

DISS. ETH NO. 24166

A LIBRARY-BASED CONCEPT DESIGN APPROACH

FOR MULTI-DISCIPLINARY SYSTEMS IN SYSML

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

BENJAMIN KRUSE

Dipl.-Ing. Univ., Technische Universität München

born on 26.06.1985

citizen of Germany

accepted on the recommendation of

Prof. Dr. Kristina Shea

Prof. Dr. Martin Eigner

2017

 ii

 iii

Acknowledgements

First, I would like to thank Prof. Shea for her great job as my supervisor.

Without her offering the opportunity and supporting me during my doctorate it

would not have come true. Her guidance throughout countless discussions

motivated and helped me in all the time of research to not only write this thesis

but also to grow personally as well as a researcher. Further, I would like to thank

Prof. Eigner for being an excellent co-examiner and Prof. Hora for acting as chair

person at my defense.

My sincere thanks also go to Dr. Wölkl for getting me started with my

research and Dr. Münzer, for his valuable support. Additional thanks goes of

course to all other precious colleagues from both VPD in Munich and most

importantly EDAC in Zurich. You made my time enjoyable by providing the right

mixture of help and advice as well as inspiration, distraction and entertainment. I

have truly enjoyed working with you as part of a great team. Last but not least, I

would like to thank my family and friends for supporting me spiritually throughout

writing this thesis and my life in general.

Jersey City, July 2017 Benjamin Kruse

 iv

 v

Table of Contents

Abstract .. viii

Zusammenfassung .. x

Contained Publications ... xii

List of Tables ... xiii

List of Figures .. xiv

Glossary ... xviii

1. Introduction .. 1

1.1. Motivation .. 3

1.2. Research Goals ... 6

1.3. Thesis Overview .. 8

2. Background .. 13

2.1. Systems Engineering ... 13

2.1.1. Model-Based Systems Engineering (MBSE) 13

2.1.2. The Systems Modeling Language SysML 15

2.2. Development of Multi-Disciplinary Systems 22

2.3. Function – Behavior – Structure (FBS) 24

2.4. Functional Modeling ... 25

2.4.1. Use of Functional Modeling 26

2.4.2. The Functional Basis (FB) 28

2.5. Design Libraries as Knowledge Bases..................................... 29

2.5.1. Why Libraries? ... 30

2.5.2. Knowledge Bases Used ... 31

2.6. Design Patterns ... 33

2.6.1. What are Patterns? .. 33

2.6.2. Patterns in Engineering Design 34

2.7. Related Work ... 36

 vi

3. Case Study .. 40

3.1. The Reprap 3D Printer ... 40

3.2. 3D Printer Concept Model .. 42

4. Concept Modeling Approach in SysML .. 46

4.1. Concept Modeling Approach Overview 46

4.2. Function Library ... 52

4.2.1. Function Library Definition and Refinement 52

4.2.2. Function Library Usage .. 58

4.3. Behavior Simulation Library ... 65

4.3.1. Behavior Simulation Library Definition 66

4.3.2. Behavior Simulation Library Usage 74

4.4. Service Library ... 81

4.4.1. Service Library Definition ... 82

4.4.2. Service Library Usage ... 86

4.5. Multi-Solution Patterns ... 88

4.5.1. Multi-Solution Pattern Definition 89

4.5.2. Multi-Solution Pattern Example 93

4.5.3. Multi-Solution Pattern Usage 97

4.6. Results ... 99

5. Functional Modeling User Study .. 108

5.1. Experiment Setup .. 108

5.1.1. Hypotheses and Experimental Factors 108

5.1.2. Performance Measures ... 109

5.1.3. Experimental Procedure .. 111

5.1.4. Master Models ... 113

5.2. Experiment Results .. 117

5.2.1. Questionnaire and TLX Test Results 117

5.2.2. Model Analysis Results .. 120

 vii

6. Discussion ... 130

6.1. Modeling with Library Support ... 131

6.1.1. Modeling with the Function Library 131

6.1.2. Modeling with the Behavior Simulation Library 134

6.1.3. Modeling with the Service Library 136

6.2. Modeling with Multi-Solution Patterns 138

7. Summary and Future Extensions ... 141

7.1. Contributions .. 142

7.2. Limitations .. 144

7.3. Future Extensions .. 145

8. Conclusion ... 147

REFERENCES ... 148

APPENDIX A – MULTI-SOLUTION PATTERN EXCERPT: “PROVIDE ROTATIONAL

MOVEMENT” .. 164

APPENDIX B – USER STUDY QUESTIONNAIRE ... 171

 viii

Abstract

Conceptual design of modern multi-disciplinary systems that combine

mechatronics with services for the creation of product service systems (PSS) is a

crucial phase of the product development process. Yet, existing design support is

not sufficient despite fundamental developments such as model-based systems

engineering (MBSE) and the modeling language SysML. SysML is a

standardized, multi-purpose graphical modeling language for specifying,

designing and analyzing complex multi-disciplinary systems. However, it is still

not widely used in mechanical and mechatronic design.

The problem addressed in this work is how to better support multi-

disciplinary concept design. The presented approach integrates formal generic

design libraries that can be reused, modeling guidance and integrated simulation

for concept evaluation. More specifically, it implements the Functional Basis (FB),

elements from a commercial simulation tool and a service catalogue in SysML

libraries to offer a foundation of proven design knowledge together with multi-

solution patterns.

The first library is for functional modeling with the FB. It defines operator-

flow formulations of functions for formal and solution-neutral functional

decomposition. The second library provides elements from an adjunct multi-

physics simulation tool to support behavior modeling as well as the planning of

concept simulation in SysML. The third contributed library offers formalized

service catalogue elements to support modeling of the service domain. These

libraries, together with an additional structure library, provide generic elements

for reuse to support concept design, while allowing inter-model traceability to link

aspects from different disciplines and levels of abstraction. The additional multi-

solution patterns formally capture multiple alternative concept solutions to solve

recurring design problems. Since they are based on solution-neutral functions,

 ix

they can offer multiple potential solutions in one pattern. The solutions are partial

models that cover various aspects, for example functions, behavior or structure.

Their contribution is the enabled reuse of common coherent subsystems beyond

single library elements.

The research is conducted using the Design Research Methodology

(DRM) including initial descriptive studies in the form of a case study and a

conducted user study to evaluate the created support. The case study

demonstrates the concept design approach through the development of a 3D

printer model that uses the libraries and solutions from patterns. The 3D printer

model not only contains mechatronic aspects, but also complementary services

and representations of two alternative kinematic designs that are simulated.

Evaluation of the approach in the user study focuses on the function library and

shows that the approach results in greater use of the FB and improved model

quality.

The presented work contributes a new approach to formal modeling with

reuse of SysML models for supported multi-disciplinary concept design. It also

serves as a basis for future additional computational support, e.g. automated

design synthesis using the generic and formal design libraries.

 x

Zusammenfassung

Die Konzeptentwicklung moderner, multidisziplinärer Systeme, welche

Mechatronik mit Dienstleistungen zu hybriden Leistungsbündeln verbinden, ist

eine entscheidende Phase des Entwicklungsprozesses. Allerdings ist, trotz um-

fangreicher Entwicklungen wie der modellbasierten Systemtechnik (MBSE) und

der Modellierungssprache SysML, die dafür bestehende Unterstützung noch un-

genügend. SysML ist eine standardisierte, multifunktionale und grafische Model-

lierungssprache für die Spezifizierung, Konstruktion und Analyse komplexer, mul-

tidisziplinärer Systeme. Jedoch wird sie noch wenig für die Entwicklung mecha-

nischer und mechatronischer Systeme verwendet.

Das hier angegangene Problem besteht darin, die multidisziplinäre Kon-

zeptentwicklung weiter zu entwickeln um die Unterstützung zu verbessern. Die

vorgestellte Vorgehen verbindet verschiedene formal-generische Bibliotheken für

die Wiederverwendung und Modellsimulation zur Konzeptevaluierung. Konkret

werden die Functional Basis (FB), Elemente eines kommerziellen Simulations-

tools und ein Dienstleistungskatalog als SysML Bibliotheken realisiert, um grund-

legendes und bewährtes Design-Wissen zusammen mit Multilösungs-

Entwurfsmustern zur Verfügung zu stellen.

Die erste Bibliothek dient der Funktionsmodellierung mit der FB. Sie defi-

niert Operator-Flow-Formulierungen von Funktionen für die formale und lösungs-

neutrale funktionale Dekomposition. Die zweite Bibliothek stellt Elemente aus ei-

nem verknüpften multiphysikalischen Simulationstool zur Verfügung, um das

Systemverhalten zu modellieren und die Konzeptsimulation in SysML zu planen.

Die dritte Bibliothek enthält formalisierte Dienstleistungen zur Unterstützung der

Modellierung der Dienstleistungsdomäne. Diese Bibliotheken stellen zusammen

mit einer zusätzlichen Struktur-Bibliothek generische Elemente für die Wieder-

verwendung zur Verfügung. Die Konzeptentwicklung beinhaltet dabei auch die

 xi

mögliche Vernetzung der verschiedenen Disziplinen und Abstraktionsebenen in-

nerhalb des Systemmodells. Die Multilösungs-Entwurfsmuster erfassen mehrere

alternative Konzeptlösungen, um wiederkehrende Probleme zu lösen. Da sie auf

lösungsneutralen Funktionen basieren, können sie mehrere mögliche Lösungen

innerhalb eines Entwurfsmusters anbieten. Die angebotenen Lösungen sind

Teilmodelle, die verschiedene Aspekte abdecken, wie zum Beispiel Funktionen,

Verhalten und Struktur. Ihr Beitrag ist die Wiederverwendung kohärenter Subsys-

temmodelle zusätzlich zur der einzelner Bibliothekselemente.

Die vorgestellte Forschung orientiert sich an der Design Research Metho-

dology (DRM) und beinhaltet erste deskriptive Studien in Form einer Fallstudie

und eines durchgeführten Experimentes an Anwenders zur Bewertung der er-

stellten Modellierungsunterstützung. Die Fallstudie veranschaulicht das entwi-

ckelte Vorgehen zum Konzeptentwurf durch die Entwicklung eines 3D-

Druckermodells, dass die Bibliotheken sowie Lösungen aus Entwurfsmustern

verwendet. Das 3D-Druckermodell berücksichtigt nicht nur mechatronische As-

pekte, sondern auch ergänzende Dienstleistungen. Es enthält außerdem ent-

sprechende Darstellungen von zwei alternativen kinematischen Lösungen zur

Simulation. Die Evaluierung des Modellierungsvorgehens durch die Anwender-

studie konzentriert sich auf die Funktionsbibliothek, die eine verstärkte Nutzung

der FB sowie eine verbesserter Modellqualität zur Folge hat.

Die vorliegende Arbeit leistet einen Beitrag zum formellen Modellieren mit

Wiederverwendung in und von SysML-Modellen für die unterstützte multidiszipli-

näre Konzeptentwicklung. Sie dient ebenfalls als Grundlage für zukünftige auto-

matisierte Design-Synthese, unter Verwendung der formalen Design-

Bibliotheken.

 xii

Contained Publications

The following publications are part of the work presented in this thesis:

[1] Kruse, B., and Shea, K. Design Library Solution Patterns in SysML for
Concept Design and Simulation. 26th CIRP Design Conference. Stockholm,
Sweden; 2016. p.620-625.

[2] Kruse, B., Gilz, T., Shea, K., and Eigner, M. Systematic Comparison of
Functional Models in SysML for Design Library Evaluation. 24th CIRP Design
Conference. Milano, Italy; 2014.

[3] Kruse, B., Münzer, C., Wölkl, S., Canedo, A., and Shea, K. A Model-
Based Functional Modeling and Library Approach for Mechatronic Systems in
SysML. ASME 2012 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference. Chicago, IL, USA; 2012.

[4] Kruse, B., Münzer, C., Wölkl, S., Canedo, A., and Shea, K. Workflow and
Modeling Conventions for Function and Product Structure Modeling of
Mechatronic Systems in SysML Using Libraries. Mechatronics 2012. Linz,
Austria; 2012.

 xiii

List of Tables

Table 1: Contrasting pairs of aspects related to the term "function" (adapted

from [37]) ... 27

Table 2: Model analysis results with standard deviation and error 121

Table 3: Wilcoxon test results (significant results: bold) 122

Table 4: Spearman test results for bivariate correlations (significant results:

bold) .. 127

 xiv

List of Figures

Figure 1: Historical trends of system complexity (adapted from [5])........... 3

Figure 2: Simplified research impact model, modeled in UML 7

Figure 3: Design Research Methodology (DRM) framework [53] 9

Figure 4: Overview of methodological research process 10

Figure 5: Overview of SysML/UML interrelationship (adapted from [11]) . 16

Figure 6: SysML diagram taxonomy [11] ... 17

Figure 7: BDD and IBD example .. 18

Figure 8: ACT example diagram .. 19

Figure 9: SysML system model as a framework for analysis and traceability

(adapted from [70]) .. 21

Figure 10: FDM based 3D printer set-up .. 41

Figure 11: Raptype 3D printer visualization [144] 42

Figure 12: Model overview of case study Reprap 44

Figure 13: Reprap variations structure ... 44

Figure 14: CoreXY (left) and HBot (right) kinematic schemas [1] 45

Figure 15: Modeled Reprap configurations .. 45

Figure 16: Libraries and patterns in the context of the adapted V-model

(based on VDI 2206 [79], adapted from Eigner et al. [64]) 47

Figure 17: Level structure of model framework (based on [80, 82]) 48

Figure 18: Modeling workflow schema ... 51

Figure 19: Defined stereotypes in function library 53

Figure 20: Transformation of some FB flows [15] into the SysML function

library hierarchy ... 54

 xv

Figure 21: "ElectricalEnergy" flow with redefined effort and flow parameters

as well as custom extensions for DC and AC........................ 55

Figure 22: Definition of functions [15] implemented in a SysML library with

their inputs and outputs ... 56

Figure 23: Function library containment (left: functions, right: flows) 57

Figure 24: Derivation of main function "Print 3D-Object" of case study ... 58

Figure 25: Function library (left) used to define "ElectricalEnergy:Regulate"

function as call behavior action (right) 60

Figure 26: Excerpt of functional decomposition of "Print 3D-Object" main

function ... 62

Figure 27: "Maintain Printer" function with control flow and swimlanes 64

Figure 28: Function flow consistency examples 65

Figure 29: Stereotypes in the behavior simulation library 67

Figure 30: Behavior simulation library implementation in SysML (left) with

corresponding database in Amesim (right) 68

Figure 31: Rotary load elements in Amesim and their implementation in

SysML with parent element without specified submodel 70

Figure 32: Excerpt of flow port type hierarchy defined in behavior simulation

library .. 71

Figure 33: Excerpt of value type, unit and enumeration definition of behavior

simulation library ... 74

Figure 34: Behavior simulation library usage example 75

Figure 35: Excerpt of simulation models in Amesim (left) and in SysML (right)

(adapted from [1], concept sketch from [144]) 77

 xvi

Figure 36: Interface compatibility examples of behavior simulation library

elements ... 79

Figure 37: Simulation results of oscillating orthogonal forces on the linear

bearings of the sliding carriage for HBot and CoreXY [1] 80

Figure 38: <<Service>> stereotype in the service library 82

Figure 39: "Remote inspections" service from service library 84

Figure 40: Service library hierarchy excerpt with “Product Inspections”

services ... 85

Figure 41: Excerpt of actor hierarchy for service providers and service

receivers ... 86

Figure 42: Principle solution example for “Remote Inspections” service of the

3D printer .. 87

Figure 43: Model excerpt for custom “Raptype Remote Inspection” service,

showing its linkage to other model elements 88

Figure 44: Multi-solution pattern stereotypes ... 91

Figure 45: Cropped "2D Kinematics" design pattern (adapted from [1]) .. 94

Figure 46: Cropped "HBot Solution" pattern solution (adapted from [1]) .. 95

Figure 47: Excerpt of allocation matrix of "HBot Solution" 96

Figure 48: Functional model adaption at pattern application 98

Figure 49: Wiring schema of the basic configuration of the 3D printer with

stepper motors .. 103

Figure 50: Schematic modeling approach overview............................... 104

Figure 51: Relation map of "Rotational Energy Provision” requirement . 106

Figure 52: Overview over used stereotypes ... 107

Figure 53: User study experiment plan .. 112

 xvii

Figure 54: Full functional model of “Grind Coffee Beans” task, highlighting its

six top-level functions .. 115

Figure 55: Pruned functional model of “Grind Coffee Beans” task 116

Figure 56: Pruned functional model of “Brew Coffee” task 116

Figure 57: Overall perceived overall workload with standard errors from the

TLX tests by the means of weighted ratings 118

Figure 58: Perceived workload on day 3 without library support, shown for

each factor with its relative weighting 119

Figure 59: Perceived workload on day 3 with library support, shown for each

factor with its relative weighting... 120

Figure 60: Number of functions from the FB with and without function library

(with error bars and two outliers) ... 124

Figure 61: Relative number of functions from the FB with and without function

library (with error bars and three outliers) 124

Figure 62: Relative number of covered top-level functions compared to the full

master models with and without function library (with error bars

and one outlier) ... 125

Figure 63: Correlation between ratio of FB functions and covered top-level

functions relative to full master models 129

 xviii

Glossary

ABS Acrylonitrile Butadiene Styrene

AC Alternating Current

ACT Activity Diagram

BDD Block Definition Diagram

DC Direct Current

DRM Design Research Methodology

DSL Domain-Specific Language

EFFBD Enhanced Functional Flow Block Diagram

FB Functional Basis

FBS Function – Behavior – Structure

FDM Fused Deposition Modeling

GPL GNU Public License

IBD Internal Block Diagram

INCOSE International Council of Systems Engineering

MBSE Model-Based Systems Engineering

OCL Object Constraint Language

OMG Object Management Group

PAR Parametric Diagram

PKG Package Diagram

PLA Polylactic Acid

PSS Product Service System

SD Sequence Diagram

STM State Machine Diagram

SysML Systems Modeling Language

UC Use Case Diagram

UML Unified Modeling Language

1. Introduction

 1

1. Introduction

Current trends in product development show an increasing number of

required functions [5] to be fulfilled through the cooperation of multiple different

disciplines. Examples are mechatronic systems [6] and product service systems

(PSS) [7], which both extend traditional mechanical and electrical systems

through the integration of software and services, respectively. These multi-

disciplinary systems consequently have an increased complexity that must be

handled during product development. At the same time there is the constant goal

of reducing development time and cost.

