

Autonomy-enabling Infrastructure

Inside approach: Autonomy fully on the vehicle. AVs can drive everywhere.

Inside-out approach: Autonomy-enabling infrastructure to assist autonomous vehicles.

Also can only drive on instrumented roads

Fundamental Questions:

- Which streets to instrument?
- How should the infrastructure operator price the usage of autonomy-enabling infrastructure?
- As a result, how should the AV operator price its rides?
- Will the population adopt the resulting mobility offering?
- ⇒ Need to study a non-trivial interconnected multi-stakeholder system.

Analysis based on Iteration across Three Pillars

1. First-Principles Analysis:

City topology, travel demand and autonomyenabling infrastructure related costs.

2. Design Infrastructure Intervention Scenario:

Rural

Urban Optimization

3. Simulation of all stakeholders:

State-of-the-art of the art multi-agent simulation framework based on MATSim (co-)developed by SBB to compute core metrics.

Quantify which **Combinations** of

- Infrastructure placement and pricing, and
- AV taxi prices

lead to viable environments for all stakeholders.

