

DISS. ETH NO. 22878

A METHODOLOGY FOR SUPPORTING DESIGN GRAMMAR DEVELOPMENT AND

APPLICATION IN COMPUTATIONAL DESIGN SYNTHESIS

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

 (Dr. sc. ETH Zurich)

presented by

CORINNA KÖNIGSEDER

Dipl.-Ing. Univ., Technische Universität München

born on 10.08.1985

citizen of Germany

accepted on the recommendation of

Prof. Dr. Kristina Shea

Prof. Dr. Jonathan Cagan

2015

 iii

Abstract

In the last decades researchers have developed various methods enabling computers to

solve design synthesis problems using engineering design grammars. Successfully applying

grammar-based Computational Design Synthesis (CDS) methods is challenging for several

reasons. Problem-specific knowledge has to be represented formally through models

describing designs and grammar rules that define design transformations. For a fully

automated CDS process, evaluation routines have to be provided to enable the comparison

of generated designs and a search algorithm is required to guide the synthesis process. The

success of CDS methods usually depends on both the development of a suitable grammar

and the selection and tuning of an appropriate search algorithm since the two are strongly

coupled. Nowadays, there is limited methodological support for human designers during

grammar development and selection and tuning of a search algorithm for CDS.

This thesis investigates a methodology to support human designers in the CDS process. The

focus is on supporting grammar development and application through automatically

generating and analyzing data to provide the designer with information on grammar rules,

search algorithms and their interrelations. This can increase the understanding of the CDS

process which in turn can give rise to improved grammars and beneficial combinations of

grammar rules and search algorithms that lead to better-quality synthesis results. As a long

term goal, this can help to bring the benefits of CDS methods to industrial applications.

The methodology consists of four methods that allow human designers to systematically

analyze the CDS process. First, the Grammar Rule Analysis Method analyzes developed rules

and the influences they have on synthesized designs considering objectives and design

characteristics. Second, the Network-based Rule Analysis Method supports the analysis of

application conditions of rules and the analysis of sequences of rule applications, e.g., to

identify beneficial or counterproductive rule sequences. Third, the Relation Visualization

method enables the analysis of both the grammar itself and how search algorithms explore

and exploit the design space. Finally, the Search Strategy Comparison Method supports

human designers in selecting a strategy that decides whether to apply topologic or

parametric rules throughout the synthesis process. For each method, a process to generate

data, analyze it and provide visualizations for the human designer is defined inspired by

research in visual analytics. Information on interactions among grammar rules, rule

sequences, changes in objectives and design characteristics, and the search process are

presented to the human designer. A software prototype is developed to evaluate the

methods and show their potential on different case studies. The presented methodology is

integrated in the process of grammar rule development and contributes to supporting

grammar development, selection of a search algorithm and refinement of the search process.

The results of the case studies show not only the potential of the methodology to support

the human designer in grammar development and application, but also to increase the

understanding of links between problem representation, search and the explored design

space.

 v

Zusammenfassung

In den letzten Jahrzehnten wurden verschiedene Methoden erforscht, welche Computer

dazu befähigen mit Hilfe von Grammatiken Entwicklungsaufgaben im Ingenieursbereich zu

bewältigen. Methoden der computerbasierten Synthese (CDS, engl. Computational Design

Synthesis) erfolgreich einzusetzen ist aus mehreren Gründen eine Herausforderung.

Problem-spezifisches Fachwissen muss formal beschrieben werden. Dies geschieht mittels

Modellen, die Produkte darstellen, und mit Hilfe von Grammatikregeln, welche mögliche

Umwandlungen der Produkte beschreiben. Um den CDS-Prozess vollständig zu

automatisieren, sind einerseits Bewertungsmöglichkeiten erforderlich, um die generierten

Produkte miteinander vergleichen zu können, andererseits Suchalgorithmen, die den Prozess

der Produktsynthese steuern. Der Erfolg von CDS-Methoden hängt meist sowohl von der

Entwicklung einer geeignete Grammatik, als auch von der Auswahl und Feinabstimmung

eines passenden Suchalgorithmus ab, da sich beide Faktoren gegenseitig stark beeinflussen.

Derzeit existiert kaum methodische Unterstützung für Entwickler während der

Grammatikentwicklung und der Auswahl und Einstellung von Suchalgorithmen für CDS.

Die vorliegende Dissertation erforscht eine Methodik, um den menschlichen Entwickler im

grammatik-basierten CDS-Prozess zu unterstützen. Der Fokus liegt dabei darauf, den

Entwickler durch Bereitstellung von Informationen bei der Entwicklung und Anwendung von

Grammatikregeln zu unterstützen. Diese Informationen können das Verständnis der

verschiedenen Komponenten im CDS-Prozess erhöhen und dadurch verbesserte

Grammatiken und erfolgversprechende Kombinationen von Grammatikregeln und

Suchalgorithmen zur Folge haben, die wiederum hochwertige Entwicklungsergebnisse

erzeugen. Als langfristiges Ziel kann dies dazu führen, dass die Vorteile von CDS-Methoden

auch im industriellen Umfeld genutzt werden können.

Die Methodik besteht aus vier Methoden die es dem menschlichen Entwickler ermöglichen,

den CDS-Prozess systematisch zu analysieren. Erstens analysiert die Grammatikregelanalyse-

Methode (Grammar Rule Analysis Method) systematisch welchen Einfluss die entwickelten

Regeln auf die Zielgrössen und Merkmale der generierten Produkte haben. Zweitens

ermöglicht die netzwerkbasierte Regelanalyse-Methode (Network-based Rule Analysis

Method) eine Untersuchung der Anwendungsvoraussetzungen von Regeln und die Analyse

von Regelsequenzen, um zum Beispiel förderliche oder hinderliche Regelsequenzen zu

identifizieren. Drittens ermöglicht es die Zusammenhangvisualisierungs-Methode (Relation

Visualization Method) einerseits die Grammatik zu analysieren und andererseits darzustellen

wie Suchalgorithmen den Lösungsraum erkunden und ausschöpfen. Schlussendlich

unterstützt die Suchstrategievergleichs-Methode (Search Strategy Comparison Method) den

Entwickler dabei, eine geeignete Strategie auszuwählen die während des Syntheseprozesses

entscheidet ob topologische und parametrische Regeln angewandt werden soll. Inspiriert

von Forschung im Gebiet der visuellen Analyse ist für jede Methode ein Prozess definiert, um

Daten zu erzeugen, zu analysieren und dem Entwickler Visualisierungen bereitzustellen.

Zusammenfassung

vi

Informationen zum Zusammenspiel von Grammatikregeln, Regelsequenzen, Änderungen der

Zielgrössen oder Produktmerkmale und zum Suchvorgang werden dem Entwickler zur

Verfügung gestellt. Ein Softwareprototyp wurde entwickelt, um die Methoden zu evaluieren

und demonstriert deren Potenzial an Hand verschiedener Fallstudien. Die vorgestellte

Methodik ist in den Grammatikentwicklungsprozess integriert und stellt einen Beitrag dar,

die Grammatikentwicklung und die Auswahl sowie die Feineinstellung des Suchalgorithmus

zu unterstützen.

Die Ergebnisse der Fallstudien zeigen das Potenzial der Methodik auf, den menschlichen

Entwickler während der Grammatikentwicklung und -anwendung zu unterstützen. Zusätzlich

können die Zusammenhänge zwischen der Problemformulierung, der Lösungssuche und

dem erkundeten Lösungsraum besser verstanden werden.

 vii

Acknowledgments

First of all, I would like to thank my doctoral advisor Prof. Kristina Shea for all her support and

guidance through the last years. She taught me how to become a good researcher, be a critical

reviewer and significantly helped me to improve my scientific writing skills. Especially, I want to

thank her for the inputs in the research meeting we had, her confidence in my work and for giving

me the opportunity to deviate from my planned research direction and find my own path.

Further, I want to thank Prof. Jon Cagan for his interest in my research and being my second

examiner and Prof. Jürg Dual for acting as chair person at my defense. I thank them both for their

precious time and motivation to examine my research.

I also like to thank Prof. Udo Lindemann, Dr. Markus Mörtl and all former colleagues in Munich for

the friendly atmosphere that always made me feel part of the overall Institute of Product

Development and made me enjoy working there. I also thank Prof. Matt Campbell for co-supervising

my thesis for the time I was in Munich and for the fruitful discussions and programming advice.

My time as a PhD student wouldn’t have been such a precious experience without all the colleagues

I had the honor to work with. The “VPD-guys” I thank for the warm welcome in the group and the

help and advice throughout the years. You made me feel accepted and part of a great team right

from the beginning. The “EDAC-guys” I want to thank for the numerous conversations that

influenced my research, the inspiring coffee breaks at the roof terrace and the amazing Fondue-

evenings. Especially, I would like to express my gratitude to Tino Stankovic from whom I learnt so

much, ranging from crazy algorithms to general survival strategies, for his friendship, patience and

encouragements. Similarly, I want to thank Clemens Münzer for surviving the last three years in the

same office with me and for being such a great colleague and friend. I enjoyed the honest and often

diverse discussions and am sure they greatly improved my research. Further, I like to thank (in

alphabetical order) Allie for spreading her optimism, Benjamin for the exceptional cooking receipt

recommendations, Bettina for her open ear and all the help at various occasions, Eugen for greatly

supporting the running team, Fritz for kindly testing my software prototype, Jochen for the helpful

discussions of FEM methods, Jung for generating outstanding images, Luca for understanding things

wordlessly, Martin for supporting my first steps in Swiss German, Merel for the impressive

introduction to kick-boxing, Paul for his advice on endurance in sports and academia and Tim for the

exciting conference vacation.

Last but not least, I want to thank my friends and my family for their permanent support through the

last years. Thanks for all your encouragement to follow this path. I especially thank my parents

Renate and Gerhard and my brothers Daniel and Alexander for always believing in me and

supporting me in so many ways. A huge thank you goes to Sandra, my sister-in-law, for proofreading

the manuscript of this thesis and for all the cheering ups. Finally and most importantly, I thank my

boyfriend Max for his love and his immeasurable support, encouragement and patience with which

he helped me through this challenging time. He did an incredible job and found just the right balance

between taking care of things so that I can concentrate on my research and tearing me away from

the computer from time to time so that I didn’t lose sight of the many other important aspects of life.

Zurich, August 2015 Corinna Königseder

viii

The following publications are part of the work presented in this thesis:

[1, 2]a [3]f [4]a [5]a[6]a [7] a[8] a [9, 10] [11]

[1] Königseder, C. and Shea, K. (2015). "Comparing Strategies for Topologic and Parametric
Rule Application in Automated Computational Design Synthesis", Journal of
Mechanical Design, 138(1), pp. 011102-1 - 011102-12.

[2] Königseder, C. and Shea, K. (2015). "A Method for Visualizing the Relations Between
Grammar Rules, Performance Objectives and Search Space Exploration in Grammar-
Based Computational Design Synthesis", International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (ASME IDETC),
Boston, MA, USA.

[3] Königseder, C., Stanković, T., and Shea, K. (2015). "Improving Generative Grammar
Development and Application Through Network Analysis Techniques", International
Conference on Engineering Design (ICED), Milano, Italy.

[4] Königseder, C. and Shea, K. (2014). "Systematic Rule Analysis of Generative Design
Grammars", Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
28(3), pp. 227-238.

[5] Königseder, C. and Shea, K. (2014). "Analyzing Generative Design Grammars", in Design
Computing and Cognition '14, J. S. Gero and S. Hanna, eds., Springer International
Publishing, pp. 363-381.

[6] Königseder, C. and Shea, K. (2014). "Strategies for Topologic and Parametric Rule
Application in Automated Design Synthesis using Graph Grammars", International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference (ASME IDETC), Buffalo, NY, USA.

[7] Königseder, C. and Shea, K. (2014). "The Making of Generative Design Grammars",
Workshop on Computational Making, International Conference on Design Computing
and Cognition (DCC), London, UK.

[8] Königseder, C., Shea, K., and Campbell, M. I. (2012). "Comparing a Graph-Grammar
Approach to Genetic Algorithms for Computational Synthesis of PV Arrays", in CIRP
Design 2012 A. Chakrabarti, ed., Springer London, Bangalore, India, pp. 105-114.

[9] Kumar, M., Campbell, M. I., Königseder, C., and Shea, K. (2012). "Rule Based Stochastic
Tree Search", in Design Computing and Cognition '12, J. S. Gero, ed., Springer
Netherlands, pp. 471-587.

[10] Königseder, C. and Shea, K. (2015). "Visualizing Relations Between Grammar Rules,
Objectives and Search Space Exploration in Grammar-based Computational Design
Synthesis (currently under review)", Journal of Mechanical Design.

[11] Königseder, C., Stankovic, T., and Shea, K. (2015). "Improving Design Grammar
Development and Application Using Transition Graphs (currently under review)",
Design Science Journal.

ix

© Corinna Königseder, 2015

Parts of the following chapters are published with permission from the copyright holders:

Chapter 4: © Cambridge University Press, 2014, originally published as Königseder, C. and Shea, K.
(2014). "Systematic Rule Analysis of Generative Design Grammars", Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 28(3), pp. 227-238, published with permission from
Cambridge University Press.

Chapter 4: © Springer, 2014, originally published as Königseder, C. and Shea, K. (2014). "Analyzing
Generative Design Grammars", in Design Computing and Cognition '14, J. S. Gero and S. Hanna, eds.,
Springer International Publishing, pp. 363-381, published with permission from Springer.

Chapter 5: © Design Society, 2015, originally published as Königseder, C., Stanković, T., and Shea, K.
(2015). "Improving Generative Grammar Development and Application Through Network Analysis
Techniques", International Conference on Engineering Design (ICED), Milano, Italy, Paper Number
195, published with permission from the Design Society.

Chapter 6: © American Society of Mechanical Engineers (ASME), 2015, originally published as
Königseder, C. and Shea, K. (2015). "A Method for Visualizing the Relations Between Grammar Rules,
Performance Objectives and Search Space Exploration in Grammar-Based Computational Design
Synthesis", International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference (ASME IDETC), Boston, MA, USA, Paper Number DETC2015-46761,
published with permission from the ASME.

Chapter 7: © American Society of Mechanical Engineers (ASME), 2014, originally published as
Königseder, C. and Shea, K. (2014). "Strategies for Topologic and Parametric Rule Application in
Automated Design Synthesis using Graph Grammars", International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (ASME IDETC), Buffalo, NY,
USA, Paper Number DETC2014-34691, published with permission from the ASME.

Chapter 7: © American Society of Mechanical Engineers (ASME), 2015, originally published as
Königseder, "Comparing Strategies for Topologic and Parametric Rule Application in Automated
Computational Design Synthesis", Journal of Mechanical Design, 138(1), pp. 011102-1 - 011102-12.

Parts of the following chapters are submitted for publication in scientific journals:

Chapter 5: Parts are submitted to the Design Science Journal (Design Society).

Chapter 6: Parts are submitted to the Journal of Mechanical Design (ASME).

 xi

Contents

Abstract .. iii

Zusammenfassung ... v

Acknowledgments ... vii

Contents ... xi

 Introduction ... 1 1

1.1 Current Situation and Motivation ..1

1.2 Objectives and Expected Contributions ...3

1.3 Research Methodology ..4

1.4 Structure of the Thesis ...5

 Background .. 7 2

2.1 Engineering Design Process ..7

2.2 Computational Design Synthesis (CDS) ..8

2.2.1 Framework for CDS ...9

2.2.2 CDS using Grammars ... 10

2.2.3 Applications for CDS Methods with Grammars ... 10

2.2.4 Grammar Interpreters ... 11

2.2.5 Challenges for CDS Using Grammars ... 12

2.3 Related Research Areas ... 17

2.3.1 Optimization .. 17

2.3.2 Compiler Design .. 18

2.3.3 Visualization .. 18

2.3.4 Method and Tool Evaluation ... 22

2.4 Summary.. 23

 Method Overview ... 25 3

3.1 Grammar Rule Analysis Method.. 26

3.2 Network-based Rule Analysis Method .. 26

3.3 Relation Visualization Method .. 26

3.4 Search Strategy Comparison Method ... 27

 Grammar Rule Analysis Method .. 28 4

4.1 Motivation for a Grammar Rule Analysis Method .. 28

4.2 Method .. 29

4.2.1 Data Generation .. 30

4.2.2 Data Analysis ... 30

4.2.3 Visualization and Interpretation of Analysis Results ... 31

Contents

xii

4.3 Case Study: Gearbox Synthesis.. 33

4.3.1 Introduction to the Gearbox Synthesis Case Study ... 33

4.3.2 Gearbox Rule Sets to Validate GRAM .. 38

4.3.3 Application of GRAM to the Gearbox Rule Sets A – D ... 40

4.3.4 Results ... 40

4.4 Discussion .. 45

4.5 Summary.. 46

 Network-based Rule Analysis Method ... 49 5

5.1 Motivation for Network-based Rule Analysis .. 49

5.2 Method .. 51

5.3 Case Study 1 (Gearbox Synthesis): Analyzing LHSs of Rules ... 54

5.3.1 Generation of Designs ... 54

5.3.2 Results ... 55

5.4 Case Study 2 (Tile Puzzle): Learning and Reusing Rule Sequences 62

5.4.1 Understanding the Small Scale Problem ... 63

5.4.2 Applying Knowledge on the Large Scale Problem ... 64

5.4.3 Results ... 66

5.5 Discussion .. 68

5.6 Summary.. 69

 Relation Visualization Method .. 73 6

6.1 Motivation for Visualizations in CDS ... 73

6.2 Method .. 74

6.2.1 Example to Demonstrate the Method .. 75

6.2.2 Implementation Details ... 78

6.3 Case Study 1: Bicycle Frame Synthesis .. 78

6.3.1 Introduction to the Bicycle Frame Synthesis Case Study .. 78

6.3.2 Search Algorithms ... 81

6.3.3 Scenarios ... 84

6.3.4 Results ... 84

6.4 Case Study 2: Gearbox Synthesis ... 89

6.4.1 Results ... 89

6.5 Discussion .. 94

6.6 Summary.. 98

 Search Strategy Comparison Method .. 101 7

7.1 Method .. 102

7.1.1 Burst Algorithm ... 103

7.1.2 Strategies for Rule Type Selection ... 105

7.1.3 Metrics for Comparing the Strategies ... 107

Contents

xiii

7.2 Case Study 1: Gearbox Synthesis ... 108

7.2.1 Generation ... 108

7.2.2 Evaluation .. 109

7.2.3 Guidance .. 109

7.2.4 Results ... 110

7.3 Case Study 2: Bicycle Frame Synthesis .. 114

7.3.1 Generation ... 115

7.3.2 Evaluation .. 115

7.3.3 Guidance .. 115

7.3.4 Results ... 116

7.4 Discussion .. 124

7.5 Summary.. 126

 Implementation .. 130 8

8.1 Generic Framework for CDS .. 130

8.2 Data Generation Options .. 131

8.3 Data Analysis Options .. 133

8.4 Data Visualizations .. 133

8.5 Usage of the Framework ... 134

8.6 Discussion .. 136

 Discussion and Future Work .. 138 9

9.1 Comparison of the Methods ... 138

9.2 Modified Process for Grammar Development and Application .. 139

9.3 Generality of the Methodology ... 141

9.4 Research Contributions ... 143

9.4.1 Methodology for Supporting Design Grammar Development and Application 143

9.4.2 Supporting Human Designers During Grammar Development 143

9.4.3 Supporting the Selection of the Search Algorithm .. 144

9.4.4 Supporting the Refinement of the Search Process ... 144

9.4.5 Providing a Software Prototype to Support CDS ... 145

9.5 Limitations and Future Work ... 146

 Conclusions ... 148 10

References ... 151

 1

 Introduction 1

“It is characteristic of the search for [design] alternatives that the solution, the complete

action that constitutes the final design, is built from a sequence of component actions. The

enormous size of the space of alternatives arises out of the innumerable ways in which the

component actions, which need not be very numerous, can be combined into sequences”

[12]. This quote from Herbert A. Simon in his famous book The Sciences of the Artificial in

1969 describes the generation of design alternatives. It is part of a discussion whether new

reasoning methods are required for design synthesis or whether standard logic of

declarative statements are sufficient. Design is described as a process of search in a space of

design alternatives.

In 1956 already, Herbert A. Simon and Allen Newell developed the Logical Theorist [13], one

of the first artificial intelligence (AI) programs. Since then, numerous researchers attained

great achievements in supporting human designers through computer applications within

and outside of the field of AI. Designing products using Computer-Aided Design (CAD)

Systems, performing simulations to analyze product behavior before parts are manufactured

and using Computerized Numerically Controlled (CNC) machines to manufacture parts are

just a few examples, showing how the use of computers can support product development

and manufacturing.

The engineering design process is frequently described to consist of the four phases: task

clarification, conceptual design, embodiment design and detail design [14]. During

conceptual design, different product concepts are investigated and a decision on a principle

solution is taken. The following phases further elaborate the principle solution. Most of the

currently used computational tools focus on embodiment design and detail design. Even

though far-reaching decisions are taken during conceptual design, the computational

support in this phase is limited.

The need to generate numerous possible concept solutions and the lack of detailed

knowledge of design requirements and constraints make it challenging to develop support

tools for conceptual design. These tools have to be capable of modeling a vast number of

designs, ideally be unbiased and be able to either assess different generated concepts or

present them to the human designer in a form that allows selecting the most promising

concepts from the generated ones.

1.1 Current Situation and Motivation

Design synthesis is one of the most challenging parts in the generation of new products and

for a long time it was seen as solely the task of humans to conduct this creative step. Since

1956, when Newell and Simon [13] presented the “Logic Theorist”, a computer program that

solves proofs based on heuristic methods that have been observed in human problem

solving activities, researchers have demonstrated repeatedly that computers are also

capable of carrying out design synthesis tasks. Different approaches are explored to enable

 1

1 Introduction

2

the computer to design automatically and to develop tools that allow an interactive process

in which computers and human designers can develop design solutions together.

Computational Design Synthesis (CDS) is a research area aimed at supporting human

designers with computational synthesis methods. CDS methods enable the computer to

generate valid or even innovative solutions for engineering tasks. One approach is the use of

generative grammars to capture engineering knowledge formally so that it can be used in

computational design systems. For example, graph grammars use graphs consisting of nodes

and edges to represent possible designs. Often nodes represent components of a design,

while edges represent their connectivity. Grammar rules describe transformations of the

graph representation of a design to generate new designs.

CDS methods have many benefits, e.g., they enable the generation of a vast number of

design alternatives. Even though time has to be invested to generate a formal description of

the design problem, this effort is paid off when generating several designs, as the computer

is then capable to generate numerous designs in a short amount of time. While some bias

might be implemented in the grammar rules when designers formulate their engineering

knowledge, the computer, per se, is not biased by personal preference or past experience

and thus capable of comparing designs objectively. This allows for the generation of novel or

even creative designs. Fixation effects [15] which often exist for human designers, can be

decreased when using formal methods such as grammars in CDS [16]. Modeling problem-

specific knowledge formally in the computer leads to greater transparency [17]. It further

eases the comparison of different concepts, if they can be evaluated computationally.

Another benefit of formal modelling is that the developed model and the formalized

knowledge can be stored for future reuse and for documentation [18].

Despite the benefits of CDS approaches, they are still not widely used. Hesitation in industry

and research exists for several reasons. First of all, the field of CDS is still relatively new and

has not reached common engineering practice. Also, at most universities, engineering design

education does not comprise computational approaches to synthesis. Furthermore, diverse

knowledge is required to successfully apply CDS methods to an engineering design task. In a

first step, the problem-specific knowledge has to be formalized, requiring the human

designer to understand concepts of knowledge formalization, e.g. the concepts of

vocabulary and rules in case of using grammars. Besides understanding formal modelling

approaches for representing the design task at hand, the human designer also requires basic

knowledge of search and optimization algorithms to successfully combine the developed

rules with an algorithm that guides the synthesis process to purposeful designs. To date

there is only little support (see Section 2.2 for more details) for human designers in these

tasks of developing a grammar to represent design transformations and combining it with

search and optimization algorithms.

This thesis investigates methods to support human designers in the CDS process using

grammars. The focus is on developing a methodology to support the human designer during

grammar development and grammar application. The use of a systematic process to

generate data, analyze it and provide visualizations for a human designer is examined. Using

1.2 Objectives and Expected Contributions

3

 1

such a process, information on interactions among grammar rules, rule sequences, changes

in objectives and characteristics of the generated designs and the search process can be

gained. This information can be provided to the human designer in visual form. A software

prototype is developed to test the applicability of the developed methods. It automatically

generates and analyzes data and provides visualizations for the human designer.

Interpreting the visualizations can increase the designer’s understanding of different

components of the CDS process. This in turn can give rise to improved grammars and

beneficial combinations of grammar rules and search algorithms and lead to improved

synthesis results. As a long term goal, this can help to bring the benefits of CDS methods to

industrial applications.

1.2 Objectives and Expected Contributions

The first research question that this thesis addresses is:

Preliminary research question: How can the human designer be supported during CDS
using design grammars?

This question is, however, far too broad to be answered in this thesis. More specific research

questions are derived in Chapter 2 based on a literature review. The research focus is

narrowed to analyzing grammar rules and their performance after application.

The subordinate goal of this thesis is then to support the human design using grammar-

based CDS methods through systematic analysis and information visualization. The

visualizations shall provide information on rules and rule sequences, the objectives and

design characteristics of synthesized designs and the search process.

In this thesis, a methodology of four methods is presented that all pursue this goal. Sub-

goals are to support the human designers during grammar development (G1), selection of an

appropriate search algorithm (G2) and refinement of the search (G3) to steer the synthesis

process towards purposeful designs. The overall goal and sub-goals are presented in Figure

1-1. Under the assumption that visualization of information improves understanding, the

long-term goal is to increase the designer’s understanding of interdependencies between

the formal representation of a design problem using grammar rules and the search process.

This would enable the human designer to have more informed interactions with grammar-

based CDS methods which in turn can lead to improved synthesis results.

Figure 1-1 Goals of the methods in this thesis.

Support human designer in CDS in …
Overall

Goal

Sub-
goals

…grammar development
…selection of

search algorithm
…refinement

of search
G1 G2 G3

Support
designer in
selecting
existing

rules

Support
designer in
developing

rules

Support
designer in
combining

rules

Increase
understanding of

search
algorithms for
given problem

Sub-
goals

G1.1 G1.2 G1.3 G2.1

Provide rule
independent

strategies

Tuning of
search

algorithm

G3.1 G3.3

Provide
rule

dependent
strategies

G3.2

 1

1 Introduction

4

The following four contributions are expected:

The first expected contribution is to support the human designer during design grammar

development through systematic analysis and visualization of how grammar rules change

objectives and design characteristics of the generated designs. When the human designers

compare their mental model of how rules influence objectives and design characteristics to

the visualized information, deviations can be identified. The designer can then either change

the grammar rules to be in accordance with the mental model or vice versa.

The second expected contribution is supporting the human designer to select an

appropriate search algorithm. For a given grammar, the search algorithm’s progression is

analyzed. The human designer is provided interactive visualizations of the search process.

This facilitates the understanding of how the search algorithm explores and exploits the

design space. Examples for interactions are filtering the visualized content to show specific

aspects, varying the level of detail that is presented or replaying chronological sequences in

animated visualizations. These interactions enable one to obtain information on how specific

grammar rules and search algorithms generate designs. Understanding the characteristics of

a search algorithm to explore or exploit the design space when combined with a specific

grammar supports the human designer in reasoning about successful combinations of

grammar rules and search algorithms.

The third expected contribution is supporting the refinement of the search process.

Understanding grammar rules and search algorithms in depth enables the human designer

to further tune the CDS process. One aspect of this is tuning the search algorithm by setting

appropriate algorithm parameter values, e.g. specifying regular restarts of the synthesis

process. Another aspect is defining advanced strategies for modifying topologies and

parameters of designs during synthesis. Lastly, beneficial sequences of rules can be

identified. With the presented methods, the human designer is able to identify how changes

that are made to refine the synthesis process can reflect on the generated designs.

The last expected contribution in this thesis is a software prototype that supports the

human designer working on grammar-based CDS methods. The software prototype is

developed to enable an evaluation of the developed methods. Ideally, it supports grammar

development and application as well as the analyses presented in this thesis. Interfaces to

simulation software to support design evaluations are also preferable. Providing such a

software prototype permits to show the potential of the presented methodology.

1.3 Research Methodology

The thesis is structured according to the main steps of the Design Research Methodology

(DRM) as defined by Blessing and Chakrabarti [19]. An overview of the DRM and references

to the chapters of this thesis in which the respective phases of the DRM are addressed, is

given in Figure 1-2. In this chapter, the research task is identified. The existing situation of

CDS using grammars is further analyzed in Chapter 2 through a literature review. Based on

the increased understanding of the situation the research questions are refined. A

1.4 Structure of the Thesis

5

 1

methodology to support designers using grammar-based CDS methods is developed

(Chapter 3). It consists of four distinct methods that are presented and evaluated in Chapters

4, 5, 6 and 7. In this thesis only an initial descriptive study II is conducted. The practical

applicability of the developed methodology is evaluated based on case studies. The

presented methodology for supporting the designer is discussed in Chapter 9 along with

future research directions. As suggested by Blessing and Chakrabarti [19], the research is not

conducted in a strictly linear process, but includes several iterations and parallel execution of

research in different phases. In the remainder of this thesis, the focus is on the outcomes

rather than on a detailed description of how the phases of the DRM are addressed.

References back to the research methodology are given where appropriate.

Figure 1-2 Research methodology used to structure this thesis (adapted from [19]).

1.4 Structure of the Thesis

The motivation for a methodology for grammar-based CDS is presented in this chapter. The

structure of the remainder of this thesis is as follows:

In Chapter 2, the engineering design process and different CDS methods are reviewed as

means to support conceptual and embodiment design. Grammatical approaches to CDS are

discussed in detail since the scope of this thesis is to support human designers using

grammar-based CDS methods. Recent applications and grammar interpreters are presented

and the interactions between human designers and the computational method are

addressed. Challenges for grammar development and grammar application are identified.

Background information on various research areas is given as far as required to understand

the concepts used within this thesis.

In Chapter 3, the methodology for supporting grammar-based CDS is introduced. It consists

of four different methods that are introduced to give an overview of the presented research.

The intention behind this chapter is to give the reader enough information to understand

Research Clarification

Descriptive Study I

Prescriptive Study

Descriptive Study II

Goals

Understanding

Support

Evaluation

Main outcomes

Literature Analysis

Empirical Data, Analysis

Assumption, Experience, Synthesis

Empirical Data, Analysis

Basic means Stages

1,2

Legend

Iterations between

stages

Means for and

outcomes of stages

Chapter(s) in this

thesis which

address the stage

2

3,4,5,
6,7

4,5,6,
7,9

 1

1 Introduction

6

the differences between the presented methods such that he or she is able to select an

appropriate method for a given problem and to guide the reader to the relevant chapter

where the method is then explained in detail.

The method chapters (Chapters 4, 5, 6 and 7) have an analogous structure. First, the

motivation for and purpose of the method are presented. Then the method itself is

presented in detail. The application on different case studies demonstrates each method’s

use, followed by a discussion and summary of the chapter.

In Chapter 4, the Grammar Rule Analysis Method (GRAM) is presented that allows human

designers to analyze their grammar rules in a systematic way. The method is presented

along with an engineering design task, the synthesis of a gearbox. This case study is also

used in Chapter 7. Details on the gearbox case study are introduced in Section 4.3.

Chapter 5 introduces a network-based method to analyze rules in detail. It enables the

human designer to a) analyze application conditions of rules and b) analyze sequences of

rule applications. The method is targeted at supporting grammar development and rule

application. It is based on the analysis of a network of rule applications where designs are

represented as nodes while edges are used to represent transitions, in form of rule

applications, between nodes, or designs.

Chapter 6 introduces a method for visualizing relations between grammar rules,

performance objectives of generated designs, and search space exploration. It includes

advanced rule analysis to support grammar development. Visualizations of the progression

of search algorithms enable the human designer to recognize differences between various

search algorithms and thereby support the selection of a search algorithm for a given design

task.

Chapter 7 presents a method to analyze and compare different strategies for applying

topologic and parametric rules. Topologic rules change the connectivity of components of a

design whereas parametric rules change attributes of the components, e.g. mass, material or

position of a component. Understanding how strategies for topologic and parametric rule

applications influence the generated designs allows selecting an appropriate one for a given

design task. This can lead to a faster convergence of the synthesis process towards superior

designs or to generate more diverse designs.

Chapter 8 provides details on the implementation of a software prototype to evaluate the

presented methods. A generic framework is developed to support CDS during grammar

development and application. The available options for data generation, analysis and

visualization as well as possible user interactions are presented.

Chapter 9 discusses research contributions and limitations of the presented methodology.

The generality of the method is discussed and directions for future research are outlined.

Chapter 10 concludes the thesis by highlighting the main contributions and limitations of the

methodology for supporting grammar-based CDS.

 7

 Background 2

Related work is presented in this chapter to give the reader the required background

information to understand the challenges, benefits and limitations of the presented research.

In Section 2.1 a short overview of the design process and the use of CDS methods in the

conceptual and embodiment design phase is given. Different CDS methods are presented as

a means to support conceptual design in Section 2.2 to provide a broad overview of existing

methods. An introduction to grammatical approaches for CDS is then given for which the

methods in this thesis are developed. Applications of grammar-based CDS methods are

presented and challenges for these methods are identified in a literature review. Based on

these challenges, the research task is refined. The methodology developed in this thesis

combines concepts from different research fields such as optimization, compiler design and

visualization research. An overview of relevant topics in these areas is presented in Section

2.3. Methods to evaluate research results are reviewed in Section 2.3.4 to identify

appropriate measures for theoretically evaluating the research in this thesis. Section 2.4

gives a summary of the chapter and presents the refined research questions and the method

for evaluating the research results.

2.1 Engineering Design Process

According to Pahl et al. [14] the “main task of engineers is to apply their scientific and

engineering knowledge to the solution of technical problems, and then to optimize those

solutions within the requirements and constraints set by material, technological, economic,

legal, environmental and human-related considerations” [14]. Four main phases are defined

in [14] for the planning and design process. They are shown on the right in Figure 2-1. In the

planning and task clarification phase, information about the task, i.e. the requirements are

specified. In the conceptual design phase the essential problems are identified, function

structures are established and working principles and structures are searched. Those are

then combined to develop concept variants. The developed concepts are then evaluated

against the criteria specified in the requirements list and one or several principle solutions

are selected. Once principle solutions are found, preliminary layouts are developed. Often

several preliminary layout variants are developed and evaluated against technical and

economic criteria. Based on the evaluation results, a definitive layout is defined, often

incorporating aspects from different individual variants. The outcome of the embodiment

design phase is the definitive layout. In the detail design phase the geometric arrangement,

dimensions and tolerances of all individual parts are specified and the product

documentation is generated. Many other descriptions of the design process exist. In this

thesis only the process by Pahl et al. [14] is presented because its four main phases are

incorporated in most other processes in similar forms. The research presented in this thesis

addresses the conceptual design phase and part of the embodiment design phase as shown

in Figure 2-1. The development of preliminary layouts is addressed. The evaluation of

 2

2 Background

8

preliminary layouts is only addressed considering several technical criteria. Economic criteria

and the definition of a definitive layout are beyond the scope of this thesis.

Figure 2-1 Steps in the planning and design process according to Pahl et al. [14] (adapted from [14]).

2.2 Computational Design Synthesis (CDS)

Computational Design Synthesis is a research area that develops guidelines, methods and

tools for supporting the generation of novel and creative, but also routine designs. Two

major benefits of CDS methods are mentioned in [20]. First, the use of computer-based

methods permits to overcome restrictions of human designers such as limited knowledge or

design fixation. The computer is not biased per se and explores directions the human

designer would probably not consider and thus computational methods have a chance to

explore novel designs. Second, computer-based methods can support routine design by

automating tedious tasks. Chakrabarti et al. [20] outline three major themes of synthesis:

function-based synthesis, grammar-based synthesis and analogy-based synthesis. Other

approaches exist, e.g. Münzer et al. [21] define compatibility constraints between

components in a metamodel and synthesize design concepts by transforming the

metamodel into a boolean satisfiability problem. Its solutions constitute design concepts

that are conform with the compatibility constraints. For a broader view of the research field,

the reader may refer to [20, 22, 23].

Task: Market, company,
environment

Requirements list
(Design specification)

Plan and clarify the task

Develop the principle solution

Principle solution
(Concept)

Develop the preliminary layout

Preliminary layout

Define the definitive layout

Definitive layout

Prepare production and operating documents

Product documentation

Solution
U

p
gr

ad
e

an
d

 im
p

ro
ve

P
la

n
n

in
g
 a

n
d

c
la

ri
fi
c
a

ti
o

n

C
o

n
c
e

p
tu

a
l

d
e

s
ig

n
E

m
b

o
d

im
e
n
t
d

e
s
ig

n
D

e
ta

il

d
e

s
ig

n

P
h

as
es

 a
d

d
re

ss
ed

b

y
re

se
ar

ch
 in

 t
h

is

th
es

is

2.2 Computational Design Synthesis (CDS)

9

 2

2.2.1 Framework for CDS

Different frameworks for CDS can be found in literature. Shea and Starling [24] present a

framework for performance-based parametric design synthesis (Figure 2-2) and describe an

iterative process consisting of the steps investigate, generate, evaluate and mediate.

Figure 2-2 Framework for performance-based parametric synthesis (reproduced from [24]).

Cagan et al. [25] define a similar generic framework for CDS. An overview of the generic CDS

process is given in Figure 2-3. First, the designer describes the design problem formally at

the required level of detail. After the representation is defined, the CDS process consists of

the three phases generate, evaluate and guide. In the generation phase, a new design is

created by modifying an existing design solution. The resulting design is then assessed using

either a simulation tool or some heuristics to evaluate the design’s objectives and

constraints. Based on the evaluation results, the synthesis process is either continued with

this newly generated design or restarted from a previously found design alternative. Search

algorithms are commonly used to guide the synthesis process and starting from an initial

design the steps generate, evaluate and guide are continued until either no further

modifications are possible or a stopping criterion is met. After interpreting the final designs,

the designer can rephrase the problem formulation to synthesize different final results. This

process is iterative and often the problem formulation and parameter settings of the search

algorithm are varied until desired designs are generated. The terminology of this thesis is

used as defined in [25]. In the following, the focus is on grammar-based synthesis.

Figure 2-3 The generic CDS process (reproduced from [1]).

investigate

evaluate

m
ed

ia
te

gen
e

rate

Parametric
Synthesis

Representation

Generate

Evaluate
Guide

Search Process

Final
Designs

User Defined: Problem
Description

Objectives & Constraints

Designer
interprets

designs

Designer formulates
problem in a manner

understandable to
search process

 2

2 Background

10

2.2.2 CDS using Grammars

In grammatical approaches to CDS, designers develop a grammar to represent a desired

design language. It consists of a vocabulary, usually describing design components or

subsystems, as well as a set of grammar rules. These rules describe design transformations,

that are defined by a left-hand-side (LHS) and a right-hand-side (RHS), i.e. LHS → RHS. The

LHS defines where the rule can be applied in a design and the RHS defines how the design

transformation modifies the design. Using graph grammars for design synthesis, each design

can be described using a graph representation that consists of nodes and edges. For example,

nodes can represent components while edges describe functional or spatial relations

between the nodes [26].

Gips and Stiny [26] propose the use of production systems (grammars) for design tasks in

1980. Since then, research on shape grammars has become an active research area in

architecture and engineering design. Besides shape grammars, also different types of

grammars are used in engineering design. Examples are parallel grammars [27], spatial

grammars [28-31] and graph grammars [17, 32-34]. A more extensive overview of

grammatical approaches to engineering design can be found in [35, 36].

2.2.3 Applications for CDS Methods with Grammars

Three applications for grammatical approaches in design generation in architecture and

engineering design are presented in the following sections. The first one is targeted at

solving particular engineering problems using generative grammars. The second aims to

formally represent designs to capture style in order to classify designs or generate new ones

in a certain style. The third is on identifying commonalities and differences between designs,

e.g. for product platform development.

Previous work in the field of CDS using generative grammars includes the synthesis of

mechanisms [34] and epicyclic gear trains [37], the automated synthesis of gear boxes [38]

and sheet metal design [39]. Besides assisting synthesis, generative grammars can support

the design process, e.g. by flexibly providing knowledge that was previously stored in paper-

based design catalogs [40] and reusing concepts from extracted design knowledge [41].

Additionally, not only the synthesis of products can be supported with grammatical

approaches but also the synthesis of technical processes [42]. For a review of approaches to

CDS see, for example Chakrabarti et al. [20]. More recent work on CDS using grammars

includes the development of a shape grammar based on historic aircrafts that is able to

generate new, feasible aircraft designs [43], a graph grammar to synthesize passive

brachiating robots [44], and a spatial grammar to generate 3D solid models for flexible

fixture devices [28]. Most of the described applications are in the engineering design domain

and focus on solving a particular design task.

Especially in architecture, but also in engineering design, grammars are also used to

understand and capture style. Formally representing a style enables , e.g., to recreate new

artifacts following a given style. Examples are research to understand brand identity, like of

2.2 Computational Design Synthesis (CDS)

11

 2

Harley Davidson motorcycles [45] or Buick cars [46] and research to modify grammars to

adapt to new style requirements, e.g. for mobile phones [47].

Another usage of grammars in engineering design is presented by Siddique and Rosen [48].

They present a framework for generating a product platform architecture using a graph

representation for functions and structure. Sub-graph isomorphisms are detected to identify

core functions of a product family and graph grammar rules are developed to map from

function to structure level. Steps to a) develop a new product family, and b) communize

existing products to a product family are identified and a coffeemaker example from [49] is

used to demonstrate these.

2.2.4 Grammar Interpreters

In the last years, several grammar interpreters have been developed for spatial and graph

grammars. They allow the formulation of grammar rules as well as their application but vary

in complexity. Examples for graph grammar interpreters are GrGen.NET, booggie,

GraphSynth and Design Compiler 43. GrGen.NET (abbreviated with GrGen in the following) is

a domain neutral, open source graph rewriting system developed for software designers [50].