The highest impact on the development costs exist during concept

development [8], where also the crucial interactions between the different

involved disciplines are defined. Yet, despite its importance there is little

computational support for concept design [9]. Developed concepts are solution

proposals described by characteristics that illustrate their unique selling points

compared with existing products [10].

One approach that focuses on the conceptual phase as well as the

cooperation of large multi-disciplinary teams is model-based systems

engineering (MBSE) with its standardized systems modeling language SysML

[11]. MBSE aims to increase productivity through minimized manual transcription

of concepts by using unified system models. Unified system models capture

knowledge in a central and consistent repository by combining system

knowledge from different disciplines, levels of abstraction and viewpoints. This

includes system design, analysis and simulation models to support the

development of successful systems [12]. The model-based representation

enables additional reuse potentials, e.g. to create concept models in a

1. Introduction

 2

composable way, further enhancing development productivity through design

libraries [5].

Based on previous work by Wölkl [13] this thesis presents a library-based

concept design approach for multi-disciplinary systems in SysML. It

includes the steps of decomposing the identified design problem into

manageable functions and finding suitable conceptual solutions [14]. This is

achieved by extending the graphical modeling language SysML with created

design libraries and design patterns for reuse. SysML models can represent

multi-disciplinary systems, including solution-neutral and comprehensive target

specifications and interconnected discipline-specific information.

 The design libraries contribute by formalizing established and proven

design knowledge from the design research, namely the Functional Basis (FB)

[15] for solution-neutral functional modeling, elements from a commercial

simulation tool [16] for behavior modeling and to plan multi-physics concept

simulation, and a service catalogue by Schmidt et al. [17] for service modeling.

Design patterns of object-oriented modeling capture expert knowledge in

the form of reusable solutions to known problems within their specific context

[18]. The role of the solution patterns in this approach is the formal

documentation of multiple concept solutions for identical functionalities. They

correlate library elements with other aspects to offer coherent subsystems in the

form of partial models.

To investigate the usability of the modeling support there is a small

scale user study conducted as well as a case study model created. The user

study investigates the use of the function library for its impact on modeling and

model quality. Its results indicate some benefits of reuse, including improved

model quality, formality and a risen modeling workload.

1. Introduction

 3

The case study is a SysML 3D printer model. It demonstrates the reuse of

elements from libraries and patterns for a multi-disciplinary system with

complementary services. The case study captures functional, behavioral,

structural and service knowledge in SysML, with the behavior model representing

simulation models for concept evaluation. Having all this conceptual information

within a unified SysML model allows traceability among system elements from

different disciplines and levels of abstraction.

The following section presents the detailed motivation, research goals and

a concluding overview of the thesis.

1.1. MOTIVATION

The conceptual phase of product development is a key phase for a

successful product [8]. However it lacks in practical computational design support

[9]. History shows a clear and rising growth for developed systems to have an

increasing numbers of components, interactions and especially functions that are

provided [5]. These indicators for system complexity are qualitatively illustrated in

Figure 1. This rising complexity is further enhanced by the involvement of

multiple disciplines [5], for example for mechatronics and PSS.

Figure 1: Historical trends of system complexity (adapted from [5])

1. Introduction

 4

Among the challenges of mechatronic design [6, 19-21] there is especially

the need to connect system elements and knowledge from different domains

together. For this, a domain-independent and solution-neutral basis, e.g. a

functional model, is required to integrate the different viewpoints. Functional

models are used for system decomposition [22-24] to handle the complexity of

multi-disciplinary systems by breaking down the system into manageable

elements to find partial solutions. Further traceability and reasoning is enabled

through explicitly linking the properties of multi-disciplinary solutions to domain-

independent system representations, e.g. functions [25]. These challenges are

similar for PSS design [26-28]. Here especially the relations between service

elements, the stakeholders and the physical system must be captured. The task

of finding and allocating solutions to the decomposed functions is also

comparable between mechatronics and PSS [29].

To support deciding among different alternative concept solutions, they

must be evaluated. The support of this step is another challenge in the

development of multi-disciplinary systems [19, 26]. One way to support it is the

integration of early simulation, as envisioned for MBSE in [5] or focused on in

simulation-based design [30]. For mechatronic or other multi-disciplinary systems

the simulation must be capable of handling the multiple disciplines and their

interactions, either by multi-physic simulation [16, 31] or co-simulation [32].

Simulating already during concept design also has the additional benefits of so

called “front-loading”, as presented in [33] where it is defined as “shifting the

identification and solving of [design] problems to earlier phases”.

Other challenges to develop these multi-disciplinary systems lie in a lack

of communication between the involved disciplines [19, 21, 28]. One reason for

this lack of communication is a missing common language for system

1. Introduction

 5

representation. Such a language needs a certain standardization and formality

with defined semantics to avoid ambiguity between the disciplines.

Following these needs for a multi-purpose language there exists the

modeling language SysML. SysML is part of MBSE and can serve as a

computational system model for concept design [34] according to the VDI 2221

[14]. It is also suggested for mechatronic systems [20] and used for PSS design

[35, 36]. To support the capabilities and use of SysML certain improvements are

suggested [37, 38]. These improvements do not focus on SysML itself, but rather

on its usability, e.g. lacking modeling methods, guidelines and the high effort to

learn it. Modeling support, for example, is much more sought after from

practitioners in industry than data exchange between tools [37]. An evolved

SysML should include precise semantics to avoid ambiguity and integrate fully

multi-disciplinary system representations, including analysis, simulation, and

verification [38].

Other needed improvements include libraries that extend the current

SysML notation. They are to support model construction by including the “ability

to repeat common modeling patterns […] to increase modeling productivity and

understanding” [38]. These means of reuse have potential in SysML [13, 39],

analog to reuse in object-oriented modeling of software development [40, 41].

Knowledge reuse is also necessary to reach the goals of the systems

engineering vision 2025 [5] of reducing lost knowledge between projects, which

results in increased cost and risk. It further states that combining “formal models

from a library of component, reference architecture, and other context models,

different system alternatives can be quickly compared and probabilistically

evaluated” [5]. This makes such composable design from design libraries a major

key to productivity, similar to the practices in electrical engineering [42, 43].

Certain recommendations are given to improve reuse in engineering design:

1. Introduction

 6

First, to “leverage the expertise of third parties to improve design reuse”, second

to “dedicate resources to prepare and verify designs for reuse” and third to “use

direct modeling technologies to modify existing designs into new ones” [44].

The raised formality that comes from reusing clearly defined elements

from libraries offers further advantages and therefore reasons for reuse. Informal

design methods lack in systematic guidance, leading to domain experts often

basing their work mostly on experiences, sometimes bias and not considering

alternative solutions [45]. Informal design is also more likely in failing to abstract,

document and represent the system for effective communication and reuse [46].

While avoiding these disadvantages formal design becomes increasingly more

important, especially for handling increasingly complex design tasks [47]. Further

opportunities of formal design include a forced “systemic thinking, which is often

expressed as holistic and function-based thinking” [37] and more precise

semantics to avoid ambiguity. Formally captured design knowledge enables

further computational support, for example consistency and compatibility

checking, a supported system evaluation [45, 48] or even automatic model

generation through computational design synthesis [9, 49, 50]. Such automation

also raises the chance of finding a novel and creative solution with more

generated concepts [51] and it enables a significant speed up of the whole

development process by again utilizing formal knowledge from libraries [52].

1.2. RESEARCH GOALS

The main goal of the presented work is it to improve the support for

concept modeling of multi-disciplinary systems by providing proven design

knowledge for reuse as formal libraries in SysML. It builds on previous work by

Wölkl [13] and extends it by validating the functional modeling library through a

user study, adding additional libraries for behavior and services as well as multi-

1. Introduction

 7

solution patterns. It creates a direct link to simulation and has an extended multi-

disciplinary focus on mechatronic systems and PSS.

A simplified research impact model, according to the Design Research

Methodology (DRM) [53], is given in Figure 2. It describes the relations between

influencing factors between success criteria and the design support. Its

connecting directed edges indicate how the factors influence each other. The “+”

and “-“ signs describe for instance that one factor with a poor state (-) results in

another factor having a strong state (+). Here it highlights the relations between

the success criteria of improved concept design, shown on top, and the

developed design support, shown on the bottom. Starting with an improved,

formalized and standardized provision of knowledge for reuse as the design

support, it enhances the key factors, which are identified as the abilities to reuse

Figure 2: Simplified research impact model, modeled in UML

1. Introduction

 8

existing design knowledge. These abilities then reduce the necessary modeling

workload, due to more reused elements. This in turn might lead to improved

concept model quality, which, together with the included concept simulation

capability, facilitates improved concept design. To validate the design support by

the measurables of Figure 2 a user study is conducted for the functional

modeling SysML library in Section 5. Other related factors exist, as partially

indicated on the Figure.

The following research questions are identified to reach the research goals:

 How can we support multi-disciplinary concept design?

 Which design knowledge should be integrated?

 At what level of formality and detail

should the knowledge be modeled?

 How can we link the modeled knowledge

from different domains and levels of abstraction?

 How can we link the concept model to

quantitative simulation models for evaluation of alternatives?

 What workflow can be provided to use the developed approach?

 Can the developed approach be used

to model mechatronic systems and PSS?

 How can the developed approach support the designer?

1.3. THESIS OVERVIEW

The research process follows the Design Research Methodology (DRM)

framework [53] to realize the presented research goals and answer the research

questions. This framework is shown in Figure 3. It has four different stages: (1)

research clarification, (2) first descriptive study, (3) prescriptive study and (4)

second descriptive study. During research clarification a worthwhile research

1. Introduction

 9

goal is defined through mainly literature studies. The first descriptive study

includes more specific literature analysis as well as empirical data to elaborate

understanding of the existing design situation and to identify major influencing

factors, e.g. displayed on Figure 2. The prescriptive study is for developing

support to improve the understood situation by addressing suitable factors to

reach a more desired situation. This is based upon the previous descriptive study

and uses mainly design experience and assumptions of the researcher. Finally,

there is the second descriptive study to evaluate the developed design support

through determining its impact on the current situation. It uses analysis, e.g. of

the results of a case study, or experimentation to gain empirical data. Iterations

between the stages and variations of this framework are necessary for its

application.

Figure 3: Design Research Methodology (DRM) framework [53]

1. Introduction

 10

The application of the DRM framework is shown in Figure 4 by the used

methodological research process. The numbers on the arrows in Figure 4

indicate the order of the individual process steps. The research starts with

clarifying and defining the research task together with investigating the two

preceding libraries by Wölkl [13]. After an additional descriptive literature study

the function library is iteratively improved, used for the case study and tested by

the user study as part of a second descriptive study. Further prescriptive studies

follow with the development of the behavior library, to also include simulation, the

multi-solution patterns and the service library, of which all are used for an initial

descriptive study, i.e. the case study.

Figure 4: Overview of methodological research process

1. Introduction

 11

The presentation of the research in the remainder of the thesis follows this

structure: In Section 2 the background of the research is summarized. It starts

with introducing systems engineering in Section 2.1, with the focus on MBSE and

SysML. Section 2.2 follows with an overview of the development of multi-

disciplinary systems, before Section 2.3 describes the Function – Behavior –

Structure (FBS) [54, 55] framework for a design process with distinct design

activities for decomposition and searching for solutions. To further elaborate on

functional modeling, Section 2.4 describes the use of functional modeling, its

definitions, controversies and introduces the Functional Basis (FB). Section 2.5

and 2.6 present libraries and patterns as means to formalize design knowledge

for reuse, including the used knowledge for the libraries. At the end of Section 2

further related work is presented in Section 2.7 for approaches in MBSE that use

SysML, FBS or include behavior simulation. They are used for the further

identification of the research gap, addressed in this work.

Section 3 introduces the case study, which is a 3D printer model in

SysML. In Section 3.1 it is presented generally before an overview over its model

implementation follows in Section 3.2. It uses elements from the libraries and

patterns. Hence, it is used in the following sections to illustrate their use.

The main Section 4 presents the concept modeling approach in SysML.

After an initial overview in Section 4.1, Section 4.2 describes the function library,

Section 4.3 the behavior simulation library, Section 4.4 the service library and

Section 4.5 the multi-solution patterns. Each of the library sections first defines its

library before demonstrating the use within the case study. The multi-solution

patterns section additionally gives an example pattern in between. The results of

the library and pattern use for the case study conclude Section 4 in Section 4.6.

The following Section 5 contains the functional modeling user study with

its experimental set-up in Section 5.1 and results in Section 5.2. The results

1. Introduction

 12

include statistically significant relations, which indicate a good user acceptance of

the design library in SysML, resulting in a greater use of the FB and improved

model quality. Yet, at the same time the perceived workload increases, too.

The modeling approach is discussed in Section 6. The discussion is

separated into modeling with library and pattern support in the Sections 6.1 and

6.2. For both parts there are identified advantages and disadvantages stated,

resulting from the descriptive studies and comparison to related work. The thesis

is summarized in Section 7, stating the main contributions, limitations and future

extensions. Section 8 concludes the work.

2. Background

 13

2. Background

The following section presents the background of the research with its

most important concepts. It starts with systems engineering, to introduce MBSE

and SysML, followed by aspects of the development of multi-disciplinary

systems, the FBS framework, functional modeling, design libraries, design

patterns and ends with related work in the form comparable approaches.

2.1. SYSTEMS ENGINEERING

The presented work is heavily based on systems engineering principles,

with their focus on the multi-disciplinary early development phases. Systems

engineering is defined as “an interdisciplinary approach […] to enable the

realization of successful systems. It focuses on defining customer needs and

required functionality early in the development cycle, documenting requirements,

and then proceeding with system synthesis and system validation while

considering the whole problem” [56]. The accompanying definition of system is:

“An integrated set of elements, subsystems, or assemblies that accomplish a

defined objective. These elements include products (hardware, software,

firmware), processes, people, information, techniques, facilities, services and

other support elements” [56].

2.1.1. Model-Based Systems Engineering (MBSE)

According to the International Council of Systems Engineering (INCOSE),

MBSE is defined as “the formalized application of modeling to support system

requirements, design, analysis, verification and validation activities beginning in

the conceptual design phase and continuing throughout development and later

life cycle phases” [12]. For the term model there exist many different definitions,

which have in common that they refer to a model as a usually abstracted

2. Background

 14

representation of selected aspects of a system to promote selective

understanding of the real system [57].

