CSFM Mini-Conference on Technological Perspectives and Scientific Challenges of Automatic Train Operation



AUTOMATIC TRAIN OPERATION ON HIGH-FREQUENCY LINES: MITIGATION OF ALEATORY FACTORS TO IMPROVE TRAFFIC REGULARITY

> Stefano Ricci <u>stefano.ricci@uniroma1.it</u>

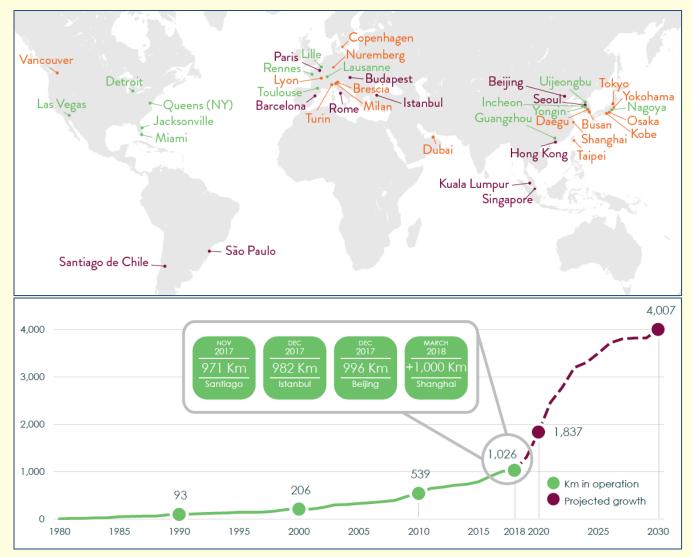
# The context ...

### **Migration towards automation of high-frequency lines**

| Grade of Automation | Driving Operation                                        | Starting  | Braking   | Door Closure    | Operation<br>in Disruptions |
|---------------------|----------------------------------------------------------|-----------|-----------|-----------------|-----------------------------|
| GOA 0               | On-sight Driving                                         | Driver    | Driver    | Driver          | Driver                      |
| GoA 1               | Manual Drive with<br>Automated Train<br>Protection (ATP) | Driver    | Driver    | Driver          | Driver                      |
| GoA 2               | Semi-automatic Train<br>Operation with Driver<br>(STO)   | Automatic | Automatic | Driver          | Driver                      |
| GoA 3 🗸             | Attended, Driverless<br>Train Operation<br>(DTO)         | Automatic | Automatic | Train Attendant | Train Attendant             |
| G0A 4               | Fully Automatic,<br>Unattended Train<br>Operation (UTO)  | Automatic | Automatic | Automatic       | Automatic                   |

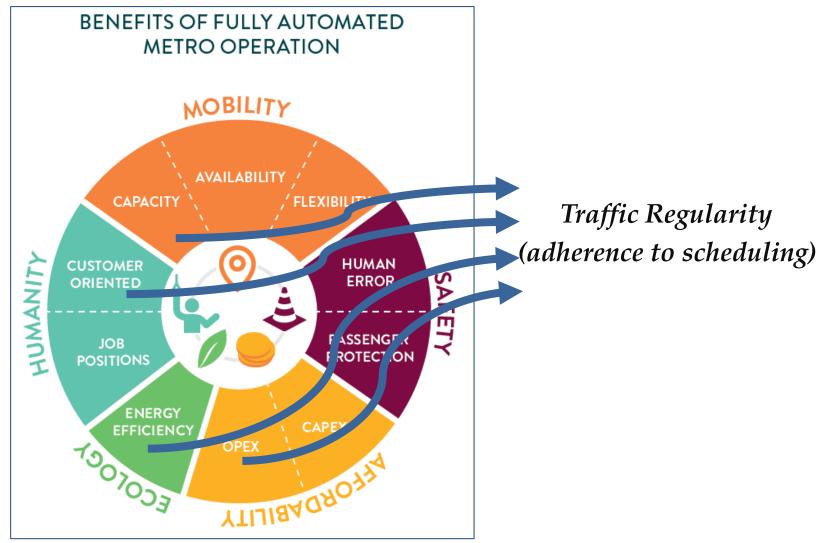
### New lines

70-80% of new commissioned metro systems


Most crowdy metro lines in operation (examples in Europe)

