

Radiance Fields for Robotic **Teleoperation**

Maximum Wilder-Smith¹, Vaishakh Patil¹, Marco Hutter¹ ¹Robotic Systems Lab, ETH Zurich

1 Introduction

Motivation: Mobile manipulation robots have potential to perform remote maintenance and inspection in complex environments such as transit tunnels, greatly reducing downtime.

Objective: To enable high quality teleoperation Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) perform realtime reconstruction from a ROS robot; with the visualization being streamed to a VR headset for teleoperation.

NeRF render of a switchboard cabinet captured on ALMA, being used by a VR teleoperator

2 Contributions

Three contributions to the state-of-the-art are presented:

- Create realtime radiance fields from online robot ROS data 1.
- Support for multiple methods ranging from traditional meshes¹, to NeRFs² and 3DGS³
- Visualization tools that allow radiance fields to be viewing in RViz on a screen, or streamed to a VR headset

Comparison of switchboard cabinet reconstructions with mesh on the left, NeRF in the center and 3DGS on the righ

3 System Overview

- 1. The robot sends poses and sensor data to the reconstruction
- 2. Data creates a radiance field (3DGS or NeRF) or mesh
- 3. Reconstruction is sent to VR and screen-based visualizers

4 Results

Method	PSNR ↑	SSIM ↑	LPIPS ↓
Mesh	16.94	0.5140	0.5295
NeRF	22.16	0.6473	0.1478
3DGS	24.59	0.7414	0.2126

Photometric comparisons of different 3D reconstruction methods with the radiance fields out performing the mesh

Method	Per Iteration Time [ms]	PSNR of 16.94 db [s]	Render Time [ms]	Render Time [FPS]
Mesh	1205.903	165.470	-	-
NeRF	35.644	7.027	1020.131	0.980
3DGS	34.651	6.996	6.6257	151.0

Timing comparisons to integrate new data, reach the final quality of the mesh reconstruction, and render time

5 Conclusion

- · Radiance field digital twins produce high fidelity renders of novel environments
- Both radiance field methods can reach high quality reconstructions faster than mesh based systems
- 3DGS can render novel views in real time, allowing for teleoperation using a VR headset

Acknowledgement

This project is supported by SBB, AMAG, Siemens, Prof. Dr. A. Wokaun via the ETH Zurich Foundation.

References

- 1. Helen Oleynikova, et al, "Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board MAV Planning", IROS, 2017 2. Ben Mildenhall, et al, "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV, 2020 3. Bernhard Kerbl, et al, "3D Gaussian Splatting for Real-Time Radiance Field Rendering", ACM, 2023

