ETH zürich

Long-term electricity system planning for electric vehicle charging in Germany

Siobhan Powell¹, Paula Thimet¹, Christof Knoeri^{1,2} ¹Group for Sustainability and Technology, ETH Zurich; ²ZHAW School of Engineering

1 Introduction

• Increasing EV adoption will impact the electricity system. EV demand is shaped by behaviours and charging infrastructure [1].

Figure 1. EV demand profiles for Home and Work preference scenarios.

- How can we use these factors to improve impacts on the grid?
- Missing clear policy direction; there is an untapped opportunity to use charging infrastructure to reshape future demand.

2 Methods

- Model Germany from 2025 to 2050
- Agent-based model of charging behaviours [2] using travel survey data from the German Mobility Panel [3]
- MANGOelec optimization of capacity investments and operations in with six 5-year investment, net-zero target in 2045 [4]

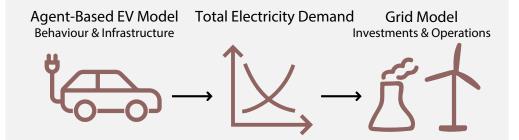


Figure 2. Overview of modelling framework.

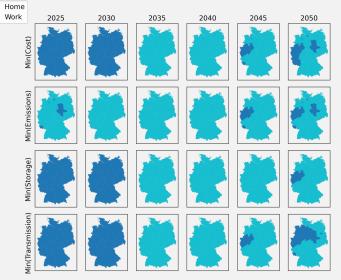


Figure 5. The optimization chooses different charging profiles by region and time.

 $\label{eq:table_$

Objective Function Values, normalized	Choice	Home	Work
System Cost, Min(Cost)	99.2%	100%	99.5%

3 Results

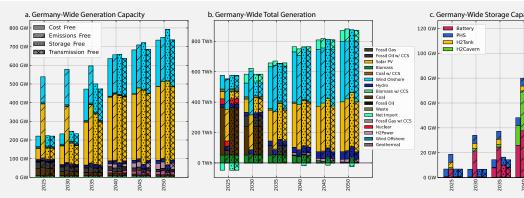


Figure 3. Optimal investments depend on the objective; to minimize emissions, renewables are installed from the first period.

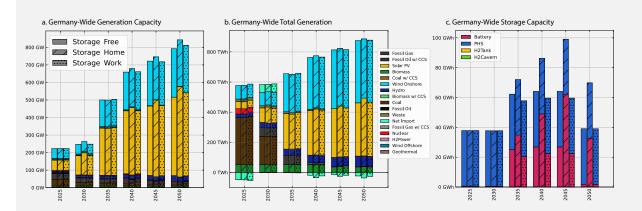


Figure 4. With home charging only, more batteries are needed, more capacity is built, and more generation is curtailed/exported.

4 Conclusion and expected impact

CO ₂ Emissions, Min(Emissions)	96.7%	100%	-
Storage Capacity, Min(Storage)	55.9%	100%	55.9%
Installed Transmission, Min(Transmission)	99.6%	100%	99.7%

The best charging policies depend on the optimization objective and vary by region and time. In all cases, more daytime charging will be needed after the phase-out of coal. Policy makers should consider region-specific infrastructure policies to promote system-friendly charging.

Acknowledgements

Siobhan Powell is supported by an ETH Postdoctoral Fellowship.

References

- 1. Powell et al. Nature Energy 7.10 (2022): 932-945.
- 2. Gschwendtner et al. Sustainable Cities and Society 88 (2023): 104263.
- 3. Deutsches Mobilitätspanel (MOP) (2022). https://mobilitaetspanel.ifv.kit.edu/english/
- 4. Thimet and Mavromatidis. Applied Energy 351 (2023): 121764.