**Completed: Paris Metro L1 – from GoA1 to GoA4** 

**Ongoing: Brussels (L1, L5), Glasgow (Subway), London (Docklands)** 


Lyon (LA, LB), Marseille (L1, L2), Paris (L4), Vienna (U2, U5)

### ... Situation and perspectives ...



Source: World Report on Metro Automation – UITP, 2018

### ... Recognized advantages of automation...



Source: World Report on Metro Automation – UITP, 2018

# ... Investigated concepts...

**Objective** 

Measurability of advantages achievable by Automation

### **Method**

**Bottom-Up approach** 

- 1) Operational analyses of high frequency line operated without Automatic Train Operation (ATO)
- 2) Identification of the aleatory factors affecting the operation
- **3)** Derivation of suitable indices to measure the effects of detected aleatory factors
- 4) Identification of potential effects of ATO implementation in mitigating aleatory factors
- 5) Quantitative estimation of the identified mitigations
- 6) Expected improvements of *traffic regularity*

# ... Case study ...

### **Roma: Metro LA**

| LINE A                         | Μ                    |  |  |
|--------------------------------|----------------------|--|--|
| Opening                        | 1980                 |  |  |
| Last extension                 | 2000                 |  |  |
|                                |                      |  |  |
| Network operator               | ATAC                 |  |  |
| Rolling stock                  | MA 300               |  |  |
| Track gauge                    | 1.435 mm             |  |  |
| Traction                       | Electrical – 1.500 V |  |  |
|                                |                      |  |  |
| Stations                       | 27                   |  |  |
| Length                         | 18,425 km            |  |  |
| Mean distance between stations | 682 m                |  |  |
| Passengers per day             | 450.000              |  |  |

#### **Present operation**

GoA1

Nominal headway: 120 s

Scheduled intervals: 165-240 s (2'45"-4'00")

