different interventions on the accuracy of 
traffic flow prediction using LSTM model. 

Funding Agency: 

Figure 3: Location prediction performances in LSTM and multi-head self-attention (MHSA) 
networks [2]. (A) Intervene on individual preferences during return, and (B) intervene on 

collective preferences during exploration.
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