Generally MBSE is seen as an effective means for developing complex

systems [58]. Compared to traditional document-based design, in model-based

design it is implied that the models compose an integral set of representations.

Such MBSE models are meant to be a “single source of truth” [59, 60],

meaning that all system information is captured at a central repository. This

includes formally captured design decisions and reasoning [61]. Within the model

various elements are interconnected, to allow retrieving desired information

through traceability [62], as well as automatic change propagation, consistency

checking and error identification [63]. Through the included model verification

and validation, MBSE enables an earlier aquisition of crucial information, leading

again to benefits of “front-loading” [33]. By capturing design knowledge in a

model-based way, MBSE allows the reuse of model elements [63], which is

utilized in this work. Coming from reuse of object-oriented data in software

development [40, 41] there are for example libraries or patterns to capture

proven design knowledge for further development projects.

Another major benefit of MBSE is improved communication between

stakeholders from various domains and disciplines. Systems engineering

requires clear and unambiguous communication of the design problem, possible

solutions and design reasoning [56]. By creating views from the unified system

model different aspects of the model can be represented, fitting to needs and

background of the user. This way MBSE provides an abstracted representation,

suitable for all involved disciplines. The generic system model then builds the

foundation for following discipline-specific detailed development activities [64].

To implement MBSE there is cultural change as well as a well-defined

methodology required. This includes training in language, methods and tools

2. Background

 15

[37]. To support MBSE there are many modeling tools on the market. Some

tools, e.g. ModelCenter [32], are meant to integrate simulation tools to create and

automate simulation workflows and offer shared data from a repository. Other

tools focus on system modeling, e.g. Magicdraw [65]. It enables modeling with

the modeling languages UML and SysML, but needs for instance additional

software to include simulation.

An overview of common methodologies, as related processes and

methods in MBSE is provided by Estefan in [66]. It is noted that “most of the

MBSE methodologies surveyed […], incorporate the UML and/or SysML into

specific methods and artifacts produced as part of the methodology” [66]. The

same is true for the approach presented here that uses SysML. Reasons for the

lacking acceptance and application of MBSE in industry indicate that there is

neither a broad agreement on systems engineering processes, nor on the proper

use of tools to handle system complexity [67]. This refers back to the use of the

selected modeling language SysML, which needs further improvements in

respect to its usability [37, 38]. A brief presentation of SysML is now given.

2.1.2. The Systems Modeling Language SysML

The systems modeling language SysML is defined as “a multi-purpose

graphical modeling language, for specifying, analyzing, designing, and verifying

complex systems that may include hardware, software, information, personnel,

procedures, and facilities” [11]. Its current version is 1.4. SysML is developed

under the Object Management Group (OMG), based on its unified modeling

language UML [68, 69] for software development. SysML reuses and extends

UML diagrams, as shown in Figure 5. This relationship to UML also serves as a

natural link to software development, based on multi-disciplinary SysML models.

2. Background

 16

Figure 5: Overview of SysML/UML interrelationship (adapted from [11])

To improve the readability of the presented text there are certain

formatting conventions applied regarding SysML. To highlight that certain

terms come from SysML they are written in italic in the following descriptions. To

extend and customize SysML there are stereotypes used. They are an

extensibility mechanism of SysML to derive new types of modeling elements, e.g.

for a domain specific language (DSL). Custom stereotypes of the presented

approach are written in <<theses>> brackets, accordingly to their representation

in SysML. Names of model elements of the case study are marked in “these”

brackets, i.e. similar to citations from the SysML model.

The nine diagrams of SysML are displayed in Figure 6 [11]. There is the

requirement diagram (REQ), which graphically depicts text-based requirements,

their interrelations and other model elements that satisfy or verify them. The

package diagram (PKG) serves quite flexibly to organize the model in packages.

The block definition diagram (BDD) represents structural elements as

blocks with their interrelationships, e.g. by associations or generalizations. Blocks

are defined in SysML [11] as modular units of the system description to provide a

general-purpose capability to model systems as trees of modular components.

2. Background

 17

Figure 6: SysML diagram taxonomy [11]

They can for instance have properties to specify its values or parts by

value properties and part properties. A property has a type that supplies its

definition. A part property belonging to a block, for example, may be typed by

another block. Example elements from a BDD are shown on the lower left side of

Figure 7. There are for instance generalizations between a more general

“Generic System” and its two more specific “System 1” and “System 2”. With

generalizations the specific element inherits the features of the more general

element [69]. Here it is the value property, whose default value “DefaultValue”

gets redefined into “Value 2“. There are also two types of associations used: one

general association and two composition relations between “System 1” and its

thereby assigned part properties with the types “Part A” and “Part B”. The relation

to “Part A” has a multiplicity of “1..*” and not the standard multiplicity on one,

meaning that “System 1” has one or more of “Part A”.

The related internal block diagram (IBD) shows the internal structure of

a particular block in terms of properties and connectors between them. To

specify the involved interfaces, ports are used. “Ports represent interaction points

2. Background

 18

between a classifier and its environment. The interfaces associated with a port

specify the nature of the interactions that may occur over a port” [69]. Extending

the standard UML 2 ports there exist flow ports in SysML, which are deprecated

in the current version 1.4, but still used here. “Flow ports are interaction points

through which data, material, or energy can enter or leave the owning block” [11].

This way they specify the “input and output items that may flow between a block

and its environment” [11]. Example elements from an IBD are shown on the top

right corner of Figure 7. There are the two part properties of “System 1” with their

interconnected ports. The ports have the interface blocks from the bottom of

Figure 7 as types with matching input and output flow properties. The similar

parametric diagram (PAR) displays equation systems as constraints on

properties, to support analysis.

Figure 7: BDD and IBD example

2. Background

 19

The use case diagram (UC) describes how a system is used by its actors

to accomplish its goals. Actors are defined to specify “a role played by a user or

any other system that interacts” [69] with the system. Use cases are specified as

s “set of actions performed by a system, which yields an observable result that is,

typically, of value for one or more actors or other stakeholders of the system”

[69].

The activity diagram (ACT) represents behavior in terms of actions

based on their inputs, outputs, control and how the actions transform the inputs

to outputs. This way they can show the complete flow of system operations. One

ACT displays one particular activity, which represents behavior that is composed

of individual elements, e.g. activity nodes such as actions [11]. The actions

represent the single steps within an activity, which are not further decomposed

within the activity. However, call behavior actions reference an activity definition,

in which case the execution of the call behavior action involves the execution of

the referenced activity [69]. In Figure 8 there is the call behavior action

“ActionName” with the called activity “CalledActivityName”. Its two pins are

“typed elements and multiplicity elements that provide values to actions and

accepts result values from them [69].

Figure 8: ACT example diagram

2. Background

 20

They correspond to the parameter nodes of the called activity, which have

a direction and type defined. “Activity parameter nodes are object nodes at the

beginning and end of flows that provide a means to accept inputs to an activity

and provide outputs from the activity, through the activity parameters” [69]. In

Figure 8 the types of the activity parameters for both activities are “FlowType 1”

and “FlowType 2”. The activity parameter nodes and pins are connected by

object flows, which are activity edges that have objects or data passing along

[69]. The outgoing object flow in Figure 8 has additionally a weight of “3”

assigned to specify ”the minimum number of tokens that must traverse the edge

at the same time” [69]. Besides the object flow there exist the control flow, which

is an edge that starts an activity node for sequencing their execution [69]. Figure

8 shows a control flow, that starts at an initial node, goes to a decision node for

modeling a loop and ends the execution of the activity at an activity final.

The sequence diagram (SD) represents the system behavior in terms of a

sequence of messages exchanged between elements. They include explicit

duration and timing of these interactions. The state machine diagram (STM)

contains transitions between states triggered by events. Examples for often used

states are “On” and “Off”.

With these diagrams used for MBSE, SysML allows formal modeling for

its so called four pillars: for requirements, behavior, structure and parametrics.

The integration to other engineering aspects, especially for analysis and more

detailed discipline-specific design, is designated. An example framework is

shown in Figure 9. To interconnect model elements from all diagram types cross-

cutting relationships, e.g. allocations, are used. One example is given with the

callout notation in Figure 8, showing the allocation from the action to the block

“Part A” of Figure 7. Here a so called allocation from usage to definition is used.

2. Background

 21

Figure 9: SysML system model as a framework for analysis and traceability
(adapted from [70])

Allocations of usage apply when both ends of the relation are usage elements,

e.g. parts, actions or connectors. Allocations of definition apply when both ends

of the relation are elements of definition, e.g. blocks, activities or use cases.

“When allocating definition, every usage of the defining element retains the

allocation [whereas the allocation of usage] is only specific to that [usage], not to

any other similar [occurrences], even if they are typed by the same block” [70].

As a modeling language SysML is defined by its syntax and semantics.

For the syntax there is abstract and concrete syntax. For semantics there are

static and dynamic semantics [71]. Abstract syntax, i.e. grammar, defines the

syntactic elements, e.g. letters, and clarifies how they build up constructs, e.g.

words. Concrete syntax defines the means of expression, e.g. the notation or

form of presentation. Static semantics defines how constructs have to be

combined to be meaningful, while the dynamic semantics describe which

2. Background

 22

meaning is contained [72]. Following these definitions, SysML provides a clear

abstract syntax that has to be obeyed while modeling, together with a limited and

adaptable concrete syntax. Semantically it also provides some static semantic

rules, e.g. about specialized dependencies. Additional dynamic semantics are

provided by the following design libraries, e.g. by the FB descriptions [15].

This provided formality of SysML reduces ambiguity and is together with

its standardization an additional reason for selecting SysML. With its

standardization it is well-known in industry and even envisioned to become the

standard systems engineering language [70]. As such it manages complexity,

improves communication and enhanced understanding [73] by offering general

and multi-discipline applicability and adaptability.

2.2. DEVELOPMENT OF MULTI-DISCIPLINARY SYSTEMS

An overview over different methodologies and methods for the

development of multi-disciplinary systems is given by Eigner in [74] additionally

to MBSE methodologies by Estefan in [66] and PSS methodologies by Vasantha

et al. in [28]. Relevant examples for multi-disciplinary systems, whose concept

design is to be supported, are mechatronic systems and PSS. While multi-

disciplinary systems are defined as those that involve elements from any

different disciplines and domains, mechatronic systems are defined as a

combination of mechanics, electronics and software. Their focus lies in the

extension of mechanical systems through electronic sensors and controlled

actuators [6]. PSS are defined as systems to enhance value “through the mutual

provision of a product [and] service” [7]. Their services are defined “as a set of

activities to deliver service contents from service providers to service receivers

through service channels” [26] to “contribute to the realization of service goals”

[26]. Taking up the challenges of the development of multi-disciplinary systems

2. Background

 23

from the motivation, one main aspect is the integration and cooperation of all

different involved disciplines, including services [19-21, 26-28].

Several example methodologies are presented to gain an understanding

of the development process in each separate domain and for multi-disciplinary

systems. The VDI 2221 [14] for technical systems is an example from

mechanical engineering. It provides the basic concept design tasks in Section

4.1. An example methodology from electrical engineering is the similar VDI/VDE

2422 [75]. A difference between mechanical engineering and electrical and

software engineering is the role of behavior. While in mechanical engineering

behavior is a result of the developed system, the other disciplines use a desired

behavior as part of their requirement specification [74]. Such a behavior is then

more similar to the functions of mechanical engineering, which are not used. An

example is the Y-diagrams of Gajski [76] for embedded system design. Also for

developing electronic embedded systems there exists refined automated design

support [42, 43]. It utilizes defined functional, logical and physical elements for

composable design and simulation. Yet, a direct translation of these automation

capabilities into mechanical design cannot be expected [77].

From software engineering comes the object-oriented modeling language

UML [68, 69], the basis of SysML of Section 2.1.2. An example for a software

engineering methodology is the spiral model of Boehm [78], which is also the

origin of the V-model of the VDI 2206 [79] for mechatronic systems. The V-model

serves as a macro cycle within which the developed concept modeling approach

here can be put into a broader context in Section 4.1. It combines discipline

specific detailed design at the bottom of the V-model with unified development at

beginning and end for concept design plus system testing and verification. For

the development of multi-disciplinary PSS there exists, for instance, the service

CAD approach by Komoto and Tomiyama [26], which focuses on service

2. Background

 24

formalization and systematic generation of PSS. A final current multi-disciplinary

design framework for developing cyber-physical and mechatronic systems is

from the research project mecPro² [80]. It is based on the VDI 2221 [14] and the

similar SPES modeling framework [81] for embedded systems. Here it is

considered for its levels of abstraction and consideration of SysML. Further

insight into SysML and model-based systems engineering is given in Section 2.1.

2.3. FUNCTION – BEHAVIOR – STRUCTURE (FBS)

Function – Behavior – Structure is a framework developed by Gero [54] for

engineering design. It describes design processes with distinct design activities

for decomposition and the search for solutions. As such it is used for model-

based knowledge representations. It uses solution-neutral functional models to

capture the purpose of the design object. More details about functional modeling

are given in the following section. Next comes the behavior, which is often

modeled through a network of physical effects that fulfill functions by realizing

them through working principles, e.g. by Helms and Shea in [82]. Similarly there

exists Function – Behavior – State by Umeda et al. [55], who defines his behavior

to cause state transitions, which are captured on the state level. In both ways,

the behavior realizes the functions in a physical, but component independent

way. This kind of expected behavior represents the system’s expected

interactions for guidance and evaluation of potential design solutions. It is often

differentiated, e.g. by Kannengiesser and Gero [83] towards the so called

structure behavior. The structure behavior includes properties of the system that

are derived from the observation of a specific design solution and its interactions

with the environment. It is used for the comparison with the expected behavior to

evaluate design solutions. It requires the final structure level of FBS. This

structure contains mostly physical components, i.e. it can also include software

2. Background

 25

or services, to provide the embodiment of the target functionality and respectively

the physical effects of the expected behavior [3].

The Function – Behavior – Structure (FBS) ontology is an underlying

foundation of the presented approach, even though the levels presented in

Section 4.1 are not called as in FBS. With the provided libraries there is support

for functional modeling, behavior modeling and final structural or service

modeling, which reflects a FBS proceeding. One reason to not directly use FBS

is to avoid limiting the modeling on using only provided behavior elements, when

any description of the principle solution can be used to concretize the functions.

An extensive behavior model, for instance, is only used when a more direct

progression from function to structure is not possible [84]. Also, the behavior

library can be used for its simulation capabilities after having certain structural

elements identified. Other reasons for not directly choosing FBS are that the final

structure level contains more than just the mechanical system structure, e.g.

software or services, supported through the service library. Also, not using the

term structure helps to avoid ambiguity e.g. compared to function or behavior

structures, which are also structures.

2.4. FUNCTIONAL MODELING

For functions and functional modeling there exist many different

definitions. The functions used here are defined as “input/output relationship[s]

with the flow (noun) describing the in- and outputs and the operator (verb)

describing the change between in- and output to express what a system should

do” [3]. This is based on the approach by Pahl and Beitz [23] together with the

taxonomy defined in the Functional Basis (FB) [15]. At the same time it conforms

to the systems engineering definition of functions stated as “transformations of

input flows into output flows performed by the system to achieve its mission” [57].

2. Background

 26

2.4.1. Use of Functional Modeling

Despite the usefulness and benefits of functional models there is generally

a lack of practical application of functional modeling in industry [29, 85, 86]. Yet,

“considering the impact of the work on industry practice, the use of function has

gained ground over the past decade” [87]. This might relate to its solution-neutral

and therefore discipline-independent knowledge representation fitting for the

development of multi-disciplinary systems.

The use of functional models for the development of mechatronic systems

is common and shown through multiple examples by Van der Auweraer et al. in

[19]. For the concept development of PSS, functional models are also used, as in

[7, 24] or reasoned in [29]. Further related reasoning about functions in product

design and functional modeling approaches is given by Wölkl in [13], in the

review papers of Erden et al. [88], Deng [84] and with a special focus on

functional modeling across disciplines in [89] from Eisenbart et al.