GrGen is highly expressive due to the use of attributed typed directed multigraphs and

multiple inheritance for edges and nodes. It is also faster than its competitors due to the use

of heuristics for finding graph matches [50]. These two advantages lead to the use of GrGen

in multiple disciplines, e.g. in computer linguistics, in compiler design or in computational

biology [51]. Booggie [52] is an object-oriented graph grammar interpreter based on GrGen.

It provides graphical user interfaces to develop grammar rules and aims to bring the use of

CDS methods in everyday practice through more efficient and effective knowledge

formalization [53]. GraphSynth, an open source graph grammar interpreter, used for

example in [39], enables designers to develop and apply graph grammar rules. Developed

rules can either be applied automatically on a random match of the rule on the graph or the

match can be selected interactively by the human designer. More sophisticated control

mechanisms, e.g. search algorithms, can be implemented through c# plugins. Design

Compiler 43 [54] is a platform for design synthesis using graph grammars. Graph grammars

can be defined on a generic layer and transformed to a domain specific layer. This

transformation is done in an interpretation step in which different models, e.g. for analyzing

or visualizing synthesized designs, can be generated based on the graph representation.

Spatial grammar interpreters are developed, e.g. by Hoisl and Shea [55] and Chau et al. [56].

Hoisl and Shea [55] present a visual and interactive grammar interpreter using three-

dimensional labels. Chau et al. [56] present challenges for shape grammar interpreters and

present a shape grammar implementation enabling three dimensional shape recognition for

shapes consisting of rectilinear and curvilinear basic elements. Grasl and Economou [57],

[58] present a graph grammar based approach to implement shape grammars. More

detailed overviews on grammar interpreters and their applications can be found in [20, 31].

Sound grammar interpreters are a prerequisite for successfully using grammars in CDS.

Research on grammars and the development and implementation of efficient grammar

 2

2 Background

12

interpreters advanced the use of grammars in diverse application areas. The question of how

to develop and apply a grammar for a given design task is, however, seldom addressed.

Some of the presented grammar interpreters aim to support the human designer, e.g.

through providing intuitive user interfaces for grammar development. With Booggie and

GraphSynth, for example, LHS and RHS of a grammar rule can be defined visually. For more

difficult rule application conditions or to change attribute values, however, the rule designer

has to program code in both systems. Research on systematically supporting human

designers during rule development and application is still in an early stage. Challenges for

CDS approaches using grammars and research addressing these are discussed in the

following section.

2.2.5 Challenges for CDS Using Grammars

Although many successful applications exist, the use of CDS methods is still challenging,

mainly due to the numerous aspects that have to be considered when developing and using

CDS methods. A successful application of CDS methods using grammars requires a) a

meaningful representation of designs and the design task at hand, b) a careful formulation of

grammar rules to synthesize new designs, c) problem-specific design evaluations, and d) the

selection of an appropriate algorithm to guide the synthesis process and search the solution

space. As there is no one-fits-all solution to design synthesis, the human designer has to take

various decisions when setting up a CDS method. Cagan et al. [25] describe this as finding a

“complex balance between representation, generation, and search of a design space in

pursuit of original design solutions” [25].

In [20], key issues for generative grammars are presented as follows:

“(1) supporting designers to articulate grammars (i.e., vocabulary and rules) in
software implementations,

(2) defining ways to evaluate implementations, including identifying a set of
benchmark problems,

(3) better integration of generative grammar implementations with other software,
e.g. CAD and CAE and

(4) more methodological support for users in the process of defining a grammar
since this process can also lead to better understanding of a design problem.”[20]

This thesis supports the human designer in finding this balance (as described in [25]),

through a methodology that analyzes and visualizes aspects of representation, generation

and search. It further aims to contribute to solving some of the key issues for generative

design grammars (as described in [20]).

In the following, the challenges for a) grammar development, and b) grammar application

are elaborated as indicated in literature. This helps to identify the need for more

methodological support.

Chase [59] defines different steps for grammar development and application. Grammar

development consists of defining the representation, the control mechanism (guidance) and

2.2 Computational Design Synthesis (CDS)

13

 2

the grammar rules. The grammar application is divided into determination of a rule,

determination of the object on which the rule is applied and determination of the matching

conditions. Five scenarios are defined for possible user control of these four steps. In a sixth

scenario, the computer controls all four steps. An overview is given in Figure 2-4.

Figure 2-4 Scenarios for user control in grammar based design (adapted from [59]).

In this thesis, the focus is on scenarios 1 - 5, i.e. the scenarios where human designers are

involved in either developing a grammar, applying it, or both. Scenario 6, where the

computer has full control of grammar development and application, is not considered. The

case studies used in the thesis can be assigned to scenario 5, i.e. the grammar system is

developed by a human designer. Grammar application is then performed using the computer

and is controlled through various search algorithms. The presented research is, however, not

restricted to scenario 5 but can be similarly used to support scenarios 1 - 4.

2.2.5.1 Grammar Development

Although design grammars are often developed to formalize and structure the design of

products and processes, the process of designing grammars themselves is often rather

unsystematic and “treated, to a large extent, in an ad hoc manner with regard to design,

implementation, transformation, recovery, testing, etc.” [60]. Zheng and Chen state that

“sound and systematic methods and techniques are needed for grammarware to move from

hacking to engineering” [61]. Both of these observations come from computer science,

where formal grammars for compiler design and other applications are widely used and the

research area of grammar engineering and testing has evolved. In design, Knight [62] stated

that “it is the designing of a grammar that resembles what a designer does. The

development of rules for designs requires the same kind of intelligence, imagination, and

guesswork as the development of designs in a conventional way” [62]. Although various

methods have been developed for the conventional design process, little attention is given

Designer: full controlScenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Grammar
development

Grammar
application

Object representation
Control mechanism

Grammar rules

Determination of
rule

Determination of
object

Determination of
matching
condition

Developer

Computer: full control

Developer

Developer

Developer Computer control

Computer control

Computer control

Designer: full control over grammar application

Designer: rule and object selection

Designer: rule selection

 2

2 Background

14

to design grammar rule development so far. Designing a grammar is seen as an iterative

process, “a distillation of practice and experience in a particular domain” [63]. The iterative

nature of rule development is a commonality among most publications covering the

development process of grammars and is described in [20, 64, 65]. Chakrabarti et al. [20]

mention an iterative process for the development and application of generative grammars

including an iterative loop back to the modification of vocabulary and rules after designs

have been generated. Recent approaches to support rule development either give advice to

a human designer on how to develop [62, 66, 67] and manually test a grammar [68] or

generate grammar rules automatically [69, 70]. For the latter, extensive research is also

conducted in other fields, e.g., grammar induction and improvement [71] for natural

language processing. For engineering design grammars, however, no research is known to

the author that supports rule development through systematic and automated rule analysis.

In the mechanical engineering domain, most publications on CDS methods using grammars

describe the grammar rules but give little to no hints on how these rules were developed.

Exceptions exist and three of them are presented in the following.

 Shea [72] presents a shape grammar for aperiodic spatial tiling. First, a basic grammar
(according to [62]) is developed based on mathematical descriptions for a spatial tiling
and is tested. In a second step, the basic grammar is relaxed to an unrestricted grammar
(according to [62]). The unrestricted grammar is more expressive and its generative
power is demonstrated by the generation of various designs.

 Li et al. [37] describe how a graph grammar for epicyclic gear trains (EGT) is adapted to
generate new designs. Motivated by the analysis of gear train designs that cannot be
represented with an existing grammar, the authors of this paper modify the existing
grammar rules. Two assumptions for EGT design are relaxed in the grammar rules and
permit the generation of additional Ring-Plate-Type Cycloid Drive mechanisms. The
authors state that this “process of reconciling new EGT designs and the ability of the
grammar to generate them models the traditional iterative design process” [37]. They
further emphasize the “need to concentrate on grammar design when designing with
grammars” [37].

 Chase and Liew [73] present a framework for modifying designs using Function-
Behaviour-Structure (FBS) models and grammar adaptation. Designs are modeled using
a FBS representation in graph format. Rules are selected from a library of rules storing
engineering knowledge. When requirements for the design are modified, the design can
be adapted. This is done based on the FBS representation of the design, the modified
requirements and the library of rules. Appropriate rules are selected to adapt the design
such that it fits the modified requirements.

In the architectural domain, more support for developing grammars exist. Ibrahim et al. [65]

extend the shape grammar development and application process defined by Chase [59] for a

workshop in a first year architectural design studio. In this work, the improvement of the

grammar is considered, however, no systematic method is given to support the analysis of

the developed grammars. Oster and McCormack [74] present an explicit method for the

development of shape grammars. In this method, engineering knowledge and design

requirements from the customer can be captured in rules. The method is intended to

2.2 Computational Design Synthesis (CDS)

15

 2

support the development of a shape grammar during new product development. The

authors state that there is no need to analyze existing products as in most other processes.

Drawbacks of the method are mentioned by the authors and are a focus on the customer as

opposed to considering also the company’s interests. Further, the method follows a linear

process that contradicts with the iterative nature of grammar development as described in

literature and found in practice. Oster and McCormack [74], therefore, present an

interesting approach to support grammar development but there remain several issues that

are still to be solved, e.g. giving the designer feedback on the developed grammar which is a

central issue in an iterative development process.

Different frameworks and guidelines exist that describe how grammars can be changed to

adapt the synthesis process, e.g. to generate designs that conform with a certain style or to

generate designs that fit modified requirements. Knight [75] describes three processes for

transforming (shape) grammars:

 Rule addition

 Rule deletion

 Rule change

More recent work by Chase and Ahmad [76] adds:

 Merging grammars (composite grammars)

“Composite grammars” are developed by merging different grammars. A framework for

adaptations in shape grammar practice is presented by Al-kazzaz and Bridges [77]. They give

an overview of research on shape grammar practice using adaptation methods in the

architecture and engineering design domain and compare them using their proposed

framework.

To summarize, the lack of support for grammar design was discussed more than a decade

ago [64, 78] and still it is one of the major drawbacks of grammatical design approaches [20].

In mechanical engineering and architecture, the need for systematically developing and

testing grammars is articulated [20, 31, 37, 59]. For example, McKay et al. [31] note that

“there is a need for more methodological support for guiding a user in the design of a

grammar.” It could be argued that at least some of the methods to support shape grammar

development in the architectural domain could be used to support engineering design

grammars. While general principles can be adopted, there exist differences between shape

grammars in architecture and grammars in engineering design. In architecture, shape

grammars are often formulated as basic grammars [62] and applied as pencil and paper

grammars. In mechanical engineering, also other types of grammars, e.g. graph grammars,

are used as unrestricted grammars. They are of type 0 in Chomsky’s hierarchy [35]. This

means that they are powerful mechanisms but have to be carefully designed and applied to

generate useful designs. Knight [62] stated for shape grammars that “In general, the less

restricted and more powerful a shape grammar is, the less can be predicted about how it

behaves and what it generates” [62]. Unrestricted grammars are appropriate for many

 2

2 Background

16

engineering applications because of their expressiveness. The challenge, therefore, is to

support the development of these grammars which is not supported by the methods

proposed to date. This situation motivates research into a methodology for supporting

human designers in rule development through methods that consider different grammar

types and the iterative nature of the (rule) development process.

2.2.5.2 Grammar Application

In [62], Knight stated: “While some surprise is desirable, and a strength of grammars

because it opens up new, unimagined design possibilities, some control over the outcomes

of rules is also desirable.”

In this thesis, scenarios are observed where the grammar application is controlled by the

computer. This is done using search and optimization algorithms for guiding the synthesis

process. In this context, the exploration of designs is often considered as a search process

through the design space.

Numerous algorithms are developed to support the rule application process. Examples are

shape annealing [79], agent based approaches [80, 81], genetic algorithms [8], grammatical

evolution [82] or protocol-based multi-agent systems [83]. Besides developing efficient

search algorithms for CDS, other research focuses on relieving the designer from tuning

search algorithms through machine learning methods [84], by providing generic generate

and test type algorithms [85] that require only little tuning, or through generic frameworks

for CDS [84].

Some researchers explore solution spaces without the use of search algorithms but through

random or enumerative application of rules, as in [34, 52]. When the design space is limited

or the search process is guided, e.g. through the use of labels, search algorithms might not

be required. This means the need for criteria for the selection of a search algorithm depends

on the problem at hand and the grammar rules representing knowledge. This dependency

between representation and search is mentioned in several publications (see, e.g., [34, 67]).

“Different algorithms work better in different types of space characteristics. Information

about the search space characteristics could help in preparing better guiding strategies or

selecting appropriate algorithms and heuristics” [25]. Identifying the characteristics of a

search space is challenging and sometimes even impossible. Researchers often stick to

algorithms they know well and tune them to perform well on the problem at hand.

Further research exists to ease the CDS process of which two are mentioned in the following.

Schotborgh [86] presents prescriptive methods to build a knowledge model representing

expert knowledge in rules. Poppa et al. [87] present a method to reduce the number of

design concepts that are presented to a human designer. These approaches are, however,

beyond the scope of this thesis for the following reasons. Schotborgh [86] tackles issues that

are of interest for scenario 6 (see Figure 2-4). This scenario is excluded from the research in

this thesis since it does not involve the human designer. The method described in [87] is

2.3 Related Research Areas

17

 2

relevant once designs are generated, i.e. after the rule application, and is therefore also not

addressed.

To summarize, the interplay between a developed grammar and a search algorithm is crucial.

However, to the knowledge of the author, there exists no commonly accepted method that

gives advice on how to select an appropriate search algorithm. This situation motivates

research into a methodology for supporting human designers in understanding relations

between grammar rules and search algorithms. This information can then be used to select

an appropriate algorithm for a given design problem.

2.3 Related Research Areas

To support the human designer in grammar-based CDS approaches, concepts from multi-

objective optimization, compiler design and software visualization are combined in one

methodology. In the following, basic information is given on these fields to understand the

concepts adapted within this thesis. The sections are kept short intentionally to not

overwhelm the reader with details that are unessential within the scope of this thesis.

References to further literature are given for readers who want to gain a deeper

understanding of the respective research fields.

2.3.1 Optimization

CDS is often used in the ideation process and is described as a search through the design

space. The terms exploration and exploitation (see [25] for a definition in the context of CDS)

are used throughout this thesis to describe how the design space is explored. Exploration

refers here to generating new, previously undiscovered designs or making large parametric

variations. It can be seen as going into breadth in the idea generation process, i.e. trying to

synthesize new concepts. Exploitation, by contrast, can be related with going into depth, i.e.

further elaboration of an already explored design. This means only minor changes in

topology or smaller parametric variations are conducted.

The goal of the synthesis processes is not necessarily to find one optimal design, but to

generate a population of diverse designs. Additionally, in most engineering tasks, designs

have to meet several constraints and are evaluated with respect to different, typically

competing, objectives. These two aspects make a posteriori multi-objective algorithms a

reasonable choice. A posteriori methods give no preferences to the different objectives and

generate a set of non-dominated designs, also called a Pareto set. A design A is said to

dominate a design B when a) A is no worse than B in all objectives, and b) A is better than B

in at least one objective. The Pareto set represents all non-dominated designs, i.e. designs

that are equally good in the multi-objective sense. When using multi-objective algorithms,

often the designs of the Pareto set are stored in an archive. When a new design A is added

to the archive, an update routine is triggered to remove designs that are then dominated by

A from the archive (see Figure 2-5). For surveys on multi-objective optimization in

engineering see, e.g. [88, 89].

 2

2 Background

18

Figure 2-5 Archive evolution.

2.3.2 Compiler Design

In the area of compiler design, grammars are designed formally to automatically translate

implemented source code from a higher programming language into machine code and a

whole research area of grammar engineering has evolved dealing with the development of

grammars. Grammars “are the essential formalism for describing the structure of programs

in a programming language.” [90] Two concepts from compiler design are adapted in this

thesis: a) the state representations as used to describe finite automata (FA) and transition

graphs, and b) data flow analysis techniques as used in intermediate code optimization

through analyzing data flows in graph representations.

FA are recognizers that either accept or reject a given input string. Each FA consists of a set

of states including a start state and one or more final states, a set of input symbols (the input

alphabet) and a transition function that defines the next states for each state and each

symbol. [91] FAs can be represented by “transition graphs, where the nodes are states and

the labeled edges represent the transition function. There is an edge labeled a from state s

to state t if and only if t is one of the next states for state s and input a.” [91]. For more

detailed information on finite automata and compiler design, the reader may refer to [90-

92].

2.3.3 Visualization

Several research fields are concerned with the analysis of complex data, such as classical

statistics or data mining [93]. The benefit of visualizations is hard to express using

quantitative metrics [93], however, visual examples as the one described by Anscombe [94]

(see also Figure 2-6) motivate the use of visual representations. Data for four different data

sets with the same standard output from statistical regression analysis (mean of x’s, mean of

y’s, equation of regression line, regression sum of squares, etc.) are plotted. The

visualizations demonstrate the capabilities of the human eye to discover structure and

patterns in data that are not captured with classical models.

Card et al. [95] define visualization as “the use of computer-supported, interactive visual

representations of data to amplify cognition.” This is assumed to be the most accepted

definition of visualization in the information visualization research field and motivates the

use of information visualization techniques to amplify the understanding of the CDS process.

Objective 1

O
bj

ec
ti

ve
 2

Existing designs in the archive

New design added to the archive

New design added to the archive
and dominated design removed

2.3 Related Research Areas

19

 2

Figure 2-6 Visualizations of four data sets with the same standard output from statistical regression
(recreated from data in [94]).

2.3.3.1 Research in Visualization

Keim et al. [96] distinguish among three purposes for visualization: presentation,

confirmatory analysis and exploratory analysis. Visualizations for the presentation of facts

are usually fixed a priori and their aim is primarily to communicate analysis results. For

confirmatory analysis, visualization is used to either accept or reject hypotheses about the

presented data. In exploratory analysis, the analyst explores the data without having a

hypothesis. It is a search for implicit and potentially useful information in the data. Various

research fields address visualization with different purposes. They are briefly introduced in

the following subsections.

Scientific Visualization and Information Visualization

Nagel [97] discusses differences between scientific visualization and information

visualization (often abbreviated as InfoVis) and shows where these two distinct research

fields could benefit from each other. “While Scientific Visualization techniques are used for

the clarification of well-known phenomena, Information Visualization techniques are used

for searching for interesting phenomena.”[97]

Card et al. [95] give definitions for the two fields:

 “Scientific Visualization: the use of interactive visual representations of scientific data,
typically physically based, to amplify cognition.

 Information Visualization: the use of interactive visual representations of abstract, non-
physically based data to amplify cognition.” [95]

According to these definitions ([95, 97]), the research field of information visualization is

better suited to visualize aspects of the CDS process in this thesis. Visualizations support the

human designer to better understand the CDS process. This can include, e.g., relations

0 5 10 15 20
0

5

10

x

y

0 5 10 15 20
0

5

10

x

y

0 5 10 15 20
0

5

10

x

y

0 5 10 15 20
0

5

10

x

y

 2

2 Background

20

between problem representation and search algorithms that are not known in general or to

the designer.

Visual Analytics

A new research field emerged from information visualization and automated data analysis

taking human-computer interaction into account [98]. Thomas and Cook [99] coined the

term “Visual Analytics” for this interdisciplinary field in 2005. A definition of visual analytics

and its goals are defined by Keim et al. [100] as follows:

“Visual analytics combines automated analysis techniques with interactive visualizations for

an effective understanding, reasoning and decision making on the basis of very large and

complex data sets.

The goal of visual analytics is the creation of tools and techniques to enable people to:

 Synthesize information and derive insight from massive, dynamic, ambiguous, and often
conflicting data.

 Detect the expected and discover the unexpected.

 Provide timely, defensible, and understandable assessments.

 Communicate assessment effectively for action.” [100]

Figure 2-7 presents a model for the visual analytics process according to [98]. The process

combines visual analysis, automatic analysis and human interactions with the goal to gain

knowledge from data.

Figure 2-7 Model of the Visual Analytics process (adapted from [98]).

Data is usually preprocessed and can stem from several sources. The human designer can

select either automated or visual analysis methods to learn about the data. For the visual

analysis methods, the data is mapped to visualizations. Through interactions with the

visualized data, like focusing on different regions in the data set or using different

representations, the analyst can gain information. This information can be used to build

models for automated analysis of the data. Models can also be built based on the original

data using data mining techniques. Once models are built, the analyst can interact with

Data

Visualization

Models

Knowledge

User interaction

Transformation

Model
building

Model
visualization

Parameter
refinement

Feedback

2.3 Related Research Areas

21

 2

them to understand more about the data, e.g. by changing parameters or selecting different

analysis algorithms. Findings can be verified through model visualization. “In the visual

analytics process, knowledge can be gained from visualization, automatic analysis, as well as

the preceding interactions between visualizations, models, and the human analyst. The

feedback loop stores this knowledge of insightful analyses in the system, and contributes to

enable the analyst to draw faster and better conclusions in the future” [98].

Software and Algorithm Visualization

Visualizations are also used in computer science for several decades. A movie by Knowlton

[101] in 1966 is seen as the first attempt to visualize the behavior of software using

animation techniques. Others followed, like the famous “Sorting out Sorting” movie [102],

and were mainly developed for teaching. Main applications of software visualizations are

research, teaching and program development [103]. Visualizations can, e.g. be static or

dynamic (usually called animation then) and be generated live (during program execution) or

post-mortem (visualization is generated from data collected during the program execution)

[104]. Kerren and Stasko [105] give a short overview of the history and more recent

advances of algorithm animation, a subfield of software visualization, with a focus on

teaching. In [106] statistical evidence is given that algorithm animation aids in understanding,

when employed properly. Messac and Chen [107] motivate to use visualizations of the

optimization progress to increase its effectiveness and see the potential of algorithm

visualization to make the human “understand the problem at hand, rather than discovering

the intricacies of the optimization method” [107]. They present a method to visualize the

progression of multi-objective optimization in real-time. Software visualization is usually

done in a three step process of data acquisition, analysis and visualization. In interactive

visualizations, the user can control at least one of these steps [108].

2.3.3.2 Current Visualization in CDS

Visualization is already used in CDS research and presented in publications. When describing

algorithms for guiding the CDS process in research papers, usually static control flow graphs

(see, e.g., [109]) are used for algorithms adapted from optimization. For tree-based search

algorithms, the progression of the algorithm is often represented by showing the explored

search tree for different stages of the process (see, e.g., [110]). In many publications on CDS

applications, the progression of the synthesis process is shown either by metrics for

convergence, or by showing the evolution of the Pareto set. This is usually done by

presenting different plots for different stages of the synthesis process, e.g. at predefined

iteration numbers. A drawback of these approaches is that even though the overall

progression of the Pareto set is represented, there is no direct information on the

algorithm’s behavior. It is not visible how the modification of a given design leads to a design

with improved objective function values, or to a design with a new topology. Further,

representing only archived designs, it cannot be determined, how often the algorithm

explores but rejects inferior designs. Several approaches track information on how often the

application of individual rules leads to accepted and rejected designs and use this

 2

2 Background

22

information for more intelligent search strategies [111]. These approaches are, however,

directed at improving the synthesis results while the methodology presented in this paper

aims at improving the understanding of algorithm and rules in the CDS process. One example

where the visualization of synthesis processes is discussed can be found in [112]. The

authors describe a scheme for transforming graph structures to numerical values and vice

versa. A simplified transportation network synthesis task is chosen to demonstrate the use

of their proposed scheme in an engineering context. A possible use of this scheme is to

visualize the search tree that is explored by a synthesis algorithm based on the numerical

values of the generated network structures during synthesis. The authors state that when an

interactive mapping between the numerical values and graph structure representations

would exist, this would “enhance the ability of the user to compare actual progress against

expected and thus to identify problems or gaps in their understanding” [112]. Even though

the topic of the publication is more general, this example shows the awareness of the

authors that and how visualizations of the synthesis process can support designers’

understanding by comparing expected and actual performance visually.

Chakrabarti et al. [20] postulate that more attention should be given to education in the use

of grammars for CDS. The successful application of visualization in the research domains

described above motivates the use of visualization within this thesis.

2.3.4 Method and Tool Evaluation

To evaluate the research presented in this thesis, appropriate evaluation approaches are

required. The following section describes current evaluation methods in the visualization

research and the design community.

2.3.4.1 Visualization Research

Evaluation of visualization is a challenging issue. For information visualization systems,

Plaisant [113] mentions that usability studies or controlled experiments are helpful to

understand the potential and limitations of information visualization systems. More

extensive evaluation would be desirable, however, this is a challenging issue. “By its very

nature, by its very purpose, InfoVis presents fundamental challenges for identifying and

measuring value. For instance, how does one measure insight? How does one quantify the

benefits of an InfoVis system used for exploring an information space to gain a broad

understanding of it?” [93].

Fekete et al. [93] discuss why it is challenging or even impossible to quantify the value of

information visualization using metrics. The user of an information visualization system

“simply may be examining the data to learn more about it, to make new discoveries, or to

gain insight about it. The exploratory process itself may influence the questions and tasks

that arise” [93].

In 1993, Price et al. [104] presented an influential taxonomy of software visualization. In

contrast to previously existing taxonomies that are usually elaborated based on common

characteristics of only a small amount of tools, their taxonomy is built on an established

2.4 Summary

23

 2

black-box model of software. The proposed taxonomy is well-cited and suggests besides

scope, content, form, method, and interaction, also the category effectiveness on the highest

level. The authors mention, however, that effectiveness is a highly subjective measure and

that there is only little research in the area of software visualization addressing the

evaluation of software visualizations. They state that one reason for the few studies

performed on evaluating software visualization is “the poor state of the art in software

psychology, where there are no reliable methods for comparing programming environments”

[104]. As future research challenges in software visualization they mention that the form in

which information is presented to the user requires “empirical evaluations and proper

psychological studies to determine which techniques are effective” [104]. More than twenty

years later, the evaluation of software visualizations is still an issue. Seriai et al. [114]

conducted a systematic mapping study which shows that there is still a lack in scientific

evaluation of software visualization tools. Most researchers use only quantitative case

studies, although the need for qualitative and quantitative evaluations is discussed [115,

116]. Further, evaluated methods are hardly compared to other software visualization tools

(in 77% of the publications no comparison is found) and although the software visualization

tools are developed to support human users, the majority of studies (70%) are done without

human participants. The authors conclude that “the domain still has some way to go to

reach the necessary maturity in validating its claims”[2].

2.3.4.2 Computer-aided Design Tool Research

Bracewell et al. [117] present a methodology for research into computational design tools

based on the DRM [19]. The authors distinguish between two forms of method validation in

Computer-aided engineering Design (CaeD) tool research, namely theoretical and

experimental validation. The authors state that theoretical validation can be sufficient for

some cases, e.g. ”automated routine design tools, [where] there are explicit and commonly

agreed criteria to assess the merit of the method” [117]. Software prototypes are, however,

required to assess the effectiveness of a computational method in a practical sense.

2.4 Summary

In this chapter, an introduction to engineering design and CDS methods as approaches to

support the conceptual design phase is given. The focus is then on grammar-based

approaches to CDS and applications. To formulate more specific research questions, a

literature review is carried out. Challenges for CDS using grammars are identified and the

need for supporting the human designer in CDS using grammars is derived. Two research

questions are formulated to support grammar development and application:

Research question 1: How can the human designer be supported during grammar rule
development?

Research question 2: How can the human designer be supported to understand
interrelations between grammar rules and search algorithms
during rule application?

 2

2 Background

24

Research areas that contribute to address these research questions within this thesis are

reviewed. These include optimization, compiler design and research fields concerned with

visualization. A design decision is made to use visualization techniques to support the human

designer in CDS. The current state-of-the-art for evaluating research on methods and tools is

presented for visualization and computer-aided design tools. Defining meaningful evaluation

methods is a recent issue in visualization research. In visual analytics, where automated

analyses are combined with visualizations and human-computer interaction, it is argued that,

to date, the value of visual analytics can only be expressed by success stories or subjectively

by users of developed systems. Quantifiable metrics, however, do not exist. The decision to

use visualization in this thesis, therefore, implicates that evaluating the research results is

delicate. It is decided to conduct a theoretical evaluation based on case studies, one of the

most common evaluation methods in software visualization [114]. These include tests of the

practical applicability of the developed software prototype which is demanded for

computational design tool research [117].

 25

 Method Overview 3

Figure 3-1 gives an overview of the methodology developed in this thesis. It consists of four

methods which are briefly introduced in the following. Each method is represented by a

comb in Figure 3-1. The comb structure symbolizes the individual methods but also their

integration in a methodology. Further, the comb structure can be extended easily since the

developed methodology does not claim to be complete.

Figure 3-1 Methodology for supporting design grammar development and application.

The methods are presented in detail in separate chapters:

 A Grammar Rule Analysis Method (see Chapter 4)

 A Network-based Rule Analysis Method (see Chapter 5)

 A Relation Visualization Method (see Chapter 6)

 A Search Strategy Comparison Method (see Chapter 7)

All methods have in common that data is generated in a first step. Then, either during design

generation or in a separate post-processing step the data is analyzed. Finally, the analysis

results are presented to the human designer to provide insights on the synthesis process and

the generated designs.

Although these three steps are common for all four methods, the purpose of the methods

and the generated visualizations of analysis results vary. The following sections give an

overview of each method to enable the reader to understand conceptual differences

between the methods.

Relation
Visualization

Method

Grammar Rule
Analysis
Method

Network-
based Rule

Analysis
Method

Search
Strategy

Comparison
Method

 3

3 Method Overview

26

3.1 Grammar Rule Analysis Method

The Grammar Rule Analysis Method (GRAM) is aimed at supporting the human designer

during grammar development. The focus is on the individual grammar rules. GRAM

generates data by randomly applying rules starting from an initial design and accepting each

rule application, i.e. no feedback from the evaluation is considered. For each rule, GRAM

analyzes how the design’s objectives and characteristics are changed due to the rule

application. Charts are generated automatically and visualize these changes. GRAM gives a

qualitative overview of each individual rule’s performance and can be used to debug

grammar rules. When using GRAM, expected contributions are improved grammar rules

according to the designer’s intention. Additionally, different implementations of rules can be

compared and the designer is provided insights into the search space the grammar rules

explore.

3.2 Network-based Rule Analysis Method

The Network-based Rule Analysis Method supports the development and application of

grammar rules. The method generates designs in a first step, using either random generation

or exhaustive generation of designs for a given number of rule applications. Then, the

different designs are analyzed and synthesized to form a transition graph, or network. This

network visualizes how the rules (edges) transform the designs (nodes). Network analysis

identifies rules and rules sequences that lead to the same designs, rules sequences that have

no effect on designs, or pairs of rules where one rule undoes what the other did.

Additionally, interactive tools allow the designer to analyze the generated designs and

transitions between them. These tools can, e.g., be used to analyze the effect that the

location where a rule is applied has on the generated designs. Expected contributions are

better rules through an improved rule development process and a more efficient application

of sequences of rules. This is due to an increased understanding of rules and their

application conditions and the identification of sequences that should be preferred or

avoided.

3.3 Relation Visualization Method

The Relation Visualization Method is aimed at supporting the human designer in

understanding relations between rules, generated designs and their objective function

values. It further visualizes how search algorithms explore the search space for a given rule

set. Therefore, it supports the human designer in the development of grammar rules and in

selecting an appropriate search algorithm to guide the CDS process. The Relation

Visualization Method analyzes designs that are generated when grammar rules are applied

using a search algorithm. For each rule application, the changes in objectives and design

characteristics are calculated. Further, the transitions between designs are analyzed and a

transition graph is synthesized. The user is provided different visualizations that represent

the changes in objectives and design characteristics for each rule. Interactive visualizations

3.4 Search Strategy Comparison Method

27

 3

permit the human designer to replay the synthesis process and visualize when different

designs are generated during the synthesis process and how their performance values

change. This facilitates the human designer’s understanding of how the search algorithm

explores the space. The Relation Visualization Method, therefore, supports understanding of

search algorithms, understanding the interplay between a given rule set and an algorithm, as

well as understanding the design problem at hand.

3.4 Search Strategy Comparison Method

The Search Strategy Comparison Method analyzes strategies that decide when to apply

topologic and parametric rules during the CDS process. Various strategies for topologic and

parametric rule applications exist but designers are often not aware of how different

strategies influence the synthesis process. The Search Strategy Comparison Method is a

means to analyze and compare different strategies using defined criteria. The CDS process is

conducted for different strategies and the generated designs are tracked regularly and

analyzed in a post-processing step. The human designer is then presented different metrics

that allow a comparison of the different strategies. Using the Search Strategy Comparison

Method permits a more informed selection of a strategy for topologic and parametric rule

application for a given design task which can lead to a faster convergence of the search

process or more diversity in the generated designs.

28

 Grammar Rule Analysis Method 4

The use of generative design grammars for CDS has been shown to be successful in many

application areas. The development of advanced search and optimization algorithms to

guide the synthesis process is an active research area with great improvements in the last

decades. The development of the grammar rules, however, often resembles an art rather

than a science. Poor grammars drive the need for problem-specific and sophisticated search

and optimization algorithms that guide the synthesis process towards valid and optimized

designs in a reasonable amount of time. Instead of tuning search algorithms for superior

grammars, the research presented in this chapter focuses on supporting the human designer

during grammar development. The research aims to answer the following research

questions:

Research question 4.1: How can we systematically investigate the relations between
grammar rules, objectives and design characteristics in CDS
methods?

Research question 4.2: In this context, what information do grammar developers need
to develop and refine grammars?

Research question 4.3: How can this information be visualized?

A short motivation for grammar rule analysis is given in Section 4.1. The generic Grammar

Rule Analysis Method (GRAM) is then presented in Section 4.2. Section 4.3 validates GRAM

on a gearbox synthesis case study. Four different graph grammars for automated gearbox

design are analyzed and compared using GRAM. In Section 4.3.4, the results are presented

and discussed in Section 4.4. In Section 4.5, the method is summarized, research questions

are revisited and the key contributions are presented.

4.1 Motivation for a Grammar Rule Analysis Method

The goal of the method described in this chapter is to take a step in the direction of

systematically assisting the rule development process. It is meant to support designers of

grammars by giving feedback on the performance of their developed rules through a set of

visualizations, produced from systematic rule testing, that the designer can interpret and

adjust the grammar rules accordingly. Throughout this thesis the term performance is used

to describe how rules impact designs, e.g. how they change design characteristics and

objectives. Testing the rules during or after the development process and before they are

embedded in a more complicated design synthesis process enables designers to obtain an

increased understanding of each rule’s performance and to validate them. In 1956, Chomsky

stated that a grammar “gives a certain insight into the use and understanding of a language”

[118]. GRAM focuses on enabling these insights to allow the human engineer to design

better grammar rules.

4.2 Method

29

 4

4.2 Method

GRAM analyzes a grammar under development in a systematic way to give feedback on how

rules perform. GRAM is presented in Figure 4-1. Dark grey boxes represent steps that are

carried out automatically in the current implementation, light grey boxes represent steps

that can be automated in the future.

Figure 4-1 Grammar Rule Analysis Method (GRAM) to analyze grammar rules for CDS based on the extended
SG process shown in [31].

Individual rule performances (Q1) as well as the performance of the whole rule set (Q2-Q6)

are assessed such that the rule designer is able to answer the following questions when

interpreting the results:

Q-1. What impact does each rule have on each objective?

Q-2. How probable are the applications of each rule?

Q-3. What solution space do the rules define?

Q-4. Does the rule set favor certain designs in design generation?

Q-5. How many valid designs are generated?

Q-6. How many different designs are generated?

GRAM has a defined way to generate and analyze data. Information from the data analysis is

visualized and interpreted by the designer to gain a better understanding of the grammar

itself. The different steps in GRAM are described in more detail in the following and a

schematic representation of the GRAM steps 1-3 is shown in Figure 4-2 to accompany these

descriptions. GRAM is best illustrated using an example, so a grammar for gearbox synthesis

is used here that is further introduced in Section 4.3.1. GRAM supports the analysis for any

number of objectives, design characteristics and rules but for the sake of clarity it is shown

here for this reduced example.

GRAM

Modification of rules
based on GRAM results

1. Data generation
2. Data
analysis

3. Visualization
of analysis

results

4. Interpretation of
analysis results

(modification advice)

If not
accepted

Development of initial grammar

CDS process

If accepted

Generate & Evaluate Analyze

Legend

automated
not yet

automated

 4

4 Grammar Rule Analysis Method

30

Figure 4-2 Schematic overview of the GRAM steps 1 - 3.

4.2.1 Data Generation

To analyze grammar rules, a variety of data, i.e. objectives and design characteristics, is

required. The data is generated using a simple generate-and-test process. It starts with an

initial design. A rule is selected randomly from all implemented rules. It is applied, the

generated design is evaluated and the data is stored. The generated design resulting from

this rule application is taken as the basis for the next iteration. It is not a generate-and-test

search process as the design resulting from the rule application is always used as the starting

point for the next rule application regardless of impact on design objectives. In most

engineering applications there are multiple objectives and it is recommended to store the

metrics for each objective individually. Here, also constraints formulated as soft constraints,

i.e. penalty functions, can be included. Design characteristics are commonly system

characteristics, e.g. the number of components and component types.

4.2.2 Data Analysis

For all data, the change in the objectives is calculated to analyze the performance of each

individual rule. The generated designs are analyzed to identify topologically equivalent

designs to be able to represent the design space and to identify if the rules favor certain

Step 3: Data visualization

Q5 - Validity ratio Q6 – Diversity ratio and topology barplot

Q2 - Barplot for matching ratios

100%:
rule is
always
matched

0%:
rule is
never
matched

10%:
rule is (statistically) matched once in 10 attempts

Q1 - Boxplots for each objective

median upper
quartile

lower
quartile

whiskers

Change against desired direction

Change in desired direction

Change in both directions

No change

Box color coding:

Step 1: Data generation

Data log file including rule
number and values for
objectives and design

characteristics

Step 2: Data analysis

Calculating changes
in objectives and

design characteristics

Calculating statistics
for individual rules
and whole rule set

Checking designs for
graph isomorphisms

Q3/Q4 - Design space plot

Color coding showing
how many designs
with the same
characteristics are
generated

design
criteria

generated
designs

4.2 Method

31

 4

topologies, i.e. generate them multiple times. Additionally, some basic statistical models are

built to prepare the visualization and support the interpretation.

4.2.3 Visualization and Interpretation of Analysis Results

Five different diagram types are presented in Figure 4-2 to visualize the data obtained in the

analysis. For a rule set of 𝑛𝑟 rules and an analysis of 𝑛𝑜 objectives using 𝑛𝑑 design

characteristics, the following diagrams are generated: Q1) 𝑛𝑜 boxplots with 𝑛𝑟 boxes each,

Q2) one barplot with 𝑛𝑟 bars, Q3/Q4) one 𝑛𝑑-dimensional design space plot, additional

boxplots if required, Q5) one ratio for valid designs and Q6) one ratio for different designs,

one additional barplot if required. The diagrams are explained below and important issues

for their interpretation are discussed.

Q1 - General performance analysis using boxplots for each objective. For each objective a

diagram is generated showing how it is influenced by each rule (given on the y-axis). The

user defines the desired direction of change derived from the problem formulation and a

color coding gives a quick overview if the rule changed the objective in the desired direction

or not. The red (medium grey) color indicates a change against the desired direction and the

green (light grey) color a change in the desired direction. Blue (dark grey) boxes show that

changes in both directions are possible and black (black) is used to represent rules that have

no influence on an objective. The whiskers, defined by the thin line, represent the maximum

and minimum value of the dataset excluding outliers, i.e. data points more than 3/2 away

from the lower or upper quartile. The box spans from the lower quartile to the upper

quartile showing also the median. Using this diagram, the engineer can visualize the

performance of each rule considering each objective separately. Interpreting these diagrams,

the designer has to consider that changes against the desired direction, e.g. increasing an

objective rather than decreasing it, can be valuable for design synthesis. This means that

changes against the desired direction do not automatically identify inferior rules that should

be removed. In contrast, it encourages the rule designer to think also about the sequences in

which rules can be applied and to consider combining these sequences to create more

specific rules to facilitate the generation of beneficial designs.

Q2 – Bar plots to represent matching ratios for each rule. For more detailed information on

a rule’s applicability, matching ratios are calculated and visualized. Throughout this thesis,

the matching ratio of a rule is defined as the number of LHS matches of a rule divided by the

number of attempts to apply this rule. This ratio defines how likely it is for a rule to be

applied with a matching ratio of 100% meaning a rule can always be applied while a

matching ratio of 0% represents a not applicable rule. From the matching ratios, the rule

designer can reason about the LHSs of the rules. This often helps to explain the design space

that is generated with the rule set. Rules that have a very low application probability are

only rarely applied. In grammars with unbalanced rule application probabilities, i.e. some

rules are applied very often, others very rarely, the rule designer can, for example, consider

formulating the LHSs of rarely applied rules differently to allow their application more often.

Additionally the use of search strategies or predefined sequences for the CDS process can be

 4

4 Grammar Rule Analysis Method

32

helpful to improve the rule’s application. The interpretation of matching ratios is dependent

on the rule design as well as the search and optimization algorithm used later for design

synthesis. When using intelligent search methods, it may not be required to ensure higher

matching ratios for all rules, whereas when using simple generate-and-test type algorithms,

this may be more helpful to explore the design space.

Q3/Q4 - Visualization of the design space. To show the size of the design space, a matrix

with the dimensions of the design characteristics 1 and 2, is presented. Each point in the

space indicates that a design with, e.g., x elements of design characteristic 1 and y elements

of design characteristic 2 exists. The color indicates how often a design with the respective

characteristics is generated. This plot gives an indication about how the rules are used to

generate the design space. The color can be used to identify solutions in the design space

that are favored by the rules (“hot spots”). When continuous design characteristics are

required or when the user is interested in additional information on objectives, the x- and y-

axes can be made continuous or boxplots for each objective and design characteristic can be

made in addition to the design space representation. The visualized space is generated using

random generation without feedback. The rule engineer has to consider this when

interpreting the results. It can happen that the space is larger than intended, e.g. when the

designer allows invalid designs and plans to use penalty functions and an optimization

algorithm for the CDS process and these penalized designs are not removed from the design

space yet. On the other hand, it can also happen that the generated design space is small

because certain rules undo what previous rules did. To derive useful measures to improve a

rule set, the rule designer has to consider not only the space explored and the favored

designs during the data generation process in GRAM, but also the search and optimization

process that will be used.

