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ReMaP Simulation Framework (SFW)
Representing a multi-energy-carrier district from utility to site level

What
− A software framework allowing to simulate the operation of all 

energy sectors in a district
− Considers utility-level and site-level components
− Allows for simultaneous representation of a plurality of 

operational logic / controllers
− Time step and simulation horizon selected by the user 

depending on the considered case
− Can be used as part of a hardware-in-the-loop simulation

Research Center for Energy Networks FEN 4
Controller

Energy price
Heat demand
Electricity demand CHF

Heat pump

CHP

Battery

Solar PV

CHF

CHF

CHF

Gas
Electricity

Heat

Si
gn

al
(c

on
tro

l /
 m

ea
su

re
m

en
t)



ReMaP Simulation Framework (SFW)
Representing a multi-energy-carrier district from utility to site level

What
− A software framework allowing to simulate the operation of all 

energy sectors in a district
− Considers utility-level and site-level components
− Allows for simultaneous representation of a plurality of 

operational logic / controllers
− Time step and simulation horizon selected by the user 

depending on the considered case
− Can be used as part of a hardware-in-the-loop simulation

Attributes
− Open-source python-based software
− Model library with independent hardware models and control 

algorithms
− Modular design; user can add his/her own models or 

algorithms
− Can connect to external software
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 Interfaced to the ReMaP Control Framework (CFW), allowing
1. access to the Data Archive and 
2. communication with the physical hardware
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Models integrated up to now
− Electricity Network
− Battery Storage
− Combined Heat and Power (CHP)
− Electrolyser
− Generation Timeseries (Wind, PV, etc.)
− Load Timeseries (Electric, Heat, Gas)
− Fuel Cell
− Heat Pump
− Hydrogen Storage
− Methanation Reactor
− Thermal Energy Storage (TES)
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Basic architecture of SFW: A hierarchy of systems
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Basic architecture of SFW: A hierarchy of systems
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User Interface

myBuilding Sys_comms

HESS_sys

Battery

H2Tank

HESS_ctrl

MethanationPSI

H2_conn

H2_comms

Electrolyzer
PlusCDG

myTimeseries

myTimeseries = {'Name': ExogenousElectricity, 'Data': el_production} 

# Hydrogen Energy Storage System setup
HESS_phys = {'Name': [Battery, ElectrolyserPlusCDG, MethanationPSI, H2Tank],

'Param': [[{'P_max': float('inf'), 'P_min': -float('inf'), 'max_cap': Bat_cap, 'lookback’: 
window_length, 'factor_battery': factor_bat},

{'P_init': P_bat_init, 'SoC_init': SoC_bat_init}, {'factor_time': factor_time}],
[{'eff_HHV': eta_ely, 'eta_cdg': eta_cdg, 'rated_input': float('inf')},
{'P_init': P_ely_init}, {'P_el_key': 'P_Ely_setpoint', 'leakage_offset': leakage_offset}],
[{'P_H2_rated': MR_rating, 'factor_methanation': factor_methanation, 'eff': MR_eff},
{'H2_init': MR_H2_init}, {}],
[{'capacity': float('inf')}, {'SoC_init': H2_SoC_init},

{'P_net_key': 'H2_conn_up_00', 'sim_H2_tank': sim_H2_tank, 'factor_time': factor_time}]]}
H2_control = {'Name': HESS_ctrl,

'Param': [{'factor_time': factor_time, 'factor_ely': factor_ely, 'factor_bat': factor_bat, 'llim': llim,
'ulim': ulim, 'cap_H2': H2_tank_cap, 'cap_bat': Bat_cap, 'eta_ely': eta_ely,
'SoC_bat_lim_low': SoC_bat_lim_low, 'eta_elysim': eta_elysim, 'eta_cdg': eta_cdg,
'P_Ely_max': P_ely_max, 'leakage_offset': leakage_offset, 'P_Bat_max': P_bat_max,
'P_Bat_min': P_bat_min, 'SoC_min': Min_SoC, 'SoC_max': Max_SoC},

{'u_Ely_init': ctrlEly}, {}]}
H2_conn = {'Name': [H2Connector], 'Param': [[{'outputConnections': 1}, {'name': 'H2_conn'}, {}]]}
H2_comms = {'Name': [HESS_comms], 'Param': [{}]}

# Overall system setup
sysObjs = {'Name': [HESS_sys], 'Param': [[H2_control, myTimeseries, HESS_phys, H2_conn, H2_comms]]}
sys_comms = {'Name': [SysComms], 'Param': [{}]}

myBuilding = Building(None, None, None, sysObjs, None, sys_comms)

Battery Param.

Electrolyser Param.
Methane Param.
H2 Tank Param.

Control Param.

Timeseries Data

HESS Comms
Connector

Execution Order

System Layout
Building Comms
Overall Model
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Object-oriented approach
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class Storage(coreClasses.Physical):
"""Base class for all storage systems: Storage class inherits from Component class 

and implements basic storage with physical limits"""
def __init__(self, model_param, init_param, sim_param):

super().__init__(model_param, init_param, sim_param)
self.P_net = init_param.get('P_init', 0) # Net power flow into storage in W
self.SoC = init_param.get('SoC_init', 0) # State of charge in Wh
self.max_cap = model_param.get('capacity', float('inf')) # Max capacity in Wh
self.P_net_key = sim_param.get('P_net_key', 'P_STRG_in') # Key name for P_net input

def computeState(self, com_bus, connector):
self.P_net = connector[self.storage_type].bus['connected_up'][self.P_net_key].power
self.run_storage_model()
return [self.SoC, self.P_net]

def run_storage_model(self):
self.SoC = self.SoC + self.P_net * TimeKeeping.dt / 3600
self.SoC = self.check_physical_lims(self.SoC, 0, self.max_cap, action='lim&warn’)

class BatteryLosses(Battery):
def __init__(self, model_param, init_param, sim_param):

super().__init__(model_param, init_param, sim_param)
self.charge_loss = model_param.get('charge_loss', 0.01) # Charging loss in percent
self.discharge_loss = model_param.get('discharge_loss', 0.01) # Discharging loss in %

def account_for_losses(self):
if self.P_net > 0:

self.P_net *= (1 - self.charge_loss)
elif self.P_net < 0:

self.P_net *= 1 / (1 - self.discharge_loss)

def run_storage_model(self): # Include losses into predefined storage model
self.account_for_losses()
super().run_storage_model()