According to Saunders et al. [90] functional modeling contributes to

achieving innovative products, e.g. by identifying additional functionalities or

changed functions in the system. Functional models allow a high-level system

overview to ensure fitting abstraction levels, even if the implementation is still

unclear or not yet known [59]. Such abstract representations decompose what a

system is supposed to do in a solution-neutral way. Hierarchical decompositions

are required to derive “components in any complex system [that] will perform

particular sub functions that contribute to the overall function” [91]. Besides this

enabled search for partial solutions, functional models also allow to trace

fulfillment of functional requirements and they reduce the danger of making

models too detailed through over-modeling and redundancy [59]. This role of

functions as integration elements makes it “possible to describe a system at

different levels of detail, focusing on the points of interest to the user while

2. Background

 27

maintaining coherence of the model” [21], which is identified to be crucial for

developing multi-disciplinary systems. To summarize, functional modeling can

provide “both a better understanding of increasingly complex systems and

possibility for making use of ever increasing computation capabilities” [88].

With functional modeling being used in different disciplines in different

ways, there are several controversies. In [89], for example, there are seven

different functional modeling perspectives identified, which are used in various

combinations. Another example for the varying understanding of the term

“function” comes from Albers and Zingel [37] and their conducted study. Some

derived contrasting statements are illustrated in Table 1.

Functions describe the designer's
intention of the purpose of a design

Functions realize functional requirements

Functions are abstraction of intended and
useful behavior of an artifact [84]

Functions can be described
in mathematical terms

Functions are abstract
specifications of transformations

Functions describe an active behavior
Functions are an interaction of

components to achieve a certain behavior

Functions are characteristic tasks, actions,
or activities that must be performed to

achieve a desired outcome [56]

Functions are transformations of
(matter/energy/information) input flows into

output flows performed by the system to
achieve its mission [57]

Functions describe the effect of the object
on the environment [92]

Functions describe internal parameters
of the object [92]

Table 1: Contrasting pairs of aspects related to the term "function" (adapted from
[37])

As indicated there, a broad variety of meanings of functions coexists.

Functions can focus on subjective system purpose, its actions, behavior, effects

on external elements or the internal interactions. Their representation can vary

2. Background

 28

from limited sets of verb and noun pairs [15] to mathematical equations or free

sentences [2]. Their uniting factor is to bridge between human design intention

and physical artifacts, i.e. their “common role of relating goal descriptions of

devices with structural descriptions of the devices in a general and

interdisciplinary way” [93]. As argued by Vermaas [93] this coexistence is

required, because the meaning of specific functions in a functional model

depends on the particular development task. To address this coexistence of

different functional modeling approaches and to refine the functional modeling

approach that is used here, a systematic comparison of different functional

models in SysML was conducted [2].

Another minor controversy about functional modeling is its claimed

solution-neutral representation compared to a more solution-afflicted

representation. Here it is concluded that “functions are not completely solution-

neutral, but they are also not component-afflicted” [37], which makes them close

enough to be solution-independent on a conceptual level where still multiple

different concrete realizations may provide the functionality [3].

2.4.2. The Functional Basis (FB)

Also due to the many coexisting functional modeling approaches “it is

important to communicate abstract functions in a consistent manner” [87]. Also

human design intention is an abstract and subjective concept, which is not easy

directly used as the function description [94]. This leads to a need for

formalization. One widely accepted attempt to standardize and formalize

functional modeling by addressing a lack of semantics is the Functional Basis

(FB) by Hirtz et al. [15]. It reconciles and evolves previous work [95, 96] to offer a

controlled vocabulary with defined semantics to reduce ambiguity of functional

models

2. Background

 29

The FB contains 53 verbs for functions together with 45 nouns for flows,

each organized in a three-level hierarchy. The highest-level hierarchy terms, e.g.

“material”, “energy” and “signal” for flows and “convert”, “connect” or “support” for

functions, are the most abstract. The following two hierarchy levels contain more

details, e.g. “mechanical energy” or “rotational mechanical energy”. An excerpt of

FB hierarchies are given in Figure 20 and Figure 22 with the function library. All

terms of the FB have descriptions to define their semantic meanings also through

basic examples.

In general using the FB results in better designed products [97] and

more critical thinking by students in engineering design courses [87]. Work by

Caldwell et al. [98-101] to empirically evaluate the use of the FB shows that the

second hierarchy level of the FB is the most informative [100], which is used

almost exclusively by modelers [101]. Yet, the use of additional free language

within a model greatly increases the understanding of the model due to provided

context that helps the user [98]. This is especially true for flow nouns, which can

not only offer additional knowledge to increase the expressiveness, but also

reduce the uncertainty [102]. In general there is an increase of the functional

quality of ideas generated by designers for generating high quality concepts [98],

especially for compact and pruned models that use the FB.

2.5. DESIGN LIBRARIES AS KNOWLEDGE BASES

Design libraries are a major method to support reuse through the provision

of formalized knowledge. This section presents first the reasoning for focusing on

libraries for concept modeling in SysML and second the used knowledge bases

to be incorporated into SysML libraries.

2. Background

 30

2.5.1. Why Libraries?

With a major goal of MBSE being the integration of systems knowledge

within a unified representation, e.g. with SysML, it is questioned by Reil [60], why

one should have libraries directly in SysML? The answer is that the libraries can

be integrated by having them in SysML, since in SysML all conceptual design

knowledge is captured and therefore the reusable design knowledge must be

provided. Libraries are a common means of reuse, for example established in

object-oriented software development [40, 41], where systematic reuse is the

most effective way to significantly improve development. Such libraries provide

collections of basic software functionalities for the designers. The provided

knowledge is hereby barely interconnected, in contrast to e.g. frameworks [41].

There are two ways to use elements from object-oriented libraries: their direct

instantiation or to derive more detailed objects through inheritance.

In engineering design, for instance of PSS, reuse is also of high

importance with “design knowledge obtained from past product cases provid[ing]

helpful information to designers, especially in the conceptual design phase” [7].

The generally claimed benefits of reuse are faster development, reduced

development risk and better understanding of the system through standardization

[39, 103]. In engineering design there also exists a potential for increased design

quality and productivity through design reuse [44, 104]. For example it is

identified that “reusing an existing design can save 30%-80% of design time for

new products associated with existed models” [44]. With respect to reusing

knowledge resources, e.g. from libraries, their reuse provides the greatest

foreseen benefits with advantages of over 20% improvement of time, quality or

performance [105]. Fitting to the recommended actions to improve reuse [44],

libraries provide resources to prepare and verify designs, they support modeling

to reuse the existing design knowledge and they enable the reuse of third party

2. Background

 31

expert knowledge. Such external knowledge is used as knowledge bases for the

libraries, as explained in the following section.

2.5.2. Knowledge Bases Used

Reusing existing third party expert knowledge [44] also supports the quick

building of a “critical mass” of reusable components [106], to make managing

their reuse worthwhile. Therefore different existing knowledge resources are

utilized here and formally modeled in SysML:

 Functional Basis (FB):

The FB for the function library of Section 4.2 is introduced previously in

Section 2.4.2.

 LMS Imagine.Lab Amesim:

LMS Imagine.Lab Amesim [16], or in short Amesim, is a multi-physics

simulation tool of Siemens LMS. Amesim models are essentially graphical

representations of differential equation systems. These time-dependent physical

equations of component behavior are based on bond graph theory [107]. Amesim

comes with a database for two types of components, physics-based ones, e.g.

mechanical, hydraulic, thermal, or electric elements, and applications oriented

elements, e.g. for powertrains or cooling systems. Its provision of well

documented, scalable and especially valid, evaluated and proven design

knowledge within its database is the main reason for selecting Amesim instead of

e.g. Modelica [31]. Here its database is implemented in the behavior simulation

library in Section 4.3. An excerpt of an Amesim model is given on the right side of

Figure 35.

To clarify the following implementation and usage details in Section 4.3,

the underlying bond graph theory is briefly presented. It is for graph-based,

multi-domain modeling based on the conservation of energy. Along its bonds,

2. Background

 32

power is transmitted in the form of effort and flow variables, e.g. the

electromotive force [15] and current for electrical power or the force and velocity

for translational mechanical power [107]. To derive usable equations there must

be a causality defined for each bond. Causality means that the node on one side

of the bond defines the effort variable and the node on the other side defines the

flow variable. When setting up the network of bonds, the causality is forwarded

from nodes with fixed causality. If different causalities would be applied to a

single bond there exists a causal conflict and the model must be changed

accordingly until all causality is valid. Additional information about bond graph

theory is available by Borutzky in [107].

 Service Catalogue:

The service catalogue by Schmidt et al. [17] is used here. It contains a

hierarchy of generic services. Its intention is it to help designers to identify

suitable types of services for PSS. The catalogue focuses on industries, which

are providing complex technical products. This focus results in certain limitations

together with the time-dependency of the data acquisition for the catalogue.

From initially over one thousand services from sources in literature and

companies the catalogue contains 265 services, grouped into 63 clusters, 19

super clusters in four categories. The four main categories are: “services

supporting consumer customers”, “services supporting business customers”,

services supporting product” and “services supporting outcome”. The clustering

process involves among other things 53 additional customer functions to help

identify identical and related services. This underlying functional foundation is

also a reason for selecting the presented service catalogue.

Alternative service categorizations [108, 109] exist mostly in

classifications of services, which are too abstract to support practitioners in

finding new concrete services. Other existing service ontologies [110, 111] also

2. Background

 33

do not suggest concrete services and more are used for structuring services.

Comparable service taxonomies [112, 113] focus only on the differentiation of

services by defining criteria. Their “way of identifying new services is not easily

applicable for practitioners, as they first have to understand the taxonomy and

derive their services from” it [17].

 eCl@ss Standard:

The eCl@ss standard [114] is a cross-industry data standard for the

classification of products. It has a hierarchical system with properties for a

detailed product description. It is used for a SysML structure library by Wölkl [13]

for generic and mostly structural elements that realize the modeled functions, as

done here, too. The elements in the structure library have additional object ports

for the functional flows of the function library. These object ports serve for the

identification of matching functions by offering relations between abstract

functions and specific components. This capturing of function-component-

relations knowledge is similar to function component matrixes [87].

2.6. DESIGN PATTERNS

To enable reuse in addition to libraries there are also design patterns to

capture recurring solution knowledge. They too fit to the recommendations for

action to improve reuse [44], by providing verified solutions for the modification of

existing designs into new ones.

2.6.1. What are Patterns?

Based upon the initial use of patterns in architecture in 1977 with the

fundamental idea that “all creation is simply an imitation of an original pattern"

[115], there are well known and commonly used patterns in software engineering,

e.g. by the so called “gang of four” [18]. Their definition of a design pattern is

“captured expert knowledge in the form of reusable solutions to known problems

2. Background

 34

within their specific context” [18]. To document these solutions there are several

elements mandatory: all patterns need a unique name, a problem description, a

description of the provided solution, the forces, i.e. often contradictory

considerations that must be taken into account, and the context in which the

pattern can be applied. Additional obligatory information can also be

documented. For example the resulting context, design rationale or application

examples [116].

From industrial experience of applying patterns in software

engineering [117, 118] it is known that patterns support the communication of

complex solutions and are useful to encourage the reuse of best practices

extracted from working designs. Yet, their creation is also difficult and time-

consuming, requiring successful documentation of the essential parts of working

designs. Further claimed benefits of the use of patterns [118] are an increased

productivity and program quality together with a skill increase of novice

designers, learning from proven solutions. Criticisms of pattern application [119]

focus on lacking formal foundations and that patterns target the wrong problem in

a sense that solutions should not be copied to avoid resulting inefficiency.

2.6.2. Patterns in Engineering Design

Existing work about the application of patterns in systems engineering

by Cloutier and Verma [106, 120] takes up the design patterns of object-oriented

software development. They provide a framework for their documentation,

classification, and management with the goal of the systems engineering

community building itself “a maturing source of patterns that can be leveraged for

enhanced engineering effectiveness and efficiency” [120]. Work done by Hein et

al. [121] and Kruse [39] for instance suggests a two-fold approach to extract

patterns for SysML: By analyzing and taking over software patterns and by

2. Background

 35

extracting patterns from SysML best practices. Other current examples for MBSE

patterns exist from Weilkiens et al. [59] with the more high-level “Zig-Zag”

development pattern or patterns for SysML diagram layout.

For mechanical engineering, or to be more specific for mechatronic

systems, there exist the solution patterns from Anacker et al. [122, 123]. They

are defined to describe domain spanning principle concept solutions. They

describe these concept solutions in the form of partial models that include

various aspects to offer coherent subsystems. The following aspects are part of

their description: pattern feature characteristics, context, functions, active

structure, solution principles and behavior in the form of activities and state

transformations. This specification allows a holistic and domain-spanning model

representation. It forms a basis for communication and cooperation of the

designers from different disciplines during the development process [122].

For solution patterns in engineering design in general it is claimed that

“most design processes in practice consist of combining known, preferably well-

proven solution patterns” [124]. Here a broader definition of solution patterns is

used. They are simply defined as aggregations of characteristics and properties

with known relations between the two. These characteristics and properties

follow hereby the CPM approach of Weber [125] with characteristics standing for

directly influenceable structural information of a product and properties

describing the product’s resulting behavior. Such solution patterns allow two

ways of product innovation: By either replacing one or a few solution patterns in a

design or by developing an entirely new solution pattern. Other existing patterns

in engineering design are, for example, from Salustri [126], which are very

abstract, generic and not model-based, or from Deigendesch [127], which are

text-based patterns specifically for micro engineering.

2. Background

 36

2.7. RELATED WORK

For additional background information there exist also several related

approaches to the work in this thesis. Based on FBS by Gero [54] and Umeda et

al. [55] there exists, for example, the KIEF framework by Yoshioka et al. [128].

KIEF stands for Knowledge Intensive Engineering Framework. It uses a physical

concept ontology to integrate engineering knowledge. An approach for concept

generation from a functional point of view is also described by Kurtoglu et al.

[129]. It derives the structural model directly from a flow-based function structure

by relating functions with components according to pre-defined rules. Yet,

despite custom computational support both of these two approaches lack in

standardization and application. Another FBS-based approach is RFBS with

added requirements, for instance as implemented with SysML by Christophe et

al. [130]. It focuses on automatic synthesis of conceptual design solutions by

reusing knowledge from ontologies. The automation method maps each function

to one or more of six abstract organs using an “online sematic atlas, based on

contextual closure between verbs” [130]. The combination of organs then leads

to different structural possibilities. Yet, this implicitly limits the solution space

through the reduction from functional structures to combinations of only six

different organs.

Related MBSE concept modeling approaches in SysML are, for

example, the FUSE method by Hutcheson et al. [131] or the FAS method by

Lamm and Weilkiens [132, 133]. FUSE [131], i.e. function-based systems

engineering, applies functional modeling to formalize and integrate mapping of

customer needs to desired functionality, behavioral modeling as well as the

identification, modeling and selection of solutions in SysML. Yet, compared to the

work in this thesis it lacks in formalization and modeling support. The FAS

method [132, 133] uses blocks and IBDs for functional modeling in SysML

2. Background

 37

instead of activities and ACTs used here. The syntax of blocks and IBD is also

suitable for function structures. Yet, blocks are defined in the SysML specification

as modular units of the system description, i.e. parts of the system [11]. A

function on the other hand is an abstract and qualitative description of what a

system is doing with respect to its conversion of input flows into output flows.

This matches with the here selected activities on ACTs, which are “used to

describe […] the flow of inputs and outputs among actions” [11]. Also there are

no further defined semantics in the FAS method, e.g. from the FB. Instead it

focuses on the grouping of functions according to criteria that should be based

on conceptual rather than technical aspects, to not move away from a solution-

neutral functional model.

Other approaches especially for the development of mechatronic

systems with SysML are the SysML extension of Chen et al. [134] and the

design framework of Wu et al. [135]. Both approaches use functional modeling

for an initial domain-independent representation and include some geometry

information for early virtual prototyping. Yet, this complexity makes especially the

approach of Chen et al. [134] into a collection of many highly specific SysML

extensions and consequently even more difficult to learn and properly implement

than standard SysML [37]. Similar to FAS, Wu et al. [135] also focuses on the

definition of fitting modules while neglecting to integrate knowledge for reuse.