Q5 – Validity ratio. The validity ratio is defined here as the number of valid designs divided

by the number of total designs generated. The validity of a design is defined by the designer

and can be, for example, the necessity to have a connection between two components, e.g.

a connection between the input and the output shaft in the gearbox example. The validity

ratio gives feedback on the probability that the analyzed grammar generates valid designs

with simple generate-and-test type algorithms. The lower the validity ratio is, the more

intelligent the guidance has to be to lead the grammar rule application to produce feasible

designs. On the other hand, a low validity ratio does not mean that a grammar necessarily

produces inferior results compared to a grammar with a validity ratio of 1, i.e. generating

only valid designs. In some cases it is required to generate invalid intermediate designs to be

able to eventually transform an invalid design into a valid one. It is the designer’s choice to

decide whether or not invalid designs should be allowed during design generation for a

specific problem formulation and to interpret the validity ratio accordingly.

Q6 – Diversity ratio. The diversity ratio is defined as the number of valid and topologically

different designs generated during the data generation phase divided by the number of all

valid designs generated during the data generation phase. A high diversity ratio means that

the grammar generates topologically different designs with a high likelihood, i.e. the design

4.3 Case Study: Gearbox Synthesis

33

 4

space is more easily explored than when having a lower diversity ratio and generating the

same designs repeatedly. The rule designer has to be aware of the fact that the diversity

ratio reflects only the design space explored during the data generation process. In most

cases the entire design space is unknown and, when using parametric rules, can be infinite.

To further analyze the generated designs, additional bar charts can be used to indicate for

each topologically unique design, how often it is generated. It permits, e.g., to distinguish

between two grammar rule sets with the same diversity ratio in more detail. Assume two

rule sets that both generate 100 valid designs with five different topologies. The first one

generates four of these topologies only once and the fifth topology in all other cases. The

second rule set generates each of the five topologies 20 times. Both rule sets have a diversity

ratio of 0.05. However, there is obviously a difference in how they explore different

topologies that the human designer might be interested in. Bar charts provide this

information and can therefore give further insights into the tendency of the grammar rules

towards exploring and exploiting different topologies.

Using these diagrams, designers can check if the grammar represents the intended design

language and interpret the relative ease of generating known, intended designs and they can

further improve the grammar considering the analysis results.

4.3 Case Study: Gearbox Synthesis

To show the applicability of the proposed method, GRAM is applied to four different

grammars for automated gearbox synthesis. Since the gearbox case study is used throughout

this thesis to validate the different methods, it is introduced once in the following in more

detail. The following chapters then refer back to this description and only mention

differences or deviations where applicable.

4.3.1 Introduction to the Gearbox Synthesis Case Study

Gearbox design using generative grammars is an established CDS problem and research has

been carried out by several scientists [27, 34, 38, 119-122]. In this thesis, all grammars for

gearbox synthesis are formulated and implemented as graph grammars consisting of a

metamodel and a rule set to synthesize designs. The rule set can contain both topologic and

parametric rules.

4.3.1.1 Metamodel

A metamodel describes all elements that can be used as building blocks within a generative

grammar [52], also known as vocabulary. For the gearbox case study, the metamodel

consists of three different node types for gears, shafts and the bounding box and one

directed edge type to connect nodes. An overview of the metamodel is given in Figure 4-3.

All nodes have parameters to specify the components they represent, e.g. diameter, gear

width and position for gears. As an initial design of the gearbox, an input and output shaft

are given including their distinct position. Additionally, a bounding box defines the spatial

boundaries in which the gearbox has to fit. An edge between a gear and a shaft indicates

 4

4 Grammar Rule Analysis Method

34

that the gear is mounted on the shaft and an edge between two gears indicates that the two

gears are in mesh. Thus, each path in the graph starting from the input shaft and going to

the output shaft indicates a possible power flow path through the gearbox, i.e. it represents

one speed. The internal representation uses directed edges between nodes to identify the

power flow from input to output shaft.

Figure 4-3 Metamodel for the gearbox case study.

4.3.1.2 Implementation of the Rule Sets

Throughout this thesis, the rule sets for synthesizing gearbox designs are implemented as

graph grammars using GrGen. Different rule sets are used in Chapter 4. All other sections

using the gearbox synthesis task as a case study make use of the same rule set which is why

this rule set is explained in more detail in the following.

The rule set consists of five topologic and five parametric rules as illustrated in Figure 4-4. It

is an extension of the rule set described in [38] including rules 9 and 10 to shorten and

lengthen shafts.

Topologic Rules

The following topologic rules add, delete or replace nodes in the graph and their

corresponding edges.

Rule 1 - Create a new shaft: A new shaft and two new gear pairs are created to connect the

new shaft to two existing shafts.

width

h
ei

gh
t

diameter
diameter

Shaft Gear Bounding box

double: length
double: diameter

double: width
double: diameter

double: height
double: width
double: depth

Node

double: x
double: y
double: z

Edge

4.3 Case Study: Gearbox Synthesis

35

 4

Rule 2 - Delete a shaft: A shaft is deleted including all gears connected to it. In case the

deletion of the gear set creates dangling nodes in the graph, i.e. nodes that cannot be

included in any path from input to output shaft, these nodes are deleted as well.

Rule 3 - Create a new gear pair: Two shafts are selected and a new gear pair is created to

connect them.

Rule 4 - Delete a gear pair: The chosen gear pair is deleted. Similar to Rule 2, dangling nodes

in the graph are deleted.

Rule 5 - Replace a gear pair: A gear pair is deleted and a new shaft and two new gear pairs

are created to replace the previously existing connection between the two shafts.

Parametric Rules

Parameters such as diameter and spatial position of a gear or shaft are stored as attributes

within the respective node. Parametric rules change these parameters.

Figure 4-4 Schematic representation of the gearbox synthesis rule set.

Parametric Rules

6 - Relocate Gear Pair along the Shafts

7 - Change Diameters of Gears

8 - Reposition a Shaft

9 - Shorten a Shaft

10 - Lengthen a Shaft

Topologic Rules

Shaft (top view)

Shaft (side view) Gear (side view)

Gear (top view)

Example graph
representation

Legend

1 - Create a new Shaft

2 - Delete a Shaft

3 - Create a new Gear Pair

4 - Delete a Gear Pair

5 - Replace a Gear Pair

 4

4 Grammar Rule Analysis Method

36

Rule 6 - Relocate gear pair along the shafts: The position of gears along their respective

shafts is changed.

Rule 7 - Change diameters of gears: The gear diameter is changed.

Rule 8 - Repositioning a shaft: The position of shafts in the x-y plane is changed. The

diameters of affected gears are adapted accordingly such that the gears mesh.

Rule 9 - Shorten a shaft: The selected shaft is shortened.

Rule 10 - Lengthen a shaft: The selected shaft is lengthened.

The rule set is developed to only generate topologically valid designs when rules are applied

to a valid initial gearbox design. This means that at least one connection between input and

output shaft of the gearbox exists and that there are no mechanical deadlocks.

4.3.1.3 Evaluation of Gearbox Designs

The objectives defined in this case study are a) the total mass of the components and b) the

amount of collision, a metric calculated based on axial and radial overlap of all components.

All possible power flow paths are identified by analyzing the graph using a depth first search.

Doing so, the number of speeds can be calculated. The direction of speeds is analyzed by

counting the number of gear pairs on the power flow paths.

The gear ratios are calculated accordingly multiplying the ratios of each gear pair on a power

flow path. The ratio error is then calculated as suggested in [38]:

 ratioError = max(abs(log10(a/b)) (1)

where a is a vector of the actual gear ratios, b is a vector of the desired gear ratios and the

division (a/b) is done element wise.

A metric for collisions between components is calculated considering the radial and axial

overlap between components, i.e. between a) gears and shaft, b) gears and gears, or d)

components and the bounding box. All calculated overlaps are added to create one metric.

For further information and the exact formula, please refer to [38].

The mass of the design is calculated by adding the individual component masses that are

defined by the components’ geometry and their specific density.

For this case study, a valid design must have at least one speed, i.e. there must be at least

one path in the graph connecting the input and output shaft. Figure 4-5 visualizes this

definition of valid designs for the case study.

4.3 Case Study: Gearbox Synthesis

37

 4

Figure 4-5 Three examples to show how valid designs, i.e. designs having a connection between input and
output shaft, are defined.

A small example of a sequence applying three different rules to an initial design is given in

Figure 4-6 (top), also showing the graph, a 3D representation for the designs generated and

the corresponding objective values for mass and collisions and the design characteristics

number of forward speeds and number of reverse speeds (bottom).

Three connections between input and output shaft (valid design)

One connection between input and output shaft (valid design)

No connection between input and output shaft (invalid design)

Shaft

Gear

Legend

Input shaft
Output shaft

Input shaft
Output shaft

Input shaft

Output
shaft

 4

4 Grammar Rule Analysis Method

38

Figure 4-6 Example of applying a sequence of three different rules; changes in the graph and a 3D
representation (top), the respective objective values and design characteristics (bottom).

4.3.2 Gearbox Rule Sets to Validate GRAM

To validate GRAM, four different rule sets are implemented as graph grammar rules in

GrGen. An overview is given in Figure 4-7. The schematic images for the rules are for

visualization purposes only. The schematic graph representations for rules C2, C4, C6, D2, D4

and D6 represent the basic idea of the rule, but not the exact LHS matches. Nodes of the LHS

are, however, marked in red (medium grey) in the example graphs. The first two rule sets are

based on the work by Starling and Shea [27, 120] and consist of four (rule set A) and 21 (rule

set B) rules respectively. Rule set B is an extension of rule set A, adding several rules to

change the dimensions and position of gears and shafts and two additional rules that add

and remove components. Rule sets A and B were originally developed to generate watches

and a winding mechanism in a camera, i. e. requiring only one speed. The third rule set (rule

set C) is based on the work by Lin et al. [38] for automotive gearboxes. It considers only

parallel shafts that extend to the width of the bounding box and consists of nine rules that

are more sophisticated than those of rule set B in both their LHS and RHS. Rule set D is an

extension of rule set C. It adds two rules to change the length of shafts and is different from

rule set C in that the LHS of several rules account for changed lengths of shafts. Rule sets C

and D were originally developed for automated gearbox synthesis, i.e. considering multiple

speeds. Rule sets C and D were developed to generate valid designs with every rule

Change in graph

Graph

3D visualization

D3 D1 D8

D3 D1 D8

Change in objectives and characteristicsChange in objectives and characteristics

Initial
design

Rule D3 Rule D1 Rule D10

D3 D1 D10

Change in graph

Graph

3D visualization

D3 D1 D8

D3 D1 D8

Change in objectives and characteristics

D3 D1 D10

Change in graph

Graph

3D visualization

D3 D1 D8

D3 D1 D8

Change in objectives and characteristicsChange in graph

Graph

3D visualization

D3 D1 D8

D3 D1 D8

Change in objectives and characteristicsChange in graph

Graph

3D visualization

D3 D1 D8

D3 D1 D8

Change in objectives and characteristics

Graph

3D Representation

Change in graph

4.3 Case Study: Gearbox Synthesis

39

 4

application as long as the initial design is valid. This decision was made by the rule designer

to ensure design evaluation after every rule application.

Figure 4-7 Overview of all rule sets organized by their type (topologic or parametric). Rule number
(consisting of the rule set label and a number), name and a pictorial description are given as well as the main

differences between the grammars.

Rule set D

D1-CreateANewShaft

D2-DeleteAShaft

D3-CreateANewGearPair

D4-DeleteAGearPair

D5-ReplaceAGearPair

D6-DeleteUnusedGearPairsAndShafts

D7-RelocateGearPairAlongTheShafts

D8-ChangeDiametersOfGears

D9-RepositionAShaft

D10-ShortenAShaft

D11-LengthenAShaft

Legend

Shaft (side view)

Shaft (top view)

Gear (side view)

Gear (top view)

Rule set B

Rule set C

C1-CreateANewShaft

C2-DeleteAShaft

C3-CreateANewGearPair

C4-DeleteAGearPair

C5-ReplaceAGearPair

C6-DeleteUnusedGearPairsAndShafts

Fewer but more
complex rules

combining
simple rules

from rule set B,
e.g. increasing
and decreasing

component sizes
in one rule

Rules added to
change shaft
lengths and

adapted
remaining rules

to deal with
changing shaft

lengths

Example graph
representation

Topologic rules

Parametric rules

Rule set A

A1-AddShaft

A2-DeleteShaft

A3-AddGearPair

A4-DeleteGearPair

Parametric and
more complex
topologic rules

rules added

B5-ShortenShaftFromTop

B6-ExtendShaftToTop

B7-ShortenShaftFromBottom

B8-ExtendShaftToBottom

B9-MoveGearsVertically+

B10-MoveGearsVertically-

B11-TurnShaftAroundAnother

B12-IncreaseShaftDiameter

B13-DecreaseShaftDiameter

B14-ExtendGearToTop

B15-ShortenGearFromTop

B16-ShortenGearFromBottom

B17-ExtendGearToBottom

B18-MoveShaftInPlane

B21-ChangeGearPairDiameter

B1-AddShaft

B2-DeleteShaft

B3-AddGearPair

B4-DeleteGearPair

B19-ReplaceAGearPairWithShaft

B20-ReplaceAShaftWithGearPair

C7-RelocateGearPairAlongTheShafts

C8-ChangeDiametersOfGears

C9-RepositionAShaft

 4

4 Grammar Rule Analysis Method

40

4.3.3 Application of GRAM to the Gearbox Rule Sets A – D

The data generation is conducted with 50 times 1,000 rule applications for each rule set.

Data generation is carried out using a gearbox synthesis system developed by the authors

based on GrGen, an open source graph rewriting tool [50] (http://www.grgen.net). The

objectives defined in this case study are a) the total mass of the components and b) the

amount of collision, a metric calculated based on axial and radial overlap of all components

(see [38] for the exact formula). The number of forward speeds and the number of reverse

speeds are defined as design characteristics. The initial design is a bounding box containing

an input and an output shaft. Data analysis and visualization are carried out using Matlab

and the graph isomorphism check to identify topologically identical designs is carried out

using GrGen.

4.3.4 Results

The results from the case study are presented below. Interpreting the analysis results, the

questions Q-1 to Q-6 can be answered.

Q1 – What impact does each rule have on each objective?

The influence of each of the rules in rule sets A-D is shown in Figure 4-8. Adding components

(rules A1 and A3) always increases (red color in boxplot) mass and collisions, deleting them

(rules A2 and A4) reduces (green color in boxplot) both objectives.

This performance can also be clearly seen for the first four rules in rule set B, however there

are also rules that have no influence on an objective (black color in boxplot) or can either

increase or decrease an objective value (blue color in boxplot). Looking at the influence of

each rule on collisions, it can be seen that although some rules do not influence the mass of

a design, as for rules B9 and B10, where gears are moved in the z-direction, the collisions are

influenced by each of them.

Rules C1-C4 in rule set C show a do-undo behavior, where rules C1 and C3 add mass and

collisions by adding components, rules C2 and C4 reduce both objectives. The similarity

between rule C5 and rule B19 that both replace a gear pair can be seen in the boxplots.

Comparing rules A1-A4 and B1-B4 respectively, to rules C1-C4, a difference in the magnitude

of the change in both objectives can be seen. This stems from the different implementation

in rule set C. Rule A1, for example, only adds a single shaft, whereas rule C1 adds a shaft and

connects it to the existing design with a gear pair, i.e. more components are added with one

rule application which results in bigger changes of both mass and collisions.

Results from rule sets C and D look very similar except for the additional rules D10 and D11

that shorten and lengthen shafts to reduce mass and collisions (D10) or to give the possibility

to connect two shafts with a gear pair (D11). However, there is an additional difference

between rules C6 and D6, as rule D6 has no influence on either mass or collisions. If the rules

are implemented correctly, this should not occur. In this case it stems from a careful

implementation of rule set D ensuring that after every rule application no dangling nodes

http://www.grgen.net/

4.3 Case Study: Gearbox Synthesis

41

 4

remain in the design, so this rule from rule set C, intending to repair designs, is not necessary

any more.

Figure 4-8 Influence of rules on the objectives mass and collisions for rule sets A–D (top to bottom).

Q2 - How probable are the applications of each rule?

For all rules in rule sets A-D, matching ratios are represented as horizontal bars in Figure 4-9.

Rules with simple LHSs are applied more frequently than those with more restrictive LHSs

caused by constraints, e.g. on parameters of the nodes, or component relations, i.e. more

complex sub graphs. This can be seen, for example, in rule set A where the rule to add a

shaft (A1) and to connect two shafts via a gear pair (A3) can always be applied, whereas rule

A4, which removes a gear pair between two shafts, is rarely matched because there are

more rules that add and delete shafts than there are to create gear pairs (rule A3). So,

randomly applying rules, the probability to apply rule A4 is lowered just by the fact that

 4

4 Grammar Rule Analysis Method

42

there are more rules that prohibit its application than there are to enable it. Having more

rules that influence the LHS of this rule lead to more matches. This can be seen in the plot

for rule set B, where the exact same rule (B4) is applied with an almost three times higher

matching ratio, due to one more rule in the rule set that generates a LHS match (B19).

Figure 4-9 Percentages of successful rule matches for rule sets A–D.

Q3 - What solution space do the rules define?

Figure 4-10 shows the design space generated by each of the rule sets in 50 runs applying

1,000 rules selected randomly. The two design characteristics, i.e. the number of forward

and reverse speeds in a design, are plotted against each other. The design spaces of rule sets

A and B are small. This can be explained by the simple grammar rules that are more

dependent on an anticipated intelligent guidance and often do not produce good designs

when applied randomly. Rule set B generates more speeds in general, which can be

explained by the additional rule to connect shafts, i.e. rule B19. Rule sets C and D, with their

rules developed to perturb, but not destroy, existing solutions, generate designs with higher

numbers of speeds. Comparing the two, rule set C generates more designs with a higher

number of speeds. This can be explained by the higher fraction of topological rules in rule set

C that leads to more changes in topology when rules are applied randomly and thus makes it

possible to explore the design space more in this respect. Additionally, rule set D has more

restricted LHSs of its topological rules allowing, for example, only shafts that have an axial

overlap to be connected via a gear pair.

4.3 Case Study: Gearbox Synthesis

43

 4

Figure 4-10 Plots of the design spaces generated by rule sets A-D. The color indicates how often a design with
this speed configuration was generated in 50,000 rule applications.

To compare not only topologic, but also parametric aspects of the design space, the average

mass and collisions metrics for all designs generated by the four rule sets are visualized in

Figure 4-11. These representations support the points discussed. Rule set A generates many

designs with a high number of components, thus leading to high mass and collisions. Rule

set B has lower values for both due to rules that allow also parametric changes. The same

effect can be observed with rule sets C and D, where the addition of more parametric rules

in rule set D, i.e. rule D10 to shorten shafts, leads to lighter designs with less collision.

Figure 4-11 Average mass and collisions of all generated designs for rule sets A-D.

 4

4 Grammar Rule Analysis Method

44

Q4 - Does the rule set favor certain designs in design generation?

From the coloring of generated designs in Figure 4-10 it can be seen that all four rule sets

favor designs with few forward and reverse speeds. Rule sets A and B generate designs with

a high number of reverse speeds, e.g. by directly connecting input and output shaft via a

gear pair (rule A3, B3). Rule sets C and D do not only favor reverse speeds, but also generate

designs with high numbers of forward speeds due to rules that easily introduce forward

speeds when applied to input and output shaft (rule C1, D1) or change the direction of an

existing speed (rule C5, D5).

Q5 - How many valid designs are generated?

On the left of Figure 4-12, the validity ratio is given. It can be seen that this ratio increases

from rule set A to B to C as the number of rules to connect shafts grows. Rule set D produces

fewer topologically valid designs than rule set C, which is caused by a slightly lower

probability to change a topologically invalid design into a valid design. This is due to its

smaller portion of topological rules and their reduced chance of application due to their

more restrictive LHSs. Rule sets C and D are developed to generate valid designs only when

applied to a valid design. For this case study, however, the initial design for all rule sets is

invalid, as it contains only the input and the output shaft, causing the generation of invalid

designs for rule sets C and D.

Q6 - How many different designs are generated?

On the right of Figure 4-12, the diversity ratio is shown. Comparing the rule sets underlines

what has been found in the design space diagrams. Rule sets A and B produce many designs

of the same topology. Rule set C has the most topologically different solutions and rule set D

produces fewer different solutions.

Figure 4-12 Validity ratio (left) and diversity ratio (right) for rule sets A-D.

4.4 Discussion

45

 4

4.4 Discussion

The research presented in this chapter focuses on supporting the rule development process.

It is expected that through a systematic analysis of the rules during the rule design, “better”

grammars can be developed that lead to a more successful synthesis process. The

understanding gained in the analysis using GRAM can also deliver important insights about

the search space that can be considered in tuning sophisticated search algorithms. In

contrast to the work by Vale and Shea [84] where statistics are collected and rule sequences

are defined during the CDS process, GRAM enables not only to reuse insights gained before

the CDS process but also to analyze the grammar itself and to improve it based on the results.

The case study shows that GRAM is capable of supporting designers to analyze their

developed rule set and the described design language can be tested against the intended

language by comparing rule performances. The finding that rule sets A and B generate

designs with fewer speeds and rule sets C and D generate designs with more speeds, for

example, reflects the purpose for which the rule sets were originally developed, i.e.

generating single speed gear trains for rule sets A and B and generating gearboxes with

multiple speeds for rule sets C and D, respectively. Non-influential rules can be detected to

reduce the rule set, e.g. rule D6. No unintended performance was discovered in this case,

which might be explained by the long history of improving and further developing the

grammars for this case study. The fact that rule D6 (delete unused gears and shafts) can be

removed from the rule set is a result of the careful implementation of the gearbox rules in

this rule set such that no unattached shafts and gears are generated. This was a useful

discovery due to GRAM and shows a secondary use of the method for rule set debugging.

The design space representation allows statements to be made about the ambiguity of the

design grammar regarding the defined design characteristics. The case study shows, for

example, that the grammar is ambiguous as designs with the same design characteristics are

achieved several times. This is also reflected in the diversity ratio which, taking the point of

view that rule sets with few rules are superior, could be calculated differently as the number

of topologically different designs divided by the number of rules. For the case study, this

would give similar results (rule set A: 0.014, rule set B: 0.008, rule set C: 0.042, rule set D:

0.028) as the diversity ratio defined in GRAM.

Further, GRAM provides support for rule debugging. If, for example, an error occurred in the

implementation of rule A1 (add shaft) such that a shaft is removed, GRAM would show this

unintended performance of the rule in the boxplots. Similarly, GRAM helps to identify rules

that are never applied, e.g. through the matching ratios, or that have no influence on any of

the objectives, e.g. through the boxplots. This visual feedback on the rules enables the rule

designer to find errors in the implementation and identify starting points for improving the

quality of the developed rule sets.

Although the case study uses graph grammars, any type of generative design grammar can

be analyzed using GRAM. Further, the method is independent of rule type and definition, i.e.

simple vs. knowledge-intensive and topologic as well as parametric grammar rules. As

 4

4 Grammar Rule Analysis Method

46

feedback is given based on each rule’s performance with respect to defined objectives, it is

necessary that intermediate as well as final designs can be evaluated.

Issues to be tackled are related to the visualization for large-scale problems as well as to

automating the interpretation. The visualization of the design space becomes difficult when

more than two design criteria are defined. This is a known issue and research topic also in

other domains and new visualization techniques have to be investigated. Considering all

objectives separately facilitates a thorough analysis of the grammar rules. However, for

problems with multiple rules and objectives, the number of diagrams to interpret rises. An

automated interpretation of the data instead of a visualization for the rule designer is one

approach to tackle this issue.

Possible extensions to GRAM are to analyze not only the performance of individual rules but

also rule sequences to enable a better understanding of rule sets and how sequences of

rules impact design criteria. This issue is addressed in Chapter 5. Another extension to GRAM

is exploiting the knowledge gained in the rule analysis and reusing these findings to

automatically generate strategies for more intelligent grammar rule application. One

approach is analyzing the performances of sequences of rules and learning favorable ones

that can be re-used. This issue is also addressed in Chapter 5. All of these directions aim to

increase the understanding of the developed grammar and further extend the idea to

minimize the effort of tuning the search algorithm to the design problem while increasing

the quality of the synthesis results.

4.5 Summary

GRAM is a method to support the human designer in the development of generative

grammar rules for CDS. The method focuses on a systematic analysis of the rules in the

development phase rather than during their application within a search algorithm after the

rules are developed. GRAM facilitates gaining in-depth knowledge of the rules’ performance,

their relations to objectives, constraints and design characteristics, and their interaction.

Further, it is possible to find errors in the implementation of the rules through easily

readable feedback. Superior synthesis results as well as less effort to adapt search

algorithms due to better understanding of the solution space defined by the grammar rules

are expected. Using a systematic data generation process, data for the analysis is generated,

analyzed and visualized in defined diagrams. The interpretation of these diagrams using

predefined questions helps to identify if, and which parts of the rule set, need improvement.

With GRAM, future grammar rule developers are given a means to reason about their

specific grammar rule implementations in a systematic way. Research questions 4.1 - 4.3 can

be answered as follows:

Research question 4.1: How can we systematically investigate the relations between
grammar rules, objectives and design characteristics in CDS
methods?

4.5 Summary

47

 4

GRAM presents a generic and systematic method to generate data, analyze it and visualize

the information to the human designer. As shown in the case study, the method can be used

for different grammars and it is also successfully applied to analyze grammar rule sets

besides those presented within this thesis. GRAM is formulated generically and can in theory

be used to analyze also other types of grammars, e.g. shape grammars. GRAM is one

possible method to support rule developers that can further be improved and extended.

Other methods exist and extensions to GRAM are presented within this thesis.

Research question 4.2: In this context, what information do grammar developers need to
develop and refine grammars?

In Section 4.2, six questions are formulated that can be answered when using GRAM. These

questions are based on the author’s experience in grammar development, general

statements in research papers on grammar development and discussions with researchers in

the area.

Research question 4.3: How can this information be visualized?

GRAM defines visualizations that show individual rule performances considering objectives

and design characteristics. Cognitive aspects of humans’ visual perception (see, e.g., [123])

are considered in the choice of the visualizations to balance easy readability and information

content that is represented. An example are the color-coded boxplots to visualize individual

rule performances. The color coding allows a quick qualitative overview if the rule changes

the design in the desired direction. The boxplot then gives more detailed information on the

rule’s performance. Using the same shape (rectangle of the box in the boxplot) but changing

length (box and whiskers) and color (to indicate whether or not the change is in the desired

direction) generates a notation that can be processed efficiently [123].

Besides answering research questions 4.1 – 4.3, the following research contributions are

achieved through GRAM:

 Contribution 1: Criteria are defined to assess the performance of individual grammar
rules and of a set of rules.

To date there are no commonly accepted criteria defining what constitutes a “good”

grammar. With GRAM, a set of criteria to assess grammar rules are proposed. These can

serve as a starting point to further elaborate criteria for grammar rule assessment through

discussions in the research community.

 Contribution 2: With GRAM, a systematic method is developed to analyze grammar
rules independent of a search algorithm.

GRAM defines how grammar rules can be analyzed systematically in a three step process of

data generation, analysis and visualization. Providing criteria and a systematic method to

assess grammar rules according to these criteria can facilitate future research on grammar

rule development.

 4

4 Grammar Rule Analysis Method

48

 Contribution 3: The process for grammar rule development is enhanced.

GRAM is integrated into the grammar rule development process. The iterative nature of the

rule development process is discussed by several researchers. In practice, rule developers

conduct ad-hoc tests on their developed grammar rules before changing them. Adding a

process step in which developed grammar rules are analyzed systematically to the grammar

development process reflects this approach and can encourage designers to use systematic

rule analysis instead of trial and error testing to improve the developed grammar.

Besides the research contributions described above, the human designer is supported in CDS

when using GRAM as shown in Figure 4-13. GRAM supports the human designer in the rule

development process. In particular, rule development is supported through visualizing

information on the rules (sub-goal G1.1). Rule selection (sub-goal G1.2) is supported since

GRAM represents a means to compare different grammar rules in a systematic way.

Figure 4-13 Positioning of the Grammar Rule Analysis Method with respect to the goals of the thesis.

The grammar development process is supported through the following contributions:

 The human designer is given a means to systematically assess grammar rules. This
enables them to reason about developed rules and to compare different grammar rules
to each other. This can improve the quality of developed grammar rules and ease the
selection of grammar rules among existing ones.

 Generic visualizations are defined that present the performance of the analyzed
grammar rules to the human designer. The visualizations give an overview of the
different performance criteria for each individual rule and the developed rule set.

 A generic software prototype is developed. It generates data, analyzes it and visualizes
information on rule performances for the defined criteria.

Support human designer in CDS in …
Overall

Goal

Sub-
goals

…grammar development
…selection of

search algorithm
…refinement

of search
G1 G2 G3

Support
designer in
selecting
existing

rules

Support
designer in
developing

rules

Support
designer in
combining

rules

Increase
understanding of

search
algorithms for
given problem

Sub-
goals

G1.1 G1.2 G1.3 G2.1

Provide rule
independent

strategies

Tuning of
search

algorithm

G3.1 G3.3

Provide
rule

dependent
strategies

G3.2

Grammar Rule
Analysis
Method

 49

 Network-based Rule Analysis Method 5

With GRAM (Chapter 4), the human designer is given a means to analyze individual grammar

rules during development. Understanding how each rule influences objectives and design

characteristics has shown helpful to understand characteristics of a grammar rule set during

grammar development. More detailed information on individual rules, e.g. beneficial

locations for their application, but also on sequences of rules can further support the rule

development and application process. In this chapter, research is presented that aims to

answer the following questions:

Research question 5.1: How can grammar rules in CDS be systematically analyzed to
identify the effect of a rule’s application location on the generated
designs?

Research question 5.2: How can grammar rules in CDS be systematically analyzed to
identify sequences of rules that are beneficial or
counterproductive?

In the following, motivation for a network-based analysis of rules is given (Section 5.1) and

the Network-based Rule Analysis Method to support grammar development and rule

application is presented (Section 5.2). Section 5.3 demonstrates how the method can be

used to analyze LHSs of rules in detail using a gearbox synthesis case study. In Section 5.4,

the case study demonstrates how the method is used to analyze a grammar for a sliding tile

puzzle. Knowledge learnt on small scale is successfully applied to solve a larger scale

problem. The results (Section 5.4.3) show the feasibility of the method and its generality is

discussed (Section 5.5). A summary is given in Section 5.6, where also the achieved

contributions are revisited.

5.1 Motivation for Network-based Rule Analysis

Grammatical approaches have been successfully applied in numerous engineering design

disciplines [20], e.g. in electrical engineering, architecture and mechanical engineering as

well as in natural language processing, e.g. for automated language translation or speech

recognition. These different areas, all emerging from the formal study of grammars, evolved

in different directions. In the area of compiler design, grammars are designed formally and a

whole research area of grammar engineering has evolved. In architecture, VLSI design and

engineering, grammars are often used to develop product concepts in the early stages of the

design process and are often formulated less mathematically. In some areas, grammars are

mainly used as pencil and paper grammars, i.e. they do not require computational

implementations. Engineering design grammars are often developed for very specific use

cases and no commonly accepted criteria for “good” grammars have been specified by the

engineering design community.

While with formal grammars, as in compiler design, many algorithms exist to analyze

properties of the language that is described by a grammar, such analyses are usually not

 5

5 Network-based Rule Analysis Method

50

done when developing engineering design grammars. As an example, one can look at

research on the automated synthesis of gearboxes, a popular CDS task. Studies have been

carried out by several researchers [38, 119] and different grammars as well as algorithms to

guide the synthesis process exist. Most researchers develop their own grammar for the

problem instead of reusing previously developed ones and the grammar development

process is usually not documented. Being presented only the final versions of different

developed grammars and the synthesis results, it is not obvious for the designer which

grammar or which particular rules are preferable for gearbox synthesis and why. Further,

none of the publications investigates in depth how the grammar explores the space. This

makes it difficult to fully understand the importance and influence of single grammar rules

on the synthesis process. Several researchers mention the need for more support in the

development of engineering design grammars [31, 78] and the lack of support for grammar

design is still seen as one of the major drawbacks of grammatical design [20].

In Chapter 4, GRAM is presented to support the development of grammars for CDS. GRAM

supports the analysis of single rules, however, extensive information on how the rules

change individual designs is lacking as well as detailed information on how sequences of rule

applications explore the design space. Providing more support to a) the development of the

grammar rules due to a better understanding of how they explore the design space, and b)

the application of sequences of rules, major improvements in the quality of solutions

produced from design grammars are expected. Such analyses can help designers understand

new and existing grammars in depth and allow them to make more informed decisions on

reusing or developing engineering design grammar rules. The research in this chapter follows

the direction of supporting grammar development with a novel approach of combining

concepts developed in areas such as compiler design with grammars used in CDS. The

presented research analyzes the potential of using concepts from compiler design to support

grammar development and application through giving feedback on how a developed

grammar explores the design space. There are two aspects to this which both are addressed.

First, the grammar designer is given feedback on the rules, e.g. if there are redundant or do-

undo rules and how a rule’s application location influences the generated designs. Second,

the application of the grammar can be analyzed in more detail to identify preferable rule

application sequences or patterns in rule sequences that should be preferred or avoided.

With this information, engineering designers are given a means to more efficiently develop

and apply grammar rules for CDS. Several approaches to identify preferable search strategies

and to learn meaningful sequences of rules have been developed, e.g. Vale and Shea [84]

developed a machine learning (ML) based method to accelerate the CDS process through

knowledge on rule sequences. What is unique about the research presented in this chapter

is the way it supports multiple phases of the CDS process, namely the representation and the

guidance step, in one method and that unlike most existing methods, it collects knowledge

about the problem through rule analysis before the actual CDS search process is started. The

rule development is supported through an increased understanding of how each individual

rule transforms a given design and the synthesis process is supported through prior

5.2 Method

51

 5

knowledge about rules that are sensitive to rule application locations and about meaningful

rule sequences to solve problems.

5.2 Method

Two concepts from compiler design, namely finite automata (FA) and transition graphs (see

also Section 2.3.2) are used for the Network-based Rule Analysis Method. Similar to an

automaton that accepts a given sequence of input symbols, a transition graph, constructed

for an engineering design grammar, can accept or reject a sequence of grammar rules

applied to the initial design. Each design that results from a modification, i.e. a rule

application, then represents a state and each grammar rule represents a symbol a

transforming state s to state t. Analyzing such a transition graph using techniques from data

flow analysis, the influences of each rule application can be understood in detail.

The Network-based Rule Analysis Method is based on analyzing the designs that are

generated during CDS and the rules that are used to do so. Figure 5-1 illustrates the three

main steps. In the first step, designs are generated by searching through a generative tree.

Starting from an initial design, i.e. the root of the generative tree, designs are generated

through successive rule applications and each generated design is added to the generative

tree as a child node of the previous design. Using tree-based search methods, such as Depth-

First Search (DFS), i.e. expand first one rule sequence, or Breadth-First Search (BFS), i.e. from

one design apply multiple different rules in parallel before moving to the next level, the

design space can be explored. Other search methods are also possible to use in this step and

the goal in this step is not to find an optimal design, but to explore a portion of the design

space that can be analyzed in the following steps. Figure 5-1 (left) shows example

representations of generative trees that are explored when using tree-based search

methods. Each node in the tree represents one design and each edge between two nodes

represents the rule that was applied to transform one design into another one.

In most algorithms, the same designs can be generated repeatedly and tree-based

representations often represent these designs as multiple different nodes in the tree, each

resulting from a different rule sequence. Many search algorithms store a list of already

explored designs to avoid expanding on the same design more than once. The author

proposes that representing these repeated designs as one unique design instead of multiple

times in the generative tree can help gain useful insights and decrease the search space size.

To do so, in the second step of the method, all generated designs are analyzed to identify

unique and repeated designs. Uniqueness is a property that is problem dependent. The

designer developing the grammar defines what uniqueness means for the given problem.

The tree-based representations are traversed gradually and every time a previously

undiscovered design is found, it is given a new, unique ID. Every time an already discovered

design is found, its node in the tree-based representation is deleted and the edges, i.e. the

rule with which the design was generated and the rules that were applied next, are

connected to the already generated (unique) design. Doing this, the tree-based

representations merge to one or more networks of design transitions. In these networks

 5

5 Network-based Rule Analysis Method

52

(transition graphs), each node represents a unique design, or state, and each edge

represents a transition from a source design to a target design.

Figure 5-1 Steps 1 and 2: Network generation through generation of designs (left) and synthesis of designs to
one network representation (right).

The transition graph can be analyzed to gain knowledge about a) the rules themselves, and

b) rule application sequences. In the third step of the method (see Figure 5-2), different

graph analyses are performed. The designer is given two methods to access the gained

information. First, the network is represented visually for manual exploration of the

generated designs and their relations. Second, the network is analyzed automatically and the

following results are presented (compare with numbers in Figure 5-2):

1. Do-undo rule pairs are identified, i.e. pairs of rules where one rule un-does what the

other did. A simple example of such a rule pair is two rules of which one adds a

component and the other one deletes it. For the selection of an appropriate search

algorithm, this information can be important because a repeated application of do-

undo rules might get the synthesis process stuck in generating the same designs over

and over again. The designer can use this information on do-undo rules to either

change the grammar or select a search algorithm accordingly.

2. Loops in the transition graph can be identified. Similar to do-undo rules, a loop of

rules describes a sequence of rules that, when applied to a given design, generate

exactly the starting design. Avoiding such loops in the synthesis process, either by

reformulating the grammar or through using this information in a search algorithm,

can allow for a faster design space exploration.

3. Alternative rule sequences are identified, i.e. sequences of rules that transform a

given design s to a design t via different paths in the transition graph. If such

alternative paths exist, the designer can reason about the alternative paths and

consider, e.g. if the rule set can be reduced by deleting or combining rules.

Additionally, interactive tools to study the transition graph help to answer the following

questions:

5.2 Method

53

 5

4. Is it possible to reach design t from design s? This enables, e.g., to analyze if design t

can be synthesized starting the synthesis process from design s.

5. Which rules have to be applied to transform design s to design t? Understanding the

application of rules in sequences depending on the design s on which the sequence is

applied can help to reason about improving the grammar rules and to learn

meaningful sequences.

6. What is the shortest rule sequence to transform a design s into a design t? Learning

shortest rule sequences to transform one design into another can help to speed up

the synthesis process.

7. How does the rule application location influence the generated results? The effect of

a rule’s application location can be analyzed by exploring the designs that are

generated when applying a rule to the same design but at different locations.

Figure 5-2 Step 3: Analyzing the transition graph to understand grammar rules and their application.

The transition graph is generated using GrGen, an open source graph rewriting tool [50]. It is

visualized using OrganicVIZ [124], a graph visualization tool capable of representing large

graphs and supporting graph analyses as well as providing several filtering options. Using

OrganicVIZ, the user can manually study the transition graph to understand the search space.

Nodes and edges can be changed in size and color to provide an overview and emphasize

certain designs in the search space. Highly connected designs, i.e. designs with several edges

connecting them to other designs can, e.g., be represented with larger nodes. Additional

information, e.g. on each design's attributes, can be displayed to the user for each graph

node and edge. For the automated graph analysis, graph grammar rules implemented in

GrGen are used to detect do-undo rules as well as loops and alternative sequences. This

information is stored in separate files for further consideration by the human designer. To

find shortest-paths between any two designs in the transition graph, a BFS with backtracking

 5

5 Network-based Rule Analysis Method

54

is implemented in c#. A console application is developed such that the designer can

interactively search shortest paths between designs and determine the reachability between

designs. More details on the implementation are given in Chapter 8.

In the remainder of this section the method is applied to two case studies. In Section 5.3, the

gearbox synthesis task is used to analyze LHSs of rules in detail and understand to what

extent the location at which a rule is applied can influence the synthesis process. In Section

5.4, the method is used to learn rule application strategies for a sliding tile puzzle. The

sequences are learnt from the transition graph of a small scale problem and are used to

solve a larger scale problem.

5.3 Case Study 1 (Gearbox Synthesis): Analyzing LHSs of Rules

The gearbox synthesis case study is used to demonstrate how the generation and analysis of

transition graphs can be used to analyze grammar rules and their application in detail. The

focus is on analyzing the LHSs of rules, i.e. their application conditions. When a rule can be

applied on various locations in a design, also the selection of where to apply it influences the

outcome. This is analyzed as well.

5.3.1 Generation of Designs

The five topologic rules of the gearbox grammar described in Section 4.3.1 are used to

generate gearbox designs. The pseudo-code of the algorithm used to explore the space is

given in Figure 5-3. The algorithm requires an initial design (initialDesign), the rule set

(ruleSet) and a maximum number of rule applications (maximumSequenceLength) as input.

Outputs are a list of explored designs (graphs) and a list (transformations) storing each

applied rule, the design the rule is applied to, and the resulting design. Starting from an

initial design, all rules in the rule set (ruleSet) are explored exhaustively until a given number

of rule applications (maximumSequenceLength) from the initial design. The algorithm is

implemented as a BFS with isomorphism check to not explore already found topologies

repeatedly. It explores the design space in levels (level) until the maximum number of rule

applications (line 2). For each level, the algorithm iterates through all rules in the rule set

(line 3). The selected rule r is applied to all graphs from the previous level (previous, line 4).