Update storage 
model without 
rewriting

Add experiment 
specific 
modelling detail

Extend model 
parameters

Base method 
calling storage 
model code

Storage 
parameters

Actual model 
formulation
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CFW Interface

ReMaP Task 3.1

Why
− Testing the online feedback optimization approach 

for real-time grid operation on a realistic simulation 
framework

What
− Simulation only (future connection to grid @Empa)
− Utilizing sparse real-time grid measurements to 

dynamically estimate the grid state, and choose the 
controllable generation set-points minimizing the 
operation cost while satisfying the grid constraints

− Grid modelled on Adaptiricty, power flow calculation 
via Adaptricity API

Who
− ETH Zürich, Automatic Control Laboratory 

When
− August 2021 – ongoing
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ReMaP Task 3.2

Why
− Developing a preventive control scheme based on 

thermostatically controlled loads and probabilistic 
predictions

What
− Simulation only 
− Live data integration to follow
− Probabilistic load and voltage predictions for 

demand response purposes
− Grid modelled on Adaptiricty, timeseries power flow 

calculation via Adaptricity API

Who
− ETH Zürich, Power Systems Laboratory PSL 

When
− August 2021 – ongoing
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ReMaP Task 3.2 (Outlook)

Why
− Developing a preventive control scheme based on 

thermostatically controlled loads and probabilistic 
predictions

What
− Integrated demand data from NEST @Empa
− Probabilistic load and voltage predictions for 

demand response purposes
− Grid modelled on Adaptiricty, timeseries power flow 

calculation via Adaptricity API

Who
− ETH Zürich, Power Systems Laboratory PSL 

When
− August 2021 – ongoing

Research Center for Energy Networks FEN 22Data Controller Model Hardware

Grid Power 
Injections

T3.2Load and 
Voltage 

Forecast

T3.2

Adaptricity
Interface

Grid Model
(Adaptricity)

T3.2

Voltage 
Control

T3.2

Connect Module

NEST 
Demand
@ Empa

ReMaP Data 
Archive



Ex
te

rn
al

 
H

ar
dw

ar
e

C
on

tro
l 

Fr
am

ew
or

k
Si

m
ul

at
io

n
Fr

am
ew

or
k

Ex
te

rn
al

 
So

ftw
ar

e

CFW Interface

ReMaP Task 3.3

Why
− Quantify the impacts and benefits of active

distribution networks on their hosting networks, 
considering the electrification of heating and mobility 

What
− Simulation only
− Active distribution network control
− Controller changes the power output of controllable 

distributed energy resources whenever voltage or 
flow issues arise

− Grid modelled on Adaptiricty, power flow calculation 
via Adaptricity API

Who
− ETH Zürich, Reliability and Risk Engineering RRE

When
− July 2021
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ReMaP Task 3.5

Why
− Evaluating system performance benefits from

improved dispatching control and added
components before modifying hardware

What
− Hardware-in-the-loop: CHP prototype at ETHz
− CHP plant, providing heat input for thermal storage

and steam reformer models in Simulink
− HW dispatching through control algorithm in SFW 

based on model feedback and exogenous demand
data

Who
– ETH Zürich, Laboratory of Aerothermochemistry and 

Combustion Systems LAV

When
− August 2020 – January 2021
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ReMaP Task 3.8 SFW Showcase

Why
− Showcasing the functionality of the Simulation 

Framework and Control Framework

What
− Hardware-in-the-loop
− CHP plant, providing heat input for thermal storage

to supply building heat demand
− Battery balances PV and CHP production and 

building electricity demand

Who
– ETH Zürich, Research Center for Energy Networks 

FEN
– Empa, Urban Energy Systems Laboratory

When
− November 2020 – December 2020
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ReMaP Task 3.10, Case 1

Why
− H2 Mobility without using winter-electricity (seasonal 

storage)

What
− Hardware-in-the-loop: electrolyzer at PSI (ESI 

platform), battery at Empa, methanation reactor at 
remote location

− H2 tank model virtually tracking hydrogen balance
− HW dispatching and control through control

algorithm in SFW based on model feedback and 
exogenous demand data

Who
– PSI, Bioenergy and Catalysis Laboratory LBK
– PSI, Electrochemistry Laboratory LEC

When
− June 2021 – July 2021
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ReMaP Task 3.10, Case 2

Why
− Investigating peak shaving algorithms for electric 

vehicle fast charging stations

What
− Fast charging station peak shaving with power-to-

gas-to-power
− Hardware-in-the-loop: electrolyzer and fuel cell at 

PSI (ESI platform), battery at Empa
− H2 tank model virtually tracking hydrogen balance
− HW dispatching and control through control

algorithm in SFW based on model feedback and 
exogenous demand data

Who
– PSI, Electrochemistry Laboratory LEC

When
− June 2021 – September 2021
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Simulation Framework as part of the ReMaP platform
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