Approaches for the development of PSS are, for example, the PSS

design process proposed by Kim et al. [24] and the knowledge management

method for supporting conceptual design of PSS by Nemoto et al. [7]. The six

defined steps of Kim et al. [24] are requirement identification, stakeholder activity

design, PSS function modeling, function-activity mapping for PSS concept

generation, concept detailing and finally prototyping. These steps are not

fundamentally different to some mechatronic design processes, showing again a

2. Background

 38

fundamental analogy towards mechatronic design, fitting to [29]. The knowledge

management method of Nemoto et al. [7] presents a PSS design catalogue

knowledge representation with its specific design catalogue viewer to retrieve

knowledge. While the potential reuse of formal service knowledge is beneficial,

there is limited expressiveness of non-service aspects. Superior in these terms is

the model for designing generic services in SysML, by Dhanesha et al. [35]. It

presents a highly specific SysML extension for formal service modeling.

Based on the search for an integrated functional modeling framework

across disciplines [89] there exists a DSM-based framework by Eisenbart et al.

[136]. It has a flow-based functional representation at its center and use cases,

actors, states with their transformations and interactions adjunct. This is

comparable to modeling in SysML with ACT, UC, STM, SD and cross-cutting

relations. While there are advantages and disadvantages with respect to

readability on both sides, SysML has advantages with its mature tool support,

potential for object-oriented reuse and extendibility, which come with a higher

learning effort and needed guidance [137].

Considering approaches that integrate behavior simulation there is

first of all the work of Wan et al. [138]. It automates the mapping between

functions and Amesim simulation model components for direct concept creation

and simulation. Each simulation element from Amesim defines both structure and

behavior. Since all functions are allocated to a single viewpoint of the problem,

provided by the used library, the results are not generic and potentially biased

[138]. Also, the connectivity of the assembled Amesim simulation elements is

only checked with respect to the interface types and not the underlying causality.

This aspect of ensuring valid causality is, for instance, achieved by Münzer and

Shea in [139], where simulation models are automatically generated based on

concept model graphs.

2. Background

 39

For the combination of SysML with simulation besides the integral PAR

diagrams with interlinked solvers, there exists the SysML-Modelica

transformation specification [140]. It enables the definition of Modelica [31]

models for simulation, directly in SysML. This enables powerful simulation

capabilities by laborious recreations of the purpose-built simulation modeling

language Modelica within the generic graphical modeling language SysML.

Another concept design approach that combines simulation with SysML is the

logic-based approach by Kerzhner [141] for decision making. It defines problem-

specific DSLs for capturing design synthesis knowledge and transforms the more

compact SysML representation into a mathematical programming problem for

solving. One of its limitations comes from the problem-specific DSL, which results

in problem-specific knowledge bases with complex simulation knowledge to be

created for each different problem anew. Another limitation is the computational

scalability of the simulation, similar to the logical synthesis of concept model

graphs in [139]. Because identical architectures can be described by different

sets of binary variables, the solver is forced to either search through a large

number of identical architectures or intelligently identify existing symmetries.

To conclude, considering the related design approaches, the following

research gap is identified: A seamless concept design approach for complex

multi-disciplinary systems, supported through the integration of generic and

proven design knowledge for reuse together with a direct mapping to behavior

simulation for concept evaluation. Within this it is important to focus on a

concrete and applicable modeling approach that provides extra guidance for

SysML modeling for concept design and build on its standardization and

formality.

3. Case Study

 40

3. Case Study

To validate and evaluate the conducted research different approaches are

followed. The validation and evaluation involves checking that the developed

design support does address the planned requirements. The general modeling

approach with its developed model libraries is validated theoretically [142]. The

theoretical validation is based on a case study and tests the general applicability

of the developed libraries, patterns and their modeling approach. The used case

study is a concept model of a fused-deposition modeling (FDM) based 3D printer.

A comparison to known benchmark problems is not used due to the lack of

suitable standardized benchmarks in model-based systems engineering. The

used modeling tool is Magicdraw v18.1 from NoMagic, Inc. [65] together with its

SysML plugin. For the usefulness and usability, the function library as one central

part of the approach there is additional experimental validation in form of a user

study described in Section 5.

3.1. THE REPRAP 3D PRINTER

The 3D printer model used for the case study is based on the Reprap

project [143], the self-replicating rapid prototyping machine that is intended to be

capable of producing all its mechanical parts, except machine elements, by itself.

Although this goal of self-replication is not focused on in the case study, the

Reprap project nevertheless started a whole community of comparably cheap

and simple FDM based 3D printers. This is possible due to the open source GNU

Public License (GPL) that freely allows interested people to participate and

exchange information.

The underlying principle, the FDM process is an additive manufacturing

method that produces parts by laying down material in layers. An example FDM

based 3D printer set-up is shown in Figure 10. It has a print head that melts a

3. Case Study

 41

usually plastic filament and moves two-dimensional above the print plate with the

printed part, moving along the third axis. This vertical axis movement creates the

individual layers that constitute the part. Common build materials for FDM based

printers are acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA).

Figure 10: FDM based 3D printer set-up

One example for a 3D printer based on the Reprap project is the Raptype

[144] from Figure 11. It is developed as part of a student project supervised by

the author. Its main goal is it to achieve a high printing speed by reducing the

moved mass at the print head. The print head moves on top of linear rails, driven

by two stationary motors and two belts in the CoreXY [145] configuration. More

information about the CoreXY configuration is given in Section 3.2.

The 3D printer case study was selected for several reasons. First, there is

plenty of information available due to the open source community as well as the

Raptype student project with its documentation and prototype. Second, it is a

multi-disciplinary mechatronic system with many possible variations in its

mechanical structure, electrical propulsion and control software. This is needed

to show the capabilities of the modeling approach in SysML. Third, there are

3. Case Study

 42

plenty of possibilities to extend a 3D printer system into a PSS by offering

additional services. Especially maintenance and spare part supply services are

often used by industry to improve and ensure a printer’s reliability. Finally, as a

device it is comparatively simple and wide-known, unlike other systems that were

modeled by the author using the approach in this thesis but not selected: the

hydrokeratome [2] or the electric car [3, 4].

Figure 11: Raptype 3D printer visualization [144]

3.2. 3D PRINTER CONCEPT MODEL

The scope of the 3D printer model used as a case study is defined as

follows: Only the conceptual design of the printer hardware together with

accompanying services is partially modeled in SysML. The model is decomposed

down to a level where elements from the design libraries are used. Details like

single screws, washers and the open source software are left out for simplicity.

The modeled information is also not complete and focuses on aspects relevant

for the validation of the approach. SysML diagrams in general show only certain

highlighted aspects of the model. More model details follow with the description

of the modeling approach in Section 4.

3. Case Study

 43

An overview of the concept model is given in Figure 12 with an excerpt

of the model’s main package structure PKG. Printer variations are modeled

according to the model structure of Weilkiens et al. [59]. There are the packages

for the different configurations and their variations, i.e. those system elements

that can differ between the selected configurations. The package with the

common elements contains elements that are the same for all printer

configurations. The integrated design libraries are shown on top of Figure 12.

Based on the levels of concretization in [80] there are different levels of

abstraction in the model with packages for the context level with its

requirements, system context and use cases, the functional level, the principle

solution level and the technical solution level for the more physical concretization

of the previous principles and functions.

The included variations contain alternatives for the printer kinematics,

propulsion with position sensors and control. This is shown in Figure 13 together

with the variations package structure. For the kinematics there are two different

variants modeled, which both realize the two-dimensional positioning of the print

head. Both variants use belts that are driven by stationary motors to move the

print head on top of a sliding carriage by means of linear bearings. There is the

HBot [146] design and the CoreXY [145] design. The simpler HBot uses only a

single belt but has a asymmetric load on its print head. The similar but more

complex CoreXY uses two crossing belts but has a better balance of the forces

on the print head. The two designs are schematically displayed in Figure 14.

The propulsion is either realized by stepper motors or continuous DC

(direct current) motors, which need different types of control. The continuous DC

motors need additional position sensors, either integrated into the linear rails of

the print head or into the DC motors, making them into servo motors. In Figure

13 there is a “Constraints” package for these constrains between the variants.

3. Case Study

 44

Figure 12: Model overview of case study Reprap

Figure 13: Reprap variations structure

3. Case Study

 45

Figure 14: CoreXY (left) and HBot (right) kinematic schemas [1]

Not all possible configurations of the variants are modeled but only

excerpts of three of them, displayed in Figure 15. There is the “Reprap Basic”

redefining its inherited properties with the “HBot Kinematics”, three “Stepper

motor” for the propulsion and no position sensor. The “Raptype Servo” uses the

“CoreXY Kinematics” with DC motors and rotation sensors. The “Raptype

DC+Rails” finally uses the “CoreXY Kinematics” together with DC motors and

position sensors on the linear rails.

Figure 15: Modeled Reprap configurations

4. Concept Modeling Approach in SysML

 46

4. Concept Modeling Approach in SysML

This section presents the concept modeling approach in SysML. It

includes design libraries and multi-solution patterns for the conceptual design of

multi-disciplinary systems. First an overview of the approach is given, followed by

the function library, behavior simulation library, service library, multi-solution

patterns and the results of their use for the case study. For the libraries and

patterns they are each first defined before their use is explained in the case

study. The additionally used structure library [13] is introduced in Section 2.5.2.

4.1. CONCEPT MODELING APPROACH OVERVIEW

The general concept modeling approach presented is based on MBSE

and engineering design principles. For the main tasks of concept design, there

is for example the VDI 2221 [14]. These tasks are the task definition and

clarification, the determination of functions and their structure and the search for

solution principles. The potential to use the MBSE modeling language SysML for

these tasks is shown in [34]. It also introduces knowledge bases for SysML

modeling as well as possibilities for computational support.

The modeling approach focuses explicitly on conceptual design. Yet, to

relate it towards its broader context of a complete development process the V-

model is used. In particular it is based on the V-model from the VDI 2206 [79],

adapted by Eigner et al. [64, 80]. With its focus on multi-disciplinary mechatronic

systems it also has potential for the development of PSS, as shown in [29]. There

it is argued that domain- and solution-neutral functional modeling is critical for a

successful application of the V-model during mechatronic and PSS development,

since the general problem of allocating functions to suitable solutions is similar.

The used adapted version of the V-model is shown in Figure 16. It is used for a

comprehensive system description to enable a “model-based and structured

4. Concept Modeling Approach in SysML

 47

system description on the left wing of the ‘V’ in the early design phases” [64]. It

starts with context and requirement modeling and specification, goes over to

concept modeling and first simulation before the discipline-specific modeling at

the bottom. The involved disciplines are not only mechanics, electronics and

software, but also include service modeling.

Figure 16: Libraries and patterns in the context of the adapted V-model (based
on VDI 2206 [79], adapted from Eigner et al. [64])

The reason for choosing the V-model is to highlight the knowledge

capturing of the libraries developed in this work and shown on top of Figure 16.

There is the function library for functional modeling, the behavior, structure and

service libraries for realizing the functions and the solution patterns to document

known solutions that incorporate and link various model elements. The reused

knowledge, especially in the patterns, comes from proven solutions from

previous developed projects, where the models are validated during the right

wing of the V-model.

4. Concept Modeling Approach in SysML

 48

When looking into the concept modeling approach in more detail the

interdisciplinary model-based design approach for developing cyber-physical and

mechatronic systems [80] is used for its levels of abstraction and the

consideration of SysML. The model levels are the context level, the functional

level, principle solution level and technical solution level. The use of the four level

structure to set up the model framework is illustrated in Figure 17. Their use for

the SysML case study is shown in Figure 12. The modeling support provided

here focuses on the functional and principle solution levels.

Figure 17: Level structure of model framework (based on [80, 82])

4. Concept Modeling Approach in SysML

 49

The axes on top define the solution space. The “detail” axis stands for the

accumulation of information without explicitly restricting the possible solutions.

When no further detailing is needed “concretization” takes place in form of a

transition to a deeper level. In these transitions “variation” occurs, since multiple

alternatives are to be considered during concretization [80]. To provide

traceability throughout the model semantic links exist “vertically” between the

hierarchical levels, as well as “horizontally” between elements of the same type.

The context level in SysML contains object-oriented requirements

together with the use cases and the system context. The use cases define the

system’s main functions and complement the functional model by offering an

alternative and more informal functional representation, as established in a

systematic comparison of functional modeling methods in SysML [2]. The system

context, for example according on [59], helps identifying the system boundary, its

interfaces and interactions to other systems or humans.

Based on this information on the context level, the system’s main

functions are defined as black boxes with interfaces for the functional level. The

functional level’s aim is a solution-neutral decomposition of these main functions.

Its resulting functional structures consist of networks of elementary functions and

material, signal and energy flows from the function library.

The principle solution level is for the systematic identification of possible

solution variants, based on different solution principles or working principles.

Possible solution principles to fulfill functions are provided with the behavior

simulation, structure and service libraries.

The principle solutions are further concretized on the technical solution

level. This level contains the most concrete representation of the conceptual

solution. It describes an abstract solution concept by basic system components

to realize the system functions and behavior by applying the principle solution

4. Concept Modeling Approach in SysML

 50

[80]. For this, it utilizes elements from the structure library [13]. Besides the

further concretization it also includes initial concept analysis for evaluation

compared to the requirements. The system evaluation is supported through

concept simulation, planned with the behavior simulation library.

The general modeling workflow is displayed in Figure 18. After the initial

task definition the requirements engineering takes place to clarify and define the

development task. This results in the requirements model and use cases of the

context level. Starting from a main function, defined as a black box with flow-

based interfaces, the functional decomposition takes place next to create a

functional model. This step is supported by the function library with its functions

and flows. The search for working principles and their combinations is about

identifying principle solutions to fulfill the decomposed elementary functions of

the functional model. The principle solutions are detailed on the technical solution

level by structure, behavior and service models, each supported by a generic

design library. The behavior model also supports the model simulation in Amesim

for an initial concept evaluation. Solution pattern are alternatively applied to fitting

target functions and offer proven solutions in the form of partial models covering

multiple levels. Collaboration between the different involved disciplines is

necessary to reach a valid solution concept model. The design process usually

requires multiple iterations before the concept is fully elaborated in the form of a

SysML concept model including Amesim simulation models.

4. Concept Modeling Approach in SysML

 51

Figure 18: Modeling workflow schema

4. Concept Modeling Approach in SysML

 52

4.2. FUNCTION LIBRARY

This section describes the definition and refinement of the SysML function

library. Afterwards its use is demonstrated by the case study. The needs

addressed by the library include modeling guidelines for functional modeling

together with improved model formality for better model consistency and

avoidance of modeling errors or ambiguity. This way it aims to improve modeling

in SysML through enabling a simple reuse of standardized model elements. The

library contains the functions and flows of the FB to be combined on SysML ACT.

4.2.1. Function Library Definition and Refinement

Based on the initial definition of the function library by Wölkl [13], its

definition in SysML and further refinement in this work is now presented. The

function library contains functions and corresponding flows, both based on the

FB [15]. This allows an operator-flow formulation of functional structures with the

required verbs and nouns being semantically defined in the FB hierarchies.

Two possible ways exist to incorporate such taxonomies of functions

and flows in SysML [13]. First, it is possible to multiply the functions by the flows,

which is useful when the meaning of a function changes depending on the

involved flows. However, this also means that there would be a large number of

entries in such a library and that updating the library becomes difficult. For

example, with the change propagation of one changed flow type through many

different functions. The second possible way to model the FB in SysML is by

defining two separated parts, one for the functions and the other for the flows.

These two parts are then used combined together. This way the number of

library elements is limited to only the 45 flow definitions and the 52 function

definitions, to be combined during modeling to create elementary functions. Such

a setup with less elements also simplifies the effort for searching for certain

functions and flows.

4. Concept Modeling Approach in SysML

 53

An overview over the defined stereotypes in the function library that

extend SysML, is given in Figure 19. There are the <<BasicFlow>> and the

<<ElementaryFunction>> stereotypes with their tagged value properties. The

<<BasicFlow>> stereotype is specialized from the SysML block and has an

additional tagged value for the level in the FB hierarchy [13]. The additional

stereotype <<User-definedFunction>> is for all functions that are not elementary.

User-defined functions can be decomposed further into other user-defined

functions or elementary functions. This is shown in Figure 19 along the directed

associations between the elements stating that each <<User-definedFunction>>

activity can be decomposed by any number of <<ElementaryFunction>> or

<<User-definedFunction>> activities.

Figure 19: Defined stereotypes in function library

The first step of transforming the paper-based three level hierarchies of

the FB terms into formal libraries in SysML is the creation of analog structures.

