

Long-Range Obstacle Detection for ADAS

Cornelius von Einem, Andrei Cramariuc, Cesar Cadena, Prof. Roland Siegwart Autonomous Systems Lab, ETH Zurich

Motivation

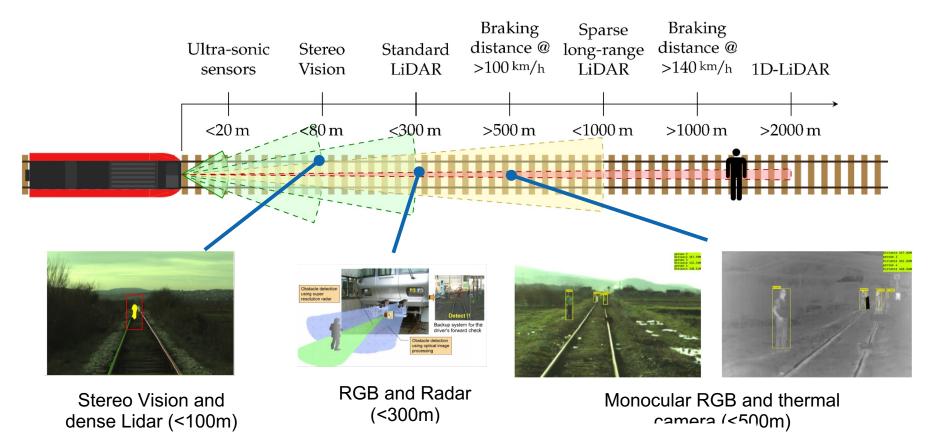
New and more advanced safety systems could help for accident prevention with:

- People
- Infrastructure
- Trees
- Other objects

Related work

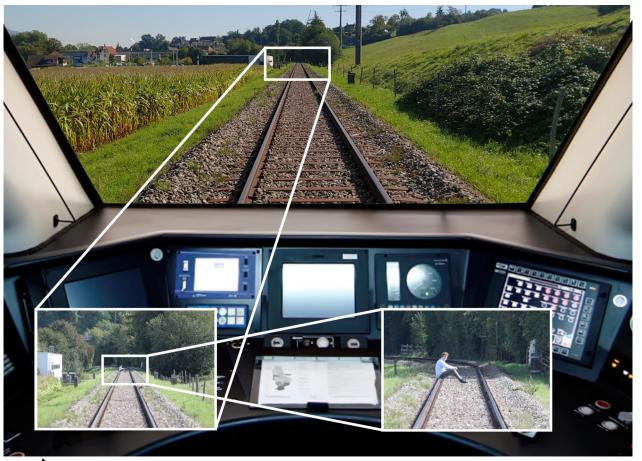
ETH zürich

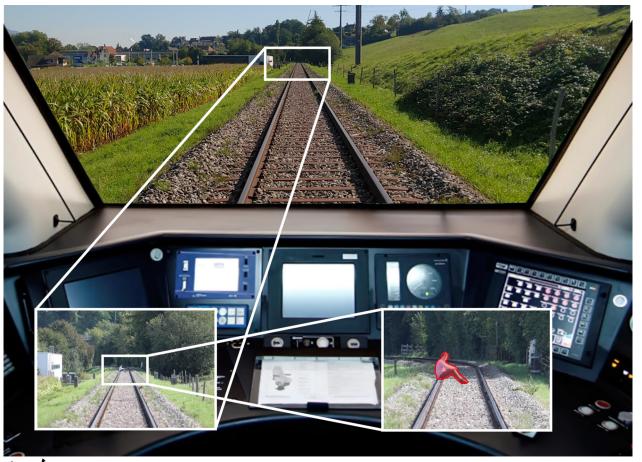
utonomous Systems Lab

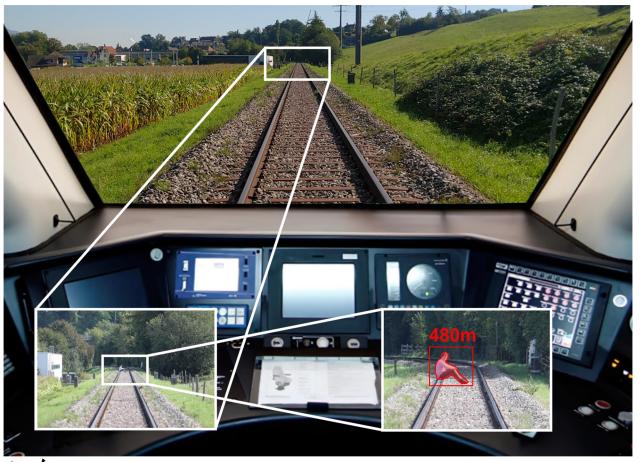


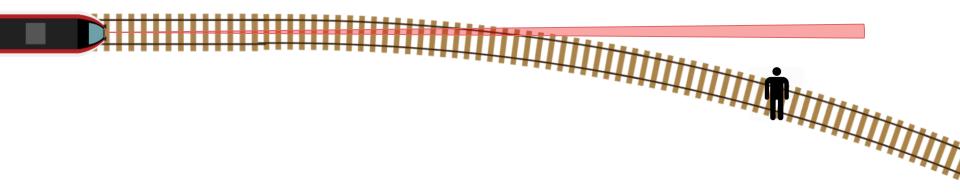
Durrant, D. R., Haseeb, M. A., Emami, D., & Gräser, A. (2018). Multimodal Sensor Fusion for Reliable Detection of Obstacles on Railway Tracks. 3(2), Smart Automation of Rail Transport Obstacle Detection System Requirements and Specification. (2019). Haseeb, M. A., & Gräser, A. (n.d.). Long-range obstacle detection from a monocular camera.

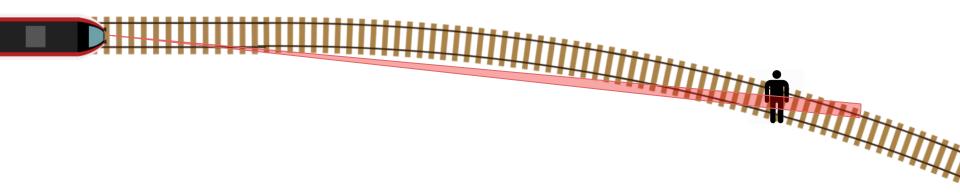


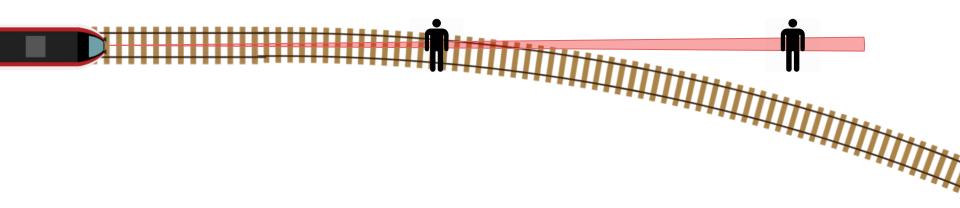


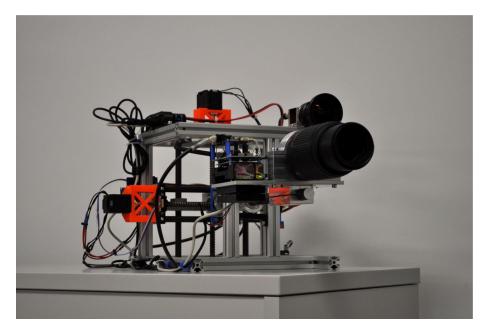


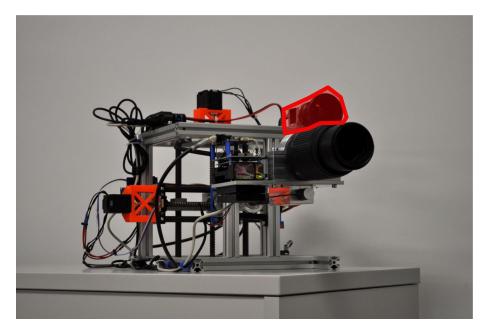




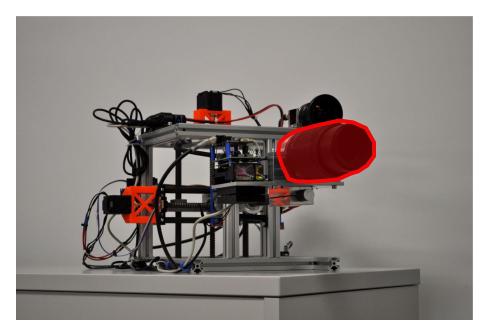




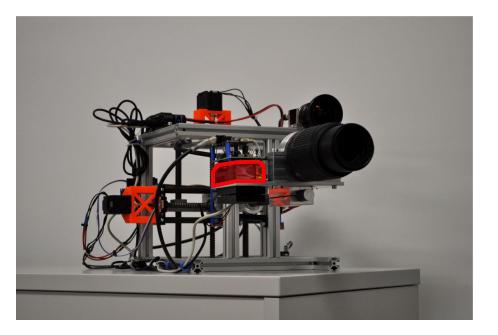




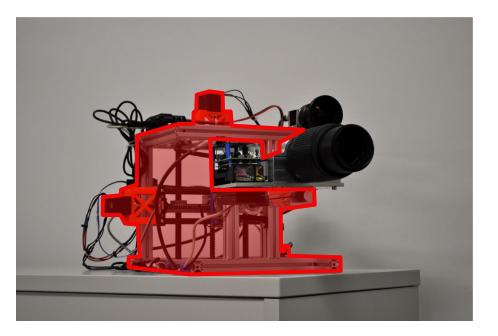
• Overview camera



- Overview camera
- High focal-length detail camera



- Overview camera
- Detail camera
- Long-Range 1D LiDAR



- Overview camera
- Detail camera
- Long-Range 1D LiDAR
- High-Precision actuation¹

