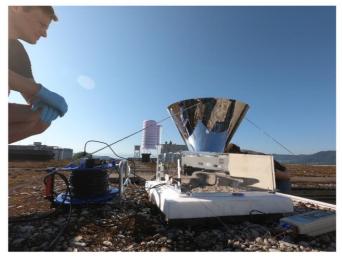


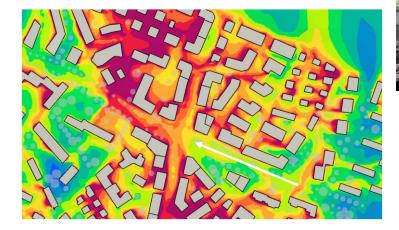
Department of Mechanical and Process Engineering

Focus: Energy, Flows and Processes

Christoph Müller (muelchri@ethz.ch) 22 May 2023



Area of Energy, Flows and Processes (EFP)



ETH zürich


Contributes to the grand challenges of today's societies, including

Supplying clean water

Enabling sustainable cities

Ensuring healthy lives

Mitigating climate change

Providing clean and reliable energy

ETH zürich

and train our students to tackle such challenges through

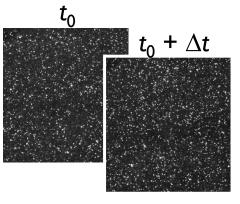
- Teaching advanced fundamentals (computational fluid dynamics, heat & mass transfer, electrochemistry, *etc.*)
- Providing early hands-on experience with experimental techniques (flow diagnostics, material synthesis, *etc.*)
- Introducing modelling frameworks for sustainable energy systems
- Offering cutting-edge research projects for BSc theses.

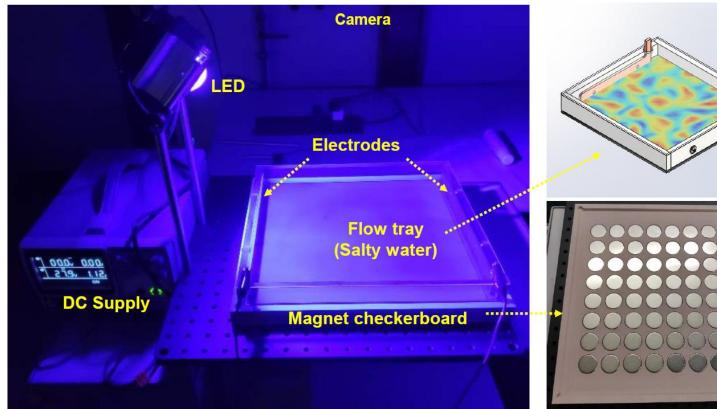
The Energy, Flows and Processes Focus

Category	Course	Lecturer	
Core	Experimental methods for engineers	D. Norris <i>et al.</i>	
Core	Combustion and Reactive Processes in Energy and Materials Technology	N. Noiray and S. Pratsinis	
Core	Energy Systems and Power Engineering	R. Abhari and A. Steinfeld	
Core	Computational Methods for Flow, Heat and Mass Transfer Problems	D. Meyer-Massetti	2x
Elective	Mass Transfer	S. Pratsinis	
Elective	Turbulent Flow	P. Jenny	
Elective	Introduction into Process Engineering	C. Müller	
Elective	CO ₂ Capture and Storage and the Industry of carbon-based resources	M. Mazzotti <i>et al</i> .	
Elective	Macromolecular Engineering: Networks and Gels	M. Tibbitt	
Elective	Introduction to Modelling and Optimization of Sustainable Energy Systems	A. Bardow and G. Sansavini	
Elective	Electrochemical Energy Systems	M. Lukatskaya	
Elective	Introduction to Photonics	R. Quidant	
Elective	Introduction to Quantum Mechanics for Engineers	D. Norris	2x

+ 1 course of the MAVT catalogue, i.e. 151-XXX

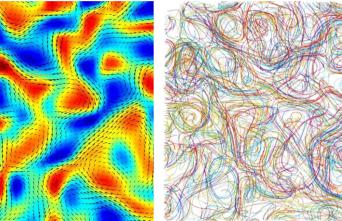
Experimental methods for engineers


- Introduction to measurement technology: Data acquisition, data analysis, interfaces, etc.
- Introduction to sensors: Measurement of velocity, pressure, temperature, physical-chemical properties, flow fields or composition.
- Introduction to specific measurement methods and algorithms: LIF, UV-vis, LDV, PIV, Schlieren
- Practical examples through lab work.



Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV)

Based on series of images of tracer particles


Applied to 2D turbulence: electromagnetically driven layer of conducting fluid

PIV: velocity fields F

PTV: fluid trajectories

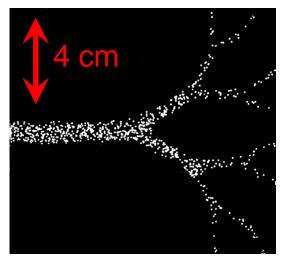
Eulerian vs Lagrangian description of same data set

ETH zürich

Combustion and reactive processes in energy and materials technology

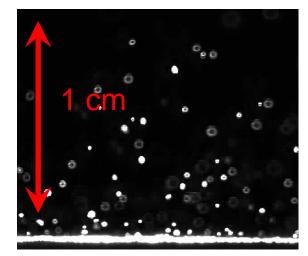
- Introduction to the basic equations in reactive flows, chemical thermodynamics and reaction kinetics.
- Two-phase flow/heterogeneous combustion.
- Turbulence and turbulent flames.
- Pollutant formation chemistry (nitrogen oxides, nanoparticles, etc.)
- Flame synthesis of materials: pigments, fillers and optical fibres.

Energy Systems and Power Engineering

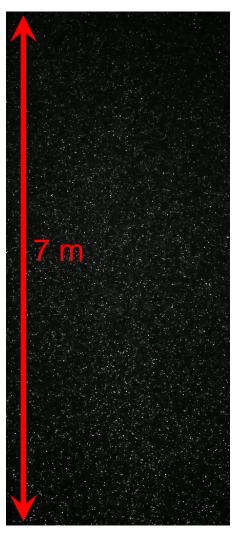

- Introduction to sustainable energy system and environmental impact of energy conversion.
- Electric power distribution system.
- Renewable energy and power.
- Cost of electricity.
- Conventional power plants and their cycles.
- Hydrogen and fuel cells.

Computational methods for flow, heat and mass transfer problems

- Basic equations, initial and boundary conditions.
- Numerical approaches for discretization: Finite-differences and finite-volume approaches, finite element method.
- Solution of fundamental classes of equations: heat conduction/diffusion equations, Poisson equation, advection equation and advection-diffusion equation.
- Stability analysis, criteria for convergence, error estimation.


Experimental Fluid Dynamics

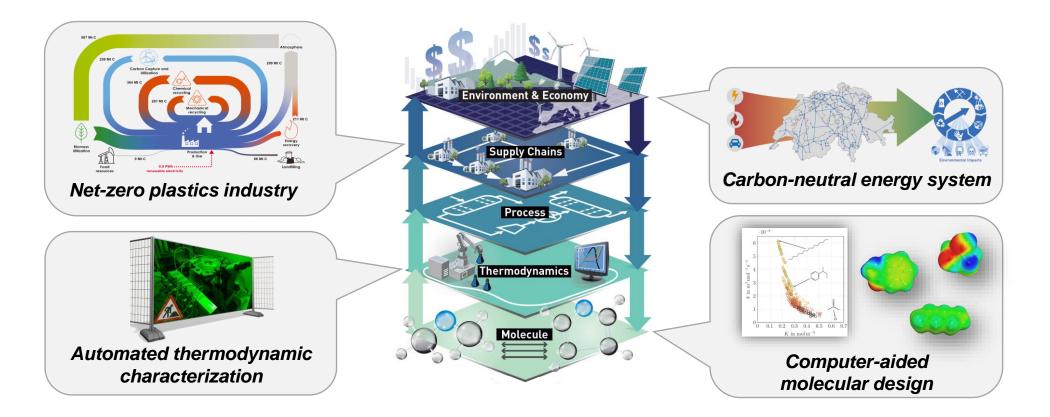
Research on multi-scale and multi-phase interactions in complex and turbulent flows