The derivation of flow elements is displayed in Figure 20 showing the

stereotype <<BasicFlow>> for the newly created blocks. The <<BasicFlow>>

elements are created matching to the flow terms from the FB [15], as displayed

on the top right corner of Figure 20. According to their hierarchical position, the

flow elements are arranged in a tree structure with generalizations between

4. Concept Modeling Approach in SysML

 54

them. This means for example that the “Solid” flow is a kind of “Material” flow that

also inherits the properties of the “Material” flow. The “RootFlow” element on top

of Figure 20 is added to provide a parent element for all flows. It is used for the

most general, i.e. not limited parameter nodes in the definition of the functions.

Figure 20: Transformation of some FB flows [15] into the SysML function library
hierarchy

Since <<BasicFlow>> elements are specialized blocks they can have

various properties. As shown in Figure 21, the energy flows have additional value

properties for “effort” and “flow” variables. These effort and flow terms come

from bond graph theory [107] as power conjugate complements from Section

2.5.2. The “ElectricalEnergy” flow for example inherits the two properties while

redefining them into “electromotive force” and “current” to describe itself.

The implementation of the library allows the extension of the FB terms

by more task specific ones. This is especially of value for the flow types, due to

their identified benefits for increased expressiveness and reduced ambiguity

[101]. An example for modeling mechatronic systems is given in Figure 21 with

4. Concept Modeling Approach in SysML

 55

the extension of the electrical energy flow into one that provides alternating

current (AC) and another one for DC. Another example for mechatronic systems

is the introduction of more specific signal flows, as shown in [4].

Figure 21: "ElectricalEnergy" flow with redefined effort and flow parameters as
well as custom extensions for DC and AC

Analog to the flows, there is a hierarchy structure created for the function

elements [13], using the <<ElementaryFunction>> stereotype. The functions

inherit properties from each other, which in case of their interfaces are often

redefined to be more specific. The interfaces are defined using activity parameter

nodes. They have defined types and directions to represent input and output

parameters that enter or leave a function. The interfaces are not only defined for

the functions’ main flows, but also for additional auxiliary flows to model

supporting flows that enable the interaction of the function with its main flows.

Having all this information formally specified in interfaces is a major

difference towards the original FB, where such information is only partially and

4. Concept Modeling Approach in SysML

 56

implicitly given in the function descriptions. Also the addition of auxiliary flows is

an extension compared to the originally implemented library [13]. They broaden

the modeling freedom by allowing accompanying flows, e.g. to model the needed

electrical energy flow for processing a signal flow. For this they are specified with

a multiplicity of “0..*”in the library, which means that no such flow is explicitly

required.

An example of the definition of two functions is given in Figure 22. It

shows the functions “Regulate” and “Change” with differently defined interfaces

derived from their descriptions. “Regulate” for example allows any material,

signal or energy flow to be regulated according to a specific and necessary

“SignalFlow”. The similar “Change” function changes the flow in a “predetermined

Figure 22: Definition of functions [15] implemented in a SysML library with their
inputs and outputs

4. Concept Modeling Approach in SysML

 57

and fixed manner” [15] and needs no such signal input. The textual description is

also added into the library as the activities’ documentation to make this

knowledge available during the modeling process.

Another improvement of the function library compared to its initial

configuration by Wölkl [13] is its set-up with additional packages and

containments. This change resulted directly from the feedback of the user study

from Section 5. The new library set-up is displayed in Figure 23. Flow blocks are

contained within each other on the right, while function activities on the left are

contained in nested packages with identical names to their superior functions.

The function “Regulate” for example is contained in the package “Control_

Magnitude”, which is its more generic parent function. The extra packages are

used to avoid inconsistency when activities contain each other without graphical

representation or even intention [69]. This new set-up improves identification of

related elements across the hierarchical levels in the modeling tool.

Figure 23: Function library containment (left: functions, right: flows)

4. Concept Modeling Approach in SysML

 58

To support modeling with the library, two OCL constraints (Object

Constraint Language) are included. They enable automatic checks to determine

whether the created functions are named and if their interface types are more

specified than by the default “RootFlow”, which has no concrete meaning.

4.2.2. Function Library Usage

The workflow of using of the function library [4] is shown here by the case

study. For the functional modeling, first the system’s main function is defined

as a black box [23] in the form of a SysML activity. It is created as a user-defined

function with the system’s inputs and outputs, which have energy, signal or

material flow types from the library. The information from the task clarification

step of the context level is used for this: the main use cases and the system

context [2, 59]. For the 3D printer case study this step is visualized in Figure 24.

Figure 24: Derivation of main function "Print 3D-Object" of case study

4. Concept Modeling Approach in SysML

 59

The use case “Print 3D-Object” on the right is used to create the user-defined

function “Print 3D-Object” with the inputs and outputs coming from the flows

across the system boundary of the context diagram on the left.

This main function is then decomposed on its ACT. It is modeled as a

network of sub-functions using elementary functions from the library or other

nested user-defined functions. The user-defined functions are further

decomposed on their own ACTs. This decomposition process follows the general

rules of a verb and noun based representation along its energy, material and

signal flows, as presented in [23]. It is for example recommended to follow the

system’s main flow first during the decomposition and add supporting flows later.

More detailed rules for the functional decomposition are presented in [147, 148].

With this approach using activities in SysML, the nodes on the diagrams are

actions, while the edges for the flows between the functions are object flows. The

actions themselves cannot be stored in a model library. Consequently, all used

actions are call behavior actions, which refer either to a user-defined function or

an elementary function from the library.

An example elementary function is given in Figure 25 together with its

used library elements. First an unspecified action is created, which then is

transformed into a call behavior action by assigning a type in the form of an

activity. Here it is the activity “Regulate” from the function library, transforming

the action into an elementary function. This call behavior action is then assigned

its name and specific flow types. Here it is named “ElectricalEnergy” to describe

what the function is doing by relating to its main flow. To specify this main flow

the flow types are refined by suitable subtypes. The possible flow types are

defined in the library parameters and activity parameter nodes, as seen on top of

the figure. Here the generic input and output “RootFlow” pins are specified as

“ElectricalEnergy”, which is regulated by a “ControlSignal” flow. The descriptions

4. Concept Modeling Approach in SysML

 60

of the optional and unused auxiliary input and output pins are finally removed

from the diagram for improved clarity. Removing their pins altogether would

result in a model inconsistency between the pins of the call behavior action and

the activity parameter nodes defined in the called activity.

Figure 25: Function library (left) used to define "ElectricalEnergy:Regulate"
function as call behavior action (right)

This way the auxiliary predefined pins help at reducing the danger of

missing important auxiliary flows, while being mandatory in their usage. With the

pins it is also possible to rename them to add more details about the flow. The

free naming of action and pin names further increases the information content of

the model for improved expressiveness and understanding through provided

context [98, 101]. If the type or number of the elementary function’s predefined

pins is not sufficient, for instance when both the flow of pneumatic energy and

the accompanying flow of air are needed, there are two solutions. One possibility

4. Concept Modeling Approach in SysML

 61

is to use user-defined functions instead of elementary ones. The other possibility

is to make a custom extension to the library flows with a new subtype of two

types of flows, which can then be used on a single pin of an elementary function.

Through the functional decomposition, the system functionality is

described step-by-step in more detail. This makes the model more specific and

implies already a particular type of solution, i.e. an FDM process, while in general

remaining solution-neutral. During the functional modeling, different variations of

functional decompositions are investigated to determine the most promising one.

In parallel it is recommended to refine the requirements as well [56]. This iterative

process of mutual refinement and decomposition helps in establishing traceability

between the functions and the requirements and helps defining the functions “in

terms of allocated functional, performance, and other limiting requirements” [48].

The decomposition is partially shown in Figure 26. The top ACT of the

figure shows the main function “Print 3D-Object”. It contains five user-defined

functions similar to the generic decomposition in [149]: “Store & Supply Material”

for handling the printing material before its use, “Pattern Material” for preparing

the printing material, i.e. melting it in an FDM process, and “Create Primitive” for

the layer-wise positioning of the printing material into the targeted geometry. The

functions “Provide Energy” and “Control Process” support this by providing the

necessary energy and control of the printing process.

The lower ACT displays the functional decomposition of the user-defined

function “Pattern Material” into elementary functions. They are: “Liquid:Position”

for the three-dimensional positioning of the liquid printing material, “Liquid-

Solid:Couple” for the coupling of the printing material with the printing table or

previously printed material, “Liquid-Solid:Convert” for the solidification process,

“Solid:Support” for the support of the printing material by the printing table,

“Solid:Export” for manually removing the printed part from the printer and

4. Concept Modeling Approach in SysML

 62

“ElectricalEnergy-PneumaticEnergy:Convert” for additional forced convection that

supports the solidification process. The elementary function “Liquid:Position” is

framed to indicate that it is further decomposed and refined depending on the

modeled variations introduced in Section 3.2. This happens by refactoring it

when applying a solution pattern in Section 4.5. Refactoring means to restructure

a code or model without changing its external behavior.

Figure 26: Excerpt of functional decomposition of "Print 3D-Object" main function

4. Concept Modeling Approach in SysML

 63

For the object flows between the actions it should be noted that the

energy and signal flows to and from “Liquid:Position” have the weight of “3” to

indicate that three flows of the same type are needed. Extending the library

usage in [13] by Wölkl, this follows the definition in UML [69] to specify multiple

required flows along an edge. Here they are needed for the three dimensions in

which the positioning takes place. Similarly, it is also possible to assign flow rates

to the edges. Here there is a flow rate between 90% and 100% defined for the

positioned material flow after “Liquid:Position”.

The functional decomposition process ends when a satisfying level of

detail is reached. This level is not necessarily the same for all parts of the

system. Using the function library, this level is at the latest reached when only

elementary functions are used, since they are not decomposed further. If they

are not used, user-defined functions are directly allocated to suitable components

or principle solutions instead. In general, the functional decomposition “takes

place until useful [solutions] have been found” [150].

To add further information about sequencing or variations of the functions

there exist additional ACT modeling elements. For example in Figure 27 of the

case study the control flow includes a decision node for including or excluding a

printer inspection function when doing maintenance that consists of calibrating

the printer. This addition is in contrast to the original definition of the function

library by Wölkl in [13] or the initial functional decomposition method by Pahl and

Beitz [23] and goes into the direction of enhanced functional flow block diagrams

(EFFBD) [151]. For more detailed sequential or system status knowledge there

are additional STM or SD diagrams to be used. In Figure 27 there are also

swimlanes used to set allocations to other modeling elements that provide the

modeled functionality. Here they are used for an initial explicit partitioning [152] to

define which functions are fulfilled by which domain, i.e. software or service.

4. Concept Modeling Approach in SysML

 64

Figure 27: "Maintain Printer" function with control flow and swimlanes

Besides the two constraints that are defined in the library, there are some

modeling constraints from the UML and SysML specifications that also provide

assistance. They check in the modeling tool if the modeled object flows connect

pins with compatible flow types. The consistency of the object flows is fulfilled

when the offered flow is the same or a more specialized version of the required

flow. This complies with the fact that a flow should not have different objects at its

ends. Yet, it can be advantageous to allow more specialized subtypes of flows to

be accepted anyways to allow different levels of detail. Examples are given in

Figure 28: On top is an offered “Energy” flow connected to a pin that needs more

specialized “ElectricalEnergy”, which causes an error message. In the middle is a

valid flow of “Energy” with identical input and output pin types. On the bottom is

an “ElectricalEnergy” output pin connected with a “Energy” input pin. This is also

valid since the offered “ElectricalEnergy” is a subtype of “Energy” in the library

and hence fulfills the required flow.

4. Concept Modeling Approach in SysML

 65

Figure 28: Function flow consistency examples

4.3. BEHAVIOR SIMULATION LIBRARY

Following the functional modeling, the search for solution principles and

the later system behavior modeling to plan model simulation takes place. These

processes are supported by the behavior simulation library [1] presented in this

section with its implementation in SysML and its use with the case study.

The designer’s needs addressed by this library are to support two roles of

behavior models: First, the provision of design knowledge as principle solutions

that provide and concretize the modeled functionalities. This includes modeling

guidance through the provided stereotypes. Second, model simulation for early

concept evaluation through the provision of the same design knowledge as found

in tested and proven elements of simulation models. Due to the conceptual

nature of the intended design with the behavior simulation library, its simulation

models focus on the representation of expected behavior compared to structure

behavior [83], even if properties are derived from the following structural model.

4. Concept Modeling Approach in SysML

 66

4.3.1. Behavior Simulation Library Definition

The library contains elements from the simulation tool LMS Imagine.Lab

Amesim [16] together with stereotypes for generic principle solutions and their

solution principles. These stereotypes defined in the library are shown in Figure

29. On top there is the <<PrincipleSolution>> stereotype to generally

represent how allocated functions are realized in principle. It is based on the

SysML extension MechML [153], where it is used for morphological matrixes. It is

a subtype of the SysML block and has two attributes: A string typed attribute for

its general description and a priority with a certain grade. The grade is an

enumeration element with the enumeration literals: “perfect”, “good”,

“satisfactory”, “fair”, “poor” and “fail”. The <<PrincipleSolution>> stereotype also

has associations to stereotypes that can further refine and concretize the

principle solution. In Figure 29 these are the <<SolutionPrinciple>> stereotype

and the <<AmesimSimulationModel>> stereotype.

The <<AmesimSimulationModel>> stereotype represents whole

Amesim simulation models in SysML, containing simulation elements and further

data for the simulation. It is a subtype of the SysML block, too. For capturing the

data to run simulations, the stereotype has multiple attributes defined. One

example for an attribute is the “analysis_mode” with its enumeration literals

“temporal” and “linear”. Other examples are “start_time”, “final_time” and

“print_interval” in seconds. They define the analysis mode, runtime and step size

as some major simulation parameters. The complete list of attributes and used

enumerations, which are all derived from the settings in the simulation tool, is

seen in Figure 29. The <<AmesimSimulationModel>> stereotype decomposes

into two different element types: at least one <<AmesimBlock>> in the role of a

simulation element and potential <<SolutionPrinciple>> elements in the role of

placeholders, if no <<AmesimBlock>> element is known yet.

4. Concept Modeling Approach in SysML

 67

Figure 29: Stereotypes in the behavior simulation library

The <<AmesimBlock>> stereotype is another subtype of the SysML

block. Additionally, it has the metaclass “Image”, which allows it to be graphically

represented by specific icons on SysML diagrams. The stereotype contains an

attribute for its submodel specification, which is needed to uniquely identify

specific elements for the simulation. For this there is an OCL constraint to ensure

that a submodel is specified through the modeling tool’s validation capability.

The <<SolutionPrinciple>> stereotype is again a subtype of the SysML

block and has also the additional metaclass “Image”. It has one attribute for a

general description. It is used to represent general solution or working principles

to further specify principle solution elements or work as a black box placeholder

in simulation models when no fitting simulation elements are known or existing

[153].

4. Concept Modeling Approach in SysML

 68

To contain these stereotypes and other content the behavior simulation

library has the following structure in SysML. In contrast to the inheritance

relations in the function library, the behavior simulation library does not have

such global hierarchies. Instead it is structured into nested package structures for

the library content, its profile, used value types, port types and super

components. The packages follow the set-up of the database in the simulation

tool for the simulation elements. This is illustrated in Figure 30. The package

“Mechanical” for example contains all simple mechanical elements. It contains

packages for e.g. “Rotational”, “Translational” and “Transformer” elements. The

“Rotational” package again contains packages for the modeling elements, e.g.

“Inertia” for mechanical rotational inertia elements with different interfaces and

properties.

Figure 30: Behavior simulation library implementation in SysML (left) with
corresponding database in Amesim (right)

4. Concept Modeling Approach in SysML

 69

An example for such a simulation element in SysML is given in Figure 31

with a rotary load element. On top is the rotary load element with two ports in the

simulation tool database with its four different submodels: “RL02”, “RL03”,

“RL02A” and “RL03A”. “RL02” is for a rotary load with two shafts without friction.

“RL03” is the same but for the dynamics of a zero inertia. “RL02A” is also for a

rotary load with two shafts without friction, but gives the angle as output, which is

displayed on the top left of Figure 31. “RL03A” finally is the same as “RL02A” but

again for the dynamics of a zero inertia.