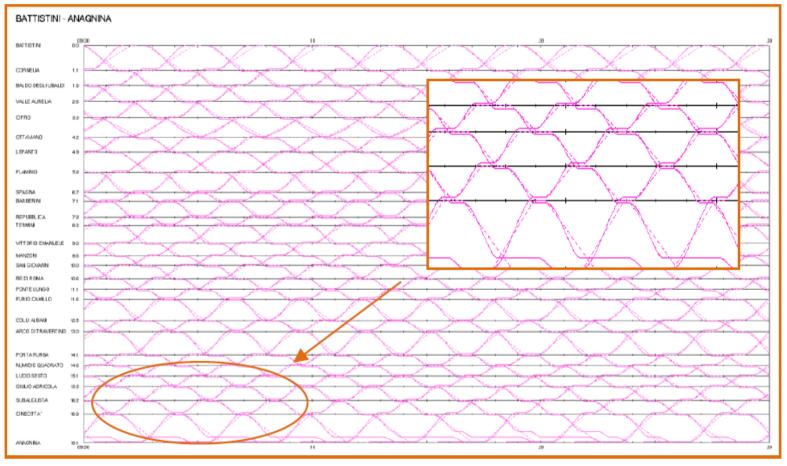
Daily trips: 617

Fleet: 33 trains

Scheduled travel time: 39 min

The second most crowdy in Europe after Paris L1, recently migrated to GoA4

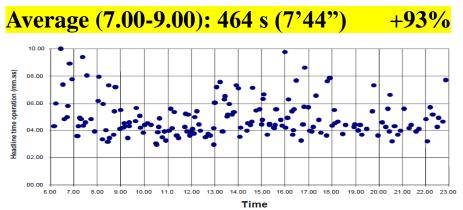
#### **Rolling stock**


| PHYSICAL CHARACTERISTICS                                |                       |  |  |  |  |
|---------------------------------------------------------|-----------------------|--|--|--|--|
| Composition                                             | >(Mc-R-M)-(M-R-Mc)<   |  |  |  |  |
| Length of the Motor car with cab (Mc)                   | 17.390 mm             |  |  |  |  |
| Length of the Motor car without cab (M) and Trailer (R) | 17.000 mm             |  |  |  |  |
| Total length                                            | 102.780 mm            |  |  |  |  |
| Doors per side                                          | 24                    |  |  |  |  |
| WEIGHTS                                                 |                       |  |  |  |  |
| Totally full loaded weight                              | 280.216 kg            |  |  |  |  |
| Total empty weight                                      | 190.060 kg            |  |  |  |  |
| Conventional passenger weight                           | 90.150 kg             |  |  |  |  |
| Maximum load weight per axle                            | 11.900 kg             |  |  |  |  |
| PERFORMANCE                                             |                       |  |  |  |  |
| Nominal line voltage                                    | 1.500 Vcc             |  |  |  |  |
| Continuous power at wheels                              | 2.560 kW              |  |  |  |  |
| Speed range at maximum power                            | 43 ÷ 90 km/h          |  |  |  |  |
| Maximum power at wheels                                 | 3.880 kW              |  |  |  |  |
| Peak traction effort                                    | 324,8 kN              |  |  |  |  |
| Maximum operating speed                                 | 90 km/h               |  |  |  |  |
| Maximum acceleration at start up to speed V = 43 km/h   | 1,03 m/s <sup>2</sup> |  |  |  |  |
| Braking deceleration at max speed from $V = 90$ km/h    | 2,4 m/s <sup>2</sup>  |  |  |  |  |

## ... Feedback from monitoring operation...

### **Monitored period**

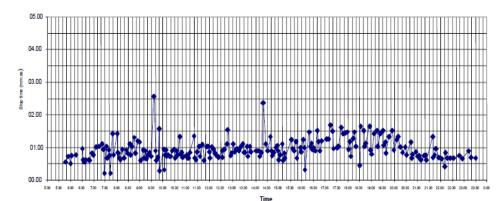
### 2 months: 7.00-9.00


#### Scheduled intervals: 165-180 s (2'45"-3'00")

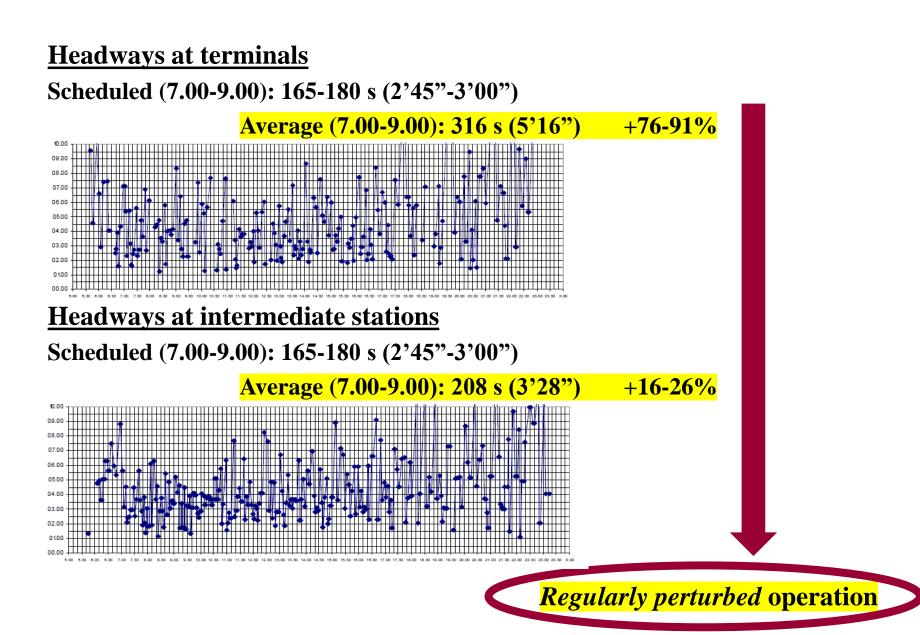


## ... Actual measured reversing and dwell times...

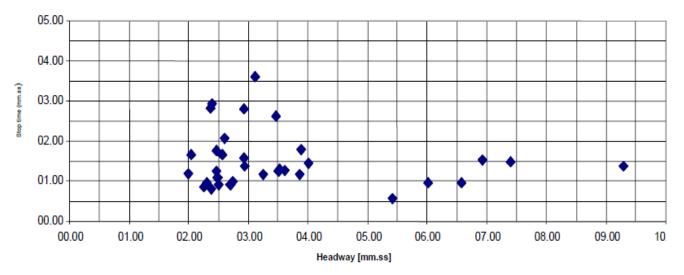
#### Actual reversing time at terminals


Scheduled (7.00-9.00): 240 s (4'00")