For each graph g, all matches m of the current rule r are identified (line 6) and for each

match m a new graph (newGraph) is generated by applying rule r on graph g at match m

(line 9). The generated graph (newGraph) is evaluated (line 10) and if it constitutes a

topology that is not found yet in one of the previous levels, (newTopology returns true in line

11), then the design is stored in the list of designs to be expanded in the next level (next, line

12). Each generated graph (newGraph) is stored in the list graphs (line 14) and for each rule

application the rule and the previous and the resulting graph are stored in transformations

(line 15). Once all rules in the ruleSet are applied for the current level, the graphs from list

previous are replaced with those from list next (line 19), list next is cleared (line 20) and the

algorithm continues with the next level (line 3).

5.3 Case Study 1 (Gearbox Synthesis): Analyzing LHSs of Rules

55

 5

Algorithm: Exhaustive Generation
Input: maximumSequenceLength, ruleSet, initialDesign
Output: graphs, transformations
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

previous ← initialDesign;
for level = 1 to maximumSequenceLength do

for all rule r in ruleSet do
 for all graph g in previous do
 load(g);
 identify matches of r on g;
 for all match m in matches do
 load(g);
 newGraph ← apply(r,g,m);
 evaluate(newGraph);
 if newTopology(newGraph) then
 next ← add(newGraph);
 end if
 graphs ← add(nextGraph);
 transformations ← add(g,r,nextGraph);
 end for
 end for
 end for
 previous ← next;
 clear(next);
end for

Figure 5-3 Pseudo-code for exhaustive generation.

5.3.2 Results

Figure 5-4 shows the transition graph when the five topologic rules are applied exhaustively

to an initial design. The initial design consists of input shaft, output shaft and a gear pair

connecting the two. The sequence length is set to two rules to generate the transition graph

in Figure 5-4. The transition graph is generated automatically and is visualized using

OrganicViz. Same colors of the graph nodes indicate that these nodes have the same number

of forward and reverse speeds. The pictorial images are generated using yComp [125] and

added manually. yComp is a graph visualization tool based on yFiles [126]. It provides several

graph layout algorithms and is integrated in GrGen. Node labels (UID) indicate the unique ID

of each generated gearbox topology. This number is used to link the nodes in the OrganicViz

visualization to the gearbox representations that are stored during the exhaustive

generation and can be visualized, e.g. using yComp. The edge labels in Figure 5-4 indicate

which rule is applied to transform a design into another one. Analyzing all outgoing edges

from one node, the human designer can explore the effect of LHS matches when the same

rule is applied at different locations on a design. In Figure 5-4, rule 5 (replace a gear pair) is,

e.g., is applied at three different locations on the design with UID 2. Of the three rule

applications two result in the same design (UID 17), while the third generates a different

topology (UID 9).

 5

5 Network-based Rule Analysis Method

56

Figure 5-4 Transition graph for the gearbox case study. Rule sequences with two rules are explored
exhaustively.

Between the designs with UID 1, UID 2, UID 3 and UID 4, rule 2 (delete a shaft) and rule 4

(delete a gear pair) are applied at various matches but result in the same designs. A zoomed

in view on these designs is given in Figure 5-5. The human designer might find this

interesting because he or she would expect a different behavior. When rule 2 (delete a shaft)

is applied to the design with UID 2, the human designer might expect that this rule is only

matched once, since only one shaft can be removed because input and output shaft must

remain in the design. This comparison between expected and actual matches of rules

facilitates the identification of rules whose LHSs might be formulated too ambiguously.

5.3 Case Study 1 (Gearbox Synthesis): Analyzing LHSs of Rules

57

 5

Figure 5-5 Zoomed in view at topologies with UID 1 - 4.

The transitions between the design with UID 2 and that with UID 1 are analyzed in more

detail now to understand how the formulation of the LHS leads to several matches. In Figure

5-6, all matches of rule 2 (delete a shaft) on the design with UID 2 are shown (left). The rule

formulation in GrGen is provided on the right of Figure 5-6. LHS and RHS of the rule are

highlighted. The LHS of the rule consists of a node of type shaft (S0) and a node of type gear

(G0). Additionally, a negative application condition (NAC) is defined using the negative

statement. NACs are used to define patterns that, when present in the graph, prohibit the

rule’s application. In case of rule 2 this is when the gear G0 is reachable from shaft S0, or

when shaft S0 can be reached from gear G0. The rationale behind this condition is that when

no gear G0 exists that is neither reachable by shaft S0 nor can it be reached from S0, then

there exist only power flow paths in the gearbox that involve S0. The rule is then not applied

since removing S0 would result in an invalid design. The functions reachableOutgoing() and

reachableIncoming() are used to identify the sets of nodes that can be reached or are

reachable from shaft S0. The RHS of the rule is defined within the modify statement. First,

the shaft S0 is deleted. Then, two rules are applied that remove dangling nodes in the graph.

The first is called deleteUnusedGears and removes all gears that were connected to shaft S0,

i.e. those gears that are mounted on shaft S0. The second is called

deleteUnusedGearPairsAndShafts. It searches through the remaining graph to identify gear

pairs and shafts that are not required any more since they are not connected to both input

and output shaft of the gearbox to form a valid power flow path.

On the left side of Figure 5-6, the two matches of rule 2 on the graph with UID 2 are shown.

The shaft S0 is matched to the same node, since it is the only node of type shaft in the graph.

The two gears on the right power flow path through the gearbox can be matched to gear G0

 5

5 Network-based Rule Analysis Method

58

such that the NAC is not fulfilled and the rule can be applied to remove the shaft S0 and the

then dangling gear nodes to transform the design into that with UID 1.

Figure 5-6 Rule 2 (delete a shaft) formulated using a negative application condition.

Comparing the graphs with UID 2 and UID 1, it seems reasonable, the rule designer might

expect that two matches of rule 4 are found to delete either the first or the second gear pair

of the left power flow path. The transition graph, however, shows that rule 4 is applied to

eight different matches on the graph with UID 2 to transform it to the graph with UID 1.

Figure 5-7 shows the rule formulation in GrGen for rule 4 (delete a gear pair). The expression

“G0:Gear ?--? G1:Gear” indicates that two nodes of type gear have to exist and have to be

connected by an edge. “?--?” indicates that the direction of the edge connecting the two

nodes is not relevant. The remainder of rule 4 is structured similarly to rule 2 and therefore

not described here in detail. On the left of Figure 5-7, the eight matches of rule 4 on the

design with UID 2 are shown that transform it to the design with UID 1.

Figure 5-7 Rule 4 (delete a gear pair) formulated using a negative application condition.

5.3 Case Study 1 (Gearbox Synthesis): Analyzing LHSs of Rules

59

 5

When the human designer understands that rules are not matched as intended, e.g. more

often than necessary, the LHSs of the rules can be formulated more carefully. Figure 5-8 and

Figure 5-9 show how this can be done for rule 2 and rule 4, respectively. The LHSs are

reduced to only contain the nodes that actually have to be removed. Instead of NACs,

positive application conditions (PAC) are used (independent statement). The shaft (rule 2) or

gear pair (rule 4) are removed from the graph when there is another gear that is neither

reachable from the matched node(s), nor can it reach the matched node(s). Additionally, the

direction of the edge between gear G0 and gear G1 in rule 4 is specified to be directed from

G0 to G1 (G0 --> G1).

Figure 5-8 Rule 2 (delete a shaft) formulated using a positive application condition.

Figure 5-9 Rule 4 (delete a gear pair) formulated using a positive application condition.

Changing the formulation of the LHSs of rule 2 and rule 4 reduces the number of matches as

intended. Figure 5-10 shows the transition graphs for rule sequences with two rules when

NACs are used (left) and when PACs are used (right). In both cases 18 topologically different

designs are generated, but the number of rule matches, i.e. edges in the transition graph

varies. It is reduced from 50 to 30 when the LHSs are changed to using PACs. Regions where

the number of edges changes are highlighted in Figure 5-10. This reduction of LHS matches

 5

5 Network-based Rule Analysis Method

60

does not reduce the number of designs that are generated. The speed of exploring the

search space is, however, changed significantly when PACs are used. For a sequence length

of four rules, e.g., the designs are explored exhaustively within 25 minutes when using PACs.

When using NACs, the process is stopped after approximately one hour due to lack of

memory on the laptop that is used (MacBook Pro, Intel Core i7 CPU with 2.80 GHz, 8 GB

RAM).

Figure 5-10 Transition graphs when using negative (left) or positive (right) application conditions for rules 2
and 4.

Figure 5-11 visualizes transition graphs for sequences with 1, 2, 3 and 4 rules. For the given

rule set the number of topologically different designs increases drastically and it can be

observed that designs are highly connected to each other. This means the same designs can

be generated via numerous different rule sequences.

Figure 5-11 Transition graphs for rule sequences from one (top left) to four (bottom right) rule applications.

negative

application

conditions

positive

application

conditions

Sequence length: 1
4 different gearbox topologies
3 rule applications

Sequence length: 3
104 different gearbox topologies
280 rule applications

Sequence length: 4
829 different gearbox topologies
2770 rule applications

Sequence length: 2
18 different gearbox topologies
30 rule applications

5.3 Case Study 1 (Gearbox Synthesis): Analyzing LHSs of Rules

61

 5

Besides analyzing the LHSs of the rules, also loops can be detected automatically when

analyzing the transition graph. Examples for do-undo rules are, e.g., rule 1 (create a new

shaft) rule 4 (delete a shaft), rule 3 (create a gear pair) rule 4 (delete a gear pair)

and rule 1 (create a new shaft) rule 4 (delete a gear pair). Many loops are found which

is expected for highly connected transition graphs. It is further found, that rule 5 (replace a

gear pair) can be replaced by applying a sequence of rule 4 (delete a gear pair) and rule 1

(create a new shaft). The Network-based Rule Analysis Method is used to investigate

whether rule 5 can be removed from the rule set. Transitions graphs are generated for a

sequence length of three rule applications. Two rule sets are used. In the first rule set, rule 5

is kept but rules 1 and 4 are removed. In the second rule set, rule 5 is removed. Transition

graphs for both rule sets are shown in Figure 5-12. The transition graph for the complete

rule set, i.e. rules 1 to 5, is shown in the lower left corner of Figure 5-11. Removing rules 1

and 4 from the rule set results in a reduced transition graph. Not even a quarter of the

topologies are explored when compared to the complete rule set. Removing rules 1 and 4 is

therefore considered inappropriate. When rule 5 is removed from the rule sets about half of

the topologies are explored compared to the complete rule set. Besides the number of

generated topologies, also the connectivity of designs varies depending on the used rule set.

Using rule 5 results in a more closely linked transition graph, i.e. designs can be changed to

others more quickly. Further, more designs are explored when rule 5 is included in the rule

set when the exploration is limited to a certain number of rule applications.

For a sequence length of 4 rules the effect of having rule 5 in the rule set is even stronger.

Only 331 gearbox topologies are explored requiring 981 rule applications when rule 5 is

deleted from the rule set compared to 829 topologies and 2,770 rule applications when rule

5 is used.

Using the Network-based Rule Analysis Method, different aspects on the gearbox synthesis

task and rule set are learnt. First, the LHSs of rules are analyzed and inefficient

implementations of the LHS matches are discovered. Second, the highly interconnected

nature of the search space and the exponential growth of the number of gearbox topologies

when applying longer sequences of rules are understood from the transition graph

visualizations. Third, do-undo rule pairs are identified and loops in the transition graph are

analyzed automatically. This confirms the gained knowledge, that the gearbox designs are

highly connected to each other. Fourth, it is discovered, that rule 5 can be replaced by the

sequence rule 4 rule 1. Using the Network-based Rule Analysis Method, it is found,

however, that it is useful to have rule 5 in the rule set. This is in accordance with the decision

by Lin et al. [38] to develop this rule for gearbox synthesis.

 5

5 Network-based Rule Analysis Method

62

Figure 5-12 Transition graphs for rule sequences of 3 rule applications for different rule sets. Rules 1 and 4
are replaced by rule 5 (left) and rule 5 is replaced by rules 1 and 4 (right).

5.4 Case Study 2 (Tile Puzzle): Learning and Reusing Rule

Sequences

The sliding tile puzzle is used as a second case study to demonstrate how transitions graphs

can be used to learn and reuse rule sequences. Beneficial rule sequences are learnt on a sub-

problem and then applied on a larger scale problem. Problem decomposition is a commonly

used problem solving technique in engineering design [14]. Various methods exist to

decompose problems into sub-problems, e.g. target cascading for parametric problems [127],

or agent based approaches in optimization [128], where sub-problems are solved by

different agents and then recombined. The sliding tile puzzle is decomposable into smaller

sub-problems and, therefore, suits as a case study to demonstrate the use of learning rule

sequences.

The sliding tile puzzle has been used frequently since its invention in 1879 [129] and it is still

used in artificial intelligence research. In this puzzle, a number of tiles are arranged in a

rectangle with one tile missing. By sliding tiles one after another into the missing spot, the

tiles have to be ordered in a defined way. Even though the principle is easy to understand,

for larger puzzles numerous possible states exist, leading to a vast number of designs that

have to be explored when trying to solve the problem. In 1879, Johnson proved that for each

n-tile puzzle where n is the number of tiles, there exist (n+1)! states with only half of them

Transition graph for sequence length 3 when using
rules 2, 3 and 5

Transition graph for sequence length 3 when using
rules 1, 2, 3 and 4

23 different gearbox topologies
42 rule applications

51 different gearbox topologies
119 rule applications

5.4 Case Study 2 (Tile Puzzle): Learning and Reusing Rule Sequences

63

 5

being solvable [130]. For the classical 8-tile puzzle (also called 3x3 puzzle), this leads, e.g., to

181,440 feasible states.

The sliding tile puzzle is challenging not only to humans trying to solve it, but also for

optimization algorithms due to the vast number of possible arrangements. When trying to

understand the problem, human experts sometimes learn sophisticated relations between

certain states and apply sequences to switch between known states quickly. As, in analogy to

this, the goal of the method in this section is to make human designers capable of

understanding relations between different designs and grammar rules that transform those

designs, the sliding tile puzzle is a well-suited case study. It demonstrates, that through

analyzing transition graphs, human designers can gain deeper knowledge about designs and

identify useful rule application sequences for design transformations. The method is applied

on a small scale problem to gain knowledge in a first step. Then the learnt knowledge is

applied on a larger scale problem.

5.4.1 Understanding the Small Scale Problem

A small version of the puzzle is used in this case study consisting of five tiles, numbered one

to five, arranged on 2x3 tile grid. A grammar with four rules is developed to modify any given

puzzle. The four rules (Up (U), Down (D), Right (R) and Left (L)) are visualized in Figure 5-13.

The LHS of the rule shows an example design on which the rule can be matched and the RHS

shows the design after the rule application. Involved tile positions are highlighted in grey. In

the last column of the table in Figure 5-13, the possible matches for each rule are given for

the 5-tile puzzle, indicated by the positions on which the empty tile can be positioned. All

possible states of the 5-tile puzzle are explored exhaustively. The transition graph is

generated consisting of all unique designs where each unique design represents a possible

tile configuration as a vector, e.g. (1,2,3,4,5,0) represents the target design. The results from

the manual and the computer-supported analysis of the transition graph are presented in

Section 5.4.3.

Figure 5-13 Rule set for the sliding tile puzzle.

 5

5 Network-based Rule Analysis Method

64

5.4.2 Applying Knowledge on the Large Scale Problem

A 8-tile puzzle is used as a large scale problem to analyze whether rule sequences identified

on a reduced problem, can help to solve larger scale problems. An example puzzle is given in

Figure 5-14.

Figure 5-14 Example for the 8-tile puzzle.

The task is to find a sequence of rule applications transforming the given puzzle (left) to the

desired puzzle (right) using the knowledge learnt on the 5-tile puzzle. While the 5-tile puzzle

with its 6!/2 = 360 solvable states can be explored exhaustively, the 8-tile puzzle has a

significantly larger search space with 9!/2 = 181,440 solvable states making it harder and for

larger puzzles impossible to explore exhaustively. To apply the learnt knowledge, the smaller

5-tile puzzle is mapped into the 8-tile puzzle and only tiles within the smaller 2x3 regions are

changed. The remaining tiles stay untouched. Changing between 2x3 regions, e.g. first

looking at the upper region, then at the lower region in the 3x3 puzzle, tiles can move

through the whole 3x3 puzzle.

Dividing the problem into smaller sub-problems, humans can more easily define heuristics or

strategies to solve problems like the sliding tile puzzle. Figure 5-15 presents such heuristics

for the larger scale puzzle. The rule set defined for the 5-tile puzzle can be kept. To define

regions for sub-problems, the human can analyze the large-scale puzzle and select the region

to modify in the next step, e.g. based on the position of the empty tile. In Figure 5-15 (left)

the grey regions define the region in which the next modifications are performed. When the

empty tile (indicated with "0" in Figure 5-15) is in the top or bottom row, the top or bottom

region are selected. When it is in the middle row, further heuristics can be applied or one

region can be selected randomly. Given the initial puzzle, the lower region is selected,

however, it is still not clear how to change the tiles in the region.

Figure 5-15 Rule set (top left) and heuristics for defining regions of sub-problems (bottom left) and search
patterns (right) defined by the human designer.

General heuristics, e.g. trying to finish the puzzle from the top, can be implemented by

defining search patterns. Following this general strategy, one can define search patterns as

1 2 5

4 8 7

3 0 6

Sequence of rule applications

1 2 3

4 5 6

7 8 0

Rule set

Heuristics for region

Heuristics for patterns

5.4 Case Study 2 (Tile Puzzle): Learning and Reusing Rule Sequences

65

 5

given in Figure 5-15 (right). The patterns are described as six character strings and define

desirable tile positions giving the tile numbers and "*" as a wildcard symbol. In Figure 5-15

(right) one example is given to identify all designs with tile "3" and the empty tile in the

upper row of the selected region. This represents one part of the strategy commonly used by

humans to move tiles from the upper row (tiles "1", "2", "3") into the middle row and then,

in a next step, into the upper row, e.g. to replace the "5" in the initial design by a “3”. The

rule set, heuristics for the region, and heuristics for patterns depending on the region and

the current tile configuration are implemented.

The process to solve the 8-tile puzzle is presented in Figure 5-16. In a first step, exhaustive

knowledge, i.e. the transition graph, is generated for the small scale puzzle and stored in a 5-

tile library. In the second step, partial knowledge about the 8-tile puzzle is generated using a

BFS approach. Implemented using a queue, in each iteration the first element in the queue is

expanded. The 8-tile puzzle is subdivided using the heuristic for the region. The considered

region is highlighted in grey in Figure 5-16. The tiles are mapped from the 8-tile space to the

5-tile space. In this transformation, the tile numbers are mapped from the numbers

(0,1,2,3,4,5,6,7,8) to the number (0,1,2,3,4,5). The empty tile (number 0) remains in both

spaces, the remaining numbers have to be mapped such that the mapped design constitutes

a solvable design in the 5-tile space. The mapping for the iteration shown in Figure 5-16 is,

e.g., (5-tile space - 8-tile space): (1-4), (2-8), (3-3), (4-7), (5-6), (0-0). The same mapping is

applied to the patterns defined in the pattern heuristic and for each pattern all designs that

match it are identified in the 5-tile library. In Figure 5-16, five example designs matching the

heuristics for patterns (30****, *03***, *30***, 03****, 3*0***) are shown, but many

more are possible. The shortest paths, i.e. the rule sequences with the least rule applications,

to these designs are identified using the 5-tile library. To avoid exploring an unnecessary

large space of the 8-tile puzzle search space, for each pattern heuristic only the one with the

shortest rule sequence is considered further. The rule sequences and their respective

generated designs (transformed back into 8-tile space) are added to the queue and stored in

the 8-tile library. This means that the 8-tile library stores a transition graph of the 8-tile

space with the nodes representing puzzles and the edges representing rule sequences. This

process is continued until the final design is found. As soon as it is found, the complete

sequence to solve the 8-tile puzzle is generated (Step 3) by analyzing the 8-tile library in

which the generated designs in 8-tile space and the sequences of rule applications to

transform them are stored. As in Step 1, it is found by searching the shortest path using a

BFS with backtracking with the only difference that instead of single rules, the

transformations are sequences of rules.

 5

5 Network-based Rule Analysis Method

66

Figure 5-16 Process of gaining knowledge on small scale (Step 1) and applying it to explore (Step 2) and solve
(Step 3) a larger scale problem.

5.4.3 Results

As for the tile puzzle, half of the states are not solvable, two transition graphs are generated

for all possible permutations of the tiles with numbers (0,1,2,3,4,5) with "0" denoting the

empty tile. Both graphs are visualized in Figure 5-17 representing exactly what has been

demonstrated mathematically in 1879, namely, that for a given puzzle, half of the states are

solvable, whereas the other half are not, and that no solvable puzzle can be transformed

into an unsolvable one and vice versa.

Figure 5-17 Transition graphs for solvable and unsolvable puzzles.

5-tile

library

Step 1: Learn on small scale
Learn rule sequences between all designs

Step 3: Find complete sequence 8-tile library BFS with backtracking Rule sequence from

initial to final design

Take first design from the queue,

subdivide problem using heuristic for region,

transform from 8-tile to 5-tile space

Step 2: Apply on large scale

8-tile

library
Build up library

Transform back to 8-tile space

1 2 4

3 0 5

1 2 5

4 8 7

3 0 6

1 2 5

4 8 7

3 0 6

1 2 4

3 0 5

5 -

tile

8 -

tile

1 4

2 8

3 3

4 7

5 6

0 0

3 0 4

1 2 5

4 0 3

1 2 5

1 3 0

4 2 5

0 3 1

4 2 5
…

3 0 4

1 2 5

1 3 0

4 2 5

0 3 1

4 2 5

1 2 5

0 3 8

7 4 6

1 2 5

8 3 0

7 4 6

1 2 5

3 0 7

8 4 6

Mapping

Solve sub-problems

using heuristics for

patterns and paths

learnt on small scale

3 4 0

1 2 5

Filter using search heuristics,

e.g. best for each pattern

Add to end of

queue if not

explored yet

5.4 Case Study 2 (Tile Puzzle): Learning and Reusing Rule Sequences

67

 5

For any design s, the question of whether or not it is solvable can be answered by analyzing

the reachability of the final state, design t, from the given design s. Any design for which no

path to the final state t can be found is unsolvable. This means that to distinguish between

the solvable and unsolvable transition graph in Figure 5-17, one has to identify in which

graph the final state is present. Having a closer look at an excerpt of the transition graph

(Figure 5-18) we can see relations between designs (states) expressed through rules

(transitions) and identify designs that are reached via more rule applications than others.

This is highlighted using different colors and node sizes. Do-undo rules can easily be found,

as for any rule that transforms one design s into another design t in this case study there

exists an undo-rule to transform t to s. This lies in the nature of the problem, that for each

tile that is slid into an empty position, the previous position of the tile becomes empty,

allowing it to be slid back.

Figure 5-18 A zoomed in view of the transition graph showing designs and their transformations through
rules.

Alternative paths, as well as loops can be detected (see Figure 5-19) representing what

humans trying to solve the tile puzzle also easily experience, e.g. that sliding tiles in a

squared region repeatedly will transform the puzzle to its initial state after a certain number

of moves. Figure 5-19 shows an example of a loop that rotates four slides in counter

clockwise direction. Understanding such loops can help to avoid the application of a

sequence that describes such a loop (as then the whole sequence is negligible). It can also

visually be recognized that there might be a shorter and a longer sequence of rule

applications to transform a design from one state to another. Besides the manual

interpretation of the transition graphs that represent the human's understanding of this

simple problem well, automated analysis is also tested. As expected, two pairs of do-undo

rules were identified, namely the pairs Up Down and Left Right. Numerous

alternative paths between designs are found and questions of reachability between any two

designs are answered successfully. It has further been shown that the shortest paths can be

found between any two designs. In the second part of the case study, the learnt knowledge

from the 5-tile puzzle is successfully applied to the 8-tile puzzle. For any solvable puzzle in

the 8-tile space, a sequence of rule applications is found to transform the given puzzle into

the desired one. For the initial design presented in Figure 5-14, for example, 21 moves are

identified to transform the initial puzzle (1,2,5,4,8,7,3,0,6) into the final configuration

(1,2,3,4,5,6,7,8,0): (1,2,5,4,8,7,3,0,6) (Sequence: D, R, U, L, D) (1,2,5,3,0,7,8,4,6)

 5

5 Network-based Rule Analysis Method

68

(Sequence: R, D, L, U, L, D, R, R, U) (1,2,3,0,7,5,8,4,6) (Sequence: L, U, R, D, L, L, U)

(1,2,3,4,5,6,7,8,0).

Figure 5-19 Loops are detected to reason about the rules and to avoid them during synthesis.

5.5 Discussion

The two case studies demonstrate different aspects of the Network-based Rule Analysis

Method using transition graphs.

The gearbox case study shows how the transition graph can be used to analyze rule

applications where the location of the rule application in the design influences the synthesis

results. Results show how rules can be identified that are matched more often than intended,

i.e. their LHSs are formulated too vaguely. Modifying the LHS formulation of the rules makes

it possible to reduce the number of indifferent (from an engineering point of view) matches

of these rules. While the generated results remain the same, these changes can have a

strong influence on the run time and required working memory when the rules are used in

the CDS process. Therefore these detailed analyses of the LHSs can not only help the human

designer to understand rule matches, but also to speed up the synthesis process when LHSs

are formulated more specific to the synthesis task.

In the sliding tile case study, the transition graph for a small scale problem, the 5-tile puzzle,

is generated and analyzed giving insights into the grammar as well as the problem itself. Rule

sequences with the least rule applications between any two designs in the transition graph

can be identified by a shortest-path search algorithm. For the tile puzzle only one final state

exists, but the presented method can likewise be used for problems with several final states,

e.g. the gearbox case study. It would then present the rule sequence to the final state that is

found first. In the tile puzzle case study, the design space is explored exhaustively for the

small scale problem. The 8-tile puzzle is used to demonstrate that rule sequences learnt for

small scale problems can be used to help human designers to solve large scale problems. For

5.6 Summary

69

 5

the given puzzle, a rule sequence of 21 rule applications is found, while more sophisticated

algorithms might find a shorter sequence of rule applications. The difference can be

explained with the sequential subdivision of the 8-tile puzzle in 5-tile regions that restrict

rule applications to smaller regions. The aim of this case study, however, is not to search for

computer-competitive strategies, but to enable human designers to reason about the search

space in a more systematic way.

For both case studies, the automated analysis of the synthesized transition graphs enables

the designer to identify loops and alternative sequences of rules. The case studies

demonstrate the potential of using visualizations and analysis of transition graphs to

strengthen the human designers' understanding of developed grammar rules and the

relations between designs and rule sequences. Depending on the problem at hand, it might

be possible to explore the search space exhaustively for a smaller sub-problem, as in the tile

puzzle case study, or for a limited number of rules in each applied rule sequence, as in the

gearbox case study. For larger problems it is also possible to explore portions of the design

space using stochastic search algorithms. Then, it is recommended to start the generation

process repeatedly and from different initial designs to collect sufficient data and not let the

choice of the initial design or the randomness of the algorithm bias the results. The different

designs are then combined to one or more transition graphs depending on whether or not

the same designs are generated from different initial designs.

A modified sliding tile puzzle is used in research by Vale and Shea [84] that is also directed

towards finding beneficial rule sequences. Similar to the research in this chapter do-undo

rules are identified. The method proposed in [84] learns performances of rule sequences

from previous rule applications during the CDS process and uses ML techniques to decide on

future rule applications. The focus is on accelerating the search process and learning during

the CDS process. In this thesis, by contrast, the focus is on supporting the human designer.

Future research could, however, combine the presented approach with methods like the one

presented in [84]. Beneficial and counterproductive rule sequences could be learnt using the

Network-based Rule Analysis Methods and provided to the ML-based search process as

initial knowledge. Similarly, the ML-based search could provide visualizations of the learnt

knowledge to the human designer to further increase their understanding.

5.6 Summary

The Network-based Rule Analysis Method is presented in this chapter. The method can

support designers in developing and applying grammar rules. It has been shown that

through both manual analysis of the transition graph or computationally through graph

search algorithms, loops in rule applications can be identified. LHS matches of rules can be

analyzed in detail when transition graphs are generated for exhaustively explored design

spaces. Additionally, efficient rule application sequences can be identified through shortest

path searches in the transition graph. Exhaustively searching small portions of the search

space to collect data and generate transition graphs to visualize relations between different

designs and sequences of rule applications can give human designers useful feedback about

 5

5 Network-based Rule Analysis Method

70

the grammar they developed. The Network-based Rule Analysis Method is, therefore, an

answer to research questions 5.1 and 5.2:

Research question 5.1: How can grammar rules in CDS be systematically analyzed to
identify the effect of a rule’s application location on the
generated designs?

Research question 5.2: How can grammar rules in CDS be systematically analyzed to
identify sequences of rules that are beneficial or
counterproductive?

Through the generation of data, the synthesis of a transition graph and its analysis, grammar

rules can be analyzed systematically. Designs where the same rule can lead to different

designs depending on the rule’s application location can be identified and based on the

resulting designs, the effect of the application location can be analyzed. This information can,

e.g. be used to improve the LHS of a rule to increase or decrease the number of LHS matches.

In the gearbox case studies, the analysis of the LHS of two rules allowed to decrease the

number of LHS matches to enable a more efficient search process. The synthesized network

can also be used to identify sequences of rules that are beneficial or counterproductive. This

has been shown in the sliding tile case study, where beneficial rule application sequences are

identified by searching shortest paths in the transition graph.

The Network-based Rule Analysis Method is targeted at supporting grammar development

and application. The following research contributions are achieved:

 Contribution 1: The Network-based Rule Analysis Method represents a novel approach
to analyze grammar rules by combining a graph representation of generated designs and
rule applications with network analysis algorithms and interactive visualization.

The method is based on a network where synthesized designs are represented as nodes

while rule applications, i.e. transitions between the designs, are represented as edges.

Individual rules and sequences of rule applications can be understood when analyzing this

network through automated analysis or through visualization.

 Contribution 2: The presented method supports confirmatory and exploratory analysis
of rules, rule sequences and the designs they generate.

The human designer is given a visual representation of the transition graph and he or she

can interactively explore the generated designs and the transitions, i.e. rule applications,

between designs. Visualization of the generated transition graph, automated network

analysis and the search for paths between designs in the transition graph, either manually or

automated through a console application, give the human designer the possibility to accept

or reject hypotheses (confirmatory analysis), or to interact with the visualization to explore

implicit information about the generated designs (exploratory analysis).

Figure 5-20 shows the positioning of the Network-based Rule Analysis Method with respect

to the goals for this thesis. The method supports the rule development process (sub-goal G1)

and allows for an improved search (sub-goal G3).

5.6 Summary

71

 5

Figure 5-20 Positioning of the Network-based Rule Analysis Method with respect to the goals of this thesis.

The following contributions provide support for human designers:

 The Network-based Rule Analysis Method allows the analysis of differences between
locations where rules are applied and their impact on the synthesized designs. This
analysis enables designers to identify rules for which location matters for the defined
scope. This can lead to an increased understanding of the individual rules and their
ability to apply at various locations of a design. It can further be used to identify
inefficiently formulated LHSs of rules. Modifying such rules can speed up the CDS
process.

 The method enables the identification of rules that can be combined or split. The
analysis of the transition graph and favorable designs allows the human designer to gain
insights into the grammar rules. When certain rules always have to be applied in a
sequence to generate meaningful results, the human designer can consider combining
them into one rule. When, by contrast, one rule modifies designs too drastically, the
human designer can recognize this and split the rule into several stepwise modifications,
if possible, such that intermediate designs are generated. The Network-based Rule
Analysis Method, thus, allows designers to analyze and create balance between
knowledge-intensive and simple rules.

 The presented method increases the understanding of how sequences of rules modify
designs. Analyzing the paths in the transition graph facilitates the understanding of how
sequences of rules modify designs. It also gives the human designer insights into the
different design alternatives generated by the same rule sequences, due to different
locations at which the rules are applied. This information can be used to further develop
the grammar, e.g. to further restrict rule application conditions (LHS) when rules are
applied too frequently.

Support human designer in CDS in …
Overall

Goal

Sub-
goals

…grammar development
…selection of

search algorithm
…refinement

of search
G1 G2 G3

Support
designer in
selecting
existing

rules

Support
designer in
developing

rules

Support
designer in
combining

rules

Increase
understanding of

search
algorithms for
given problem

Sub-
goals

G1.1 G1.2 G1.3 G2.1

Provide rule
independent

strategies

Tuning of
search

algorithm

G3.1 G3.3

Provide
rule

dependent
strategies

G3.2

Network-based
Rule Analysis

Method

 5

5 Network-based Rule Analysis Method

72

 The Network-based Rule Analysis Method enables the definition of preferable
sequences of rule application. Preferable sequences of rule application, i.e. rules that
when combined generate meaningful designs, can be identified. These rules can either
be combined to form a more specific rule, or the knowledge about the meaningful
sequence can be used to refine the search process.

 The method enables the human designer to identify sequences of rules that should be
avoided. Avoidable sequences of rules, e.g. loops in the transition graph, can be
identified. Avoiding those during rule application can speed up the synthesis process,
because their application would not have any effect on the design.

 The human designer can identify preferable rule sequences on reduced sub-problems.
When problems are decomposable into similar, smaller sub-problems, the knowledge
learnt on a reduced sub-problem can be used to solve the larger scale problem, as
shown for the sliding tile puzzle.

 With the developed software prototype grammar rules can be analyzed and the
presented method can be evaluated. The prototype generates data by conducting one
or several synthesis runs, synthesizes the transition graph and provides visualizations to
the human designer.

 73

 Relation Visualization Method 6

Managing the different aspects of CDS requires not only a detailed understanding of each

individual part, i.e. representation, evaluation and the search process but also of the

interdependencies between them. The method presented in this chapter is aimed at

supporting the development and application of grammars and at supporting the selection of

an appropriate search algorithm. It aims to answer the following research question:

Research question 6.1: How can search processes in CDS be visualized to better
understand how grammar rules and a search algorithm explore
the design space?

The research methodology used to answer this question is to develop a method that allows

the visualization of design space exploration and to implement it in a software prototype.

The practical applicability of the method is then validated through two case studies. The

structure of the chapter is as follows. Section 6.1 motivates the use of visualizations in CDS

to visualize relations between grammar rules, performance objectives and design space

exploration when using CDS approaches with search algorithms. In Section 6.2, the method

is presented that visualizes the progression of the search algorithm in CDS. The method is

then validated using two engineering design problems. The synthesis of bicycle frames is

described in Section 6.3, the synthesis of gearboxes in Section 6.4. Results are presented

(Section 6.3.4 and Section 6.4.1) and discussed (Section 6.5), including a discussion of the

generality of the method. Section 6.6 summarizes the chapter and revisits the research

question and the expected contributions of the presented method with respect to the

overall goal of the thesis.

6.1 Motivation for Visualizations in CDS

In CDS, search and optimization algorithms are frequently used to guide the synthesis

process. Selecting an appropriate algorithm is challenging. Knowing characteristics of the

design space can support the selection of search algorithms [25], however, these

characteristics are often not known. When comparing different algorithms on a problem, or

when tuning algorithm settings, usually only the final designs, e.g. the number of valid

designs generated, or metrics to evaluate the synthesis process, e.g. the convergence time

of the algorithm, are considered. Designs generated in earlier stages of the synthesis process

or ones that are rejected by the synthesis algorithm are commonly not considered.

The goal of the research in this chapter is to support engineering designers using CDS

methods through visualizing how their selected search algorithm explores the design space.

The focus is on making the search process explicit. Visualization and animation techniques

are used for that purpose. These techniques are successfully applied in the field of software

visualization and algorithm animation, e.g., to support communication between experts and

to debug and optimize programs. The main focus of algorithm animation is, however, to

support education in computer science [131]. A new method is presented that uses

 6

6 Relation Visualization Method

74

animation techniques to visualize the progression of the search algorithm. The explored

design space is represented in the context of design objectives and design characteristics,

e.g., the structure of a design. The order in which designs are generated and the grammar

rules causing design transformations are visualized. Being presented how a search algorithm

and rules explore the space, the human designer can more easily understand how to steer

the search into different directions by changing the search algorithm or the grammar rules.

The method can, thus, help novices to gain a deeper understanding of the interplay between

grammar rules and guidance of the synthesis process. Experts can use the method to analyze

and further improve their CDS application, e.g., by improving parameter settings of the used

search algorithm.

6.2 Method

In this research, a new approach to visualize the progression of search algorithms during CDS

is presented. Changes considering the objectives as well as the topologies are represented to

make the engineer understand not only the algorithm, but also the grammar that is used to

generate design alternatives. The scope of the presented method are CDS methods that use

grammars to generate new designs and that use search and optimization algorithms to guide

the synthesis process. The method supports multi-objective algorithms. It is described in the

following for the use of graph grammars. Its generality to other grammars, e.g. shape

grammars, is discussed in Section 6.5.

Figure 2-3 presents a framework for CDS methods. Problem-specific knowledge is formalized,

i.e. problem description, objectives and constraints are defined by the human designer.

Appropriate simulation models or heuristics to evaluate generated designs are made

available and a search algorithm is selected before the CDS process is started. The synthesis

method itself is then often seen as a black box converting a given initial design into

meaningful final designs. When the human designer is not content with the generated

designs, the CDS process is usually restarted using, e.g., different problem formulations,

initial designs, or different algorithm settings. Figure 6-1 presents the Relation Visualization

Method and its integration in the CDS framework defined in [25] (see also Figure 2-3). Data

acquisition is performed throughout the search process. The collected data is analyzed and

visualizations are generated and presented to the human designer. This makes the CDS

method more transparent as it visualizes the whole process. This includes, e.g., not only

successful designs, but also those that are rejected by the algorithm.

6.2 Method

75

 6

Figure 6-1 Suggested generic CDS process (adapted from [25]).

Similar to the visualization pipeline described in [108], the presented method consists of

three steps (see also Figure 6-1): 1) data acquisition during CDS, 2) analyses, i.e. post-

processing the data, and 3) presenting it to the human designer using static visualizations

and animations. Data acquisition is conducted during the whole CDS process. Data consists

of design related and process related data. Design related data includes the topology of each

generated design, i.e. its graph representation, as well as the objective and constraint values

for each design. Process related data is the iteration number (= index of the design), the

index of the previous design and the applied rule. They are stored for each iteration of the

CDS process.

In the second step, the collected datasets are analyzed. Unique designs are identified where

uniqueness is a property that is problem dependent and is to be predefined by the user. It

can, e.g., be unique topologies in a structural design problem or designs with different

parameter values for parametric problems. For the example data (Figure 6-2) in this method

description, uniqueness refers to designs with a unique topology. Thus, to identify unique

designs, the topologies of all designs are compared to each other and each design is assigned

a topology ID referring to a unique topology. For all objective function values and constraint

violations, the change in the value is calculated for every iteration. Note that to calculate the

change in objective and constraint values at iteration i the values of the design generated in

iteration i have to be compared with those from the design on which the change in iteration

i is applied. This does not necessarily have to be the design generated in iteration (i-1) but

can also be a design generated earlier in the process, e.g. when the design generated in

iteration (i-1) was rejected.

6.2.1 Example to Demonstrate the Method

To demonstrate the method, example data with datasets for six iterations is given in Figure

6-2 along with the corresponding rule set. The last column of the table shows the unique

topology IDs identified in the post-processing step. The labels “#” for the index of each

Representation

Generate

Evaluate
Guide

Search Process

Final
Designs

Problem Description
Objectives & Constraints

Designer
interprets

designs

Designer formulates
problem in a manner

understandable to
search process

Designer interprets visualizations and
gains insight into the search process

Designer adapts
guidance strategy

Designer adapts
representation

Visualization Analyses
Data

acquisition

 6

6 Relation Visualization Method

76

generated design and “§” for the unique topologies are used to clarify the difference

between the two.

Figure 6-2 Example data to visualize the Relation Visualization Method. At the top an example rule set is
shown consisting of two rules. The table (bottom) shows datasets for six iterations. The last column of the

table shows the unique topology IDs identified in the post-processing step.

Based on the datasets, three visualizations are generated: a) the unique topology space, and

b) the performance space, and c) rule analysis plots (Figure 6-3).

The unique topology space (UTS) (Figure 6-3, left) presents the unique topologies identified

in the graph isomorphism check. All generated designs and their relations by means of rule

transformations are visualized in the UTS. Each unique topology is represented by a node

and the transformation between the topologies is represented by an edge, labeled with the

number of the rule that transformed the topology. Each node is labeled with unique

topology ID (§) of the topology it represents.

For each iteration step one the following three options applies:

1. The applied rule changed the topology (§A) and a design with a previously

undiscovered topology (§B) is generated. Then a new node (§B) is added to the UTS

and the current node (§A) is connected to this node (§B) with an edge labeled with

the rule number that created this transformation.

2. The applied rule changed the topology (§A) and a design with an already explored

topology (§B) is generated. Then the node representing the current design (§A) is

connected to the node representing the resulting topology (§B) and an edge labeled

with the rule number is added that connects the two nodes. Additionally the size of

the revisited node (§B) is increased to show that it is visited repeatedly.

Process related data Design related data

Unique
topology ID

Iteration
number
(=index)

Index of
previous
design

Applied
rule

Graph
representation

Objective
1

Objective
2

#0 - - 8 10 §0

#1 #0 1 7 8 §1

#2 #1 2 3 7 §2

#3 #2 1 4 12 §3

#4 #2 1 10 3 §4

#5 #1 1 2 6 §5

#6 #5 2 1 2 §4

Rule set

Rule 1:

Rule 2:

6.2 Method

77

 6

3. The applied rule does not change the topology (§A). Then only the size of the current

node (§A) is increased to show that it is visited repeatedly.

The graphs inside the nodes in Figure 6-3 are presented for illustrative purposes only. For a

larger number of designs, only the nodes are displayed.

In the performance space (PS) (Figure 6-3, top right) the performances of the generated

designs, i.e. their objective function values, are plotted in a multidimensional space defined

by the objectives. This means that each design generated during the CDS process is

represented by a data point in the PS. For the given datasets (Figure 6-2), a two-dimensional

plot is sufficient representing the two objectives. The rules transforming one design into

another design are depicted as arrows between the data points in the plot, representing the

change of the performance in vector form (Figure 6-3, right). The labels of the data points (#)

here refer to the iteration in which the design is generated, i.e. the index of the design.