Below are the equivalent <<AmesimBlock>> elements implemented in

SysML together with an additional parent element. This parent element

“rotaryload2” not only inherits its properties to all sub elements through

generalizations, but can also be used in SysML when no specific submodel can

be selected, yet. For the specific submodel selection there are the four sub

elements with their redefined ports and additional properties. Each element in the

library also has a textual description in SysML from the Amesim documentation

and is assigned with the equivalent icon. The naming of the <<AmesimBlock>>

elements follows the names of the elements in the Amesim database and not

their often varying name in the tool documentation. Only to differentiate between

submodels there are cases that need an addition coming from the

documentation. Setting the names of the properties follows the documentation’s

variable title instead of the variable name for again a better expressiveness.

The “rotaryload2” element of Figure 31 has certain properties defined. It

has one constraint for documenting the mathematical formula for the calculation

of the rotary acceleration from the elements internal properties and inputs. This

equation comes from the Amesim documentation. In SysML it serves only to

enhance the understanding of the inner workings of the element. The value

properties of “rotaryload2” that are passed on to all four child elements are

4. Concept Modeling Approach in SysML

 70

“rotary acceleration” and “shaft speed port 2”. The property “shaft speed port 2”

for instance has a type of “angular velocity[revolution per minute]” following the

ISO 80000 [154] with a default value of “0” and a fixed <<interval>> from

maximal “1.0E30” to minimal “-1.0E30”. The ISO 80000 [154] is an international

standard for the international system of quantities in form of a style guide for the

use of physical quantities and units of measurement.

Figure 31: Rotary load elements in Amesim and their implementation in SysML
with parent element without specified submodel

4. Concept Modeling Approach in SysML

 71

The interfaces of the rotating load elements in Figure 31 are modeled as

flow ports with reusable types shown below in Figure 32. The figure shows an

excerpt of the library with a hierarchy of port types for simple mechanical

rotational energy transfer. The port types are modeled as SysML blocks and

have flow properties for the transmitted values of the simulation. The port type

“Port_Rot3” of Figure 32 is for instance used for the rotating load element of

Figure 31. It has the following flow properties: the outgoing torque in newton

meter, the incoming rotary velocity in revolutions per minute and the rotary angle

in degree. In addition to the port type elements in Figure 32, there are also the

corresponding interfaces visualizations from the Amesim database. To model

opposite flow directions of library elements their flow ports are set to be

conjugated, which is displayed in Figure 31.

Figure 32: Excerpt of flow port type hierarchy defined in behavior simulation
library

4. Concept Modeling Approach in SysML

 72

The port types are arranged in hierarchical relations to inherit an additional

nested function flow port from their most generic parent element. This

unspecific parent element without flow properties is used for parent

<<AmesimBlock>> elements without concrete submodels, as seen in Figure 31.

The nested flow port has a function flow element from the function library as its

type. The function flows are derived from the interfaces of the Amesim simulation

element, similar to [138]. The nested port with its function flow is there to support

an identification of suitable behavior simulation elements by corresponding to the

flows of functional models. Flows from the functional model can also have further

properties, e.g. their effort and flow parameters of Figure 21, to be referred to in

the behavior model.

Although the flow port is considered to be deprecated in the current

version 1.4 of SysML [11] it is still used here. Because using flow ports has the

advantage of better port compatibility checking compared to standard ports. For

standard ports with normal connectors, the compatibility is not ensured to a

satisfying degree unless special binding connectors are used. Yet, these binding

connectors only allow identical port types to be connected, which is usually not

the case within Amesim simulation models. Flow ports on the other hand are

checked for at least one matching flow property with matching type and direction.

This complies much better to the modeling of Amesim simulation models. The

port compatibility checking is also the reason for the nested function flow port

instead of an additional flow property with an equivalent type from the function

library. An additional function flow property would result in incompatible ports not

being identified, if only their generic function flow, e.g. mechanical energy, fits.

Another investigated alternative is the use of nested ports for all of the

transmitted values instead of flow properties. Here, compatibility checking does

not take place unless all used nested ports are connected, which results in a

4. Concept Modeling Approach in SysML

 73

significant higher modeling effort and bloated diagrams. Also the flow properties

allow a better implementation of parent port type elements with unspecified port

directions for parent AmesimBlock elements without a specific submodel. Flow

properties further allow the use of standardized units from the ISO 80000 profile

and they can have set default values when a parameter is fixed by the simulation

element.

When creating AmesimBlock elements from the tool database, several

other aspects have to be considered. First, the definition of the properties of the

AmesimBlock elements need further value types, units and enumeration

elements. Standardized elements defined in the ISO 80000 profile, which is

provided by the SysML modeling tool, are used where possible. Those simulation

elements that need more specific units or enumerations have them defined in the

library. Examples of the rotating load element in Figure 31 are the “offset to be

subtracted from angle” property with the type “plane angle[degree]” and the

“modulo option” property with the possibilities to choose between “no modulo”,

“modulo 360” and “modulo 720”. An excerpt of the value type, unit and

enumeration definition in the library is given in Figure 33.

Second, it is possible to include further custom elements in the library.

These supercomponents are model elements that define partial simulation

models. They realize the principle of representing a group of components by a

single icon to avoid confusingly large simulation models in Amesim. They can be

added to both representations of the database in Amesim and SysML and are

used as any other simulation element. For instance they are used by Münzer and

Shea in [48] to enable automatically generated simulation models.

4. Concept Modeling Approach in SysML

 74

Figure 33: Excerpt of value type, unit and enumeration definition of behavior
simulation library

4.3.2. Behavior Simulation Library Usage

The intended use of the behavior simulation library is the provision of

elements that work as principle solutions to realize the modeled functionalities as

well as the supported planning of simulation models directly in SysML. The

simulation results can, for instance, be used for a first concept evaluation or to

identify additional requirements and system elements. The behavior simulation

library is used in the case study to plan the simulation of the two alternative

kinematic systems, the HBot and the CoreXY of Section 3.2.

An example usage in the case study is given in Figure 34. The shown

example is also part of a multi-solution pattern from Section 4.5. It shows on top

the <<User-definedFunction>> “Position Liquid” that is decomposed amongst

others into the <<ElementaryFunction>> “TranslationalEnergy:Guide”. This

function is created by using the function library elements “Guide” and “Trans-

lationalMechEnergy”. It stands for the guidance of the translational mechanical

energy in the used belts of the HBot and CoreXY kinematic solutions.

4. Concept Modeling Approach in SysML

 75

F
ig

u
re

 3
4

:
B

e
h

a
v
io

r
s
im

u
la

ti
o
n

 l
ib

ra
ry

 u
s
a

g
e

 e
x
a

m
p

le

In Figure 34 there is a <<PrincipleSolution>> in the form of the HBot

kinematics allocated from the user-defined function. This principle solution on the

4. Concept Modeling Approach in SysML

 76

principle solution level is associated to a <<AmesimSimulationModel>> element

that further refines and concretizes the principle solution in the role of its “belts &

Pulleys”. This <<AmesimSimulationModel>> element “BehaviorModel -

HBot” represents the later created simulation model in Amesim itself. It contains

necessary properties for running the simulation, e.g. the simulated time between

“0” and “12” seconds and the used “print_interval” of “0.0005” seconds. As a

simulation model it is composed out of <<AmesimBlock>> elements as part

properties. Here there are six passive sheaves shown, which are allocated from

the <<ElementaryFunction>> “TranslationalEnergy:Guide” since they provide the

behavior of guiding the belt and with it the energy flow. They fulfill the role of a

working principle that realizes the function.

These <<AmesimBlock>> “Sheave-passive” elements are subtypes of

the reused “plmsheave1” element from the behavior simulation library. This

generalization relationship is created to inherit the properties from the library,

while allowing their redefinition into concrete values. In this case a concrete value

is the diameter of “20” millimeters, being derived from the parameters of the final

realization of the component in form of the “Toothed Pulley” below. The

<<AmesimBlock>> element also has interfaces with additional functional flows. In

the example the flow of “TranslationalMechEnergy” is shown that relates to the

main flow of the elementary function. The required “submodel” is already defined

as “PLMSHEAVE0” within the element from the library.

On the bottom of Figure 34 the structure library of Wölkl [13] is used for

the “Toothed Pulley” block that provides parameters for the simulation. It is

allocated from the “Sheave-passive” element as its concretization on the

technical solution level. The structure library provides its parent element in form

of a generic “Cylindrical gear (toothed parts)” with its eCl@ss hierarchy identifier,

properties and generic flow ports that again relate to the flow of translational

4. Concept Modeling Approach in SysML

 77

mechanical energy. This concludes the traceability of properties over behavior

simulation elements to functions on the example in Figure 34.

The different <<AmesimBlock>> elements that constitute the simulation

model as part properties are interconnected on IBDs. An example of a

simulation model represented in SysML and Amesim is given in Figure 35.

As illustrated with the concept sketch on top of the figure it shows an excerpt of

the complete kinematics model in form of a single pulley guiding the toothed belt.

On the left side there is the model in Amesim, whereas on the right side it is

illustrated as shown in SysML. Both model representations have the same

elements, as highlighted for the rotary load element that serves as an inertia of

the passive sheave. For its other open end the rotary load element has a zero

torque source. The sheave is fixed in the reference frame, by a fixture that serves

as a zero acceleration, velocity and displacement source.

Figure 35: Excerpt of simulation models in Amesim (left) and in SysML (right)
(adapted from [1], concept sketch from [144])

4. Concept Modeling Approach in SysML

 78

The icons of the simulation elements in SysML are from the tool

database and defined for the elements in the library. Here they are used to

represent corresponding part properties on IBDs. This helps the designer not

only by providing adequate icons that illustrate the single elements, but also by

giving a consistent visualization between the different tools. Current issues with

the icons are that they are not passed on through inheritance in SysML, meaning

that the icon of “Sheave-passive” in Figure 34 is assigned manually. Also it is not

possible in the SysML modeling tool to rotate them to match each other with their

drawn interfaces, as it is done in Amesim on the left side of Figure 35.

Examples for the compatibility of different flow port interfaces of the

library elements in SysML are shown in Figure 36. The invalid connector on top

is between two completely incompatible port types for rotational energy and

translational energy through a rope. Below is another invalid connector between

the unspecific parent rotary load element of Figure 31 and a port of the passive

sheave element that handles rotational energy, too. Here the error is caused by

the port of the rotary load being too generic. It requires further specification

through a fitting submodel. The connector on the bottom is the correct connection

between the two elements with the submodel “rotaryload2_02A” selected. Above

it there is an incorrect submodel selected, which is not possible in the Amesim

tool but causes no error message in the SysML tool. Since the causality can

change each time a new element is added because of Amesim’s bond-graph

[107] origin, the generic parent elements without concrete submodel and

interfaces from the library should be used initially in SysML.

To simulate a model planned in SysML, the capability exists in the

Amesim tool to import IBDs from SysML [155]. A manual mapping is necessary

between the part properties and corresponding elements of the tool’s database. If

4. Concept Modeling Approach in SysML

 79

Figure 36: Interface compatibility examples of behavior simulation library
elements

the SysML model is only partially complete it is further refined in the simulation

tool. To run the simulation of the case study there are approximated stepper

motor models together with simple controllers without feedback added to the

kinematic models, which are provided by a multi-solution pattern from Section

4.5. The simulation of the DC motor variants of Figure 13 is not shown, due to a

missing comparably detailed stepper motor model. Therefore for demonstrating

the simulation capabilities with the case study only mechanical aspects of the

HBot and CoreXY kinematics are compared.

4. Concept Modeling Approach in SysML

 80

The simulation runs in LMS Imagine.Lab Amesim independently from the

SysML model or its modeling tool. For the simulation of the two kinematic

concepts of the case study the print head moves in a circular path for a total of

12 seconds with time intervals of 0.0005 seconds. These parameters are also

defined in the simulation model representation in SysML, as seen in Figure 34.

Two parameters of the simulation results are displayed in Figure 37. The figure

shows the orthogonal forces on the linear bearings of the sliding carriage over

the 12 seconds time frame. “The graphs appear solid since positive and negative

values are reached almost simultaneously due to the approximated stepper

motors that have inconsistent stepwise provision of angular momentum resulting

in very quick load changes” [1]. Comparing the two alternatives, the load of the

HBot is about twice the load of the CoreXY configuration. The HBot reaches

around ±6 Newton while the CoreXY only reaches ±3 Newton.

Figure 37: Simulation results of oscillating orthogonal forces on the linear
bearings of the sliding carriage for HBot and CoreXY [1]

4. Concept Modeling Approach in SysML

 81

These simulation results indicate that the simpler HBot needs linear

bearings that can withstand a higher orthogonal load than the ones for the

CoreXY with its more complex two belt configuration. Due to these results an

additional requirement is introduced in the model especially for the HBot design

to ensure robustness against these orthogonal forces to reach comparable

printing performance and precision. This demonstrates the use of the behavior

simulation library for an initial simulation of different concepts for potential

concept evaluation or trade-off studies.

In the shown examples no element with the stereotype

<<SolutionPrinciple>> is used. As described in Section 4.3.1, it serves as a

general solution principle to specify principle solutions or be a black box

placeholder in a simulation model. Its use is illustrated in Section 4.4.2 in Figure

42 together with the use of the service library.

4.4. SERVICE LIBRARY

This section presents the service library in SysML. First its definition and

implementation is shown before its use is demonstrated with the case study. The

service library contains the collection of services from Schmidt et al. [17]. The

library serves as a formal repository of proven and accepted services. It

addresses the designer’s need to support the identification of services to realize

modeled functionalities in PSSs. This is important since “compared to product

design, a broader range of knowledge is required in PSS design because both

products and services are included in the design space” [7]. Also in PSS design

there are needs identified [28] to better support the links between requirements

and actors through services, as well as between the physical product and its

services. This can be enabled by using unified SysML modeling for PSS design.

4. Concept Modeling Approach in SysML

 82

4.4.1. Service Library Definition

To formally capture services in SysML there is the <<Service>>

stereotype defined in the service library. It is displayed in Figure 38. It is not only

used for the services of the database, but is also to be used to model custom

services in SysML. The <<Service>> stereotype is a subtype of the SysML block.

Figure 38: <<Service>> stereotype in the service library

To represent services in an object-oriented way the stereotype has

multiple properties, which are based on different approaches in literature [7, 26,

35]. Its properties are: an arbitrary number of requirements, at least one use case

as the goals of the service receiver, at least each one service provider and

service receiver as SysML actors to represent the entities who provide and

perform as well as order and receive the service. Then there is an arbitrary

number of channel and content elements as blocks, which capture the channels

the service uses between the provider and receiver to deliver the service content.

The providers, receivers, channels, service contents and their interrelations

constitute the service environment [26]. The functions of the service are

4. Concept Modeling Approach in SysML

 83

formalized by <<ElementaryFunction>> elements together with their input and

output <<BasiFlow>> elements from the function library. The textual description

of the service and the service quality come last. The service quality property uses

the same “grade“ enumeration as seen in Figure 29 to qualitatively state the

quality of the performed service. Relations between <<Service>> elements are

for referencing related services and for one service containing a number of child

services. The formal capturing of these service properties is also beneficial for

the documentation of services, since just like functions, services are also very

much subjective and depend on the viewpoints of the service providers and

receivers [27].

An example for a <<Service>> element in the library is given in Figure

39 with the “Remote Inspections” service of the service catalogue [17]. Such

services define remote inspections of the systems through their manufacturer, for

example to identify potential needs for maintenance or to keep the 3D printers of

the case study calibrated for a reliable printing performance. The service element

in the library has generic properties defined to match any remote inspections

services. The top property is the service channel on which the provider performs

their service. Here, it is a “Remote Access” that the system needs to have in

order to inspect it remotely. Below follows the parent-child relation towards the

“Remote diagnosis” service that is contained in a remote inspection of the

system. Next is the service content in the form of an “Inspection Report” that is

created and delivered. The textual description describes the service, which is

about remotely gaining information of the absent system’s condition. The

elementary function is “Sense”. It has the inputs of “Energy” and “ControlSignal”

as well as the output of a “StatusSignal”. The service senses the system’s

condition by means of the provided energy according to the actuating control

signal. The system itself is not modeled as a flow of its own. This fits to the ideas

4. Concept Modeling Approach in SysML

 84

that functional modeling can be used as a basis for developing PSS, as done in

[7, 24] or reasoned in [29]. To provide “Remote Inspections” services a

“Technician” is needed, while the receiver is a generic “Service Receiver”. The

related requirement “Remote Access” is about capturing the need of an adequate

remote access to the system. Finally, the service goal in the middle is: “Gain

awareness of product condition”. This use case is derived from a so called

customer function that was used during the creation of the service catalogue [17].