### Actual dwell time at intermediate stations

Scheduled (7.00-9.00): 20-30 s (0'20"-0'30")


Average (7.00-9.00): 33 s (0'33") +10-65%



### ... Actual measured headways ...



### ... Reversing times vs. headways ...



#### **Reversing time at terminals vs. headways**

Lack of correlation among key parameters *Disordered perturbed* operation Relevant influence of aleatory factors Need of synthetic quantitative indicators

# ... Proposed synthetic quantitative indicators ...

### **Regularity index at a station**

 $f_i = \left| h_{real_i} - h_{sch_i} \right|$ 

 $h_{real_i} = actual headway between the arrival of i and i+1$  $h_{sch_i} = timetable headway between the arrival of i and i+1$ **Average regularity index at a station** 

$$\overline{f} = \frac{1}{n} \sum_{i=1}^{n} \left| h_{real_i} - h_{sch_i} \right| \qquad n = number \ of \ trips$$

**Standard deviation of reliability index** 

$$\sigma_f = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^n f_i^2 - n\overline{f^2}\right)}$$

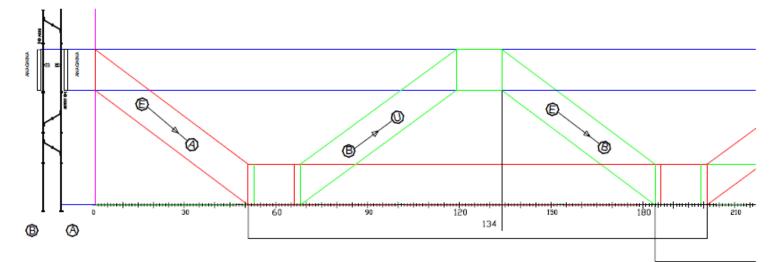
**Irregularity coefficient** 

**Actual/Timetable headway (independent from the timetable)** 

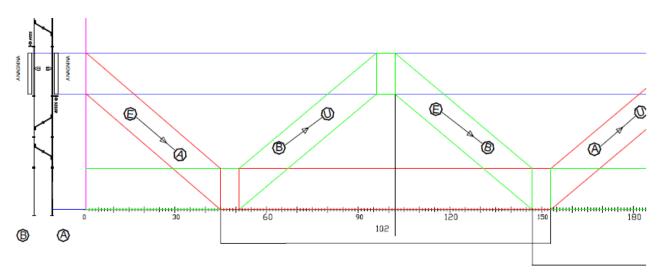
$$B = \frac{\overline{f}}{\overline{h}_{sch}} * 100 \qquad \overline{h}_{sch} = \frac{1}{n} \sum_{i=1}^{n} h_{sch_i}$$

# ... Potential effects of Automation ...

### Main functions subject to Automation


- Control of acceleration up to the maximum speed
- Control of cruise speed
- Control of braking and precise stop at platforms
- Control of dwell time duration
- Reversing maneuvers at the terminals

### Achievable effects on the operation


- Regular departures and uniform shorter headways
- Uniform shorter running times
- Uniform shorter dwell time
- Uniform shorter reversing time at terminals

## ... Reversing maneuvers at terminals ...

#### **Manual**



**Automated** 



# ... Conclusions ...

### Key achievements

- The operation of the high-frequency lines is extremely sensible to disturbances and disruptions that <u>penalize the traffic regularity</u>
- The <u>penalization of traffic regularity</u> is normally due to a combination of systematic and <u>aleatory factors</u>
- The <u>aleatory factors</u> are frequently depending on <u>human behaviours</u> both of drivers and passengers
- The effects of the <u>human behaviours</u> can be strongly mitigated by the progressive migration towards the <u>Automation</u>
- The Automation can play an important role to <u>increase the traffic regularity</u>
- The increase of traffic regularity can bring relevant <u>advantages in terms of</u> <u>capacity, customer satisfaction, operational costs, energy consumptions and</u> <u>CO<sub>2</sub> emissions</u>

#### **Research perspectives**

- <u>Various approaches</u> for the quantification of these advantages populate the literature
- Further research developments should focus on the consolidation of methods combining <u>robust formalization</u> with <u>extensive validation</u> based on data from lines operated with <u>various levels of automation</u>

# ... and thank you for your kind attention !

Questions are welcome !



stefano.ricci@uniroma1.it