Figure 6-3 Unique topology space (left) with nodes representing unique topologies (§) and edges
representing rule applications, performance space (top right) with nodes representing positions of designs

(#) in the performance space and vectors representing changes of objective function values due to rule
applications, and rule analysis plot (bottom right) representing changes by rule applications as vectors.

Unique topology space

Rule 1

Rule 2

Rule 1

Rule 1

§0

§1

§2 §5

§3 §4

Rule 2Rule 1

Performance space

Objective 1

O
b

je
ct

iv
e

2

#0/§0
10

#1/§1#2/§2

#3/§3

#4/§4

10

5

5

Rule 1
Rule 2

0

#5/§5

#6/§4

Rule analysis

Objective 1

O
b

je
ct

iv
e

2

5

Rule 1
Rule 2

0

5

 6

6 Relation Visualization Method

78

Rule analysis plots (Figure 6-3, bottom right) help to increase the understanding of how each

individual rule influences the objective function values. All vectors of the PS are visualized in

a separate plot with their starting points set to the origin. Using this visualization, it can, e.g.

be easily seen that for the given example rule 1 can increase and decrease both objectives,

while rule 2 always decreases objective 1 and objective 2.

The visualizations in Figure 6-3 show the progression of the algorithm from iteration 1 to 6.

They enable interpretations to increase the understanding of the problem:

 For each rule, it can be analyzed whether it changes the topology or not and which
objectives it influences and to what degree.

 For each design, it can be analyzed which are its predecessor and successor, considering
both topology and objective function values. It is interesting to see in the example above,
that in iteration 6, when rule 2 is applied to the design from iteration 5, the same graph
as in iteration 4 is generated (UTS). Considering the performances (PS), however, there
is a difference between the design generated in iteration 4 and the one generated in
iteration 6.

6.2.2 Implementation Details

The method is integrated in the generic framework that is presented in more detail in

Chapter 8. It is implemented in c# and provides an interface to Matlab in an evaluation

module. Different search algorithms are implemented in a guidance module. The UTS is

visualized using OrganicVIZ [132], a graph visualization tool capable of representing large

graphs and supporting graph analyses as well as providing several filtering options.

OrganicVIZ was developed to support visually augmented analysis of complex socio-technical

networks for engineering systems design. It provides a slider for visualizing the process

stepwise. The synthesis process can be replayed with this slider. The node representing the

topology of the currently changed design is highlighted. The PS and rule analysis

representations are visualized using an implemented Matlab application presenting the data

and providing a slider and some selection options for the user to navigate through the data.

When sliding the slider from the first to the last iteration, the progression of the whole

synthesis process can be observed. Visualizing the progression in time facilitates the

understanding of the algorithm and the relationship between rules, rule sequences and

resulting designs in the design space.

6.3 Case Study 1: Bicycle Frame Synthesis

A bicycle frame synthesis task is taken as a first case study to demonstrate the Relation

Visualization Method. The bicycle frame design case study is used in Chapters 6 and 7 in this

thesis to validate the presented methods. It is introduced in detail in the following.

6.3.1 Introduction to the Bicycle Frame Synthesis Case Study

Existing research on bicycle frame synthesis focuses on multi-objective optimization using

simulated annealing [109] or shape annealing [133]. Bicycle frames are commonly known

6.3 Case Study 1: Bicycle Frame Synthesis

79

 6

products that are available with different topologies, shapes and in different sizes. Research

on synthesizing bicycle frames using CDS methods has generated promising results in the

past, which makes them a reasonable case study.

6.3.1.1 Problem Formulation

The task is adapted from [133] and is to synthesize a bicycle frame according to the following

three objectives:

1) minimize the mass of the frame (decreases material cost)

2) minimize the number of joints (decreases manufacturing costs)

3) minimize the mean deflection of the frame (maximizes stiffness of the frame)

The following constraints are imposed:

1) the maximum stress in each bar <= 750 MPa

2) the maximum deflection in x- and y direction of each bar <= 5 mm

The synthesis process is started from a given frame geometry (see Figure 6-4). The positions

for the rear wheel, crank, saddle, handle bar and head tube are fixed in this case study, i.e.

their positions are not modified during the synthesis process.

Figure 6-4 Initial design of the bicycle frame.

6.3.1.2 Representation

A graph grammar is used in this case study and is implemented using GrGen. Two node types

are used to represent the frame as a graph, namely joints and bars. Joint nodes possess

attributes for x- and y- positions, whereas bar nodes possess attributes for inner and outer

diameter. Joint and bar nodes are connected via undirected edges to show the connectivity

of nodes. Using this representation, the length of each bar can be easily calculated from the

x- and y-positions of the joints it is connected to. Figure 6-5 gives an example graph

representation of the bicycle design shown in Figure 6-4.

S B

T

C
R

Fixed components:
S: Saddle
B: Handle bar
T: Head tube
C: Crank
R: Rear wheel

 6

6 Relation Visualization Method

80

Figure 6-5 Graph representation of the initial design.

A rule set of nine rules is defined with four topologic and five parametric rules. All rules are

applied with equal probability in the synthesis process. Topologic rules change the graph

topology by adding or deleting nodes and edges, e.g. adding a bar between two joints. When

a bar is added, its diameter and thickness are selected randomly within defined ranges.

Parametric rules change attribute values of nodes, e.g. moving the position of a joint. An

overview of the rules is given in Figure 6-6.

Figure 6-6 Schematic representation of the rule set.

Rule 1: Two previously unconnected joints are connected with a bar.

Rule 2: A bar is removed; this rule only applies when the remaining joints still form a valid

frame geometry, i.e. the fixed components are connected to form a frame.

Rule 3: A v-type connection of three joints consisting of two bars is replaced by a star-type

connection consisting of three bars and one additional node.

Rule 4: A star-type connection consisting of three bars is replaced by a v-type connection

consisting of two bars; this rule only applies when the joint to be removed (joint 4) is not a

fixed component.

Legend

Joint

Bar

Edge

Legend
Joint node Bar node Edge

Rule 1
1 2 1 2

Rule 2
1 2 1 2

Rule 3
2 3

1

2 3

1

4

Rule 4
2 3

1

2 3

1

4

Topologic rules

Rule 5
(x+ ∆x, y+ ∆y)(x, y)

Ø d Ø d + ∆d

Rule 6

Rule 8

Rule 9

Parametric rules

Rule 7

Ø d -∆dØ d

6.3 Case Study 1: Bicycle Frame Synthesis

81

 6

Rule 5: The position of a joint is moved resulting in changes of the lengths of the bars

connected to it; this rule is not applicable to joints representing a fixed component.

Rule 6: The diameter of a bar is increased, the thickness remains the same as before.

Rule 7: The diameter of a bar is decreased, the thickness remains the same as before.

Rule 8: The thickness of a bar is increased, the outer diameter stays the same.

Rule 9: The thickness of a bar is decreased, the outer diameter stays the same.

6.3.1.3 Evaluation

In each iteration of the CDS process, the generated design is evaluated. The graph

representation is transformed into a vector and matrix format and the Finite Element

Method (FEM) is used for structural analysis to evaluate the objective function and

constraint values of the design. Beam elements are used to model the bicycle frame as

suggested in [134]. The FEM is implemented in Matlab and uses one-dimensional beam

elements. Although different load cases are required to fully analyze a bicycle frame (see,

e.g., [109, 133, 134] for details on different load scenarios) only one load case is used in this

study. A full analysis of the bike is not required to validate the method in this section but a

sufficiently accurate assessment of frame designs, which is approximated with the following

load case. The frame is fixed at the rear wheel mounting position and a load of 1,000 N is

applied to the saddle.

6.3.2 Search Algorithms

Two different algorithms are used to guide the synthesis process, the Burst algorithm and

the Simulated Annealing (SA) algorithm. Strengths of the Burst algorithm are its modular

structure and easy adaptability to the design task. It is not tuned to any engineering problem,

which makes it a suitable algorithm for the generic framework. It is developed for a problem

independent modification-based framework similar to the one used in the presented

research and was successfully applied to different design problems in the past [135, 136]. As

a second algorithm, an implementation of the SA algorithm is used. Both algorithms are

presented in more detail in the following.

6.3.2.1 Burst Algorithm

A schematic overview of the Burst algorithm is given in Figure 6-7. During the algorithm

execution “Bursts” of rule applications are applied. The length of each Burst is randomly

selected between one and a maximum Burst length defined by the user. In each iteration of

a Burst, one rule is applied and the changed design is selected for the next iteration,

independent of its performance. Once the Burst is finished the length for the next Burst is

defined and a design is selected randomly from the archive to start the next Burst with. The

synthesis process starts from an initial design and stops after a predefined number of

iterations. For storing promising designs during algorithm execution, a Pareto archive is used.

The archive is initialized with the design in the first iteration, i.e. the initial design. In each

 6

6 Relation Visualization Method

82

iteration, the generated design is compared to the designs stored in the archive to see if it is

a new Pareto-optimal design. To qualify for the archive, a design has to meet all constraints

and be Pareto-optimal according to the objectives, e.g. mass, number of joints and mean

deflections for the bicycle frame case study. If yes, it is stored in the archive and the archive

is updated. Archive updates are performed using a global Pareto filtering algorithm as

described in [137] to eliminate dominated designs. When the archive size exceeds the

predefined maximum size of the archive, it is reduced. Archive reduction is done stepwise.

First, the archive is analyzed and for each design, the distances to all other designs in the

archive are calculated according to the following formula:

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆(𝑫𝒆𝒔𝒊𝒈𝒏 𝒊) = ∑ {[𝟏 −

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟏(𝑫𝒆𝒔𝒊𝒈𝒏 𝒊)

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟏(𝑫𝒆𝒔𝒊𝒈𝒏 𝒋)
]

𝟐

+ [𝟏 −
𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟐(𝑫𝒆𝒔𝒊𝒈𝒏 𝒊)

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟐(𝑫𝒆𝒔𝒊𝒈𝒏 𝒋)
]

𝟐

+ [𝟏 −
𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟑(𝑫𝒆𝒔𝒊𝒈𝒏 𝒊)

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟑(𝑫𝒆𝒔𝒊𝒈𝒏 𝒋)
]

𝟐

}

𝟏
𝟐𝒏

𝒋=𝟏

 (2)

The design with the smallest distance to all other designs is deleted, thus removing a design

from the most explored region of the search space.

Figure 6-7 Schematic overview of the Burst algorithm.

6.3 Case Study 1: Bicycle Frame Synthesis

83

 6

6.3.2.2 Simulated Annealing Algorithm

An overview of the simulated annealing (SA) algorithm used in this case study is given in

Figure 6-8.

Figure 6-8 Overview of the SA algorithm.

Similar to the Burst algorithm, a Pareto archive is used to store non-dominated designs. In

each iteration, the generated design is compared to the design in the previous iteration.

When the design improved considering the objectives, i.e. when at least one objective

function value decreased, it is accepted and taken as the starting design for the next

iteration. When the design did not improve it is still accepted with a certain probability. The

probability P(i) to accept an inferior design is calculated based on the iteration according to

formula (3).

 P(i)=e-(∆f(i)/T(i)) (3)

 6

6 Relation Visualization Method

84

∆f(i) is the change in the objective function value resulting from the rule application in

iteration i. A weighted sum is used to calculate the objective function value f(i) for the design

generated in iteration i:

 f(i)=10mass(i)+10000meanDeflection(i)+numberOfJoints(i) (4)

The weights are defined to yield the individual objectives to the same order of magnitude.

T(i) is the temperature as a function of the current iteration i and is calculated according to

formula (5).

 T(i) = 1000.9i (5)

This means that in the beginning of the synthesis process, inferior designs are accepted with

a higher probability to support the exploration of the design space. Towards the end of the

process, inferior designs are accepted with a lower probability to exploit already explored

designs.

For multi-objective SA, often a return to base (RTB) option is implemented, where the

process is restarted periodically from a design found earlier in the process, e.g. a design

stored in the archive.

6.3.3 Scenarios

Results are generated for the following scenarios:

 Burst algorithm with maximum Burst length set to 1, 5, and 20

 SA without RTB

 SA with RTB every 100 iterations

For each scenario, ten runs with 1,000 iterations each are conducted. The archive size for all

scenarios is limited to ten designs.

6.3.4 Results

Designs for all scenarios are generated and the corresponding UTS, PS and rule analysis plots

are visualized. Figure 6-9 visualizes how a UTS plot can be animated to gain insights about

the algorithm. The Burst algorithm is used to generate the data for this visualization with the

maximum Burst length set to five. The UTS is presented for four different stages of the

synthesis process: after 5, 20, 100 and 1,000 iterations. Subfigure a) shows the initial design

and three of its successors after five iterations. It can be seen that one of the two direct

successors of the initial design (the right one) is generated but not further explored. The

other one is explored further. This can be seen by the increased node size and the succession

of another design. When the size of a node increases this means that either a parametric

rule is applied to a design with this topology or that the application of a topologic rule on

another design resulted in this topology. Subfigure b) shows that the synthesis process is

continued from the initial design and a new topology is generated and often revisited (upper

right node). Subfigure c) visualizes how the synthesis process explores more topologies

based on this recently explored design until iteration 100, and subfigure d) demonstrates the

6.3 Case Study 1: Bicycle Frame Synthesis

85

 6

remaining designs generated until iteration 1,000. It can be seen that after iteration 100,

two more topologies are strongly exploited (large node size) and many more topologies are

explored based on those designs.

Figure 6-9 Visualization of the progress of the algorithm in the unique topology space (UTS). a) shows the
start and the following subfigures (b), c), d)) show how new topologies are explored (new nodes) and

existing ones are exploited (increasing node size). Designs that are explored from one subfigure to the next
are highlighted.

Figure 6-10 shows the UTSs for different versions of the Burst algorithm. The visualizations

show all unique designs generated after 1,000 iterations. The Burst algorithm with a Burst

length of one is run first and the UTS is visualized (Figure 6-10, top). From the UTSs it can be

a) Synthesis is started
from the initial design b) Designs are expanded repeatedly

(each visit increases the size of the
node representing it)

c) Starting from the most
frequently explored design a series
of new topologies is exploredd) Further topologies are explored (new

branches) and existing ones exploited
(increasing node size)

initial
design

new
designs

initial
design

initial
design

initial
design

new
designs

 6

6 Relation Visualization Method

86

observed that only few topologies are exploited extensively. Considering the generated

designs, it is found that only one or two topologically different designs remain in the final

Pareto set in each run. Increasing the maximum Burst length results in the generation of

more unique topologies.

Figure 6-10 Unique Topology Spaces (UTSs) for three example runs with 1,000 iterations each, using the Burst
algorithm with the maximum Burst length set to 1 (top), 5 (middle) and 20 (bottom).

Visualizing the UTSs for maximum Burst lengths of five and 20 (Figure 6-10, middle and

bottom), it can be observed that more different topologies are explored. Comparing the

UTSs for the three different Burst lengths it can be seen that the selection of the Burst length

has an influence on how the algorithm explores the design space. When the Burst length is

set to a low value only few unique topologies are generated and some of them are exploited.

The extreme case with a Burst length of one, which results in a greedy search, shows that

the search often focuses on only one or two topologies. With larger Burst lengths, a larger

6.3 Case Study 1: Bicycle Frame Synthesis

87

 6

number of different topologies are generated. This means that the algorithm explores the

space to a greater extent with respect to different topologies, however, for each topology

less parametric changes are explored. The designer can analyze the effect of exploring more

topologies in the UTSs while the effects of exploiting already generated topologies by

searching for optimized parameters can be observed in the PS plots, which are explained

later.

UTS plots for both versions of the SA algorithm are shown in Figure 6-11. The plot on the left

shows how the SA algorithm continues to apply rules to the previous design unless it is

rejected. This can be observed by the chain-like representation in the UTS plot. Note that the

curvy representation is due to the visualization settings in OrganicViz aiming to represent

graphs in organic forms. The zoomed in view (Figure 6-11, bottom) shows topologies that are

generated but not further explored (only one incoming and no outgoing edge) as well as

some that are generated, but in a following rule application the previous topology is

recreated. On the right in Figure 6-11, the UTS for the SA algorithm with RTB every 100

iterations is shown. It can be observed, that the chain-like structure of the SA algorithm still

exists, however, for some of the restarts new chains are followed from previously generated

topologies.

Figure 6-11 Unique Topology Spaces (UTSs) of example runs with 1,000 iterations each; left: SA without RTB
with zoomed in view (bottom); right: SA with RTB every 100 iterations.

Figure 6-12 shows an example PS representation for one synthesis run of the SA algorithm

without RTB. Even though it is hard to visualize a 3D space (Figure 6-12 a)) on paper, the

reader can observe which areas of the PS are explored during the synthesis process.

 6

6 Relation Visualization Method

88

Additionally, it is possible to analyze which rules change which objectives. Figure 6-12 b)

represents a projection of the PS representation on the “mass-numberOfJoints”-plane.

Figure 6-12 c) and d) show the projected plot split up into topologic (Figure 6-12 c)) and

parametric (Figure 6-12 d)) rules. It can be observed that the topologic rules (black, solid

lines) can change the number of joints, whereas the parametric rules (grey, dashed lines)

cannot but influence the mass.

Figure 6-12 Example performance space (PS) plots. Topologic rules are presented with black, solid lines,
parametric rules with grey, dashed lines.

In Figure 6-13 the rule analysis plots are presented for the parametric rules 8 and 9 (Figure

6-13, left) and the topologic rules 3 and 4 (Figure 6-13, right). It can be seen that increasing

the thickness of a bar adds mass to the frame but for most cases decreases the mean

deflections, while decreasing the thickness results in the opposite. Similarly, it is visualized

that rule 3 always adds a bar, while rule 4 removes one and both rules either add or remove

mass from the frame, depending on where the rule is applied. Comparing the designs

generated in all scenarios (defined in Section 6.3.3), there is no noticeable difference

regarding performance or number of different topologies generated in the final Pareto

archive. The only exception is the Burst algorithm with the maximum Burst length set to one,

for which only one or two different topologies remain in the final Pareto archive.

6.4 Case Study 2: Gearbox Synthesis

89

 6

Figure 6-13 Example rule analysis plots for parametric (left) and topologic (right) rules.

Six example designs generated with the Burst algorithm with a maximum Burst length of 20

are presented in Figure 6-14.

Figure 6-14 Example bicycle frames generated with the Burst algorithm with a maximum Burst length of 20.

6.4 Case Study 2: Gearbox Synthesis

The synthesis of gearbox designs is taken as a second case study. A detailed problem

formulation for the gearbox synthesis task is given in Section 4.3.1. Ten experiments are

conducted for each scenario described in Section 6.3.3. The Burst and SA algorithm are used

as described in Section 6.3.2. The resulting visualizations are presented in the following.

Special attention is given to aspects where visualizations are different from those in the

bicycle frame case study.

6.4.1 Results

Figure 6-15 visualizes the progression of the synthesis process through four UTS

representation for an experiment using the Burst algorithm with a maximum Burst length of

20. The UTS is presented after 5, 20, 100 and 1,000 iterations respectively. Each node

represents a unique gearbox topology. The nodes are colored whereby each color represents

a combination of design characteristics. The number of forward and reverse speeds are

defined as design characteristics in this case study, i.e. nodes with the same color represent

 6

6 Relation Visualization Method

90

gearbox designs with different topologies but with the same number of forward and reverse

speeds.

Figure 6-15 Visualization of the progress of the search space exploration in the unique topology space (UTS)
for the gearbox case study. The Burst algorithm with a maximum Burst length of 20 is used.

In Figure 6-16, the UTSs for three experiments with maximum Burst lengths of 1, 5 and 20

are visualized. The effect of changing the search algorithm parameter “maximum Burst

length” on the explored design space is obvious when comparing these visualizations. When

the maximum Burst length is set to one, the same four topologies are discovered for all

experiments.

6.4 Case Study 2: Gearbox Synthesis

91

 6

Figure 6-16 Unique Topology Spaces (UTSs) for three example runs with 1,000 iterations each, using the Burst
algorithm with the maximum Burst length set to 1 (top), 5 (middle) and 20 (bottom).

Figure 6-17 represents the UTS explored when the maximum Burst length is set to one and

visualizes pictograms of the gearboxes that are represented by these four nodes. Only three

topologic rules (add a shaft, add a gear pair, replace a gear pair) find a LHS match on the

initial design. Applying each of these three rules to the initial design generates the three

shown topologies. None of these topologies fulfills the criteria (number of speeds == desired

number of speeds, i.e. five forward and one reverse speed) to be stored in the archive. This

means the next Burst restarts from the initial design, i.e. only the presented topologies and

their parametric variations are explored with this search algorithm setting.

M
ax

im
u

m
 B

u
rs

t
le

n
gt

h
: 1

M
ax

im
u

m
 B

u
rs

t
le

n
gt

h
: 2

0
M

ax
im

u
m

 B
u

rs
t

le
n

gt
h

: 5

 6

6 Relation Visualization Method

92

Figure 6-17 UTS and pictorial representations for the topologies generated with the Burst algorithm
(maximum Burst length = 1).

The UTS visualizations for two experiments with 1,000 iterations each using the SA algorithm

are shown in Figure 6-18. For the visualization on the left, no RTB is performed, for the

visualization on the right a RTB is performed every 100 iterations. The progression of the SA

algorithm can be observed when the UTS visualization is explored interactively. In general,

the visualization of the UTS for the SA algorithm can be considered as exploring the designs

along a chain. From this chain, single nodes or smaller groups of designs are branching that

are, e.g., explored but rejected and the process is then continued from the previously

explored design (compare also Figure 6-11). In the gearbox case study, the same topologies

are explored repeatedly during the synthesis process also when the SA algorithm without

RTB is used. In the UTS, these sequences of rule applications that explore new topologies

and then, after several rule applications, generate a topology found earlier are visualized as

loops. Considering only topologies, this effect of generating the same topologies repeatedly

is similar to the effect of implementing a RTB option which is why the general structure of

the UTS for the two experiments in Figure 6-18 looks similar. The effect of the RTB option

can, however, provide benefits for the search process through restarting the synthesis

process from a topology with optimized parameters.

6.4 Case Study 2: Gearbox Synthesis

93

 6

Figure 6-18 Unique Topology Spaces (UTSs) for two experiments with 1,000 iterations each using the SA
algorithm without RTB (left) and with RTB every 100 iterations (right).

Figure 6-19 shows a GUI that can be used to visualize the PS progression. The data is

generated during 1,000 iterations using the SA algorithm with RTB every 100 iterations. The

six subfigures show the explored regions of the performance space after 10, 50, 100, 500,

700 and 1,000 iterations, respectively. Note that the scale on both axes changes during this

series of subfigures. The PS is projected to two dimensions (“collisions–ratio error”-plane) in

Figure 6-19 to be easier readable. The tool, however, allows arbitrary rotations and

projections to enable the user to better understand the explored space. The progression of

the SA algorithm can be observed when replaying the synthesis process using the slider. In

the beginning of the process the SA algorithm accepts more designs with inferior

performance, i.e. higher objective values. This can be observed on the first four subfigures in

Figure 6-19, where designs with high objective function values are explored and the search is

continued from these designs. Towards the end of the process, inferior designs are accepted

with decreasing probability. In the last two subfigures of Figure 6-19 this can be observed.

The space is explored around designs that are found previously and are stored in the Pareto

archive. This can also be seen in the interactive tool when looking at the restarts every 100

iterations. The search is then restarted from a Pareto optimal design.

Rule analysis representations are given in Figure 6-20 (top). The human designer can

interpret these representations to understand each rule’s influence on the objectives and on

how the changes of objective values are linked. Rule 8 (shorten a shaft) always reduces the

mass of a gearbox and often resolves collisions. When no collisions between the shaft and

other gearbox elements exist it influences the mass only. These links between changes in

objectives can be interpreted when analyzing the rule analysis plots.

Simulated Annealing without RTB Simulated Annealing with RTB

 6

6 Relation Visualization Method

94

Figure 6-19 Exploration of the performance space (PS) during SA with RTB.

6.5 Discussion

In the following section, the Relation Visualization Method and the presented results are

discussed. First, the different representations (UTS, PS and rule analysis plots) are reviewed

based on the results of the case studies. The method is then compared to GRAM (Chapter 4)

6.5 Discussion

95

 6

and the Network-based Rule Analysis Method (Chapter 5) and its generality and limitations

are discussed.

Two algorithms with different settings are applied to the same design synthesis task for both

case studies. Using the presented method, UTSs are generated to visualize interactively how

the individual algorithms address the problems. Visualizing the UTS for a Burst length of one

(Figure 6-10 (top) for the bicycle frame and Figure 6-16 (top) for the gearbox), the human

designer understands the strong focus of this algorithm parameter setting on exploiting few

topologies. In case of the gearbox case study, the exploration of the design space is even

restricted to four different topologies. Runs with longer Burst lengths lead to more

discovered topologies. The visualization of the UTS allows the human designer to achieve

better synthesis results because the increased understanding of the algorithm progression is

used to adapt algorithm parameters which leads to better results. Comparing, e.g., the

representations for the different maximum Burst lengths (Figure 6-10 and Figure 6-16), the

increasing maximum Burst length is reflected in the amount of exploration around the

archive designs.

Besides the influence of algorithm parameter settings, also the general concepts of

algorithms can be seen. For the bicycle frame case study, conceptual differences between

the Burst and the SA algorithm are easily recognized by the structure of the UTS

representations. The frequent restarts of the Burst algorithm are reflected in the star-like

structure, whereas the SA algorithm without RTB is reflected by a chain-like structure. The

SA with RTB combines these two aspects. The exploration of the search space is not only

dependent on the general concepts of the search algorithm used. Also the specific design

problem and the grammar rule set influence how the space is explored. This can be seen, e.g.

in Figure 6-18, where no difference between using the SA algorithm with or without RTB is

visible due to the way the gearbox rules are developed. When rule 2 (delete a shaft) or rule 4

(delete a gear pair) are applied and numerous dangling nodes are deleted, a sequences of

rules that add gears and shafts (rule 1, 3 and 5) can recover the pervious gearbox design

(compare also to detected loops in transition graphs in Chapter 5). Exactly this ability of the

Relation Visualization Method to visualize the design space exploration for the combination

of a specific rule set and a specific algorithm accounts for its superiority compared to

learning about and selecting search algorithms only based on a generic description of their

principles.

In addition to the UTS, the PS visualizes how the algorithm progresses with respect to the

objective function values. It also visualizes the parametric aspects of the synthesis process,

i.e. how a parametric rule changes a design with respect to the objectives. This supports the

human designer to understand in which phase of the synthesis process the algorithms

explore designs far away from the Pareto front and in which phases the search is narrowed

to exploit Pareto-optimal designs. Together with the UTS plot this gives insights on how the

search algorithm explores and exploits the design space. This enables the designer to reason

about the CDS method at hand and, e.g., adapt parameters of the algorithm to focus more

on exploring or exploiting the space.

 6

6 Relation Visualization Method

96

To summarize, the presented method visualizes the algorithm progression given the actual

engineering design problem and grammar rules. Visualizing the search algorithm progression

on the concrete problem gives the human designer more insights into the search algorithm

used in the CDS method, than can be understood by just learning about the search

algorithm’s behavior in a text book. This is because it is visualized in the context of the actual

problem that includes the grammar rules and the problem-specific evaluation.

While the UTS and the PS focus on the algorithm, the rule analysis plot predominantly

supports reasoning about the grammar rules. It gives the human designer a clear picture

how each individual rule influences the objective function values. This information is not

only helpful for debugging grammar rules, but also to identify favorable as well as non-

influential rules and to reason about their use.

Differences between the Relation Visualization Method, the Grammar Rule Analysis Method

(Chapter 4) and the Network-based Rule Analysis Method (Chapter 5) are discussed in the

following.

The presented method is an extension to and complements GRAM (Chapter 4). GRAM

supports the development of grammar rules before they are used in a CDS method. Rule

analysis is performed without considering the search algorithm that is used in the CDS

process. The Relation Visualization Method, by contrast, focuses on the interconnection

between grammar rules and search algorithm during CDS. Besides visualizing the algorithmic

aspects of the CDS search process, the presented method is also an extension to GRAM’s

rule analysis. While GRAM analyzes the influence of a rule on each objective individually, the

method presented in this chapter shows interdependencies between these changes in

objectives by using a multidimensional vector, i.e. showing how changes in objectives are

linked for each rule. Figure 6-20 visualizes this by comparing the rule analysis plot and the

boxplots as used in GRAM. The colored stars highlight example rule applications in the rule

analysis plots at the top of Figure 6-20. At the bottom of Figure 6-20 the same rule

applications are highlighted in the box plots. The link between the changes in the two

objectives is missing in GRAM’s visualization. For some rule applications, e.g. the one

highlighted in purple on the left of Figure 6-20, the change of one objective is not shown in

GRAM’s visualization because it constitutes an outlier when considering the objectives

separately. The rule analysis plots, therefore, give additional information to the human

designer, while GRAM’s boxplots, especially with the color-coding to indicate changes in

desired and undesired directions, allow a quick overview.

6.5 Discussion

97

 6

Figure 6-20 Example rule analysis plots for topologic (left) and parametric (right) rules are shown at the top.
GRAM’s boxplots for rule analysis are shown at the bottom for comparison.

Further, with the presented method not only different topologies are represented (as with

GRAM), but also the transformations between them are visualized explicitly through the UTS

representation. The Relation Visualization Method supports the understanding of the search

algorithm and facilitates an analysis of the rule set in the context of the algorithm and the

design task at hand, which is superior for analyzing and understanding the CDS process in

depth.

In Chapter 5, the Network-based Rule Analysis Method is presented that uses network

analysis techniques to find superior rule application sequences using the same

representation of generated designs and their relations as in this chapter. The differences

are that in Chapter 5 the representation of unique designs and transformations is generated

by exploring a small portion of the search space exhaustively, and that this representation is

used to analyze rules and their application to learn meaningful sequences. Using the

Relation Visualization Method, the designs are generated during a CDS process and are used

to better understand the search algorithm and rules in the conducted CDS process.

To summarize, both, GRAM and the Network-based Rule Analysis Method are developed to

support the rule development process and find reasonable rule sequences before they are

applied in a CDS search process. The method presented in this chapter, by contrast, supports

the understanding of the search algorithm in relation to both the rules and defined

objectives, thus extending the set of methods for CDS method development. Future research

could include validating the presented method with different user groups, i.e. CDS novices

and experts, and considering their feedback for further refining the method.

-250 -200 -150 -100 -50 0 50 100
-2

-1.5

-1

-0.5

0

0.5

1
x 10

4

mass [kg]

c
o

lli
s
io

n
s
 [

-]

Rule3-CreateAShaft

Rule4-DeleteAShaft

-2 -1 0 1 2
-1000

-500

0

500

1000

1500

2000

mass [kg]

c
o

lli
s
io

n
s
 [

-]

Rule9-LengthenAShaft

Rule8-ShortenAShaft

-150 -100 -50 0 50 100

Rule3-CreateANewShaft

Rule4-DeleteAShaft

mass [kg]

-1 -0.5 0 0.5

Rule8-ShortenAShaft

Rule9-LengthenAShaft

mass [kg]

-10000 -5000 0 5000

Rule3-CreateANewShaft

Rule4-DeleteAShaft

collisions [-]

-300 -200 -100 0 100 200

Rule8-ShortenAShaft

Rule9-LengthenAShaft

collisions [-]

Rule
analysis
plots

GRAM’s
rule
analysis

 6

6 Relation Visualization Method

98

To apply the method, only minor implementation effort is required. One routine has to be

included in the CDS process to store data during the execution of the CDS method. A second

routine has to be implemented for post-processing the collected data.

Limitations to the method are given when more than three objectives have to be considered.

Then, the visualization of the PS has to be presented using different visualization techniques.

The presented method is implemented as a post-process visualization of the CDS process.

With an increased computational effort, it could, however, also be integrated in the CDS

process as a live visualization method. Graph isomorphism checks are then done after every

iteration and UTS, PS and rule analysis plots are presented. Doing so, the method could be

used for interactive search algorithms and would allow the user to take more informed

decisions during the CDS process.

In the presented case studies, the method is applied to graph grammars. In general, any type

of grammar can be used for which unique designs can be identified and for which

intermediate designs can be evaluated.

6.6 Summary

In this chapter, a new visualization approach is presented to systematically represent the

search process when using CDS methods with grammars and search algorithms. It answers

research question 6.1:

Research question 6.1: How can search processes in CDS be visualized to better
understand how grammar rules and a search algorithm explore
the design space?

The Relation Visualization Method analyzes the designs generated during the synthesis

process and visualizes how the design space is explored with respect to design

characteristics and objectives. The selected algorithm as well as the grammar rules can be

analyzed with this approach to support the human designer in understanding and applying a

CDS method. The results of the case studies demonstrate how the method provides

information on the different components in CDS. A major contribution of the presented

method is that it systematically visualizes the relations between grammar rules,

performance objectives and search algorithm progression for grammar-based CDS methods.

The progression of the CDS process can be animated and relations between the generated

designs are visualized. These relations can, e.g., be the rules that transform one design into

another one, or the distance between two designs in the performance space. Another

contribution is that by visualizing the CDS process, the presented method makes properties

of the search algorithm visible, e.g. its tendency to explore and exploit the design space. This

knowledge can be important for selecting and tuning search algorithms. To the knowledge of

the author, the method is unique in its ability to visualize search algorithm progression and

design space exploration in CDS. It can further be used for debugging search algorithms as

well as grammar rules and for teaching algorithms in a CDS context. The presented research

can be useful for both novices to CDS to help them gain a deeper understanding of the

6.6 Summary

99

 6

interplay between grammar rules and guidance of the synthesis process, as well as for

experts aiming to further improve their CDS application by improving parameter settings of

the selected search algorithms, or by further refining their design grammar. Additionally, the

presented method constitutes a novel approach to interactively visualize design space

exploration considering not only design objectives, but also the characteristics and

interdependencies of different designs.

The research contributions of the Relation Visualization Method can be summarized as

follows:

 Contribution 1: The Relation Visualization Method is a method to systematically analyze
grammar rules.

Similar to GRAM and the Network-based Rule Analysis Method, the Relation Visualization

Method contributes to analyzing grammar rules. In contrast to the aforementioned methods,

the search algorithm that is used to generate the analyzed designs is also subject to analysis

in the Relation Visualization Method.

 Contribution 2: The Relation Visualization Method visualizes how search algorithms
explore the search space and permits exploratory and confirmatory analysis.

The interactive performance and topology space visualizations allow the human designer to

retrace the CDS process in detail and reason about the changes invoked by the rules, as well

as the decisions taken by the search algorithm. These imply decisions about whether to

continue applying rules to the current design or revisiting an already explored design.

Further, the balancing between topologic and parametric changes of the generated designs

can be presented in these visualizations. These decisions, taken by the search algorithm, can

be retraced by the human designer to see how the search algorithm explores and exploits

the search space. The method, therefore, enables exploratory and confirmatory analysis of

the relations between search algorithm, grammar rules, generated designs and performance

objectives.

Figure 6-21 shows the positioning of the Relation Visualization Method with respect to the

goals of this thesis. The Relation Visualization Method supports the rule development

process (sub-goal G1) and the selection (sub-goal G2) of a search algorithm that is suitable

for the design task at hand. The rule development process is supported through additional

information on each rule’s performance (sub-goal G1.1), when compared to GRAM.

Comparing different implementations of rules, the human designer can also decide among

different rules and, e.g., reuse already existing implementations where appropriate (sub-goal

G1.2). Given a set of rules and a search algorithm, the search process can further be refined

(sub-goal G3) by tuning the search algorithm (sub-goal G3.1) through appropriate parameter

settings.

 6

6 Relation Visualization Method

100

Figure 6-21 Positioning of the Relation Visualization Method with respect to the goals of this thesis.

The following contributions of the research presented in this chapter support the human

designer in CDS:

 The Relation Visualization Method supports the analysis of grammar rules. It uses
static rule analysis plots to represent how rules change objectives, but also how these
changes are linked for multiple objectives. Additionally, the interactive performance
space visualization and the unique topology space visualize how the rules explore and
exploit designs in the search space when combined with a search algorithm. This allows
designers to analyze each grammar rule and the changes it applies to designs in detail.

 The Relation Visualization Method enables a more informed decision on a search
algorithm for a given problem. Understanding how search algorithms explore and
exploit the search space, the human designer can reason about different algorithms.
Besides visualizing the general principles of search algorithms, the Relation Visualization
Method presents details on the behavior of the search algorithm for the design task at
hand. Comparing different search algorithms for the given problem and rule set
facilitates an informed decision on the search algorithm to use.

 The Relation Visualization Method supports to analyze the effect of search algorithm
parameters. The possibility to link the search algorithm to the design task at hand allows
the human designer to take informed decisions on setting the parameters of the search
algorithm. When a decision is taken on which search algorithm to use for the search, the
human designer can tune its algorithm parameters for the given problem by comparing
the performance and topology space visualizations for different parameter settings.

Support human designer in CDS in …
Overall

Goal

Sub-
goals

…grammar development
…selection of

search algorithm
…refinement

of search
G1 G2 G3

Support
designer in
selecting
existing

rules

Support
designer in
developing

rules

Support
designer in
combining

rules

Increase
understanding of

search
algorithms for
given problem

Sub-
goals

G1.1 G1.2 G1.3 G2.1

Provide rule
independent

strategies

Tuning of
search

algorithm

G3.1 G3.3

Provide
rule

dependent
strategies

G3.2

Relation
Visualization

Method

 101

 Search Strategy Comparison Method 7

The success of CDS methods depends on several decisions made by the designer, e.g. on

defining an appropriate representation of the design problem, meaningful design

evaluations, a suitable algorithm to guide the process, as well as reasonable strategies to

select rules to generate design alternatives. This chapter focuses on rule selection strategies,

which is part of the guidance step. For most engineering tasks two different kinds of rules

are required to change the topology and parameters of a design. Most real world

engineering tasks require both topologic and parametric rules. Topology describes the

structure, or configuration, of a design whereas parameters describe its geometry and

spatial arrangement. Common approaches to this challenge include a) to split the synthesis

process in phases, e.g. to decouple topologic and parametric changes [38, 121], and b) to

allow the change of topology and parameters at the same time but add more intelligence to

the search on how rules are selected, e.g. by using trajectories that pre-define rule

application probabilities and dynamic rule qualities to steer the amount of topologic and

parametric variation throughout the synthesis process [111]. Other approaches aim to learn

meaningful sequences of rules [84, 138], however, these methods focus mainly on topologic

rules. A good strategy to apply topologic and parametric rules is an important prerequisite to

successfully use grammars for CDS. Researchers in CDS usually have preferred approaches to

address design synthesis tasks that require topologic and parametric rules and variables. The

challenge of handling both at the same time is a known issue. However, no research is

known to the author that compares different strategies to better understand their use in the

automated design synthesis process on one problem that would permit their fair comparison.

A common strategy is to use topologic rules until a valid designs is found and then switch to

applying parametric rules to find optimally directed designs. Another strategy is to apply

both topologic and parametric rules throughout the synthesis process. Researchers also

often make assumptions of the superiority of their chosen way with respect to the problem.

The research presented in this chapter compares different strategies to combine topologic

and parametric rules during CDS to target the following research question:

Research question 7.1: How can different strategies for selecting topologic and
parametric rules in CDS methods using grammars be compared to
each other?

To investigate this research question, four different strategies are presented and applied to

two case studies. Two versions of an algorithm with different levels of complexity are used

to analyze the influence of the algorithm on the synthesis results for all strategies. To

evaluate the generated designs, different metrics for the quantity and quality of the

generated designs are defined. The strategies are then compared according to these metrics.

The remainder of this chapter is structured as follows. Section 7.1 describes the method

used to compare different strategies, i.e. a) the algorithms used in the synthesis process

(Section 7.1.1), b) the strategies for the selection of the rule type (Section 7.1.2), and c) the

 7

7 Search Strategy Comparison Method

102

metrics with which these strategies are compared (Section 7.1.3). The synthesis of gearboxes

is used as a first case study and described in Section 7.2. The synthesis of bicycle frames is

used as a second case study and described in Section 7.3. Results for both case studies are

discussed in Section 7.4. In Section 7.5, the method is summarized and the expected

contributions are revisited to link the analysis of search strategies to the overall goal of this

thesis.

7.1 Method

In this chapter, four different strategies for the selection of topologic and parametric rules

during the search process are compared. For this purpose, two different case studies are

chosen. The first is a gearbox synthesis task using a graph grammar with five topologic and

five parametric rules. The synthesis task is to generate a gearbox that has a desired number

of speeds and correct gear ratios. Further, the gearbox must fit into a bounding box, contain

no interferences between parts, called collisions, and the mass is minimized. More details

are given in Section 7.2. The second case study is a bicycle frame synthesis task using a graph

grammar with four topologic and five parametric rules. The task is to design a bicycle frame

that withholds mechanical loads, is lightweight and has a minimal number of welding

positions between frame members. The two design tasks are chosen since there is a strong

coupling between generating a valid topology, i.e. one with the correct number of speeds for

the gearbox or a valid frame connecting all bike components in the bicycle frame synthesis,

and satisfying and minimizing the geometric constraints and objectives. The synthesis tasks

are formulated as multi-objective search problems and the Burst algorithm is used to find

design solutions. The strategies are compared based on the performance of the search

process and the generated designs. Figure 7-1 gives an overview of the elements used to

compare different strategies in this chapter. Two different versions of the Burst Algorithm

(see Section 7.1.1) are used for the search and each of them is combined with each of the

four strategies (see Section 7.1.2) to generate designs resulting in eight different

combinations of algorithm and strategy. The generated designs for all eight combinations

are then analyzed using five metrics (see Section 7.1.3) for comparing the generated designs

and the search process. Note that even though the strategies are implemented as elements

of the search algorithm, the aim of this research is not to improve the algorithm itself, but to

compare different strategies for selecting topologic and parametric rules during the search

process.