Particle transport in vessels

ETH zürich

Sand saltation in the wind

Applications: Targeted drug-delivery, solar energy receivers, microplastics in water, weather forecast



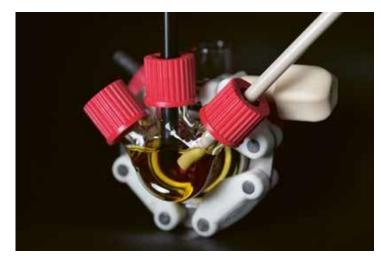
Filippo Coletti

Snowflakes falling in the atmosphere

Energy and Process Systems Engineering

Sustainable energy and chemical production systems

Applications: Power-to-X & sector coupling, sustainable carbon, and carbon capture, utilization & storage


André Bardow

Electrochemical Energy Systems

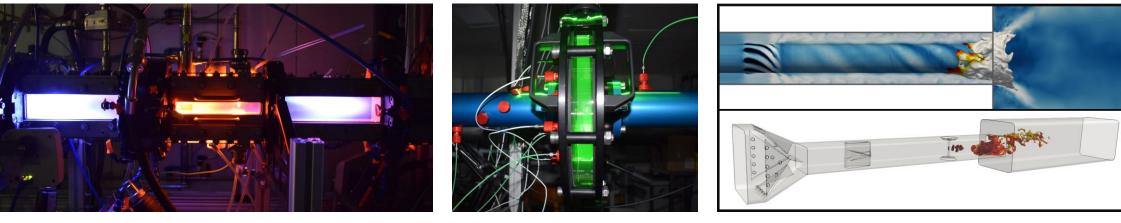
Research on electrolytes and interfaces, materials, electrocatalysis, supercapacitors, green storage

Maria Lukatskaya

Electrochemical energy conversion

Transport properties of electrolytes

Battery research


Applications: New battery materials, electrocatalysts and electrolytes that can deliver improved performance (i.e. charging times, energy density, activity and stability), cost, efficiency and safety.

Combustion and Acoustics for Power & Propulsion Systems

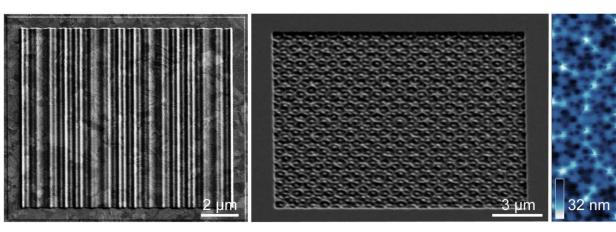
Research on Combustion, Acoustics and Fluid Mechanics

Nicolas Noiray

 H_2 combustion experiments

Aeroacoustics

Computational fluid dynamics


Applications: Gas turbines for electricity production from sustainable fuels such as H₂, Propulsion systems for aeronautic and aerospace applications, ...

Optical Materials Engineering

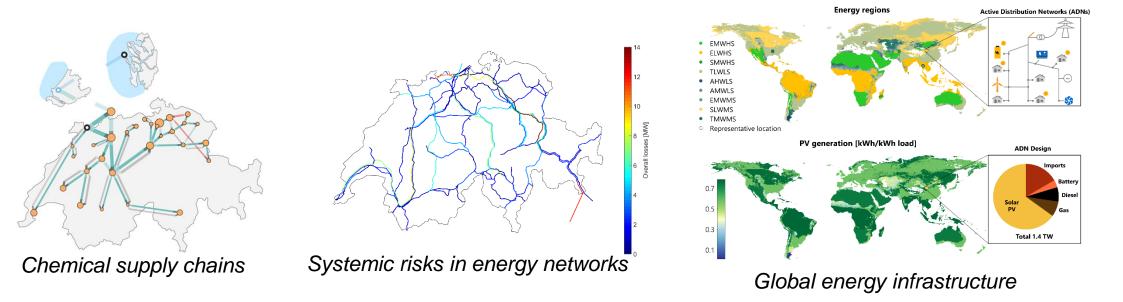
Research on optical materials, optical phenomena, and devices

