

Why nuclear engineering? FISSION REACTORS / NUCLEAR POWER

- □ 445 nuclear power plants in operation world-wide (180 in Europe)
- □ 55 under construction (USA, UK, Korea, Finland, France, Slovakia, Turkey, China, Russia, India, Argentina, etc.) => Finland EPR Olkiluoto started operation, 1600 MWe
- □ 26 new nuclear power plants planned in Europe

 The Netherlands (2), France (14), Poland (6), Czech Republic (1), Finland (1), Bulgaria (1), Turkey (1)
- □ Nuclear included in EU taxonomy to support decarbonization efforts
- □ Japan plans to build new reactors (government announcement expected by Dec 2022)

Drone footage of snow across a San Antonio neighborhood. (Photo by Jesus Soliz)

WEATHER

Klimaneutrale Stromversorgung ohne AKW – Selbst die Grünen liebäugeln jetzt mit Gaskraftwerken

Death toll from February Texas storm surpasses 150

D MAVT

Why nuclear engineering?

FISSION REACTORS / NUCLEAR POWER

Why nuclear engineering?

FISSION REACTORS / NUCLEAR POWER

Terrapower

Nuscale SMR

Kairos FHR

Westinghouse

They are all hiring at all levels (BSc, MSc, PhD) **Strong shortage of nuclear engineers!!!!! Also in Switzerland...**

D MAVT

Why nuclear engineering? FISSION REACTORS / NUCLEAR POWER

NuSCALE (6x77 MW), für Utah, ab 2027 LCOE: 65\$/MWh, 3'600 \$/kW installiert

NUWARD (EdF/Technicatome), 170 MW, ab 2030

UK SMR (Rolls Royce), 443 MW, ab 2030

SMART (Korea), 100 MW, Betrieb in Saudi-Arabien ab 2026

RITM-200 (Russia), Betrieb in Kirgistan ab 2028

BWRX-300 (GE/Hitachi) für Ontario Power, Betrieb ab 2028, mittelfristiges Preistarget: 2'250 \$/kW

General Electric ESBWR

Passive Sicherheitssysteme

Why nuclear engineering?

MICROREACTORS FOR REMOTE AREAS

Westinghouse

- ☐ Can operate as part of the electric grid, independently from the electric grid, or as part of a microgrid
- ☐ Fully factory built, designed to be portable
- ☐ Up to 20 MWth to generate electricity and provide heat for industrial applications
- □ Powering remote, rural communities relying on diesel generators; sources of zerocarbon energy for desalination, hydrogen production and other industries

D MAVT

Why nuclear engineering? **FUSION POWER**

ITER / International effort

MIFGEN

D MAVT

Why nuclear engineering? SPÁCE EXPLORATION

spacepolicyonline.com

AGGRESSIVE NUCLEAR PROPULSION R&D EFFORT **NEEDED TO SEND HUMANS TO MARS IN 2039**

Perseverance rover will run on nuclear power RTG (Radioisotope thermoelectric generator) will provide power for the rover for about 14 years

www.nasa.com

Nuclear Propulsion Could Help Get Humans to **Mars Faster**

Why nuclear engineering?

NUCLEAR MEDICINE

Nuclear engineers are experts in the interactions between ionizing radiation and matter, nuclear imaging instrumentation and radiation dosimetry.

- ☐ Therapeutic and diagnostic applications of radionuclides (except those used in sealed sources for therapeutic purposes)
- Equipment associated with their production, use, measurement and evaluation
- ☐ Quality of images resulting form their production and use
- Medical health physics associated with this subfield

Irradiation plan design

Why nuclear engineering? **INDUSTRIAL IMAGING**

TOMOGRAPHIC IMAGING FOR UNDERWATER OIL/GAS PIPELINES

INDUSTRIAL RADIOGRAPHY

Asphaltene @1.2g/cc

D MAVT

4 Semesters (120 credits)

- ☐ Fission technology as energy source (nuclear power plants)
- Neutronics
- ☐ Thermo-hydraulics and fluid-dynamics
- □ Nuclear safety, efficiency, environmental aspects
- ☐ Fusion reactors and plasma physics
- □ Nuclear Medicine, Research and industry beyond nuclear power plants
- ☐ Fuel cycle from Uranium mines to disposal
- ☐ Integration of nuclear power plants in the energy system, synergy with other energy technologies

The Swiss Nuclear Engineering Master Program How is the Nuclear Engr. Master organized?

The Swiss Nuclear Engineering Master Program

Organization

□ 1st Semester, EPF Lausanne

Focus: Reactor physics, Neutron Transport, Radiation Biology and dosimetry, Plasma physics (fusion)

□ 2nd Semester, ETH Zürich

Focus: Reactor technology, Nuclear fuel, Nuclear Safety, Thermo-hydraulics and fluid-dynamics, Material Science, Nuclear Medicine

Placeholder for 3 months industrial internship

□ 3rd Semester, Paul Scherrer Institut / ETH Zürich

Focus: Research (Semester project), Deepening in Material science, Sever accidents, Decomissioning and waste disposal

☐ 4th Semester, PSI / ETH Zürich / EPF Lausanne / Extern

Focus: Research => Master thesis

26.10.2022

The Swiss Nuclear Engineering Master Program

□ SPECIALIZATIONS

- Medical Physics
- Plasma physics and Fusion Reactors
- Fission reactors and NPPs
 - Thermal-hydraulics
 - Neutronics

- Energy Systems
- Materials
- Particle Physics and Detection
- Computational Methods

26.10.2022

Why Nuclear Engineering?

Motivations

- ☐ More interesting, versatile and innovative than some people think!
- □ Very high energy density of nuclear fuel Advantage (great effect from small amounts of substance)
- □ Nuclear energy supports the energy transition as a powerful, environmentally friendly competitor to coal, oil and gas
- □ Reduced storage requirements for renewables thanks to the ability to plan generation
- □ Nuclear methods open up a multitude of non-invasive measurement and diagnostic procedures in technology and medicine
- ☐ Strong therapy option for the most serious illnesses
- ☐ Enjoy internationality of the nuclear community and your study mates!
- ☐ High level of multidisciplinarity opens a broad range of carrier possibilities

Where are the students who apply come from (country of Bachelor degree)

International Collaborations

Prof. Annalisa Manera

Director of Nuclear Engineering MSc Program maneraa@ethz.ch

Laboratory of Nuclear Systems and Multiphase Flows ETH-Zurich ML K 13 Sonneggstrasse 3 8092 Zürich

Nucleary Systems and Multiphase Flows Lab

High-resolution experiments for single- and multiphase flows, advanced instrumentation, computational fluid-dynamics.

Xray radiography of Steam-water flow at 75 bar

Void-fraction distribution in a fuel bundle using *γ*-tomography

CFD/chemistry
multiphysics
simulations of
CRUD deposition
on nuclear fuel

Prof. Annalisa Manera

Buoyant jets in stratified environments using PIV + Refractiveindex matching

Applications: nuclear power plants (LWRs, microreactors, advanced reactors) fluid-dynamics processes, imaging