7.1 Method

103

 7

Figure 7-1 Overview of the method used to compare different search strategies.

7.1.1 Burst Algorithm

For the generation of design solutions, two versions of the Burst algorithm are used. The

Burst algorithm is generic and not tuned to any engineering problem. This is desirable for

comparing different strategies as neither the algorithm, nor the strategies should

incorporate any information on the specific task in order to allow for a fair comparison. The

Burst algorithm is introduced in Section 6.3.2.1. The implementation that is used for the

research in this chapter, is shown in Figure 7-2. Differences to the Burst algorithm described

in Section 6.3.2.1 are highlighted.

Hard constraints can be defined for designs to qualify for the archive. As long as there is no

design in the archive, the algorithm conducts a greedy search, i.e. in each iteration the

generated design is compared to the previous one. When the design improved, the current

design is kept for the next iteration, when it did not improve, the previous one is used again.

To avoid that the search gets trapped in local minima of infeasible designs, a restart option is

implemented that starts the synthesis from the initial design in case there is no feasible

design found within a defined number of iterations. When there is at least one design in the

archive, the algorithm switches to the Burst mode. The selection of the rule for the next rule

application is done in two steps. The set of allowed rules (all rules, only topologic rules, or

only parametric rules) is defined by the strategy. Then, the exact rule within the set of

allowed rules is selected according to the algorithm.

Five Metrics for Comparison

Topologically

different designs

generated in total

Topologically

different designs in

final Pareto set

Iteration of first

valid design

Quality of designs

in archive

Convergence of

archive

Two Algorithms

Simple

Burst

Algorithm

Advanced

Burst

Algorithm

Strategy 1 Topologic + Parametric

Strategy 2 Topologic Parametric

Strategy 3
Topologic +

Parametric
Parametric

Strategy 4
Parametric

Topologic

Designs

Designs

Designs

Designs

Designs

Designs

Designs

Designs

 7

7 Search Strategy Comparison Method

104

Figure 7-2 Overview of the Burst algorithm used in this chapter.

To show influences of the algorithm on the design synthesis process, two different versions

of the Burst algorithm are used. A summary of their differences is given in Figure 7-3. First,

the simple Burst algorithm uses random selection of designs from the archive and random

selection of rules from the defined rule set. Second, an advanced version of the weighted

Burst algorithm by Vale [135], is used where the selection of the exact rule is based on

weights. Different from the work by Vale, here the weights are not predefined by the user

but rather are adaptive and regularly updated during the search process based on rule

performance, similar to the work by Shea [111]. This algorithm is called the advanced Burst

algorithm in the remainder of this chapter. In the advanced Burst algorithm, the probability

Initial Design

Evaluate Design

Terminate

Search?

no

yes

Final Pareto Set

Increase Burst

Iteration Counter

no

Evaluate Design

Continue With

Current Design

Was Design

Archived?

yes no

Update Archive

Burst Length

Reached?

yes

Restart Burst

Iteration Counter

Select Design From

Archive

Reduce Archive

Size

Maximum Archive
Size Reached?

yes

no

Try Archiving

Randomly Choose

New Burst Length

Continue With

Archive Design

Select Rule

Apply Rule

Restart?
Are Designs In

Archive?

yes

no

Design Better

Than Previous?

Continue With

Current Design

yes

Continue With

Previous Design

no

no

yes

Restart From

Inita l Design

Legend

Greedy Algorithm

With Restart Unti l

First Design Is

Archived

Implementation

Dependent On

Algorithm

(Simple/

Advanced)

Implementation

Dependent On

Strategy (1-4)

And Algorithm

Steps Same As

In A lgorithm

Descrip tion In

Section 6.3.2.1

7.1 Method

105

 7

to choose a certain rule is based on the rule’s previous performance. This means that for all

rule applications the quality of the rule is calculated according to formula (6).

𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑅𝑢𝑙𝑒𝑖) =

∑|∆𝑓𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒1, 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒2, 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒3)|

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑙𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 (6)

The rule quality is defined here as the sum of absolute changes in the objective function

achieved by accepted (i.e. the objective function improved) rule applications divided by the

number of rule applications. Tracking the rule quality and using it for rule probability

calculations is a common approach to feed previous performance of rules back to the search

algorithm. The assumption is that rules that have performed well in previous applications

are preferred. The probability for a rule is calculated based on its quality and a minimum

probability (Probmin) that is divided among all active rules n in the rule set to enable the

occasional application of all rules for statistical purposes.

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑅𝑢𝑙𝑒𝑖) =

𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑅𝑢𝑙𝑒𝑖)

∑ 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑅𝑢𝑙𝑒𝑗)𝑛
𝑗=1

∗ (1 − 𝑃𝑟𝑜𝑏𝑚𝑖𝑛) +
𝑃𝑟𝑜𝑏𝑚𝑖𝑛

𝑛
 (7)

Based on these rule probabilities, the rules are selected randomly using the roulette wheel

selection technique. Rule probabilities are updated regularly to update changes in the

performance of single rules.

In the advanced Burst algorithm, also the selection of designs from the archive can be more

advanced than in the simple Burst algorithm. First, a pool of potential candidates for the

next Burst is selected from the archive using hierarchical sorting of the designs by the soft

constraints, i.e. constraints added as additional objectives using penalty functions. Using two

soft constraints, the worst designs from the archive with respect to the first constraint are

rejected. From the remaining designs, the worst designs with respect to the second

constraint are rejected. The designs in the archive with the fewest constraint violations are

thus candidates for the next iteration. The design for the next Burst is then selected

randomly from this pool of candidate designs.

Figure 7-3 Comparison of simple and advanced Burst algorithm.

7.1.2 Strategies for Rule Type Selection

Four different strategies are compared for selecting the rule type for the next modification.

Depending on the strategy, different subsets of the complete rule set are defined. These

subsets are the basis for the selection of the exact rule to apply. Figure 7-4 gives an overview

of Strategies 1 – 4.

Simple Burst
Algorithm

randomly randomly (from subset
defined by strategy)

Advanced Burst
Algorithm

various options, e.g.
• hierarchical sorting
• randomly

selection (from subset
defined by strategy) based on
rule quality calculated from
previous rule performance

Select Rule
Select Design From

Archive

 7

7 Search Strategy Comparison Method

106

In Strategy 1, the rule subset is equivalent to the complete rule set, i.e. the rule type is

selected randomly. This means that topologic and parametric rules can be applied at any

stage of the synthesis process, i.e. building designs using topologic rules and perturbing

them using parametric rules is carried out in one phase. It aims not to accept the first

topologically valid design, but to improve topology and parameters at the same time

continuously throughout the process to potentially benefit from their interdependencies.

Strategy 2 has two phases in the synthesis process. Until a design is found that is stored in

the archive, the rule subset is the complete rule set, i.e. topologic and parametric rules are

applied. When at least one design in the archive exists, the strategy switches to only

applying parametric rules. This is the strategy used effectively in [4] in combination with

simulated annealing search using a single, weighted objective function. The strategy is

chosen in previous work due to a common occurrence of losing valid topologies during the

search process.

Strategy 3 is similar to strategy 2 but allows only topologic rules until the first design in the

archive exists, then only parametric rules. Strategy 2 and Strategy 3 are approaches with two

phases, where phase 1 can be seen as the building phase, i.e. building a valid topology, while

phase 2 perturbs the created design trying to optimize parameter values. The idea behind

these strategies is that once a topologically valid design is found, its topology has to be

protected so as not to lose it in the process.

Strategy 4 decides the rule type based on a probability for each rule type. It can be seen as a

middle way between Strategy 1 and Strategies 2 and 3. Strategy 1 allows topologic changes

at any time, which enables big changes in the design not only of parameters but also of

topology even at later stages of the synthesis process. Strategies 2 and 3 do not allow any

topologic changes once a valid topology has been found, which can be seen as narrowing the

optimization process of the topology. To tradeoff possible disadvantages of these strategies,

trajectories are used in Strategy 4 that predefine the probability with which topologic and

parametric rules are applied at any state of the synthesis process.

A linear trajectory is used to change the probability for the rule types during the synthesis

process. In the implementation used in this chapter, the probability for applying a topologic

rule (probTop) is calculated based on the current iteration (it) in the synthesis process and

the maximum number of iterations (it_max):

𝑝𝑟𝑜𝑏𝑇𝑜𝑝 = 0.8 − (

𝑖𝑡

𝑖𝑡_𝑚𝑎𝑥
) 0.6 (8)

This means that the probability to apply topologic rules changes during the synthesis process

from 80% in the beginning to 20% at the end of the process.

7.1 Method

107

 7

Figure 7-4 Strategies for topologic and parametric rule applications.

7.1.3 Metrics for Comparing the Strategies

For a fair comparison among the four strategies, different metrics are used. As an indicator

for exploring the search space for topologically different designs, a) the number of

topologically different designs found during the synthesis process and b) the number of

topologically different designs in the Pareto archive are evaluated as well as c) the iteration

in which the first valid topology is generated. Additionally, d) the quality of the designs in the

Pareto archive and e) the convergence ratio of the archive during the synthesis process are

considered.

Decide rule type

Define subset of

rules with allowed

rule type

(rule subset)

Decide rule

Select from „rule

subset“ based on

algorithm version

Strategy 3

Size(Archive)

 > 0 ?

yes

no

rule subset =
parametric rules

rule subset =
topologic rules

Size(Archive)

 > 0 ?

yes

no

rule subset =
parametric rules

rule subset =
complete rule set

Strategy 2

Strategy 4

Prob <
probTop?

rule subset =
parametric rules

rule subset =
topologic rules

Calculate probability for topologic
change: probTop = 0.8 - (it/it_max) * 0.6

Create random number to select rule type:
prob = random(0,1)

rule subset =
complete rule set

Strategy 1

yes

no

 7

7 Search Strategy Comparison Method

108

To define the number of topologically different designs within a set of designs, the graphs

of all designs are compared. With each graph describing the topology of a design,

topologically different designs are identified by checking for non-isomorphic graphs, i.e.

graphs that do not have the same structure.

The quality of the designs is defined by how often designs from one strategy dominate

designs from another strategy. The Pareto fronts of all runs for one strategy are compared

pairwise to all runs from the other strategies. In each comparison, the designs of two Pareto

fronts are combined and filtered using a global Pareto filter to generate a common Pareto

front. The strategy that contributes more designs to the common Pareto front is said to be

superior and wins the comparison, similar to the fraction of covered sets in [139]. The more

comparisons a strategy wins, the better is the quality of its generated designs according to

this metric.

To visualize the convergence of the archive, the volume (for three objectives as in the case

studies of the following sections) of the explored search space is calculated regularly and the

ratio of the currently covered volume divided by the maximally covered volume, called

convergence ratio in this section, is plotted over the iterations. This metric is similar to the

metric to calculate dominated areas in [139] but extended to dominated volumes for the

three-objective case in this section. The volume is estimated using a Monte Carlo algorithm.

The rationale behind this metric is that as the archive progresses towards better designs, i.e.

minimizing the objective values, the designs move towards the origin, i.e. the volume

approaches the maximal achievable volume. The maximal covered volume is the volume

described by a cuboid spanning from a reference point to the origin. This represents the

maximal achievable improvement as a point in the origin represents the minimum value for

all three objectives.

7.2 Case Study 1: Gearbox Synthesis

The synthesis of gearboxes is used as a first case study in this section as it is an established

CDS problem [27, 34, 38, 119-122]. A graph grammar is used to represent gearbox designs

and transformations formally. The task is to develop a gearbox that fits into a defined

bounding box and has a defined number of forward and reverse speeds. The grammar is

formulated and implemented as a graph grammar consisting of a metamodel and a rule set

in GrGen, an open source graph rewriting tool [50]. A more detailed description of the

gearbox case study is given in Section 4.3.1. The results of the different strategies and

algorithms are analyzed in Matlab.

7.2.1 Generation

The rule set consists of five topologic and five parametric rules. A more detailed description

of the different rules is given in Section 4.3.1.

7.2 Case Study 1: Gearbox Synthesis

109

 7

7.2.2 Evaluation

The synthesis task is formulated as an optimization problem as follows:

 Minimize mass

s.t. number of speeds = desired number of speeds

 collisions = 0

 ratioErrors < 0.5

(9)

Mass, number of speeds, collisions and ratio error are analyzed as described in Section

4.3.1.3.

7.2.3 Guidance

In previous work by Lin et al. [38], the SA algorithm and a single weighted objective function

are used, formulating the constraints for the number of speeds as soft constraints, i.e.

adding them as objectives using penalty functions. Using this problem formulation and the

simulated annealing algorithm, designs with the desired number of speeds are often lost

during the search process. For this research, therefore, the constraint to have the desired

number of speeds is implemented as a hard constraint with respect to the Pareto archive.

This means that only designs with the desired number of speeds are considered for storage

in the archive. This decision seems advantageous as a) every Burst is started from a

topologically valid solution and b) the number of objectives in the archive is reduced (three

instead of five). The other constraints, i.e. collisions and ratio errors, are formulated as soft

constraints, i.e. adding two additional objectives to the synthesis task.

A weighted sum (adapted from [38]) is used for calculating a single objective function value

for the first phase in the Burst algorithm, until at least one design is added to the archive and

for calculating the rule quality in the advanced Burst algorithm:

 f(design) =

 |number of forward speeds - desired number of forward speeds|*2

 + |number of reverse speeds - desired number of reverse speeds|*0.4

 + collisions*0.001

 + ratio error / log(16)*0.2

(10)

For the second phase of the Burst algorithm, when there is at least one design in the archive,

the three objectives (minimize mass, minimize collisions, minimize ratioErrors) are

considered individually. The following parameter settings for the algorithms are used. The

maximum Burst length is set to 20, the maximum number of iterations is 10,000 and the

archive is sampled every 10 iterations to calculate the archive convergence. Rule

probabilities are updated every 20 iterations when the advanced Burst algorithm is used and

the pool for the selection of the next candidate in the advanced Burst algorithm is created by

taking the best one-third of the designs with respect to the soft constraint for collisions, i.e.

 7

7 Search Strategy Comparison Method

110

priority is given to minimizing the collisions since they must not exist in the final design

whereas ratio errors can be negotiable [38]. The maximum archive size is set to 30.

7.2.4 Results

To compare the presented strategies, 20 experiments with 10,000 iterations are run for each

strategy and each algorithm.

Table 7-1 shows the number of topologically different designs generated during the

synthesis process and remaining in the final archive. As expected, Strategies 2 and 3

generate only one topology due to the two phase approach, which prohibits further changes

of the topology once a design with the desired number of speeds is found. Strategies 1 and 4

allow the application of topologic rules throughout the whole synthesis process enabling the

exploration of several topologically different designs within one synthesis process. On

average, between four and six topologically different designs are explored with both of these

strategies during the synthesis of which on average 1.2 and 1.5, respectively, remain in the

final Pareto set, the others are dominated. The number of topologically valid designs

explored during the synthesis process are similar for both algorithms. The number of

topologically different solutions among all 20 runs for each strategy and algorithm are

presented in the last column of Table 7-1. The simple Burst algorithm explores more

different topologies than the advanced Burst algorithm. Among the strategies, however, no

statement can be made about individual strategies. Comparing the number of designs in the

Pareto set for the different strategies, one can see that all strategies have archives with close

to 30 designs which is the predefined maximum archive size.

Table 7-1 Comparison of topologically different designs in Pareto set for both algorithms and all four
strategies.

Figure 7-5 shows the final archive of one run for Strategy 1 using the simple Burst algorithm.

Three different topologies (labelled 1-3 and represented by the respective graphs) exist with

each topology exploring a specific area of the parametric design space. Topology 1 consists

of the most components (22 gears and 7 shafts) while topologies 2 and 3 have fewer

components (20 gears and 6 shafts). Even though topology 2 and topology 3 have the same

number of components, they cover different regions of the design space. All designs with

topology 2 have a lower mass than designs with topologies 1 and 3. Designs with topology 3

Algorithm Strategy

Average

number of

designs in

Pareto set

Average

number of top.

diff. designs in

final Pareto set

Average number

of top. diff.

designs during

synthesis

Number of

top. diff.

designs in 20

runs

1 28.1 1.5 5.8 23.0

2 28.0 1.0 1.0 19.0

3 28.2 1.0 1.0 19.0

4 27.8 1.2 4.3 14.0

1 28.5 1.0 3.9 15.0

2 27.9 1.0 1.0 15.0

3 28.4 1.0 1.0 16.0

4 27.5 1.1 5.2 18.0

Simple

Advanced

7.2 Case Study 1: Gearbox Synthesis

111

 7

have, on average, less collisions and a smaller ratio error than designs with topology 2. The

design with topology 1 has a mass comparable to that of designs with topology 3, collisions

and ratio errors are between those with topologies 2 and 3. During the synthesis process

that resulted in the designs shown in Figure 7-5, ten different topologies are generated,

however, only the three shown are non-dominated.

Figure 7-5 Final Pareto Set of one experiment in Strategy 1 using the simple Burst algorithm.

Boxplots for the iteration number at which the first design is stored in the archive, i.e. when

the first design with the desired speed is found, for each strategy are shown in Figure 7-6.

The boxplots show the results summarized for all 20 experiments. For both algorithms,

Strategies 1 and 2 find the first design for the archive later than Strategies 3 and 4, which

relates to the probability with which topologic rules are applied. Further, it can be see that

the advanced Burst algorithm speeds up the process of finding the first archived design,

especially for Strategies 1 and 2.

Figure 7-6 Boxplots of iterations when the first design with the desired speed numbers is found for simple
(left) and advanced (right) Burst algorithm.

Topology 2 Topology 3
Topology 1

 7

7 Search Strategy Comparison Method

112

The convergence ratios of the Pareto sets using the volume estimation described in Section

7.1.3 are shown in Figure 7-7 and Figure 7-8 and represent mean values of 20 experiments.

For the gearbox case study, the reference point is calculated by taking the first designs in the

archives of all strategies and all runs and taking the mean value for each individual objective.

This allows the definition of a reference point that is the same for all strategies and runs and

thus enables a more fair comparison then when taking individual reference points for each

strategy. For the simple Burst algorithm (Figure 7-7), all four strategies show comparable

convergence ratios after 8,200 iterations. Strategy 4 starts to explore the space more slowly,

however achieves convergence ratios similar to Strategy 1 after 2,600 iterations, similar to

Strategy 2 after 6,000 iterations and similar to Strategy 3 after 8,200 iterations. Before

iteration 400 and after iteration 8,200 no significant difference between the four strategies

could be identified at the p<=0.05 level. Between strategies 1, 2 and 3 no significant

difference exists during the whole synthesis process. For the advanced Burst algorithm

(Figure 7-8) there exists a statistically significant (p<=0.05) difference between Strategy 4

and the other strategies for the synthesis process between iterations 50 and 8,800. The

convergence is slower for Strategy 4 during this phase of the synthesis process. Between

strategies 1, 2 and 3 no significant difference exists.

Figure 7-7 Convergence of the Pareto sets using the simple Burst algorithm (10,000 iterations).

7.2 Case Study 1: Gearbox Synthesis

113

 7

Figure 7-8 Convergence of the Pareto sets using the advanced Burst algorithm (10,000 iterations).

The best designs generated with each strategy are shown in the objective space in Figure 7-9

and Figure 7-10. The designs represent the Pareto-optimal designs for each strategy among

the 20 experiments. The Pareto sets for all 20 runs are combined and filtered to identify the

non-dominated designs. Note that the axes are scaled differently in these figures as the

advanced Burst algorithm generates designs with better results, i.e. lighter gearboxes with

less collisions and ratio errors. Gearboxes without collisions are generated for three out of

the four strategies, which is a significant improvement compared to work in [38], where

collisions have to be removed manually, e.g. by shortening shafts or moving components.

Figure 7-9 Combined Pareto archives for Strategies 1 - 4 using the simple Burst algorithm (10,000 iterations).

 7

7 Search Strategy Comparison Method

114

Figure 7-10 Combined Pareto archives for Strategies 1 - 4 using the advanced Burst algorithm (10,000
iterations).

To compare the quality of the designs among the different strategies, pairwise comparisons

are conducted as described in Section 7.1.3 and results are shown in Figure 7-11. The figure

shows how often each strategy wins against every other strategy in a matrix format. Each

cell (except those on the diagonal) shows a pie chart which indicates the percentage that the

strategy in the row wins against the strategy in the column. The colors in the pie chart mark

the strategies. For the simple Burst algorithm, Strategy 3 wins more often than all other

strategies. For the advanced Burst algorithm, the strategies are more similar. Strategy 2 wins

the comparisons against all other strategies most often, however the difference is smaller

than for the simple Burst algorithm.

Figure 7-11 Visualizing dominant strategies in pairwise comparisons.

7.3 Case Study 2: Bicycle Frame Synthesis

The synthesis of bicycle frames is considered in the second case study. The task is to

synthesize bicycle frames with minimized mass, deflection and number of joints between

bars while considering constraints on deflection and stress in the frame members.

Simple Burst Algorithm Advanced Burst Algorithm

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

7.3 Case Study 2: Bicycle Frame Synthesis

115

 7

7.3.1 Generation

Bicycle frames are represented as graphs consisting of bar nodes, to describe frame

members, and joint nodes, to describe connection points between frame members. A graph

grammar is used for this problem consisting of four topologic and five parametric rules. A

detailed description of the meta model and graph grammar rules is given in Section 6.3.1.

Two initial designs are considered. First, the synthesis process is started from a diamond

frame (Diamond Bicycle Frame) as described in Section 6.3.1. This means the grammar rules

are used to perturb an initial bicycle frame. Second, the synthesis process is started from

scratch (Void Bicycle Frame), i.e. only the positions of the fixed components are defined, but

no initial frame is predefined. In this case a valid frame has to be generated first before it can

be perturbed. The two different initial designs are considered to mimic different approaches

to CDS problems, namely perturbing existing designs versus building up designs from scratch.

Both initial designs are visualized in Figure 7-12.

Figure 7-12 Initial designs for bicycle frame synthesis case study.

20 runs are conducted for each of the two initial designs for both Burst algorithm versions

(simple and advanced Burst) and for each strategy (Strategy 1 - 4).

7.3.2 Evaluation

The synthesis task is formulated as an optimization problem as follows:

 minimize mass, meanDeflection, numberOfJoints

 s.t. maximumStress <= 750 MPa

 maximumDeflection <= 5 mm

(11)

Mass, number of joints, deflection and stress are analyzed as described in Section 6.3.1.

7.3.3 Guidance

A bicycle frame design has to fulfill several constraints to qualify for the Pareto archive. First,

it has to constitute a valid frame, i.e. all fixed components of the bicycle (see Figure 7-12)

have to be connected to form a frame. A graph rule is used to check if a design represents a

valid frame geometry. Second, the constraints on maximum stress and mean deflection have

to be fulfilled as described in the problem formulation in (11). Third, additional constraints

 7

7 Search Strategy Comparison Method

116

are defined to decrease the objective function values and mimic market requirements. The

mass has to be less than 10 kg, mean deflections have to be less than 5 mm and the frame is

allowed to have a maximum of 20 joints.

A weighted sum is used for calculating a single objective function value for the first phase in

the Burst algorithm, until at least one design is added to the archive and for calculating the

rule quality in the advanced Burst algorithm:

 f(design) = 10*mass + 10000*meanDeflection + 1*numberOfJoints (12)

Common values for mass and number of joints of synthesized bicycle frames are 1-10 [kg]

and 5-20 [-], respectively. Mean deflections are commonly between 10−4 and 10−2[m]. The

weights for the objectives mass, meanDeflection and numberOfJoints in formula (12) are

chosen such that the three objectives contribute to the objective function value (f(design))

with approximately the same order of magnitude. Between mass and numberOfJoints, more

emphasis is put on minimizing mass.

For the second phase of the Burst algorithm, when there is at least one design in the archive,

the three objectives (minimize mass, minimize numberOfJoints, minimize meanDeflection)

are considered individually. The same parameter settings for the algorithms are used as for

the gearbox case study (see Section 7.2). The maximum Burst length (BL_max) is set to 20,

the maximum number of iterations (it_max) is 10,000 and the archive is sampled every 10

iterations to calculate the archive convergence. Rule probabilities are updated every 20

iterations when the advanced Burst algorithm is used. The maximum archive size (A_max) is

set to 30. In contrast to the gearbox case study (see Section 7.2) no hierarchical sorting is

used when selecting designs from the Pareto archive in the advanced Burst algorithm.

Instead, the designs are selected randomly from the Pareto archive so as not to give priority

to any of the three objectives.

7.3.4 Results

20 experiments with 10,000 iterations are run for each strategy (1 - 4), each algorithm

(simple and advanced Burst) and for each of the two initial designs (diamond and void

frame). Results for the synthesis process started from the diamond frame are presented first,

followed by those when the synthesis process is started from the void frame. Then the

results are compared to identify the effect of the initial design on the synthesis results.

7.3.4.1 Results for Diamond Frame as Initial Design

Table 7-1 gives an overview of how many designs are generated for each strategy and

algorithm when the synthesis process is started from the diamond frame design. The values

in Table 7-1 represent the mean values over 20 experiments. Strategies 1 and 4 apply

topologic rules also after a first valid topology, i.e. a frame design connecting all fixed

components, is found. This can be seen by the high number of topologically different designs

in the final Pareto sets generated with these strategies. Strategies 2 and 3 only generate one

7.3 Case Study 2: Bicycle Frame Synthesis

117

 7

valid topology in each experiment. The average number of designs in the final Pareto set is

also higher for Strategies 1 and 4, than for Strategies 2 and 3.

Table 7-2 Comparison of topologically different designs in Pareto set for both algorithms and all four
strategies (Initial design: diamond frame).

When comparing the iterations in which the first valid design is found (last column) it can be

observed that there is no significant difference between the simple and the advanced Burst

algorithm. This is because the first valid designs is found very early in the synthesis process

when starting the process from the diamond frame. The advanced Burst algorithm adapts

the probabilities to select a rule according to its previous performance. Rule probabilities are

updated every 20 iterations. When starting the synthesis process from the diamond frame,

the first valid design is most often found before the rule qualities are updated for the first

time.

The convergence ratios of the Pareto sets are presented in Figure 7-13 for the simple Burst

algorithm and in Figure 7-14 for the advanced Burst algorithm. A fixed reference point is

used in the bicycle frame synthesis case study to calculate the volume of the discovered

search space for the Pareto sets sampled every ten iterations during the synthesis process.

The reference point is defined at (10 kg, 0.005 m, 20) for the objectives (mass,

meanDeflection, numberOfJoints) and represents the upper boundary of the three objectives

for designs stored in the Pareto archive. The volume estimation is performed as described in

Section 7.1.3 and each curve represents the mean value of 20 experiments. The noise in the

curves is due to the Monte Carlo Simulation used to estimate the covered volumes. It is

higher than in the gearbox case study due to the larger search space in the bicycle frame

case study compared to the gearbox case study. Large steps in the curves (see, e.g., the

curve for Strategy 2 around iteration 2300 in Figure 7-18) mostly result from single

experiments that find a first valid design late in the synthesis process. Before a valid design is

found, the convergence ratio is zero resulting in a low mean value for the strategy. Once a

valid design is found for the given experiment, the convergence jumps to a higher value.

Other reasons for rapid changes in the convergence ratio can be explained as follows. When

a new design is generated with a smaller number of joints than the designs in the Pareto

archive and this new design is Pareto optimal, suddenly a large portion of the maximum

discoverable design space is discovered through this design resulting in a sudden raise of the

convergence ratio.

Algorithm Strategy
Average number of designs

in final Pareto set

Average number of

topologically different

designs in final Pareto set

Iteration in which first

valid design is found

1 22 9 18

2 12 1 13

3 11 1 14

4 23 9 11

1 24 11 8

2 13 1 15

3 14 1 9

4 24 9 11

Simple

Advanced

 7

7 Search Strategy Comparison Method

118

The curves in Figure 7-13 and Figure 7-14 confirm the observations about the iteration in

which the first valid design is found. All strategies find archivable designs early in the

synthesis process resulting in a rapid raise of the convergence ratio.

Figure 7-13 Convergence of the Pareto archive for the simple Burst algorithm (Initial design: diamond frame).

Figure 7-14 Convergence of the Pareto archive for the advanced Burst algorithm (Initial design: diamond
frame).

The best designs generated with each strategy are shown in the objective space in Figure

7-15 for the simple Burst algorithm and in Figure 7-16 for the advanced Burst algorithm.

Each point in the objective space represents one design. The Pareto-optimal designs for each

strategy are identified by combining the Pareto sets for all 20 experiments and filtering the

resulting set of designs to identify the non-dominated designs. For both algorithms, designs

with five to eight and nine bars, respectively, exist in the combined Pareto set. Among the

strategies there is no clear tendency which strategy generates superior designs. This is why

the pairwise comparison is conducted as described in Section 7.1.3.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Simple Burst Algorithm (Initial Design: Diamond Frame)

c
o

n
v
e
rg

e
n

c
e

 r
a

ti
o

 [
-]

iterations [-]

Strategy 1

Strategy 2

Strategy 3

Strategy 4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Advanced Burst Algorithm (Initial Design: Diamond Frame)

c
o

n
v
e
rg

e
n

c
e

 r
a

ti
o

 [
-]

iterations [-]

Strategy 1

Strategy 2

Strategy 3

Strategy 4

7.3 Case Study 2: Bicycle Frame Synthesis

119

 7

Figure 7-15 Combined Pareto archives for all strategies when using the simple Burst algorithm (Initial design:
diamond frame).

Figure 7-16 Combined Pareto archives for all strategies when using the advanced Burst algorithm (Initial
design: diamond frame).

The pairwise comparison of all final Pareto designs of two strategies is conducted and results

are shown in Figure 7-17. Strategy 1 outperforms all other strategies for both algorithms,

followed by Strategy 4. Of the remaining strategies, Strategy 3 outperforms Strategy 2 for

both algorithms.

0
5

10

0

5

x 10
-3

0

5

10

mass [kg]mean deflection [m]

n
u
m

b
e
r

o
f

jo
in

ts
 [

-]

0 2 4 6 8 10
0

1

2

3

4

5
x 10

-3

mass [kg]

m
e

a
n

 d
e

fl
e
c
ti
o

n
 [

m
]

0 2 4 6 8 10
0

2

4

6

8

10

n
u
m

b
e
r

o
f

jo
in

ts
 [

-]

mass [kg]
0 1 2 3 4 5

x 10
-3

0

2

4

6

8

10

n
u
m

b
e
r

o
f

jo
in

ts
 [

-]
mean deflection [m]

Simple - Strategy 1

Simple - Strategy 2

Simple - Strategy 3

Simple - Strategy 4

0
5

10

0

5

x 10
-3

0

5

10

mass [kg]mean deflection [m]

n
u
m

b
e
r

o
f

jo
in

ts
 [

-]

0 2 4 6 8 10
0

1

2

3

4

5
x 10

-3

mass [kg]

m
e

a
n

 d
e

fl
e
c
ti
o

n
 [

m
]

0 2 4 6 8 10
0

2

4

6

8

10

n
u
m

b
e
r

o
f

jo
in

ts
 [

-]

mass [kg]
0 1 2 3 4 5

x 10
-3

0

2

4

6

8

10

n
u
m

b
e
r

o
f

jo
in

ts
 [

-]

mean deflection [m]

Advanced - Strategy 1

Advanced - Strategy 2

Advanced - Strategy 3

Advanced - Strategy 4

 7

7 Search Strategy Comparison Method

120

Figure 7-17 Pairwise comparison of strategies (Initial design: diamond frame).

7.3.4.2 Results for Void Frame as Initial Design

The results are different when the synthesis process is started from a void frame design.

Average numbers of designs and topologically different designs as well as the iteration in

which the first valid design is found are shown in Table 7-3. Again, Strategies 2 and 3

generate only one topologically valid design. Strategies 1 and 4 generate more different

topologies in the final Pareto set.

The first valid designs are found later in the synthesis process when compared to the

synthesis starting from the diamond frame. Strategy 3, in which only topologic rules are

applied until a valid design is found, is faster than the other strategies in finding the first

valid design. Also Strategy 4, which applies topologic rules with a high probability in the early

stages of the synthesis process, finds valid designs faster than Strategies 1 and 2. Those have

no preference on either topologic or parametric rules. When using the advanced Burst

algorithm, Strategies 1, 2 and 4 require less iterations to find the first topologically valid

design. Strategy 3 requires slightly more iterations on average than when using the simple

Burst algorithm. This can be explained by two experiments in which the first valid design is

found around iteration 700. These two experiments strongly increase the mean value for

Strategy 3.

Table 7-3 Comparison of topologically different designs in Pareto set for both algorithms and all four
strategies (Initial design: void frame).

61%
39%

52% 48% 56%
44%

43%
57%

38%
62%

47% 53%

65%

35%

60%

41%
53% 47%

48% 52%
39%

61%

42%
58%

Simple Burst Algorithm Advanced Burst Algorithm

65%

35%
60%

41%
53% 47%

48% 52%
39%

61%

42%
58%

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

Algorithm Strategy
Average number of

designs in final Pareto set

Average number of

topologically different

designs in final Pareto set

Iteration in which first

valid design is found

1 22 9 621

2 11 1 732

3 15 1 147

4 22 8 360

1 22 10 544

2 14 1 702

3 18 1 208

4 22 7 275

Simple

Advanced

7.3 Case Study 2: Bicycle Frame Synthesis

121

 7

The convergence ratios are presented in Figure 7-18 for the simple Burst algorithm and in

Figure 7-19 for the advanced Burst algorithm. In Figure 7-18, the fact that Strategies 3 and 4

apply topologic rules with a high probability in the beginning of the synthesis process and

find a valid frame earlier than the other strategies can be retraced. The same applies for the

fact that valid design are found earlier in the process when using the advanced Burst

algorithm. With the simple Burst algorithm, for all strategies there are experiments that find

a first valid design late in the synthesis process, resulting in a stepwise rise of the

convergence ratio curves. For the advanced Burst algorithm, by contrast, the experiments

find valid designs earlier in the synthesis process resulting in a more steady curve. This can

be seen in Figure 7-19.

Figure 7-18 Convergence of the Pareto archive for the simple Burst algorithm (Initial design: void frame).

Figure 7-19 Convergence of the Pareto archive for the advanced Burst algorithm (Initial design: void frame).

The combined and filtered Pareto archives after 10,000 iterations are presented in Figure

7-20 for the simple Burst algorithm and in Figure 7-21 for the advanced Burst algorithm. The

results are similar to those for the frame synthesis starting from the diamond frame. The

designs consist of five to eight bars and there is no clear trend which strategy generates

superior designs.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Simple Burst Algorithm (Initial Design: Void Frame)

c
o

n
v
e
rg

e
n

c
e

 r
a

ti
o

 [
-]

iterations [-]

Strategy 1

Strategy 2

Strategy 3

Strategy 4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Advanced Burst Algorithm (Initial Design: Void Frame)

c
o

n
v
e
rg

e
n

c
e

 r
a

ti
o

 [
-]

iterations [-]

Advanced - Strategy 1

Advanced - Strategy 2

Advanced - Strategy 3

Advanced - Strategy 4

 7

7 Search Strategy Comparison Method

122

Figure 7-20 Combined Pareto archives for all strategies when using the simple Burst algorithm (Initial design:
void frame).

Figure 7-21 Combined Pareto archives for all strategies when using the advanced Burst algorithm (Initial
design: void frame).

Results from a pairwise comparison of the final Pareto sets of all strategies are presented in

Figure 7-22. For both algorithms, Strategy 1 wins most comparisons, followed by Strategy 4.

Strategy 3 is slightly superior to Strategy 2 when the simple Burst algorithm is used. When

using the advanced Burst algorithm it is the other way around.

0
5

10

0

5

x 10
-3

0

5

10

mass [kg]mean deflection [m]

n
u
m

b
e
r

o
f

jo
in

ts
 [

-]

0 2 4 6 8 10
0

1

2

3

4

5
x 10

-3

mass [kg]

m
e

a
n

 d
e

fl
e
c
ti
o

n
 [

m
]

0 2 4 6 8 10
0

2

4

6

8

10

n
u
m

b
e
r

o
f

jo
in

ts
 [

-]

mass [kg]
0 1 2 3 4 5

x 10
-3

0

2

4

6

8

10

n
u
m

b
e
r

o
f

jo
in

ts
 [

-]
mean deflection [m]

Simple - Strategy 1

Simple - Strategy 2

Simple - Strategy 3

Simple - Strategy 4

0
5

10

0

5

x 10
-3

0

5

10

mass [kg]mean deflection [m]

n
u
m

b
e
r

o
f

jo
in

ts
 [

-]

0 2 4 6 8 10
0

1

2

3

4

5
x 10

-3

mass [kg]

m
e

a
n

 d
e

fl
e
c
ti
o

n
 [

m
]

0 2 4 6 8 10
0

2

4

6

8

10

n
u
m

b
e
r

o
f

jo
in

ts
 [

-]

mass [kg]
0 1 2 3 4 5

x 10
-3

0

2

4

6

8

10

n
u
m

b
e
r

o
f

jo
in

ts
 [

-]

mean deflection [m]

Advanced - Strategy 1

Advanced - Strategy 2

Advanced - Strategy 3

Advanced - Strategy 4

7.3 Case Study 2: Bicycle Frame Synthesis

123

 7

Figure 7-22 Pairwise comparison of strategies (Initial design: void frame).

7.3.4.3 Comparing Results for Different Initial Designs

The effect of the initial design on the generated results is further analyzed. Figure 7-23

shows the results from pairwise comparing the designs generated when the synthesis is

started from the diamond frame and the void frame. Colored portions in the pie charts

represent the comparisons won by designs when the synthesis is started from the diamond

frame. There is almost no difference in the performance of the designs. When using the

advanced Burst algorithm, Strategy 2 shows superior results when the synthesis is started

from the void frame as a result of the higher number of different topologies that are

generated when the synthesis process is started from the void frame.

Figure 7-23 Pairwise comparison of designs generated when the synthesis is started from the diamond frame
(colored portion of the pie chart) and the void frame (white portion of the pie chart).

Analyzing the designs in more detail confirms that more diverse topologies are generated

when the design process is started from the void frame than when starting from the

diamond frame. Figure 7-24 (left) shows two example designs that are generated frequently

when starting the synthesis from the diamond frame. These designs are generated by adding

one bar to the initial design. When starting the synthesis from the void frame, by contrast,

51% 49%
62%

38%
58%

42%

53% 47%

37%
63%

46% 54%

67%

33%

68%

32%
52% 48%

47% 53%
35%

65%

37%
64%

Simple Burst Algorithm Advanced Burst Algorithm

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

53%
47% 50% 50% 48%

52%
48%

52%

45%

55%

34%

66%

44%

56%
48%

52%

Strategy 1 Strategy 2 Strategy 3 Strategy 4

Simple Burst
Algorithm

Advanced Burst
Algorithm

Initial design =
Void frame

Initial design =
Diamond frame

 7

7 Search Strategy Comparison Method

124

more diverse frame geometries are found. Examples are shown in Figure 7-24 (right).

Considering that the designs show similar (simple Burst algorithm) or even slightly superior

(advanced Burst algorithm) performance when the synthesis is started from the void frame,

it is advantageous to start the synthesis from the void frame for two reasons. First, it is not

required to define an initial design, i.e. less effort is needed from the human designer and

the initial design is not biased. Second, as a result of not giving bias to the initial design,

more diverse designs are generated that means the solution space is explored to a greater

extent.

Figure 7-24 Example bicycle frames generated when the synthesis process is started from the diamond frame
(left) and the void frame (right).

7.4 Discussion

For both case studies the four strategies generate different designs and explore the design

space. There is no significant difference in the computing times among the strategies,

however, differences in the number as well as quality of the generated designs exist when

comparing the strategies.

For the gearbox case study, both strategies with two phases (Strategies 2 and 3) explore the

design space early in the synthesis process through extensive parametric changes. Especially

Strategy 3 finds designs with the correct number of speeds early, which reflects that only

topologic rules are applied in the beginning. Strategy 4 shows a different effect in the

beginning. Archivable designs, i.e. meeting the hard constraint, are found early in the

process as well due to high probabilities of applying topologic rules. As the trajectories set

high probabilities to apply topologic rules in the beginning of the synthesis process, these

designs are topologically modified often and valid designs are transformed to invalid ones.

When the number of topologic changes decreases, this strategy explores the space similar to

the other strategies. Not all archives generated with Strategies 1 or 4 contain more than one

topology. In general, the experiments with Strategies 1 and 4 discover more topologies but

dominated designs are discarded, which shows that it is worthwhile investing in topologic

changes also after a first valid design is found since a design with optimized parameters

might be dominated by a topologically different design. Strategies 2 and 3 mostly exploit the

Designs generated frequently when the
synthesis is started from the diamond frame

Example designs generated when the
synthesis is started from the void frame

7.4 Discussion

125

 7

search space near the first archived solution, whereas Strategies 1 and 4 can explore the

space in different regions due to designs with different topologies in the archive, which is

desirable for CDS. It is, however, found that through restarting the process, also Strategies 2

and 3 generate topologically different designs. For the given design task, for example, almost

every restart of the process results in a new topology. One way to overcome the drawback

of Strategies 2 and 3 to generate only one topology is, therefore, to restart the process

repeatedly to generate different topologies for which then parametrically optimized versions

are searched. Comparing the two algorithms, it can be seen that the differences in the

strategies are more obvious in the simple Burst algorithm than in the advanced Burst

algorithm.

For the bicycle frame synthesis task, there is a clear tendency that a larger region of the

design space is explored when using strategies that allow topologic and parametric rules

throughout the whole synthesis process, i.e. Strategies 1 and 4.

When the synthesis process is started from a diamond frame, these strategies show superior

to the two phase strategies (Strategies 2 and 3). With Strategies 1 and 4, not only are several

topologically different designs explored in one experiment, but the final Pareto set also

contains more designs. The final Pareto sets covers a greater portion of the search space

(see convergence ratio plots) and when comparing the final Pareto sets pairwise to those of

Strategies 2 and 3, those generated with Strategies 1 and 4 win more comparisons. With

these observations it can be stated that the quality as well as the quantity of the designs

generated with Strategies 1 and 4 are superior. Both algorithms find the first valid design

early in the synthesis process. The diamond frame already constitutes a topologically valid

design, thus requiring only parameter changes to generate a valid design.