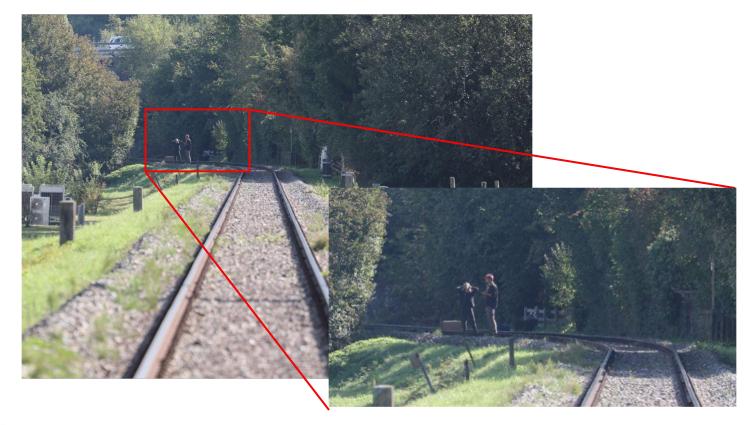
[1] Assaf, E.H.; von Einem, C.; Cadena, C.; Siegwart, R.; Tschopp, F. High-Precision Low-Cost Gimballing Platform for Long-Range Railway Obstacle Detection. *Sensors* **2022**, *22*, 474. https://doi.org/10.3390/s22020474

How do we detect an obstacle?

Obstacle Detection

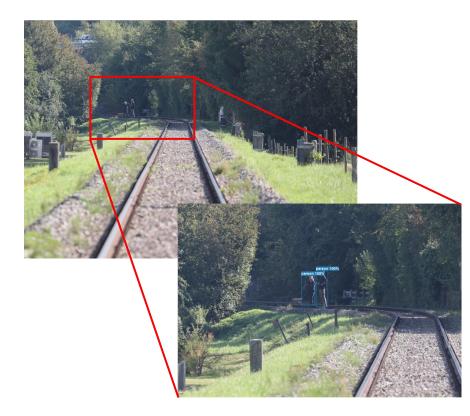
ETH ZÜRICH

Obstacle Detection



ETH ZÜRICH

Obstacle Detection



- Machine learning based object detectors are common
 - YOLO
 - R-CNN

ETH ZÜRICH

Obstacle Detection - Training



Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016. You only look once: Unified, real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 779-788).

Obstacle Detection - Training

Failure on unknown obstacles

No context to train tracks

"Detecting anything that shouldn't be there"

 Typically solved using one-class detector: normal vs anomaly

• Typically solved using one-class detector: normal vs anomaly

Problem:

• Only limited samples of anomalous scenes

• Typically solved using one-class detector: normal vs anomaly

Problem:

• Only limited samples of anomalous scenes

Solution:

- Create a proxy task
- Utilizing the detection of train tracks as a proxy for detecting anomalies

ETH ZÜRICH 🕺 🖬 🕯 Autonomous Systems Lab

Track map + position

Map reprojection

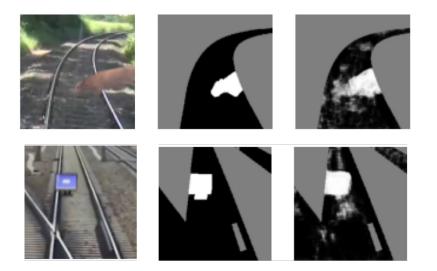
Railway segmentation

Projection of map into image

Railway segmentation

Projection of map into image

Anomaly Detection - Results



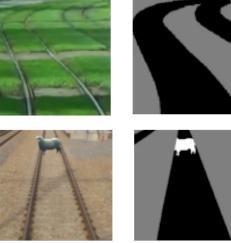
Reliable detection of anomalies on tracks

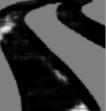
Anomaly Detection - Results



- Reliable detection of anomalies on tracks
- Also in challenging scenarios, reliable detection
- Few false positives

Anomaly Detection - Results





Issues:

- Limited to obstacles directly on the tracks ٠
- Limited by the performance of the track • segmentation network
 - Labelled training data is scarce _
- Limited real-world railway anomaly datasets ٠

Conclusion

- Individual functioning components
- Working hardware system with integrated and synchronized sensors
- Railway anomaly detection system for arbitrary obstacles

Conclusion

- Individual functioning components
- Working hardware system with integrated and synchronized sensors
- Railway anomaly detection system for arbitrary obstacles

Next steps:

- Sensor calibration in the wild
 - Utilizing outdoor structures for accurate long-range calibration
- Stationary long-range tests on train tracks

ETH zürich

Cornelius von Einem PhD Student cornelius.voneinem@mavt.ethz.ch

ETH Zurich Autonomous Systems Lab LEE J225 Leonhardstrasse 21 8092 Zürich, Switzerland

www.asl.ethz.ch