Colloidal quantum dots

Plasmonic, photonic, and electronic surfaces (Fourier structures)

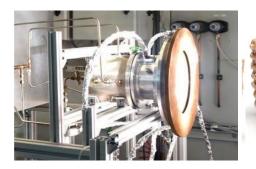
Applications: Displays, light-emitting devices, lasers, 2D electronics, photonic integrated circuits, ...

David Norris



Reliability and Risk Engineering

Research on transition to resilient, fair and sustainable energy and critical infrastructure systems


Giovanni Sansavini

Applications: Distributed multi-energy systems, cascading failures in complex networks, sector coupling and interdependencies in energy supply, design and operations of CO_2 and H_2 value chains, ...

Renewable Energy Carries

Heat/mass transport phenomena at high temperatures Functional materials for thermal energy conversion and storage Thermochemical reactor engineering for multi-phase reacting flows

Solar reactor for splitting H_2O and CO_2

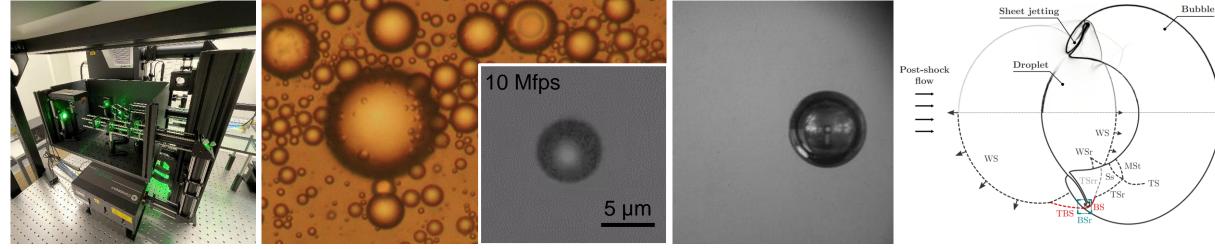
3D-printed and reticulated redox ceramic structures

Aldo Steinfeld

Technology R&D at:

- high solar fluxes (>5000 suns)
- high temperatures (>1000°C)

Applications: Concentrated solar power & fuels, CO₂ direct air capture and utilization, Solar processing of carbon-neutral chemicals (metals, cement, ammonia)



Multiphase Fluid Dynamics

Research on experimental fluid dynamics, bubbles, droplets, acoustics and microfluidics

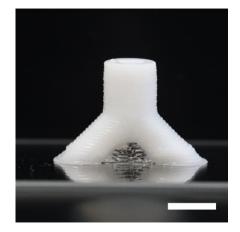
Outi Supponen

Ultra-high-speed videomicroscopy and optical micromanipulation

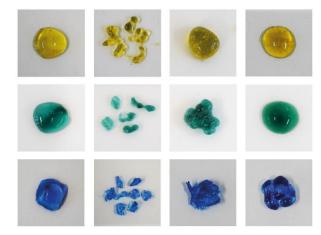
Ultrasound contrast agent microbubbles and droplets

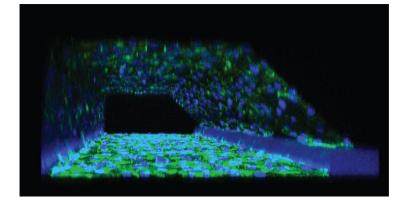
Experimental and numerical investigations on bubble dynamics

Applications: Medical imaging and therapy, bubble-based, metamaterials, chemical processing, microfluidics



Macromolecular Engineering


Research on soft matter and biomaterials



3D bioprinting

Dynamic covalent networks

Microvasculature-on-a-chip

Applications: Healthcare, regenerative medicine, drug delivery, organs-on-chip, sustainable materials