When the synthesis process is started from a void frame, most strategies find the first valid

design faster when the advanced Burst algorithm is used than when the simple Burst

algorithm is used. This can be explained by the rule probabilities on which the rule selection

is based in the advanced Burst algorithm. The positive effect of applying topologic rules is

learnt from the rule quality calculation and drives the process to valid designs more rapidly

than when this information on rule performances is not used.

The effect of the initial design on the synthesis process can be seen in the early stage of the

synthesis process. When the synthesis is started from the void frame, more iterations are

required before a first valid design is found than when the synthesis is started from the

diamond frame. Starting from a void design can, however, enable the generation of more

diverse topologies than when starting the synthesis from a valid topology.

Comparing the gearbox case study and the bicycle frame case studies, it can be observed

that the difference between the individual strategies is also dependent on the problem. For

the gearbox case study, the difference between the strategies is not as obvious as for the

bicycle frame case study. In the gearbox case study, Strategies 1 and 4 show promise to

discover more topologically different solutions and explore even distant or disconnected

areas of the search space. Strategies 2 and 3, however show similar performance when the

 7

7 Search Strategy Comparison Method

126

process is restarted repeatedly from the initial design. For the bicycle frame case study,

Strategies 1 and 4, i.e. the strategies allowing parametric and topologic rule applications

throughout the whole synthesis process, are superior. They lead to a higher convergence

ratio and more as well as more different designs.

The results depend on the way the synthesis problem is formulated. This includes the

formulation of constraints and upper and lower bounds for parameters, e.g. for gear and

shaft sizes in the gearbox case study. Similarly, the calculation of the rule qualities for the

advanced Burst algorithm is based on a weighted sum. Changing the formulation of the

problem or the weights can change the results.

To summarize, for the given case studies the commonly used strategy of finding a suitable

topology first and then searching for optimized parameters did not show significantly better

results. When using an approach where only one valid topology is generated, restarts of the

synthesis process help to overcome the drawback of limiting the search to one topology. It is

further shown that algorithms that permit returns to topologically valid designs stored in a

Pareto archive, like the Burst algorithm, are well suited for mixed topologic and parametric

problems and more advanced algorithms that, for example, learn from previous rule

applications, like the advanced Burst algorithm, can make the exact strategy for rule

selection less important to obtain good solutions, as in the gearbox synthesis problem. They

can also speed up the process of finding a first valid design, as in the bicycle frame synthesis.

7.5 Summary

The research presented in this section shows that strategies for selecting parametric and

topologic rules in a CDS process influence the performance of the search. This effect is,

however, dependent on aspects of the algorithm, e.g. the use of dynamic rule qualities,

aspects of the problem as well as the grammar rules, e.g. the amount of topologic versus

parametric rules, and on the initial design. Results show that commonly used strategies to

generate a valid design first, and then search for optimized parameters are applicable when

the synthesis process is restarted repeatedly from the initial design to overcome the

drawback of restricting the search to one topology. These strategies did, however, not find

better designs for the given case studies than strategies allowing topologic changes

throughout the whole synthesis process. This means that the widespread assumption that

generating a topology first and then applying rules for parametric changes yields better

results cannot be concluded for the given case studies. Strategies that allow topologic

changes throughout the whole synthesis process showed their potential for generating

different topologies, exploring their parametric search spaces and eliminating dominated

topologies in one synthesis run. For mixed topologic and parametric design synthesis, an

algorithm should be selected that allows returns to topologically valid designs from a Pareto

archive when a one phase strategy is used in which topologic and parametric changes are

conducted throughout the synthesis process. For two phase strategies, the synthesis process

should be restarted repeatedly from the initial design. To conclude, various strategies can be

applied successfully to the same problem and using an appropriate algorithm and more

7.5 Summary

127

 7

advanced rule selection strategies that, e.g. learn from previous rule applications, can make

the exact strategy for topologic and parametric rule selection less important to obtain good

solutions.

Research question 7.1 is therefore answered in this chapter.

Research question 7.1: How can different strategies for selecting topologic and
parametric rules in CDS methods using grammars be compared to
each other?

Metrics are defined for comparing different strategies and a systematic method is presented

to analyze designs generated with each strategy. Besides the metrics, a systematic process

to generate data, analyze it and compare different search strategies is developed. The

applicability of the method is shown in the case studies. Considering the different metrics,

no strategy shows clearly superior for the gearbox or the bicycle frame task. For the gearbox

synthesis task, the strategies are comparable. For the bicycle frame task, the difference

between strategies can, however, be observed, e.g., Strategies 1 and 4 generate more

different topologies than Strategies 2 and 3. This suggests that even though no unique

strategy is found to be superior for the given design synthesis tasks, it is worthwhile

comparing different strategies. A trend can be found when comparing different strategies

and some might show better than others. The search algorithm or the initial design of a CDS

process have an influence on which strategy is superior for a given design task. When

starting the synthesis process from a diamond frame design, Strategy 4 wins most pairwise

comparisons of the final Pareto sets when using the simple Burst algorithm. When the same

algorithm is used but the synthesis process is started from a void frame, Strategy 3 wins

most pairwise comparisons. Similarly, also the choice of the algorithm has an influence.

Using the advanced Burst algorithm in a synthesis process started from the void frame

shows that Strategy 1 wins most pairwise comparisons. To conclude, for a given synthesis

task no single strategy exists that is superior for applying topologic and parametric rules.

Differences between strategies are, however, existing and can be influenced by other

aspects such as the algorithm chosen for the synthesis process and the initial design from

which the synthesis process is started.

The following research contributions are achieved:

 Contribution 1: Definition of metrics to compare different strategies.

The described metrics enable a comparison of rule selection strategies in a defined way

considering different aspects. Besides the number of topologically different designs or the

quality of the designs in terms of objective function values, also the convergence of the

search process can be compared. The human designer can, thus, not only reason about the

differences with respect to the final results, but also considering the speed of the process

with respect to finding first valid designs or converging to a final Pareto front.

 7

7 Search Strategy Comparison Method

128

 Contribution 2: Systematic method to support human designers in comparing strategies
for selecting topologic and parametric rules for given problems.

The method described in this chapter is independent of the synthesis task, the exact

strategies for topologic and parametric rule application and the search algorithm. It can

therefore be used as a general method to compare different strategies for rule applications.

Test runs for each considered strategy have to be performed. With the presented method,

the human designer is then given an objective means to reason about the different

strategies and select the most desirable for a given design problem. When comparing

different strategies in combination with different algorithm implementations, the human

designer can also reason about different combinations of search algorithm and rule selection

strategy. If there is no significant difference between different strategies considering one

aspect, e.g. the convergence of the Pareto archive for longer run times, as in the gearbox

case study, designers can compare other aspects, like the number of topologically different

valid designs generated, to determine a preferred strategy, or they can select a random

strategy, if none of the tested ones appears to be superior.

Figure 7-25 shows the positioning of the method to compare different strategies for

topologic and parametric rule application with respect to the goals of this thesis. The

decision of when to select topologic and parametric rules during the CDS process is

challenging. The analysis of different strategies allows the human designer to understand

how the selection of a strategy influences the search process and the generated designs.

Rule selection strategies are dependent on the rule type but not on the exact rules. The

presented metrics help to reason about differences in search strategies. If a superior

strategy exists it is observed by the human designer (sub-goal G3.3). This helps the human

designer to refine the search process (sub-goal G3).

Figure 7-25 Positioning of Search Strategy Comparison Method with respect to the goals of the thesis.

Support human designer in CDS in …
Overall

Goal

Sub-
goals

…grammar development
…selection of

search algorithm
…refinement

of search
G1 G2 G3

Support
designer in
selecting
existing

rules

Support
designer in
developing

rules

Support
designer in
combining

rules

Increase
understanding of

search
algorithms for
given problem

Sub-
goals

G1.1 G1.2 G1.3 G2.1

Provide rule
independent

strategies

Tuning of
search

algorithm

G3.1 G3.3

Provide
rule

dependent
strategies

G3.2

Search Strategy
Comparison

Method

Topologic + Parametric

Topologic Parametric

Topologic +
Parametric

Parametric

Parametric
Topologic

7.5 Summary

129

 7

Further contributions of the research in this chapter are as follows:

 A grammar rule set for gearbox synthesis is developed enabling the generation of
gearboxes without collisions. Case study 1 shows that the developed gearbox rule set
enables the generation of gearboxes without collisions. The addition of two rules to
shorten and lengthen shafts eases the process of finding gearbox designs without
collisions between components. This is a significant improvement compared to previous
research, where collisions have to be removed manually.

 Different strategies for topologic and parametric rule applications are presented. Four
strategies are introduced and discussed in detail for both case studies. Comparing the
methods on a given problem and interpreting the analysis results, the human designer
can decide which strategy to use.

 The effect of the initial design on the generated designs can be explored. As conducted
for the bicycle frame synthesis case study, the effect of starting the synthesis process
from different initial designs can be analyzed using the proposed metrics.

 The developed software prototype enables automatic analysis of the generated
designs. The synthesized designs during a CDS process are analyzed and visualizations
are generated automatically, when the human designer uses the Search Strategy
Comparison Method.

130

 Implementation 8

A general framework for CDS is developed in the thesis. A schematic overview of this

framework and its modules is given in Figure 8-1. The CDS process module, post-processing

module and the output and visualization software reflect the three step process of data

generation, analysis and visualization used throughout this thesis.

Some implementation aspects are already described in Chapters 4, 5, 6 and 7 where

required to understand the respective methods. In this chapter, a general overview of the

framework and the interfaces to external software is given (Section 8.1). Then, the different

implemented options the human designer can select from for data generation (Section 8.2),

analysis (Section 8.3) and visualization (Section 8.4) are presented. Section 8.5 describes the

usage of the framework. Its generality and possible extensions are discussed in Section 8.6.

Figure 8-1 Overview of the generic CDS framework implemented in this thesis.

8.1 Generic Framework for CDS

Figure 8-1 presents the generic framework for CDS. It is implemented in c# and interfaces

GrGen via DLLs and Matlab via the Matlab COM Automation Server. The software

architecture facilitates the integration of other grammar systems and simulation tools. In the

current implementation only GrGen is linked to the framework. The following sections,

therefore, assume that GrGen is used for graph rewriting. The synthesis process is

performed within the CDS process module. The post processing module performs analyses

and the different visualizations present the analysis results to the human designer.

The CDS process module reflects the four steps of CDS as presented in Figure 2-3. The

framework is implemented problem independently. It provides abstract classes that have to

be instantiated and implemented for the specific problem at hand. These problem-specific

elements are a) the model and grammar rules in the representation step, and b) a means to

evaluate the generated designs in the evaluation step.

The CDS process module expects a problem-specific representation. This representation

consists of a meta model that defines available edges and nodes for the graph representing

the design and a set of grammar rules. Rule designers can develop grammar rules

Framework

CDS process module

Representation

Search
module

Generation

GrGen

GrGen

Post-
processing

module

Evaluation

Matlab

Data

Legend
External
software

Framework
modules

External
modules

GrGen

Matlab

Data

Output and
visualization software

Matlab

Text file

Console Application

GrGen

OrganicViz

Representation

GrGen

8.2 Data Generation Options

131

 8

independently from the generic framework. The meta model and rules are compiled and

integrated in the generic framework as DLLs. In the generation step, the precompiled rules

are then applied using GrGen.

Various options exist to evaluate the generated designs and their choice depends on the

problem at hand. Two evaluation approaches are implemented in this thesis. The gearbox

designs (see Section 4.3.1.3) are evaluated using grammar rules implemented in GrGen.

Those rules are directly applied to the graph representation of the gearbox design and

evaluation results are stored as attributes in temporary nodes that are added to the graph.

These evaluation results are then read by the evaluation module of the framework and the

temporary nodes are deleted. The bicycle frame designs (see Section 6.3.1.3) are evaluated

using the FEM for structural analysis implemented in Matlab. A mapping is implemented that

transforms the graph structure of a design into matrices that describe the components and

their connections in Matlab.

The Burst and SA algorithm are implemented in different versions in the search module.

They are implemented problem independently and for multi-objective search and

optimization with up to three objectives.

In the post-processing module, the generated designs are analyzed. These analyses are done

either by functions implemented in the framework, through rules using GrGen or using

Matlab.

8.2 Data Generation Options

Figure 8-2 gives an overview of the different options for data generation in the generic

framework.

Figure 8-2 Overview of the data generation options.

Five different algorithms are available to generate data. They are shown in the rows in Figure

8-2.

 Random generation generates designs by starting from an initial design and applying
rules that are selected randomly in a sequence without returning to previous designs.

None Random
Maximum

distance

Filtering by

objectives

Only

topology

Strategy

1

Strategy

2

Strategy

3

Strategy

4
Random

Advanced

(rule quality)

Predeter-

mined

Random generation

Burst algorithm

Simulated Annealing

Exhaustive without location

Exhaustive considering location

Option selected in Chapter 7 (Search Strategy Comparison)

Option is available

Option not available

C

Selection of rule

A

Selection of design from Pareto

archive

B

Strategies for rule type selection

Legend

Option selected in Chapter 4 (GRAM)

Option selected in Chapter 5 (Network-based Rule Analysis)

Option selected in Chapter 6 (Relation Visualization)

Options

Algorithms

 8

8 Implementation

132

 The Burst algorithm executes Bursts of rule applications, of a given length defined by a
parameter, and returns to previous designs frequently.

 The simulated annealing algorithm is available in two versions with and without returns
to base and is implemented using the “vanilla” schedule [140].

 Two versions of exhaustive generation of designs are available. Both start the
generation from an initial design and execute a BFS until a given depth of the search tree.
The first version (exhaustive generation without considering location) applies each rule
once on each design in the search tree. The second version (exhaustive generation
considering location) applies each rule as often as possible on each design in the search
tree, i.e. it enables applying the same rule at different locations in one design.

The Burst and SA algorithm allow returns to previously discovered designs. Three methods

are available to select a design from the Pareto archive for further exploration. They are

shown in Figure 8-2 in the columns of category “A - Selection of design from Pareto archive”:

 Random selection means that one design is selected randomly from all designs in the
Pareto archive.

 In the maximum distance selection method, the distances to all other designs are
calculated and summed for each design. The design with the maximum total distance is
then selected for further exploration assuming that it constitutes a design in a less
explored area of the Pareto archive.

 When focus should be given to certain objectives, a filtering by objectives reduces the
designs in the Pareto archive to those superior with respect to these objectives. A design
is then chosen randomly from the filtered set of designs.

There are five different strategies for selecting the type of rule, i.e. topologic or parametric,

for the next iteration of the search process. They are shown in Figure 8-2 in the columns of

category “B - Strategies for rule type selection”. The first option means that only topologic

rules are applied during the synthesis process, as for the research in Chapter 5 on rule

sequences. The other strategies for rule type selection are introduced in detail in Section

7.1.2.

For selecting the exact rule that is applied in the next iteration, there are three options. They

are shown in Figure 8-2 in the columns of category “C - Selection of rule”. Either the rule is

selected randomly or it is selected based on rule qualities calculated from statistics on the

rule’s previous performance. The third option is to have the rule numbers predefined, which

applies for the exhaustive generation methods.

The colored pictographs in Figure 8-2 indicate which options for data generation are selected

for the research presented in Chapters 4, 5, 6 and 7. The cells highlighted in grey indicate

which options (column) can be selected for which algorithm (row). Some options, e.g. using

the maximum distance between designs for selecting a design from the Pareto archive, are

not used for data generation within this thesis. This option is, however, used for reducing

the archive when the archive size exceeds the maximum.

8.3 Data Analysis Options

133

 8

8.3 Data Analysis Options

Different data is stored during the data generation depending on the analyses to be

conducted. This means the options for data analysis have to be selected before the data

generation is started. The generated data is then processed in the post-processing module.

Figure 8-3 summarizes the different data analyses. The different data analyses are presented

in the columns and are labeled A – E. Row I indicates how each analysis is implemented, i.e.

in Matlab or using GrGen rules. In the rows of category II, the grey cells indicate for which

data the analysis can be performed. The colored pictographs indicate for which data the

analyses are performed in the chapters of the thesis.

Figure 8-3 Overview of the data analysis options.

8.4 Data Visualizations

Different output files are generated to visualize the analysis results and present them to the

human designer. Figure 8-4 gives an overview of the available visualizations (columns), the

software used to visualize the analysis results (row I) and the analyses required (rows of

category II). The colored pictographs indicate which visualizations are used in Chapters 4, 5,

6 and 7 and which analyses are required. Besides these visualizations, text files are

generated that can directly be read by the human designer, e.g. for presenting the detected

loops in the transition graph (see Chapter 5). Additionally, the graphs of the final designs and

one topology of each topologically different design are stored and can be visualized using

yComp [125], a graph visualization tool.

Matlab Matlab Matlab GrGen GrGen

… Pareto designs generated

during data generation

… all designs generated during

data generation

… Pareto designs generated

during data generation

… all designs generated during

data generation

Data for which analysis cannot be conducted

Legend

B

Monte Carlo

simulation to

estimate volume

covered by Pareto

set

A

Analyzing changes in

objective /

constraint values

C

Pairwise

comparison of

final Pareto fronts

E

Generation and

analysis of transition

graph

II

Available

data

I

Implementation of analysis using …

D

Comparison of

topologies (graph

isomorphism check)

Objective and

constraint

values of …

Graph

representation

of ...

Analysis performed in Chapter 4 (GRAM)

Analysis performed in Chapter 5 (Network-based Rule Analysis)

Analysis performed in Chapter 6 (Relation Visualization)

Analysis performed in Chapter 7 (Search Strategy Comparison)

Data for which analysis can be conducted

Analyses

I - Implementation /
II - Available data

 8

8 Implementation

134

Figure 8-4 Overview of the visualizations used in this thesis and the respective analyses.

8.5 Usage of the Framework

Figure 8-5 visualizes the modifications that are required to adapt the generic framework to a

specific design problem.

 Model and grammar rules for the problem are developed and compiled. When GrGen is
used, the model is defined in a gm file, while the rules are defined in a grg file. The
generated DLLs are added to the framework project. The user provides rule number,
rule name and its type, i.e. topologic or parametric, to the GUI of the framework.

 Name and desired direction of change are defined for all objectives. For constraints the
name, and upper and lower bound are defined.

 A simulation or adequate evaluation for generated designs is provided and mappings
from the graph representation to the represenation in the simulation are implemented.
The simulation is linked to the framework. For Matlab this interface is available and only
the path to the simulation file is to be specified. One function (Simulation.simulate) has
to be overwritten to call the model transformation, start the simulation and return the
evaluation results to the framework.

 The path to a folder in which the output files are stored is to be provided.

B
o

xp
lo

ts

D
es

ig
n

 s
p

ac
e

p
lo

t

D
iv

er
si

ty
 r

at
io

C
o

n
so

le
 a

p
p

lic
at

io
n

to
 a

n
al

yz
e

tr
an

si
ti

o
n

gr
ap

h

P
er

fo
rm

an
ce

 s
p

ac
e

p
lo

t

R
u

le
 a

n
al

ys
is

 p
lo

t

U
n

iq
u

e
to

p
o

lo
gy

 p
lo

t

C
o

n
ve

rg
en

ce
 p

lo
t

St
ra

te
gy

 c
o

m
p

ar
is

o
n

P
ar

et
o

 s
et

 p
lo

ts

Matlab Matlab Matlab

Console

using

GrGen

Matlab

GUI
Matlab Matlab Matlab Matlab Matlab

A

Analyzing changes in

objective / constraint

values

B

Monte Carlo simulation to

estimate volume covered

by Pareto set

C

Pairwise comparison of

final Pareto fronts

D

Comparison of topologies

(graph isomorphism check)

E

Generation and analysis of

transition graph

II
 -

 A
n

al
ys

is

I

Implementation of

visualization in ...

Chapter 6

(Relation Visualization Method)

Chapter 5

(Network-based

Rule Analysis

Method)

U
n

iq
u

e
to

p
o

lo
gy

 p
lo

t

/
tr

an
si

ti
o

n
 g

ra
p

h

OrganicViz

Chapter 7

(Search Strategy

Comparison Method)

Chapter 4

(Grammar Rule Analysis

Method)

I - Implementation/
II - Analysis

Method/
Visualization

8.5 Usage of the Framework

135

 8

Figure 8-5 Adaption of the framework to a specific problem.

Once the problem-specific adaptions are performed, the human designer can select the

options presented in Sections 8.2 and 8.3 and start the synthesis process to generate and

analyze the data.

Figure 8-6 shows the GUI of the framework. The orange numbers indicate different areas of

the GUI that are described in the following. The user interface consists of three regions for

selecting data generation options (1) and data analysis options (2) and for presenting

synthesis results (3). In the data generation options, the user can select and deselect each of

the grammar rules (1a). The number of iterations for one synthesis run and the number of

runs can be defined in the search options (1b). The user can further select the search

algorithm (1c), specify if and how often a RTB is conducted (1d), select a maximum size for

the Pareto archive and define how designs are selected from the archive when the RTB

option is active (1e), and select the search strategy for applying topologic and parametric

rules (1f). Links between the analysis options and the methods developed in this thesis (2)

ease the selection of appropriate analyses. The data generation and analysis process is

started by the “Start Synthesis”-Button (4). The result output area (3) gives an overview of

the designs in the final Pareto archive. The user can select designs from the final design list

(3a) and an image of the design (3b) and key evaluation results (3c) are presented. For

detailed information and the visualizations, the output files can be found in the output

folder for which the path is given (5).

Output files
in folder

Framework

compilegm
file

grs
file

model

rules

problem
dependent

DLL

Problem
trans-

formation

Path to
output
folder

Matlab
function

design
evaluation /
simulation

Matlab
Automation

Server
OrganicViz

Interactive
plots

Text files,…

adaption to specific problem
generation
and analysis visualization

User
develops

User
defines

User
implements

User
defines

User
defines rule name,
number and type

problem
specific

generic

Legend

 8

8 Implementation

136

Figure 8-6 Overview of the GUI of the generic framework showing options for data generation and analysis.

8.6 Discussion

The implemented generic framework and the analysis methods enable human designers to

use the presented methods (Chapters 4, 5, 6 and 7) for grammar design, analysis and

application. Through its object-oriented and modular implementation, the adaption to

different design tasks can be conducted with few modifications.

In its current implementation, the framework supports the use of GrGen for grammar

development and application. The use of other grammars, e.g. shape grammars, is possible.

The implementation effort is, however, higher since also parts of the representation and

generation module have to be modified.

1

2

3

1a

1b

1c

1d

1e

1f

3a 3b 3c

4

5

8.6 Discussion

137

 8

The implementation is done using the .NET Framework that allows for straight forward

extension of the framework, e.g. to use other software for the simulation of generated

designs. The decoupling of data generation and analysis from the visualization through

defined output files permits the use of different visualization tools. When the human

designer wishes to use different external software to visualize analysis results, only the code

generating the output files has to be modified.

The implementation of the analysis methods within one software prototype enables various

combinations of data generation and analysis, even more than what is presented in this

thesis. It is, e.g., possible to analyze how the UTS is explored using the same algorithm but

different search strategies for topologic and parametric rule selection, thus combining the

Relation Visualization Method (Chapter 5) and Search Strategy Comparison Method (Chapter

7). Figure 8-4 can be used to identify which analyses and software are required to generate a

specific visualization and Figure 8-3 indicates which data is required for the analysis. The

user, however, has to trade information gained in the analyses for required memory and

runtime. The more analyses are preformed, the more data has to be stored and processed

requiring time and memory. This is in particular important, when analyses are required for

CDS processes with many iterations and when many different graph representations have to

be stored and checked for isomorphisms.

Another advantage of the implemented framework is that it can be used not only for the

analyses presented, but also for the actual CDS process once the human designer has

defined grammar rules and search algorithm.

138

 Discussion and Future Work 9

In this chapter, the developed methodology is discussed in a broader sense. The specific

contributions of the methods presented in Chapters 4, 5, 6 and 7 are discussed in detail in

the summary sections of the respective chapters. Commonalities and differences between

the methods in the developed methodology are discussed in Section 9.1. The adapted

process for grammar development and application when using the developed methodology

is presented in Section 9.2. The generality of the methods is discussed in Section 9.3 and

recommendations on how to use the methods are given for two example scenarios. Section

9.4 addresses how the methods contribute to supporting human designers in CDS. Section

9.5 discusses limitations of the methodology and proposes future research.

9.1 Comparison of the Methods

In Figure 9-1, an overview of the presented methods is given. The methods are positioned

qualitatively along two axes to describe a) the level of information the human designer

receives about the performance of the rules, i.e. how the rules change the designs regarding

objectives and constraints, and b) the level of information the human designer receives

about the search process when using the respective method. This representation is meant to

visualize the differences between the presented methods and ease the selection of an

appropriate method. Reasons for the relative positioning of the methods in Figure 9-1 are

presented in the following paragraphs. Overlaps between the methods exist and are

discussed throughout the thesis. They are, however, not shown in Figure 9-1 to improve

readability.

Figure 9-1 Qualitative classification of methods based on the information provided by the methods.

detailed

coarse

Information
on rule

performance

Grammar
Rule

Analysis
Method

(Chapter 4)

Search
Strategy

Comparison
Method

(Chapter 7)

Network-
based Rule

Analysis
Method

(Chapter 5)

Relation
Visualization

Method

(Chapter 6)

detailed coarseInformation on search process

9.2 Modified Process for Grammar Development and Application

139

 9

GRAM provides information on the rules at various levels of detail. For example, detailed bar

charts represent the influence of each individual rule on the objectives, whereas validity and

diversity ratio give high level information on the rule set. The search process is not analyzed

explicitly in GRAM.

The Network-based Rule Analysis Method provides more detailed information considering

the search process than GRAM because the data it uses can be generated using different

search algorithms. The influence of the search algorithm on the explored designs is visible in

the synthesized transition graph. The information on the rules is more detailed than when

GRAM is used, since single rules can be analyzed in more detail comparing different LHS

matches and also sequences of rules are analyzed.

The Relation Visualization Method provides detailed information on how a search algorithm

explores the design space during CDS and, therefore, delivers more information on the

algorithm than the other methods in this thesis. The level of detail regarding information on

rules is between that of GRAM and that of the Network-based Rule Analysis. It provides

information on the links between changes in objectives, which GRAM does not, however,

only single rule applications and no sequences of rules are considered.

The Search Strategy Comparison Method gives more information on the search algorithm

than the Network-based Rule Analysis, but less than the Relation Visualization Method since

only the progression of the Pareto archive is presented to the user. In the Relation

Visualization Method all generated designs, i.e. also the discarded ones, are visualized. There

is little information about the rules because only the difference between different strategies

for selecting types of rules are analyzed.

9.2 Modified Process for Grammar Development and Application

Figure 9-2 presents the modified process for grammar development and application that can

be applied when using the presented methodology. It is based on scenario 5 of the user

control scenarios defined by Chase [59] (see also Figure 2-4) since this scenario is used in this

thesis. Other scenarios can similarly be modified by adding the proposed step to the

grammar development phase.

In a first step, the object representation, control mechanisms and grammar rules are

developed by a human designer or developer. In the next step, which is proposed in this

thesis, the generated grammar rules are analyzed. The dashed arcs between the first step

and the proposed methods indicate that it is not required to use all methods. Depending on

which information the human designer intends to gain, they can select the appropriate

methods. GRAM, the Network-based Rule Analysis Method and the Relation Visualization

Method support rule development. This is indicated by the colored arcs leading back to the

first step. The human designer can use the information gained in the analysis to further

improve the grammar rules in an iterative process. Once the developed grammar rules are as

intended, the grammar is applied. Information gained in the Network-based Rule Analysis

Method, the Relation Visualization Method and the Search Strategy Comparison Method

 9

9 Discussion and Future Work

140

influences the control in the grammar application phase. In Figure 9-2 this is presented by

the colored arcs heading to the step where the rule is determined that is applied next. There

are often interdependencies among the three steps “determination of rule”, “determination

of object” and “determination of matching condition” [59]. In this thesis, matching

conditions are defined within the grammar rules and LHSs of the rules narrow the number of

objects on which a rule can be applied. The rule to apply in the next iteration is determined

by the search algorithm. Using the proposed methodology, the human designer can take

informed decisions on how the computer control selects the next rule. The information

gained in the Network-based Rule Analysis Method can be used to determine beneficial

sequences of rule applications. Knowledge gained on analyzing the LHS of rules enables the

human designer to formulated advanced control mechanisms for determining the object, i.e.

the location where rules are applied. Information on how search algorithms explore the

design space can be gained through the Relation Visualization Method and used to decide on

an appropriate search algorithm for controlling the rule application process. The Search

Strategy Comparison Method can be used to determine which search strategy to use for

applying topologic and parametric rules.

Figure 9-2 Modified process for grammar development and application when using the proposed
methodology.

Using the modified process for grammar development and application, the human designer

and the computer collaborate in an additional step during grammar development. The

computer performs automated analyses of generated data and provides the designer with

visualizations. The designer interprets these to gain information on the design task, the rules,

how rules change objectives and design characteristics, as well as how search algorithms

Increasing understanding of problem, rules,
changes in objectives and design characteristics

and the search space

Grammar
development

Grammar
application

Object
representation

Control mechanism
Grammar rules

Determination
of rule

Determination
of object

Determination
of matching

condition

Developer and computer
(developer uses computer for automated methods)

Computer control
(based on decisions by developer)

Network-based
Rule Analysis

Method

Grammar Rule
Analysis Methoditerative rule

development

Search Strategy
Comparison

Method

combination of rules/
change of LHS of rules

Information on
beneficial and

counterproductive rule
sequences and LHS

matches

Information on
relations between

grammar rules,
objectives and search

space exploration

Information on quality
and quantity of

generated designs for
different search

strategies

improvement of grammar
…based on
strategy to
select rule

…based on
knowledge

of
sequences

…based on
search

algorithm

Developer

Relation
Visualization

Method

Legend

Step according
to Chase (2002)

New proposed
step

option

Proposed
Method

influence
of method

Gained
information

New proposed scenario (adapted from scenario 5 in Chase (2002))

…based on knowledge
of LHS matches

9.3 Generality of the Methodology

141

 9

explore the search space. This information can then be used to support both grammar

development and grammar application.

The case studies show how grammars and search algorithms are analyzed systematically

using the presented methods and how visualization of these analyses provide information

for the human designer. For the gearbox synthesis case study, e.g., different grammars are

analyzed and compared using GRAM. An unnecessary rule is deleted from the rule set based

on this analysis and additional rules to shorten and lengthen shafts are added based on

knowledge of the design task from previous research. Sequences of rule applications are

then analyzed systematically. While one rule seems redundant to a sequence of two other

rules at first glance, its superiority for exploring diverse topologies is understood through

the Network-based Rule Analysis Method and it is decided to keep this rule in the rule set.

The Relation Visualization Method shows that the unique topology space for gearbox

designs is highly connected, i.e. there are various sequences of rule applications that

transform an initial design into a desired one. Different strategies for applying topologic and

parametric rules are then compared using the Search Strategy Comparison Method to

better understand the issue of applying topologic and parametric rules together or

separately. Results show that the search strategies differ mostly in the early iterations of the

synthesis process. It is found that strategies that allow topologic and parametric changes

throughout the synthesis process explore different regions of the search space in one

synthesis run. This is desirable for CDS and is due to designs with different topologies in the

archive. Having strategies with two phases, i.e. only parametric rules are applied once a

valid design is found, different topologies can be generated when the process is started

repeatedly. As an additional result, gearbox designs without collisions are found. This is a

significant improvement compared to previous research by Lin et al. [38] and can be

explained by the additional rules that are added.

9.3 Generality of the Methodology

Figure 9-2 presents the modified grammar development and application process proposed

in this thesis where the presented methods are optional and can be selected by the human

designer to support grammar development and application. Which specific methods to use

and how to interpret the visualizations depends on the specific design scenario. In the

following, two example design scenarios are presented and recommendations are given on

how to apply the presented methodology. The first scenario considers the design of a new

product from scratch. The second scenario describes a re-design situation. Finally, the

generality of the methods is discussed with respect to the types of grammars that can be

supported.

In the first scenario a new design is to be generated from scratch using a grammar-based

CDS method and no grammar exists. Additionally, the aim is to generate a broad variety of

designs. In this case it is recommended to use all presented methods of the methodology. In

a first step, an initial grammar is developed. Then, GRAM is used to support the grammar

development process by giving feedback on each rule’s performance. The grammar rules are

 9

9 Discussion and Future Work

142

improved in an iterative process until they perform as intended by the designer. Using the

Network-based Rule Analysis Method, the rule set can further be improved by identifying

whether rules can be combined. Inefficient implementations of rules can be detected and

the analysis of LHS matches of rules allows to analyze in detail whether the grammar rules

apply as intended. Since the aim in this scenario is to generate diverse designs, the designer

should test whether the grammar rules sufficiently explore the design space or whether

they recreate the same designs repeatedly. This can be done by visually analyzing the

transition graph to see how strongly the designs are connected through rule applications. In

case the space is explored to a small extent only, the grammar rule set should be extended

by rules that perturb existing designs to a greater degree to allow for a faster exploration of

the space. Using the Relation Visualization Method, an appropriate algorithm can then be

identified. To explore the search space, e.g. the Burst algorithm with a large Burst length can

be used and the archive size should be set to a sufficiently high number to allow for the

storage of diverse designs. Testing several settings for the maximum Burst length and

archive size allows to tune the algorithm. Finally, an appropriate search strategy should be

selected to determine which rule type to apply in which phase of the synthesis process. The

decision can be based on the information gained when using the Network-based Rule

Analysis Method and the Relation Visualization Method. When the designs are highly

connected to each other this means that the same designs are generated repeatedly.

Results in Section 7 show that in this case a search strategy where topologic and parametric

rules are applied throughout the synthesis process allows for the generation of diverse

designs. In case the designs are only sparsely linked to each other and valid designs are

destroyed frequently, a strategy with two phases for topologic and parametric rule

applications should be used and the synthesis process should be restarted repeatedly to

generate ample diverse designs. If the rules generate valid designs within a reasonable

number of iterations, the synthesis process can be started from a void design to not bias the

results and foster the generation of different designs.

The second design scenario is a re-design situation in which an existing design is to be re-

designed, e.g. to meet further requirements. The aim is to modify the existing design such

that the additional requirements are met without radically changing the product. It is

assumed that the existing product was generated using a grammar-based CDS method, i.e. a

design grammar exists. In this scenario, it can be sufficient to exploit the search space

around existing designs, i.e. starting the synthesis process from the existing design. The

Burst algorithm with a small Burst length or the SA algorithm can be used. The Relation

Visualization Method should be applied to test which algorithm parameter settings to use to

exploit the search space near existing designs. Having selected the search algorithm and

specified the parameter settings, the designer can synthesize new products. Only if no new

designs are found that meet the additional requirements, the human designer has to

analyze the grammar rules using GRAM or the Network-based Rule Analysis Method to

further develop the grammar and adapt the rule set to the new situation.

9.4 Research Contributions

143

 9

Although all case studies in this thesis use graph grammars, the presented methods are

similarly applicable to other types of grammars. In general, any type of grammar can be

used as long as unique designs can be identified and intermediate designs can be evaluated.

This means, the methods are also applicable, e.g., to shape grammars when unique shapes

can be determined computationally.

9.4 Research Contributions

Supporting the human designer when using grammar-based CDS methods is the goal of this

thesis. This goal is achieved through the development of a methodology that can be

integrated in the existing grammar design and application process (see Section 9.2). Sub-

goals are to support grammar development (sub-goal G1), search algorithm selection (sub-

goal G2) and refinement of the search process (sub-goal G3). The following sections discuss

how these sub-goals are achieved. The development of a software prototype that embodies

the developed methods is an additional contribution.

9.4.1 Methodology for Supporting Design Grammar Development and

Application

The key contribution of this thesis is the development of a methodology for supporting

grammar development and application. Processes for generating data, analyzing it and

producing visualizations are defined. Additionally, criteria for grammar rules and for

comparing search strategies are developed that serve as measures for assessing grammar

rules and search strategies, respectively. The presented methods can be seen as information

visualization and visual analytics methods. Confirmatory analysis, i.e. analyses that test

hypotheses, are possible. An example is to analyze if a sequence of rule applications

describes a counterproductive loop in the transition graph. Exploratory analysis is similarly

supported and enables the human designer to discover implicit information. The methods

developed in this thesis, can therefore be seen as a new approach to introduce systematic

and visual analysis of design grammars in CDS. The methodology is integrated into the

grammar development and application process presented in [59]. The human designer

benefits from a modified process emphasizing on systematic analysis of grammar rules and

search algorithms and explicitly showing potential influences of the analysis results on

grammar development and application (see Figure 9-2).

9.4.2 Supporting Human Designers During Grammar Development

Three methods are presented to overcome the lack of support during grammar development

[31]. GRAM (Chapter 4) allows an analysis of grammar rules independent a the search

algorithm. This method can be applied to get feedback on each rule’s performance and the

search space the rules explore under random application. Additionally, GRAM supports

debugging grammar rules which is favorable during rule development. The network-based

rule analysis (Chapter 5) supports grammar development through analysis results on LHS

matches of rules and beneficial or counterproductive sequences. The human designer can

 9

9 Discussion and Future Work

144

use the visualizations to understand the consequences that, e.g., the combination of two

rules has on the designs that can be generated by the grammar. These relationships

between available rules and generated designs are also visible when using the Relation

Visualization Method (Chapter 6). The transition graph can be filtered manually and rules

can be disabled. This enables human designers to visualize the transition graph that results

when only a subset of the available rules is used. Doing so, they can visualize the potential of

each rule on exploring the search space and identify beneficial and counterproductive rules.

Using these methods supports the human designer to gain important information on the

rule set during development. The different methods can be used at different stages of the

grammar development process, e.g. GRAM for early phases, the Network-based Rule

Analysis Method once the individual rules are developed to reason about combining certain

rules or changing their application conditions, and the Relation Visualization Method to

reason about combining the rules with an algorithm and exploring how changes in design

objectives are linked through the rules. This is, however, only a suggestion and the methods

can be used individually or combined in many ways. Using the implemented software

framework, even additional combinations of data generation, analysis and visualization are

possible to support rule development.

9.4.3 Supporting the Selection of the Search Algorithm

When setting up a CDS method using grammars, there are dependencies between the

grammar developed to describe design transformations and the optimization and search

algorithm selected to guide the synthesis process. Knowing the search space that is

described by a grammar and the properties of a grammar, e.g. its tendency to explore and

exploit designs, allows the human designer to find an appropriate search algorithm that can

successfully be combined with the grammar to generate unexpected or novel designs. While

GRAM and the Network-based Rule Analysis Method focus more on analyzing and visualizing

information about the grammar, the Relation Visualization Method addresses exactly this

combination between grammar rules and search algorithm. It is therefore well-suited for

informing the human designer which algorithms can best be applied to a search problem.

For less experienced designers, it can be helpful to use the method to visualize how different

search algorithms explore the search space. This gives an impression of the characteristics of

the different search algorithms. Through increasing the human designer’s understanding of

the search algorithm’s behavior when combined with the grammar rules, the designer is

capable of taking a more informed decision on which search algorithm to select for a given

CDS task.

9.4.4 Supporting the Refinement of the Search Process

Once the human designer has developed a set of grammar rules and selected an appropriate

search algorithm, the CDS process can be started to generate design alternatives. Often the

synthesis process is then tuned to increase its performance. In common approaches often

advantageous algorithm parameters are identified using a trial and error approach. Using

9.4 Research Contributions

145

 9

the presented methods enables a more methodological approach to refining the search

process. The unique topology and performance space plots in the Relation Visualization

Method can be used to find appropriate algorithm parameter settings, e.g. a Burst length

that balances between exploring new topologies and exploiting the parameter space of

already explored designs. Besides finding appropriate search algorithm settings, predefined

sequences of rules can be used, e.g. to speed up the synthesis process for the given problem.

Those sequences can be identified using the Network-based Rule Analysis Method. This is

different to approaches where information about rule sequences is gathered during the CDS

process. Using the sequence analysis method, information is gained about beneficial

sequences already during rule development. Search algorithms with learning can

additionally be applied and the knowledge on preferable sequences gained during rule

sequence analysis can be fed to the learning algorithms as initial knowledge. Finally, the

human designer has to make a decision about the overarching strategy of exploring

topologies and parameters of designs during the CDS process. Different strategies exist and

four exemplary ones are presented in Section 7.1.2. The human designer can select an

appropriate strategy when enough information exists on how the design space is explored

by the search algorithm. This can be, e.g., a result of the Relation Visualization Method,

where the relations between changing topologies and parameters of designs are visualized

in the UTS. When the human designer is unsure about the search strategy to use for applying

topologic and parametric rules, different ones can be tested and compared using the metrics

presented in Section 7.1.3. To summarize, all three methods in Sections 5, 6 and 7 have

aspects to support the human designer in refining the search process and can be used either

individually or in combination. Advantages of the methods in Sections 5 and 6 are that the

knowledge already exists when the respective methods are used to support grammar

development and search algorithm selection.

9.4.5 Providing a Software Prototype to Support CDS

The software prototype, described in Chapter 8, is an additional contribution. It is used to

validate the methods presented in this thesis. Besides implementing the automated analyses

of the developed methods, the software prototype constitutes a generic framework for CDS

using grammars implementing the generation, evaluation and guidance step of CDS.

Arbitrary initial designs as graphs and grammar rules implemented in GrGen can be

integrated to represent the design task. Interfaces to external simulation software enable

the evaluation of synthesized designs and default search algorithms and strategies for

selecting topologic and parametric rules are available to guide the search process. Due to its

generic implementation, the framework can easily be extended. The software prototype can

therefore be used a) as a tool to apply the developed methods, b) as a generic CDS

framework once the grammar rules and search algorithm are defined, or c) as a platform to

conduct further research on analyzing grammars and search algorithms.

 9

9 Discussion and Future Work

146

Figure 9-3. gives an overview of how the presented methods contribute to achieve the sub-

goals (see also Figure 1-1) and the overall goal of this thesis to support the human designer

in CDS. The different colors and the arrows indicate which method fulfills which goals.

Figure 9-3 Overview of the methods and their contributions in supporting the human designer.

9.5 Limitations and Future Work

The presented methodology is a first approach to systematically analyze and visualize

different aspects of grammar development and application. There are limitations to the

presented methods and the presented software prototype. These along with different future

directions are discussed in the following paragraphs.

An extensive user study with human subjects and diverse design tasks is necessary to

further evaluate the presented methodology. Such a study can be conducted with different

user groups where at least one group contains experts having developed grammars and

applied search algorithms for CDS tasks in the past. Another group should contain novices or

less experienced designers who are introduced to the concepts of CDS, grammar

development and search algorithms. Ideally the different groups are compared to control

groups solving the same tasks without the presented methods. Recordings of the study and

interviews of the participants are expected to be helpful for further improving the

methodology and the methods.

Different criteria for evaluating grammar rules and for comparing search strategies are

presented in this thesis. Examples are the diversity and validity ratio for grammar rule sets

(GRAM) or the convergence ratio and the pairwise comparisons of final Pareto archives to

compare the quality of generated designs (Search Strategy Comparison Method). The criteria

are developed in the style of published research in optimization, based on experience or

through discussions with researchers and anonymous reviewers. They can be considered as

Support human designer in CDS in …
Overall

Goal

Sub-
goals

…grammar development
…selection of

search algorithm
…refinement

of search
G1 G2 G3

Support
designer in
selecting
existing

rules

Support
designer in
developing

rules

Support
designer in
combining

rules

Increase
understanding of

search
algorithms for
given problem

Sub-
goals

G1.1 G1.2 G1.3 G2.1

Provide rule
independent

strategies

Tuning of
search

algorithm

G3.1 G3.3

Provide
rule

dependent
strategies

G3.2

Network-based
Rule Analysis

Method

Grammar Rule
Analysis
Method

Relation
Visualization

Method

Search Strategy
Comparison

Method

Topologic + Parametric

Topologic Parametric

Topologic +
Parametric

Parametric

Parametric
Topologic

9.5 Limitations and Future Work

147

 9

a starting point for further research into defining commonly accepted criteria for evaluating

grammar rules as well as for comparing generated designs in an objective way. Further

defining these criteria enables more objective comparisons of existing and future research

on CDS methods.

The methods in this thesis present information to the human designer. Some of the

information is highlighted to direct the designer to interesting or unexpected aspects of the

presented information, e.g. with the color coded bar charts in GRAM. To analyze the

presented information, the designer is required to have a general understanding of the CDS

process and how its components, i.e. grammar rules, search algorithm, are linked. Providing

the human designer with guidelines on how to interpret the analysis results and how

changes of one aspect influence other aspects of the CDS process could further support the

human designer.

Visualizing information for design tasks with more than three objectives becomes complex.

Examples are the design space representations for GRAM or the performance space

representations for the Relation Visualization Method. For more objectives, advanced data

visualization methods have to be employed that allow the representation of information in

many dimensions while still being straightforward to interpret by the human designer. This is

a challenging task and an active area of research in information visualization.

Further improvements are possible considering the developed software prototype. In its

current implementation, it supports different external software for visualization. Because of

this design decision, different software can be used, but the visualizations are not linked to

one another. When, for example, the human designer uses the Relation Visualization

Method and animates the unique topology space in OrganicViz it would be preferable that

also the performance space representation in Matlab is animated accordingly. Due to the

software architecture in the current implementation, the user input is, however, only

received by the software the user is operating with. Linking the external software or

providing a specific visualization tool for the presented methods could improve the human

designer’s experience when interacting with the visualizations. Requirements for such a

visualization tool should be derived from the user study described above.

The methods are presented as post-processing methods. This permits a generic

implementation and many different combinations of data generation, analysis and

visualization. Another scenario is to analyze and visualize grammar rules and their

application using live visualizations. This requires an integration of the analysis and

visualization tools in the CDS process. When live visualizations are combined with interactive

search algorithms, additional benefits may arise from the collaboration of human designer

and computational methods. The ability of the human designer to recognize patterns and

pitfalls of the search algorithm when interpreting the live visualizations and the interactivity

with the algorithm could allow for improved rule applications and design generation

compared to current interactive search algorithms.

148

 Conclusions 10

Grammatical approaches to Computational Design Synthesis (CDS) have successfully been

applied to solve various engineering design tasks. These approaches support the human

designer during conceptual and embodiment design by synthesizing numerous designs.

While the approaches are capable of generating known but also new designs, their

application is not yet widely spread. One reason for the hesitation of industry, but also

researchers, is that there is only limited support of human designers when developing a CDS

method using design grammars. Successfully applying a CDS method is challenging for

several reasons. Problem-specific engineering knowledge has to be formulated in a model

describing a design formally and grammar rules have to be developed describing possible

design transformations. For a fully automated CDS process, an evaluation routine has to be

provided to allow for the comparison of generated designs. Different search algorithms and

search strategies can be used to steer the synthesis process. Selecting a suitable search

algorithm for a given design task and grammar rules is another challenge.

The motivation for this thesis is thus to support human designers to overcome some of the

challenges in setting up CDS approaches with grammars to make these approaches more

easily accessible. Being aware of possible changes to grammar rules and search algorithms

and their strong coupling enables the development of advanced computational methods

that automatically generate meaningful or even innovative concepts for engineering design

problems. A long term goal is then to enable also designers who are not familiar with CDS

approaches to benefit from the advantages of these methods.

Two areas for improvement are identified from a literature review and discussions with

researchers in CDS and are addressed in the thesis. First, more methodological support

should be provided for the development of engineering design grammars. The lack of

support in this phase is seen as one of the major drawbacks of CDS. Second, support should

be provided for the application of grammar rules. This includes supporting the human

designer in selecting an appropriate search algorithm and refining the search process to

synthesize promising designs.

A new methodology is developed to address these issues. It incorporates aspects of formal

network analysis and research on information visualization and visual analytics. The

developed methodology extends the rule development and application process by an

additional step in which the human designer analyzes various aspects of the CDS process.

These include individual grammar rules, sequences of rule applications, search algorithms,

and search strategies. According to the three step process of information visualization, data

is generated, analyzed and presented to the human designer. Automated analysis and

manual interaction between the human designer and the generated visualizations enable to

gain information about the design task, grammar rules, the search process and

dependencies between these. The methodology consists of four methods that can be

applied individually or combined.

10 Conclusions

149

In Chapter 4, the Grammar Rule Analysis Method (GRAM) is presented that systematically

analyzes developed rules and the influences they have on synthesized designs considering

their objectives and characteristics. GRAM does not require the selection of a search

algorithm allowing its application to support the rule development process. With GRAM the

human designer is given a means to systematically analyze and reason about developed

grammar rules. Criteria are defined to assess the performance of grammar rules. These

enable a comparison of grammar rules and, thereby, GRAM does not only provide a more

scientific approach to rule development but also facilitate the reuse of existing grammar

rules since they can be assessed and compared based on defined criteria.

The Network-based Rule Analysis Method is presented in Chapter 5. This method combines

the concepts of transition graphs, network analysis algorithms and interactive visualizations

to support grammar rule analysis. It provides automated analyses and interactive

visualizations. When the human designers interacts with these visualizations, they can

manually explore information about the effect of rule applications on generated designs and

identify beneficial or counterproductive rule sequences. This knowledge can then be used

for grammar development or to identify advanced rule application strategies.

A method to visualize relations between grammar rules, design topologies and objectives is

presented in Chapter 6. The Relation Visualization Method is inspired by research on

algorithm visualization and post-processes and visualizes data generated during synthesis.

The progression of the CDS process can be animated using interactive visualizations that

enable an analysis of both the grammar itself and how search algorithms explore and exploit

the search space. The gained information supports grammar development, the selection of

an appropriate search algorithm and the refinement of the search process through suitable

parameter settings of the selected search algorithm. This method is unique in its ability to

visualize search algorithm progression and design space exploration in CDS and can further

be used for teaching algorithms in a CDS context.

Chapter 7 presents different strategies for the topologic and parametric exploration of the

search space and provides metrics to systematically compare these strategies for a given

design task. The Search Strategy Comparison Method supports human designers through a

defined process and metrics for evaluating the quantity and quality of synthesized designs.

The human designer can reason about which search strategy to apply for a given design task.

The developed metrics can further be used to compare synthesis results in a broader scope.

All presented methods are successfully validated using case studies from the mechanical

engineering domain, i.e. gearbox synthesis and bicycle frame synthesis, or based on a

mathematical example, a sliding tile puzzle. The case studies demonstrate how grammars

and search algorithms are analyzed systematically using the presented methods and how

visualizations of these analyses provide information for the human designer.

A modular software prototype for CDS is implemented to evaluate the presented methods

and allows the use of any graph grammar implemented in GrGen. It provides interfaces to

simulation software for design evaluation and includes several search algorithms to guide

 10

10 Conclusions

150

the synthesis process. The developed software prototype can, therefore, not only be used to

demonstrate the potential of the developed methodology for supporting human designers in

CDS, but also for the application and search phase once the human designer has defined

grammar rules and search algorithm.

Through the developed methodology, the goals of the thesis are achieved. Since research on

a methodology for systematically supporting human designers in developing and applying

design grammars for CDS is still in its infancy, there is, however, ample room for further

research. An extensive user study analyzing how novices and CDS experts address synthesis

tasks with and without the support by the presented methodology can deliver important

insights for further adapting the methods and visualizations to specific requirements of

designers. Considering the presented methods and the software prototype, improvements

can be made by computationally linking the visualizations generated in different software

systems. With a long term perspective, research should also address issues to ease the reuse

and adaptation of existing grammars. Through systematic grammar rule analysis for given

problems and metrics with which rules can be compared, the methods presented in this

thesis are a step in this direction.

 151

References

[1] Königseder, C. and Shea, K. (2015). "Comparing Strategies for Topologic and Parametric
Rule Application in Automated Computational Design Synthesis", Journal of
Mechanical Design, 138(1), pp. 011102-1 - 011102-12.

[2] Königseder, C. and Shea, K. (2015). "A Method for Visualizing the Relations Between
Grammar Rules, Performance Objectives and Search Space Exploration in Grammar-
Based Computational Design Synthesis", International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (ASME IDETC),
Boston, MA, USA.

[3] Königseder, C., Stanković, T., and Shea, K. (2015). "Improving Generative Grammar
Development and Application Through Network Analysis Techniques", International
Conference on Engineering Design (ICED), Milano, Italy.

[4] Königseder, C. and Shea, K. (2014). "Systematic Rule Analysis of Generative Design
Grammars", Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
28(3), pp. 227-238.

[5] Königseder, C. and Shea, K. (2014). "Analyzing Generative Design Grammars", in Design
Computing and Cognition '14, J. S. Gero and S. Hanna, eds., Springer International
Publishing, pp. 363-381.

[6] Königseder, C. and Shea, K. (2014). "Strategies for Topologic and Parametric Rule
Application in Automated Design Synthesis using Graph Grammars", International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference (ASME IDETC), Buffalo, NY, USA.

[7] Königseder, C. and Shea, K. (2014). "The Making of Generative Design Grammars",
Workshop on Computational Making, International Conference on Design Computing
and Cognition (DCC), London, UK.

[8] Königseder, C., Shea, K., and Campbell, M. I. (2012). "Comparing a Graph-Grammar
Approach to Genetic Algorithms for Computational Synthesis of PV Arrays", in CIRP
Design 2012 A. Chakrabarti, ed., Springer London, Bangalore, India, pp. 105-114.

[9] Kumar, M., Campbell, M. I., Königseder, C., and Shea, K. (2012). "Rule Based Stochastic
Tree Search", in Design Computing and Cognition '12, J. S. Gero, ed., Springer
Netherlands, pp. 471-587.

[10] Königseder, C. and Shea, K. (2015). "Visualizing Relations Between Grammar Rules,
Objectives and Search Space Exploration in Grammar-based Computational Design
Synthesis (currently under review)", Journal of Mechanical Design.

[11] Königseder, C., Stankovic, T., and Shea, K. (2015). "Improving Design Grammar
Development and Application Using Transition Graphs (currently under review)",
Design Science Journal.

[12] Simon, H. A. (1969). The sciences of the artificial, MIT Press.

[13] Newell, A. and Simon, H. A. (1956). "The logic theory machine--A complex information
processing system", IRE Transactions on Information Theory, 2(3), pp. 61-79.

References

152

[14] Pahl, G., Beitz, W., Feldhusen, J., and Grote, K.-H. (2007). Engineering Design: A
Systematic Approach, Springer London.

[15] Purcell, A. T. and Gero, J. S. (1996). "Design and other types of fixation", Design Studies,
17(4), pp. 363-383.

[16] Kurtoglu, T. and Campbell, M. I. (2009). "Automated synthesis of electromechanical
design configurations from empirical analysis of function to form mapping", Journal of
Engineering Design, 20(1), pp. 83-104.

[17] Schmidt, L. C. and Cagan, J. (1997). "GGREADA: A graph grammar-based machine design
algorithm", Research in Engineering Design, 9(4), pp. 195-213.

[18] Wyatt, D. F., Wynn, D. C., Jarrett, J. P., and Clarkson, P. J. (2012). "Supporting product
architecture design using computational design synthesis with network structure
constraints", Research in Engineering Design, 23(1), pp. 17-52.

[19] Blessing, L. T. and Chakrabarti, A. (2009). DRM, a Design Research Methodology,
Springer London.

[20] Chakrabarti, A., Shea, K., Stone, R., Cagan, J., Campbell, M., Hernandez, N. V., and Wood,
K. L. (2011). "Computer-Based Design Synthesis Research: An Overview", Journal of
Computing and Information Science in Engineering, 11(2), pp. 021003-1 - 021003-10.

[21] Münzer, C., Helms, B., and Shea, K. (2013). "Automatically Transforming Object-
Oriented Graph-Based Representations Into Boolean Satisfiability Problems for
Computational Design Synthesis", Journal of Mechanical Design, 135(10), pp. 101001-
1 - 101001-13.

[22] Antonsson, E. K. and Cagan, J. (2001). Formal Engineering Design Synthesis, Cambridge
University Press.

[23] Chakrabarti, A. (2002). Engineering Design Synthesis: Understanding, Approaches and
Tools, Springer London.

[24] Shea, K. and Starling, A. C. "From discrete structures to mechanical systems: a
framework for creating performance-based parametric synthesis tools", in
Proceedings of the AAAI 2003 Symposium on Computational Synthesis: From Basic
Building Blocks to High Level Functionality, pp. 210-217.

[25] Cagan, J., Campbell, M. I., Finger, S., and Tomiyama, T. (2005). "A framework for
computational design synthesis: Model and applications", Journal of Computing and
Information Science in Engineering, 5(3), pp. 171-181.

[26] Gips, J. and Stiny, G. (1980). "Production Systems and Grammars - a Uniform
Characterization", Environment and Planning B: Planning and Design, 7(4), pp. 399-
408.

[27] Starling, A. C. and Shea, K. (2005). "A parallel grammar for simulation-driven mechanical
design synthesis", International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference (ASME IDETC), Long Beach, CA,
USA, pp. 427-436.

References

153

[28] Gmeiner, T. and Shea, K. (2013). "A Spatial Grammar for the Computational Design
Synthesis of Vise Jaws", International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference (ASME IDETC), Portland, OR,
USA, p. 11.

[29] Hoisl, F. and Shea, K. (2013). "Three-Dimensional Labels: A Unified Approach to Labels
for a General Spatial Grammar Interpreter", Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 27(4), pp. 359-375.

[30] Hoisl, F. R. (2012). "Visual, Interactive 3D Spatial Grammars in CAD for Computational
Design Synthesis", Dissertation, Technische Universität München, Germany.

[31] McKay, A., Chase, S., Shea, K., and Chau, H. H. (2012). "Spatial grammar
implementation: From theory to useable software", Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 26(2), pp. 143-159.

[32] Fu, Z., Depennington, A., and Saia, A. (1993). "A Graph Grammar Approach to Feature
Representation and Transformation", International Journal of Computer Integrated
Manufacturing, 6(1-2), pp. 137-151.

[33] Helms, B., Eben, K., Shea, K., and Lindemann, U. (2009). "Graph Grammars - a Formal
Method for Dynamic Structure Transformation", 11th International DSM Conference,
Greenville, SC, USA, pp. 93-96.

[34] Schmidt, L. C., Shetty, H., and Chase, S. C. (2000). "A Graph Grammar Approach for
Structure Synthesis of Mechanisms", Journal of Mechanical Design, 122(4), pp. 371-
376.

[35] Mullins, S. and Rinderle, J. (1991). "Grammatical approaches to engineering design, part
I: An introduction and commentary", Research in Engineering Design, 2(3), pp. 121-
135.

[36] Rinderle, J. (1991). "Grammatical approaches to engineering design, part II: Melding
configuration and parametric design using attribute grammars", Research in
Engineering Design, 2(3), pp. 137-146.

[37] Li, X., Schmidt, L. C., He, W., Li, L., and Qian, Y. (2004). "Transformation of an EGT
Grammar: New Grammar, New Designs", Journal of Mechanical Design, 126(4), pp.
753-756.

[38] Lin, Y. S., Shea, K., Johnson, A., Coultate, J., and Pears, J. (2010). "A Method and
Software Tool for Automated Gearbox Synthesis", International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference
(ASME IDETC), San Diego, CA, USA, pp. 111-121.

[39] Patel, J. and I., C. M. (2010). "An Approach to Automate and Optimize Concept
Generation of Sheet Metal Parts by Topological and Parametric Decoupling", Journal
of Mechanical Design, 132(5), pp. 051001-1 - 051001-11.

[40] Helms, B., Shea, K., and Hoisl, F. (2009). "A Framework for Computational Design
Synthesis Based on Graph-Grammars and Function-Behavior-Structure", International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference (ASME IDETC), San Diego, CA, USA, pp. 841-851.

References

154

[41] Kurtoglu, T. and Campbell, M. I. (2006). "A Graph Grammar Based Framework for
Automated Concept Generation", International Design Conference (DESIGN),
Dubrovnik, Croatia, pp. 61-68.

[42] Stanković, T., Štorga, M., Shea, K., and Marjanovic, D. (2013). "Formal Modelling of
Technical Processes and Technical Process Synthesis", Journal of Engineering Design,
24(3), pp. 211-238.

[43] Oberhauser, M., Sartorius, S., Gmeiner, T., and Shea, K. (2014). "Computational Design
Synthesis of Aircraft Configurations with Shape Grammars", in Design Computing and
Cognition '14, J. S. Gero and S. Hanna, eds., Springer International Publishing, pp. 21-
39.

[44] Stöckli, F. R. and Shea, K. (2015). "A Simulation-driven Graph Grammar Method for the
Automated Synthesis of Passive Dynamic Brachiating Robots", International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference (ASME IDETC), Boston, MA, USA.

[45] Pugliese, M. and Cagan, J. (2002). "Capturing a rebel: modeling the Harley-Davidson
brand through a motorcycle shape grammar", Research in Engineering Design, 13(3),
pp. 139-156.

[46] McCormack, J. P., Cagan, J., and Vogel, C. M. (2004). "Speaking the Buick language:
capturing, understanding, and exploring brand identity with-shape grammars", Design
Studies, 25(1), pp. 1-29.

[47] Sumbul, A. and Chase, S. (2006). "Grammar Representations to Facilitate Style
Innovation - An Example From Mobile Phone Design", eCAADe Conference, Volos,
Greece.

[48] Siddique, Z. and Rosen, D. W. (1999). "Product platform design: a graph grammar
approach", International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference (ASME IDETC), Las Vegas, NV, USA.

[49] Agarwal, M. and Cagan, J. (1998). "A blend of different tastes: the language of
coffeemakers", Environment and Planning B: Planning and Design, 25(2), pp. 205-226.

[50] Geiß, R., Batz, G., Grund, D., Hack, S., and Szalkowski, A. (2006). "GrGen: A Fast SPO-
Based Graph Rewriting Tool", in Graph Transformations, A. Corradini, et al., eds.,
Springer Berlin Heidelberg, pp. 383-397.

[51] Jakumeit, E., Buchwald, S., and Kroll, M. (2010). "GrGen.NET", International Journal on
Software Tools for Technology Transfer, 12(3-4), pp. 263-271.

[52] Helms, B. and Shea, K. (2012). "Computational Synthesis of Product Architectures Based
on Object-Oriented Graph Grammars", Journal of Mechanical Design, 134(2), pp.
021008-1 - 021008-14.

[53] Helms, B. (2013). "Object-Oriented Graph Grammars for Computational Design
Synthesis", Dissertation, Technische Universität München, Germany.

[54] Alber, R. and Rudolph, S. (2003). "‘43’—A Generic Approach for Engineering Design
Grammars", AAAI Spring Symposium ‘Computational Synthesis’, Stanford, CA, USA.

References

155

[55] Hoisl, F. and Shea, K. (2011). "An interactive, visual approach to developing and
applying parametric three-dimensional spatial grammars", Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 25(4), pp. 333-356.

[56] Chau, H., Chen, X., McKay, A., and de Pennington, A. (2004). "Evaluation of a 3D Shape
Grammar Implementation", in Design Computing and Cognition ’04, J. Gero, ed.,
Springer Netherlands, pp. 357-376.

[57] Grasl, T. and Economou, A. (2011). "GRAPE: using graph grammars to implement shape
grammars", Symposium on Simulation for Architecture and Urban Design, Society for
Computer Simulation International, Boston, MA, USA, pp. 21-28.

[58] Grasl, T. and Economou, A. (2013). "From topologies to shapes: parametric shape
grammars implemented by graphs", Environment and Planning B: Planning and Design,
40(5), pp. 905-922.

[59] Chase, S. C. (2002). "A model for user interaction in grammar-based design systems",
Automation in Construction, 11(2), pp. 161-172.

[60] Klint, P., Lämmel, R., and Verhoef, C. (2005). "Toward an engineering discipline for
grammarware", ACM Transactions on Software Engineering Methodology, 14(3), pp.
331-380.

[61] Zheng, L. and Chen, H. (2009). "A Systematic Framework for Grammar Testing",
International Conference on Computer and Information Science, Shanghai, China, pp.
1013-1019.

[62] Knight, T. W. (1998). "Designing a shape grammar", in Artificial Intelligence in Design '98,
J. S. Gero and F. Sudweeks, eds., Springer Netherlands, pp. 499-516.

[63] Brown, K. (1997). "Grammatical design", Intelligent Systems and their Applications,
12(2), pp. 27-33.

[64] Knight, T. and Stiny, G. (2001). "Classical and non-classical computation", arq:
Architectural Research Quarterly, 5(4), pp. 355-372.

[65] Ibrahim, M. S., Bridges, A., Chase, S. C., Bayoumi, S. H., and Taha, D. S. (2012). "Design
grammars as evaluation tools in the first year studio", Journal of Information
Technology in Construction, 17(Special Issue CAAD and innovation), pp. 319-332.

[66] Rudolph, S. (2006). "Semantic validation scheme for graph grammars", in Design
Computing and Cognition ’06, J. Gero, ed., Springer Netherlands, pp. 541-560.

[67] Cagan, J. (2001). "Engineering Shape Grammars", in Formal Engineering Design
Synthesis, E. K. Antonsson and J. Cagan, eds., Cambridge University Press, pp. 65-92.

[68] Shea, K. and Cagan, J. (1999). "Languages and semantics of grammatical discrete
structures", Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
13(04), pp. 241-251.

[69] Orsborn, S., Cagan, J., and Boatwright, P. (2008). "Automating the Creation of Shape
Grammar Rules", in Design Computing and Cognition '08, J. S. Gero and A. K. Goel, eds.,
Springer Netherlands, pp. 3-22.

[70] Orsborn, S., Cagan, J., and Boatwright, P. (2008). "A methodology for creating a
statistically derived shape grammar composed of non-obvious shape chunks",
Research in Engineering Design, 18(4), pp. 181-196.

References

156

[71] Klein, D. and Manning, C. D. (2002). "A generative constituent-context model for
improved grammar induction", Annual Meeting on Association for Computational
Linguistics, Association for Computational Linguistics, Philadelphia, PA, USA, pp. 128-
135.

[72] Shea, K. (2004). "Explorations in using an Aperiodic Spatial Tiling as a Design Generator",
in Design Computing and Cognition ’04, J. Gero, ed., Springer Netherlands, pp. 137-
156.

[73] Chase, S. and Liew, P. (2001). "A framework for redesign using FBS models and
grammar adaptation", in Computer Aided Architectural Design Futures 2001, B. de
Vries, et al., eds., Springer Netherlands, pp. 467-477.

[74] Oster, A. and McCormack, J. (2011). "A Methodology for Creating Shape Rules During
Product Design", Journal of Mechanical Design, 133(6), pp. 061007-1 - 061007-12.

[75] Knight, T. W. (1994). Transformations in Design: A Formal Approach to Stylistic Change
and Innovation in the Visual Arts, Cambridge University Press.

[76] Chase, S. C. and Ahmad, S. (2005). "Grammar transformations: using composite
grammars to understand hybridity in design", CAAD futures, Vienna, Austria.

[77] Al-kazzaz, D. A. and Bridges, A. H. (2012). "A framework for adaptation in shape
grammars", Design Studies, 33(4), pp. 342-356.

[78] Gips, J. (1999). "Computer Implementation of Shape Grammars", NFS/MIT Workshop
on Shape Computation.

[79] Shea, K., Cagan, J., and Fenves, S. J. (1997). "A shape annealing approach to optimal
truss design with dynamic grouping of members", Journal of Mechanical Design,
119(3), pp. 388-394.

[80] Campbell, M. I., Cagan, J., and Kotovsky, K. (2003). "The A-Design approach to managing
automated design synthesis", Research in Engineering Design, 14(1), pp. 12-24.

[81] Campbell, M. I., Cagan, J., and Kotovsky, K. (1999). "A-design: An agent-based approach
to conceptual design in a dynamic environment", Research in Engineering Design,
11(3), pp. 172-192.

[82] Stanković, T., Shea, K., Štorga, M., and Marjanović, D. (2009). "Grammatical evolution of
technical processes", International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference (ASME IDETC), American
Society of Mechanical Engineers, San Diego, CA, USA, pp. 895-904.

[83] Landry, L. H. and Cagan, J. (2011). "Protocol-Based Multi-Agent Systems: Examining the
Effect of Diversity, Dynamism, and Cooperation in Heuristic Optimization Approaches",
Journal of Mechanical Design, 133(2), pp. 021001-1 - 021001-11.

[84] Vale, C. A. W. and Shea, K. (2003). "A Machine Learning-Based Approach To
Accelerating Computational Design Synthesis", International Conference on
Engineering Design (ICED), Stockholm, Sweden.

[85] Bolognini, F., Shea, K., Vale, C. A. W., and Seshia, A. A. (2006). "A Multicriteria System-
Based Method for Simulation-Driven Design Synthesis", International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference (ASME IDETC), Philadelphia, PA, USA, pp. 651-661.

References

157

[86] Schotborgh, W. O. (2009). "Knowledge engineering for design automation",
Dissertation, University of Twente, Netherlands.

[87] Poppa, K. R., Stone, R. B., and Orsborn, S. (2010). "Exploring Automated Concept
Generator Output Through Principal Component Analysis", International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference (ASME IDETC), Montreal, Canada, pp. 185-192.

[88] Deb, K. (2014). "Multi-objective Optimization", in Search Methodologies, E. K. Burke
and G. Kendall, eds., Springer US, pp. 403-449.

[89] Marler, R. T. and Arora, J. S. (2004). "Survey of multi-objective optimization methods
for engineering", Structural and Multidisciplinary Optimization, 26(6), pp. 369-395.

[90] Grune, D., van Reeuwijk, K., Bal, H. E., Jacobs, C. J., and Langendoen, K. (2012). Modern
compiler design, Springer New York.

[91] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles,
Techniques, and Tools, Addison-Wesley Longman Publishing Co., Inc.

[92] Hopcroft, J. E. and Ullman, J. D. (1969). Formal languages and their relation to
automata, Addison-Wesley Longman Publishing Co., Inc.

[93] Fekete, J.-D., van Wijk, J., Stasko, J., and North, C. (2008). "The Value of Information
Visualization", in Information Visualization, A. Kerren, et al., eds., Springer Berlin
Heidelberg, pp. 1-18.

[94] Anscombe, F. J. (1973). "Graphs in statistical analysis", The American Statistician, 27(1),
pp. 17-21.

[95] Card, S. K., Mackinlay, J. D., and Shneiderman, B. (1999). Readings in information
visualization: using vision to think, Morgan Kaufmann Publishers Inc.

[96] Keim, D., Mansmann, F., Schneidewind, J., Thomas, J., and Ziegler, H. (2008). "Visual
Analytics: Scope and Challenges", in Visual Data Mining, S. Simoff, et al., eds., Springer
Berlin Heidelberg, pp. 76-90.

[97] Nagel, H. (2006). "Scientific visualization versus information visualization", Workshop
on state-of-the-art in scientific and parallel computing, Sweden.

[98] Keim, D., Mansmann, F., Stoffel, A., and Ziegler, H. (2009). "Visual Analytics", in
Encyclopedia of Database Systems, L. Liu and M. T. Özsu, eds., Springer US, pp. 3341-
3346.

[99] Thomas, J. and Cook, K. (2005). "Illuminating the path: the research and development
agenda for visual analytics", report by Pacific Northwest National Laboratory (PNNL),
Richland, WA, USA.

[100] Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., and Melançon, G.
(2008). "Visual Analytics: Definition, Process, and Challenges", in Information
Visualization, A. Kerren, et al., eds., Springer Berlin Heidelberg, pp. 154-175.

[101] "Bell telephone laboratories low-level linked list language" (1966). Film by: Knowlton,
K., (16-minute black and white film).

[102] "Sorting out sorting" (1981). Film by: Baecker, R., Media Centre Production, University
of Toronto (30 minutes).

References

158

[103] Brown, M. H. and Sedgewick, R. (1985). "Techniques for Algorithm Animation", Ieee
Software, 2(1), pp. 28-39.

[104] Price, B. A., Baecker, R. M., and Small, I. S. (1993). "A Principled Taxonomy of Software
Visualization", Journal of Visual Languages and Computing, 4(3), pp. 211-266.

[105] Kerren, A. and Stasko, J. T. (2002). "Algorithm animation", in Software Visualization,
Springer Berlin-Heidelberg, pp. 1-15.

[106] Hundhausen, C. D., Douglas, S. A., and Stasko, J. T. (2002). "A meta-study of algorithm
visualization effectiveness", Journal of Visual Languages and Computing, 13(3), pp.
259-290.

[107] Messac, A. and Chen, X. (2000). "Visualizing the optimization process in real-time
using physical programming", Engineering Optimization, 32(6), pp. 721-747.

[108] Diehl, S. (2007). Software visualization: visualizing the structure, behaviour, and
evolution of software, Springer Berlin Heidelberg.

[109] Suppapitnarm, A., Seffen, K., Parks, G., Connor, A., and Clarkson, P. (1999).
"Multiobjective optimisation of bicycle frames using simulated annealing", Conference
on Engineering Design Optimization, Ilkley, UK, pp. 357 - 364.

[110] Campbell, M. I., Rai, R., and Kurtoglu, T. (2012). "A Stochastic Tree-Search Algorithm
for Generative Grammars", Journal of Computing and Information Science in
Engineering, 12(3), pp. 031006-1 - 031006-11.

[111] Shea, K. (1997). "Essays of Discrete Structures: Purposeful Design of Grammatical
Structures by Directed Stochastic Search", Dissertation, Carnegie Mellon University,
USA.

[112] Wyatt, D. F., Wynn, D. C., and Clarkson, P. J. (2014). "A Scheme for Numerical
Representation of Graph Structures in Engineering Design", Journal of Mechanical
Design, 136(1), pp. 011010-1 - 011010-13.

[113] Plaisant, C. (2004). "The challenge of Information Visualization Evaluation", Working
Conference on Advanced Visual Interfaces, ACM, Gallipoli, Italy, pp. 109-116.

[114] Seriai, A., Benomar, O., Cerat, B., and Sahraoui, H. (2014). "Validation of Software
Visualization Tools: A Systematic Mapping Study", IEEE Working Conference on
Software Visualization, pp. 60-69.

[115] McConathy, D. A. (1993). "Evaluation methods in visualization: combating the
Emperor's new clothes phenomenon", ACM SIGBIO Newsletter, 13(1), pp. 2-8.

[116] Sensalire, M., Ogao, P., and Telea, A. (2009). "Evaluation of Software Visualization
Tools: Lessons Learned", IEEE International Workshop on Visualizing Software for
Understanding and Analysis, pp. 19-26.

[117] Bracewell, R. H., Shea, K., Langdon, L. T. M., Blessing, L. T. M., and Clarkson, P. J.
(2001). "A Methodology For Computational Design Tool Research", International
Conference on Engineering Design (ICED), Glasgow, UK.

[118] Chomsky, N. (1956). "Three models for the description of language", IRE Transactions
on Information Theory, 2(3), pp. 113-124.

References

159

[119] Li, X. and Schmidt, L. (2004). "Grammar-Based Designer Assistance Tool for Epicyclic
Gear Trains", Journal of Mechanical Design, 126(5), pp. 895-902.

[120] Starling, A. C. (2004). "Performance-based computational synthesis of parametric
mechanical systems", Dissertation, University of Cambridge, UK.

[121] Swantner, A. and Campbell, M. I. (2012). "Topological and parametric optimization of
gear trains", Engineering Optimization, 44(11), pp. 1351-1368.

[122] Pomrehn, L. P. and Papalambros, P. Y. (1995). "Discrete optimal design formulations
with-application to gear train design", Journal of Mechanical Design, 117(3), pp. 419-
424.

[123] Lohse, G. L., Min, D. W., and Olson, J. R. (1995). "Cognitive Evaluation of System
Representation Diagrams", Information and Management, 29(2), pp. 79-94.

[124] Stanković, T., Štorga, M., Stojić, I., and Savšek, T. (2012). "Tracability Visualization
Toolkit", International Design Conference (DESIGN), Dubrovnik, Croatia.

[125] "yComp", http://www.info.uni-karlsruhe.de/software.php/id=6, Kroll, M., Beck, M.,
Geiß, R., Hack, S., and Leiß, P. (last accessed: July 17, 2015).

[126] "yWorks", http://www.yworks.com (last accessed: July 17, 2015).

[127] Kim, H. M., Michelena, N. F., Papalambros, P. Y., and Jiang, T. (2003). "Target
cascading in optimal system design", Journal of Mechanical Design, 125(3), pp. 474-
480.

[128] Barbati, M., Bruno, G., and Genovese, A. (2012). "Applications of agent-based models
for optimization problems: A literature review", Expert Systems with Applications,
39(5), pp. 6020-6028.

[129] Slocum, J. and Sonneveld, D. (2006). The 15 Puzzle: How It Drove the World Crazy. The
Puzzle that Started the Craze of 1880. How America's Greatest Puzzle Designer, Sam
Loyd, Fooled Everyone for 115 Years, Slocum Puzzle Foundation.

[130] Johnson, W. W. and Story, W. E. (1879). "Notes on the '15' Puzzle", American Journal
of Mathematics, 2(4), pp. 397-404.

[131] Karavirta, V., Korhonen, A., Malmi, L., and Naps, T. (2010). "A comprehensive
taxonomy of algorithm animation languages", Journal of Visual Languages and
Computing, 21(1), pp. 1-22.

[132] Cash, P., Stanković, T., and Štorga, M. (2014). "Using visual information analysis to
explore complex patterns in the activity of designers", Design Studies, 35(1), pp. 1-28.

[133] Suppapitnarm, A., Parks, G. T., Shea, K., and Clarkson, P. J. (2004). "Conceptual design
of bicycle frames by multiobjective shape annealing", Engineering Optimization, 36(2),
pp. 165-188.

[134] Covill, D., Begg, S., Elton, E., Milne, M., Morris, R., and Katz, T. (2014). "Parametric
Finite Element Analysis of Bicycle Frame Geometries", Procedia Engineering, 72(0), pp.
441-446.

[135] Vale, C. A. W. (2002). "Multiobjective Dynamic Synthesis via Machine Learning",
Dissertation, University of Cambridge, UK.

http://www.info.uni-karlsruhe.de/software.php/id=6
http://www.yworks.com/

References

160

[136] Bolognini, F. (2008). "An Integrated Simulation-based Generative Design Method for
Microelectromechanical Systems", Dissertation, University of Cambridge, UK.

[137] Mattson, C. A., Mullur, A. A., and Messac, A. (2004). "Smart Pareto filter: obtaining a
minimal representation of multiobjective design space", Engineering Optimization,
36(6), pp. 721-740.

[138] Campbell, M. I., Rai, R., and Kurtoglu, T. (2009). "A Stochastic Graph Grammar
Algorithm for Interactive Search", International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (ASME IDETC),
San Diego, CA, USA, pp. 829-840.

[139] Zitzler, E., Deb, K., and Thiele, L. (2000). "Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results", Evolutionary computation, 8(2), pp. 173-195.

[140] Raphael, B. and Smith, I. F. (2003). Fundamentals of computer-aided engineering, John
Wiley & Sons.

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Current Situation and Motivation
	1.2 Objectives and Expected Contributions
	1.3 Research Methodology
	1.4 Structure of the Thesis

	2 Background
	2.1 Engineering Design Process
	2.2 Computational Design Synthesis (CDS)
	2.2.1 Framework for CDS
	2.2.2 CDS using Grammars
	2.2.3 Applications for CDS Methods with Grammars
	2.2.4 Grammar Interpreters
	2.2.5 Challenges for CDS Using Grammars
	2.2.5.1 Grammar Development
	2.2.5.2 Grammar Application

	2.3 Related Research Areas
	2.3.1 Optimization
	2.3.2 Compiler Design
	2.3.3 Visualization
	2.3.3.1 Research in Visualization
	Scientific Visualization and Information Visualization
	Visual Analytics
	Software and Algorithm Visualization

	2.3.3.2 Current Visualization in CDS

	2.3.4 Method and Tool Evaluation
	2.3.4.1 Visualization Research
	2.3.4.2 Computer-aided Design Tool Research

	2.4 Summary

	3 Method Overview
	3.1 Grammar Rule Analysis Method
	3.2 Network-based Rule Analysis Method
	3.3 Relation Visualization Method
	3.4 Search Strategy Comparison Method

	4 Grammar Rule Analysis Method
	4.1 Motivation for a Grammar Rule Analysis Method
	4.2 Method
	4.2.1 Data Generation
	4.2.2 Data Analysis
	4.2.3 Visualization and Interpretation of Analysis Results

	4.3 Case Study: Gearbox Synthesis
	4.3.1 Introduction to the Gearbox Synthesis Case Study
	4.3.1.1 Metamodel
	4.3.1.2 Implementation of the Rule Sets
	Topologic Rules
	Parametric Rules

	4.3.1.3 Evaluation of Gearbox Designs

	4.3.2 Gearbox Rule Sets to Validate GRAM
	4.3.3 Application of GRAM to the Gearbox Rule Sets A – D
	4.3.4 Results

	4.4 Discussion
	4.5 Summary

	5 Network-based Rule Analysis Method
	5.1 Motivation for Network-based Rule Analysis
	5.2 Method
	5.3 Case Study 1 (Gearbox Synthesis): Analyzing LHSs of Rules
	5.3.1 Generation of Designs
	5.3.2 Results

	5.4 Case Study 2 (Tile Puzzle): Learning and Reusing Rule Sequences
	5.4.1 Understanding the Small Scale Problem
	5.4.2 Applying Knowledge on the Large Scale Problem
	5.4.3 Results

	5.5 Discussion
	5.6 Summary

	6 Relation Visualization Method
	6.1 Motivation for Visualizations in CDS
	6.2 Method
	6.2.1 Example to Demonstrate the Method
	6.2.2 Implementation Details

	6.3 Case Study 1: Bicycle Frame Synthesis
	6.3.1 Introduction to the Bicycle Frame Synthesis Case Study
	6.3.1.1 Problem Formulation
	6.3.1.2 Representation
	6.3.1.3 Evaluation

	6.3.2 Search Algorithms
	6.3.2.1 Burst Algorithm
	6.3.2.2 Simulated Annealing Algorithm

	6.3.3 Scenarios
	6.3.4 Results

	6.4 Case Study 2: Gearbox Synthesis
	6.4.1 Results

	6.5 Discussion
	6.6 Summary

	7 Search Strategy Comparison Method
	7.1 Method
	7.1.1 Burst Algorithm
	7.1.2 Strategies for Rule Type Selection
	7.1.3 Metrics for Comparing the Strategies

	7.2 Case Study 1: Gearbox Synthesis
	7.2.1 Generation
	7.2.2 Evaluation
	7.2.3 Guidance
	7.2.4 Results

	7.3 Case Study 2: Bicycle Frame Synthesis
	7.3.1 Generation
	7.3.2 Evaluation
	7.3.3 Guidance
	7.3.4 Results
	7.3.4.1 Results for Diamond Frame as Initial Design
	7.3.4.2 Results for Void Frame as Initial Design
	7.3.4.3 Comparing Results for Different Initial Designs

	7.4 Discussion
	7.5 Summary

	8 Implementation
	8.1 Generic Framework for CDS
	8.2 Data Generation Options
	8.3 Data Analysis Options
	8.4 Data Visualizations
	8.5 Usage of the Framework
	8.6 Discussion

	9 Discussion and Future Work
	9.1 Comparison of the Methods
	9.2 Modified Process for Grammar Development and Application
	9.3 Generality of the Methodology
	9.4 Research Contributions
	9.4.1 Methodology for Supporting Design Grammar Development and Application
	9.4.2 Supporting Human Designers During Grammar Development
	9.4.3 Supporting the Selection of the Search Algorithm
	9.4.4 Supporting the Refinement of the Search Process
	9.4.5 Providing a Software Prototype to Support CDS

	9.5 Limitations and Future Work

	10 Conclusions
	References