Figure 39: "Remote inspections" service from service library

The content of the service library is structured according to the

categories, clusters and super-clusters of the original service catalogue [17]. An

excerpt of the implementation of the service library in SysML, is seen in Figure

40. On top is the “Generic Service” element as an abstract parent element to all

contained services. The following three layered hierarchy is contained in

4. Concept Modeling Approach in SysML

 85

packages for the four main categories of the catalogue. In Figure 40 the package

for the category “Services supporting Product” is displayed. The contained super-

clusters, e.g. “Product Maintenance”, and clusters, e.g. “Product Inspections”,

follow. All subordinate elements are related by generalizations. Service elements

on these levels do not have special properties since they are only for organizing

the contained services. For this they have descriptions from the service

catalogue as their documentation in SysML. Two examples are given in Figure

40 with callout notations. On the lowest hierarchical level of the library are the

265 actual services. Three example services about product inspections are

displayed without their properties.

Figure 40: Service library hierarchy excerpt with “Product Inspections” services

Besides the service hierarchy there are accompanying elements stored

in the service library. For describing the services there are actors, blocks for

channel elements and content elements, service goals as use cases and

requirements needed. They are modeled in separate packages with further

generalization hierarchies. An example of such a hierarchy is displayed in Figure

41 for some used actors. Beneath the abstract “Generic Actor” there are two

4. Concept Modeling Approach in SysML

 86

groups of actors for different “Service Receivers” and “Service Providers”, e.g.

the “Technician” of Figure 39.

Figure 41: Excerpt of actor hierarchy for service providers and service receivers

4.4.2. Service Library Usage

Generally, the service library is used similar to the structure library with its

machine elements and components [13]. However, for the services there is a

greater need to tailor them for their specific use and physical system. This goes

together with the intended use of the cataloged services as solution principles to

realize functions.

Using the service library together with the other libraries presented

creates an integrated modeling approach for PSS. This is similar to the six step

PSS design process of Kim [24]. The stakeholders and actors with their intended

service usage are specified, as seen in Figure 24 with an example from the case

study in form of the use case “Maintain Printer”. An example for a following

functional model is given in Figure 27 showing the “Maintain Printer” ACT with

the “Inspect Printer” user-defined function. The service library is now be used to

provide services to realize the modeled functionalities. An example from the case

study is the allocation from the user-defined function “Inspect Printer” to suitable

principle solutions, e.g. to inspect the 3D printer by offered “Services”. This is

displayed in Figure 42. There the <<PrincipleSolution>> “Service” is further

concretized by a generic <<Service>> element in form of “Remote Inspections”

4. Concept Modeling Approach in SysML

 87

from the service library of Figure 39. Figure 42 also shows the use of

<<SolutionPrinciple>> elements of the behavior simulation library to capture two

different realizations of the second accompanying principle solution.

Figure 42: Principle solution example for “Remote Inspections” service of the 3D
printer

After the selection of generic services from the library they must be

adapted and detailed for their concrete application. An excerpt of this is shown

in Figure 43 for the custom “Raptype Remote Inspection” service. This service

element uses the <<Service>> stereotype and inherits from two services from the

library: “Remote Inspections” and “Calibration”, which are combined to offer a

specific and unique solution. Figure 43 shows the tagged values of the “Raptype

Remote Inspection” service, e.g. the DC electrical energy input or the “Network

Interface Card” as main service channel. It also displays the linkage of the

service towards other related elements to allow traceability through the SysML

model. The callout notation states that the service is allocated from different

involved <<PrincipleSolution>> elements and the <<CallBehaviorAction>>

“PrinterCondition”, which is an elementary function of the user-defined function

“Inspect Printer” from Figure 27 and Figure 42. There are also allocations

towards the service provider “Technician”, the “Network Interface Card” and the

4. Concept Modeling Approach in SysML

 88

“Remote Control Software”. The “Network Interface Card” has a satisfy relation

towards the “Remote Access” requirement that comes originally from the

“Remote Inspections” service of the service library.

Figure 43: Model excerpt for custom “Raptype Remote Inspection” service,
showing its linkage to other model elements

4.5. MULTI-SOLUTION PATTERNS

This section presents the multi-solution pattern concept in SysML. First

they are defined and implemented in SysML, then excerpts of an example

pattern are shown before its use is demonstrated with the case study. The

presentation of the example pattern is separated from the definition of the

concept in SysML itself, since unlike the other libraries there is not a given set of

4. Concept Modeling Approach in SysML

 89

elements to be implemented, but all patterns are to be derived from previously

developed systems and are therefore more problem specific.

The patterns are based on the mechatronic solution patterns of Anacker et

al. [122] to support the modeling “by describing concept solutions in the form of

partial models that correlate library elements with other aspects to offer coherent

subsystems” [1]. The patterns address the needs of further concept modeling

support that goes beyond independent elements from design libraries. They use

library elements to offer multi-disciplinary design knowledge from different levels

of abstraction. This way the patterns improve reuse by providing verified

solutions to be adapted from existing designs [44].

4.5.1. Multi-Solution Pattern Definition

To successfully support the concept design of multi-disciplinary systems

using patterns several requirements must be met [122]: The multiple disciplines

and levels of abstraction, including a solution-neutral view, must be taken into

account. Also, creating and using the patterns must allow a dynamic application

by a direct integration into the design process together with a growing potential

with each successfully modeled system. This is possible through the model-

based representation of the pattern in SysML because of its advantages

compared to conventional textual pattern descriptions [106, 122].

The multi-solution patterns are defined to describe multiple alternative

and domain-spanning principle concept solutions to realize target functions. The

solutions describe the basic operation mode of the system and its desired

behavior by several aspects. These combined aspects form a coherent system

by correlating with each other as part of partial models of the pattern. This way

they interrelate the pattern context, problem description and multiple solutions

together with guidance on use and forces to be considered [1]. Combining

4. Concept Modeling Approach in SysML

 90

multiple solutions into one pattern is based on the idea of using a solution-neutral

functional description as the basis for identifying suitable patterns, especially

since the patterns themselves contain functional models for their multi-

disciplinary solution representation. Since the functional models are solution-

neutral they allow realization by the multiple different solutions of the pattern.

The formal implementation in SysML allows the necessary multi-

disciplinary model representation and the easy reuse of knowledge from other

SysML models and design libraries. Also the formality supports a “uniform

pattern representation to combine and compare patterns and to fix the

engineering design-knowledge [while] providing essential context know-how”

[122]. For the implementation in SysML there are two stereotypes defined in

Figure 44 to extend the “Package” metaclass. There is the <<Design Pattern>>

stereotype for the patterns with their solution-neutral information and the

<<Pattern Solution>> stereotype for the individual solutions with all solution-

specific information. The different aspects of the pattern description are defined

as tagged values of the stereotypes. They follow the existing frameworks for

engineering patterns [106, 116, 122, 123, 156] and are adapted for SysML to

allow the inclusion of multiple solutions and the utilization of the design libraries.

The <<Design Pattern>> stereotype has the following properties: There

are possible “alias” strings to capture alternative names for the pattern. To

uniquely identify a pattern there is the “patterID” string. Next, related keywords

are stored as additional strings. The “problem_description” string describes “the

specific problem that needs to be solved” [116]. This description is to be

independent of the problem context and separate from the constraints on the

solution. The “problem_context” is described by its own string in the next

property. It specifies the circumstances in which the problem is solved, especially

4. Concept Modeling Approach in SysML

 91

Figure 44: Multi-solution pattern stereotypes

with respect to their imposed constraints on the solutions. The “target_

functionality” is modeled as SysML actions, preferably by using call behavior

actions as elementary functions from the function library. The target functions are

those solution-neutral functions the solutions of the pattern realize. The string-

typed “forces” on the pattern explain “the often contradictory considerations that

must be taken into account when choosing a solution to a problem” [116]. The

importance of the forces relative to each other is determined by the context.

Finally, there is an arbitrary number of strings to document “references” of

the pattern and one string for the “author” of the pattern. Further relations of the

<<Design Pattern>> stereotype are the recursive relation to any number of

related patterns and the relation to the main elements of the patterns: their

solutions, of which at least one or more must be included.

The solutions are represented by the <<Pattern Solution>> stereotype

on the right of Figure 44. The solution solves the problem by resolving the higher

priority forces at the expense of less important forces as determined by the

context. The stereotype has the following properties: There is the “solutionID”

4. Concept Modeling Approach in SysML

 92

string, to uniquely identify a particular solution, similar to the “patternID”. The

“solution_description” has also the type of a string. It describes the solution in a

textual way to accompany and summarize the additional modeling elements. The

arbitrary number of involved domain elements documents them explicitly [152].

The requirement elements introduce necessities the system has to fulfill when

selecting the solution.

The “functional_model” contains a further and more solution-dependent

functional decomposition of the target functions in <<User-definedFunction>>

elements from the function library. This functional model serves for a better

understanding of what the solution is actually doing and to maintain traceability

from the target functions to the system elements from the pattern. The

“behavior_model” is defined by <<PrincipleSolution>> elements from the

behavior simulation library of Section 4.3. It can contain simulation models using

the elements of the library to offer simulation models for the solution. To allow a

seamless integration of simulation models from different patterns there must be

general compatibility ensured for the partial simulation models in SysML and

Amesim. For this there are rules for the creation of simulation models defined by

Münzer and Shea in [48]. The “structural_model” finally contains blocks to

represent the subsystem structure of the solution on the technical solution level.

For this it can use elements of the structure library [13] or the service library of

Section 4.4. Coming from the structural model there are the “interfaces” of the

solution. They are represented as ports. They explicitly document the interfaces

of the solution, also to be used for an identification of suitable solutions of a

pattern, e.g. by using the main function flows from the function library as it is

done for structure library elements, too [13].

The “pattern_rationale” captures “an explanation of why this solution is

most appropriate for the stated problem within this context” [116] in form of a

4. Concept Modeling Approach in SysML

 93

string. The ”resulting_context” is also a string for describing the system context

after the application of the particular solution of the pattern. This especially

includes potential new problems to solve, which can relate to other patterns.

Finally, there are strings used to capture “examples” of the use of the solution

and “known_uses” of the particular documented solution from the pattern.

With these properties the pattern solution models cover their specific

solution, while being only partially complete in the context of the whole system.

The partial models follow general SysML modeling rules and can use elements

from the libraries, since they should be captured from previously modeled

systems. This includes linkage between the different aspects within the partial

models of a solution, e.g. to trace back from the structure and behavior models

over the functional models to the requirements.

4.5.2. Multi-Solution Pattern Example

Key aspects of the multi-solution pattern “2D Kinematics” are

presented here. It includes partial simulation models to evaluate the solutions.

The pattern element is shown in Figure 45 with cropped descriptions. The pattern

solves the problem of two-dimensional positioning with fitting speed and

accuracy. For this it has the target function “PositionMaterial” with a “Material”

flow to be positioned by an auxiliary “Energy” flow while giving a “StatusSignal”

about its position. The problem context for example introduces a fixed reference

frame to take up reaction forces of the moving kinematics. The offered <<Pattern

Solution>> elements are: “CoreXY Solution”, “HBot Solution” and “Scissors-Bot

Solution”, which all realize the target function and solve the pattern’s problem.

The two related patterns are about the provision of mechanical energy in different

forms for the different solutions. The properties for references, keywords and

alias are also used as seen in Figure 45.

4. Concept Modeling Approach in SysML

 94

Figure 45: Cropped "2D Kinematics" design pattern (adapted from [1])

For a <<Pattern Solution>> element there is the cropped “HBot Solution”

of the “2D Kinematics” pattern illustrated in Figure 46. Besides different modeling

elements it contains a solution description, to describe the HBot configuration

with the sliding carriage and its propulsion by two motors driving a single belt.

The pattern rationale explains that such a solution reduces the moved mass due

to the fixed motors and that it produces a torque on the moved object, due to

asymmetrical force application. The resulting context of the solution application

describes the needs to further adapt the model with respect to whatever is

actually positioned and that solutions must be found for propulsion and control.

The partial models of the solution in Figure 46 include the

“Functional_model”, which contains a functional decomposition of the target

function together with auxiliary functions needed for this functional

decomposition. The call behavior actions of the decomposition that represent

elementary functions from the function library are displayed on the allocation

matrix of Figure 47. Analog, there is the “Structural_model” with its part

properties displayed in Figure 47. The two requirements that come with the

 Figure 46

 Appendix A
– Multi-Solution
Pattern Ex-
cerpt: “Provide
Rotational
Movement”

 Figure 26

4. Concept Modeling Approach in SysML

 95

solution are “Belt Tension” that demands a certain tension in the used belt to

work and “Orthogonal Load on Linear Bearings” to state that the linear bearings

of the HBot solution must withstand a certain orthogonal load. This orthogonal

load is determined by the accompanying behavior model with its

<<AmesimSimulationModel>> element to conduct a simulation as explained in

Section 4.3.2. Excerpts of the simulation model are given with Figure 34 and

Figure 35. Finally in Figure 46, there is the “Domain” of the solution set to

“mechanical” and its interfaces are explicitly defined flows fitting to the target

function. Only the signal output is not specified in the offered solution, since it

depends on the used motors, e.g. stepper motors or servo motors.

To support traceability and reasoning within the solution, allocations are

set between the model elements. An excerpt of the allocation matrix of the

"HBot Solution" is given in Figure 47. There are different types of allocations

used in the pattern as shown in the matrix. The different types of allocations are

presented in Section 2.1.2.

Figure 46: Cropped "HBot Solution" pattern solution (adapted from [1])

 Figure 48

 Figure 34

4. Concept Modeling Approach in SysML

 96

Figure 47: Excerpt of allocation matrix of "HBot Solution"

Requirements & Functional Model:

Requirements,
Structural Model
& Behavior Model excerpt:

Allocations

4. Concept Modeling Approach in SysML

 97

Allocations from usage to definition are set between the actions of the functional

model and the customized <<AmesimBlock>> elements of the simulation model,

as also seen in Figure 34. Allocations of usage are set to trace between the

elementary functions and the part properties of the structural model, e.g. the

“toothed Belt” that realizes the function of guiding translational energy.

Another example for a multi-solution pattern is given in Appendix A –

Multi-Solution Pattern Excerpt, with the related “Provide Rotational Movement”

pattern that offers DC motor solution and a stepper motor solution. It contains, for

instance, further auxiliary information in the form of STM and SD diagrams to

specify the sequential and behavior and state transformations of the motors

outside of Amesim simulation models.

4.5.3. Multi-Solution Pattern Usage

When using solutions from patterns they must be adapted accordingly to

the specific context of the problem. The two HBot and CoreXY solutions of the

presented “2D Kinematics” pattern are used in the Reprap model for its print

head movement. After selecting a solution from a pattern it gets copied into the

system model together with its partial models to be integrated and adapted.

An example of this adaption process is shown with the functional model in

Figure 48. It is shown here because of its use to identify suitable patterns by the

target functions [1] and to refer to the function of the initial model on the lower

ACT in Figure 26: “Liquid : Position”. This functions gets refactored by the

functional model of the solution, which then is adapted accordingly. The final

result of this process is partially given in Figure 48. On the left side are adapted

functions from the pattern, e.g. with the generic “Material” flow of the pattern

specified into the “Liquid” flow of molten plastic in an FDM based 3D printer. The

user-defined functions, e.g. “:Position Liquid”, are further decomposed on other

4. Concept Modeling Approach in SysML

 98

Figure 48: Functional model adaption at pattern application

diagrams and the auxiliary elementary functions, e.g. “Electrical Energy:

Distribute”, are enabling them. The functional model is then manually extended

on the right side to include functions for the third axis movement of the 3D

printer, which is realized here by moving the print table.

The other partial models, e.g. behavior and structure are handled similarly.

Necessary adaptions are, for instance, the replacement of the abstract “2D-

moved Object” of Figure 47 by a model of the print head or the completion of the

simulation model for its use. This means not only a setting of fitting parameters of

the provided elements as seen in Figure 34 for the pulley diameter, but also the

4. Concept Modeling Approach in SysML

 99

addition of essential motors and control, which are not part of the pattern. Motors,

for example, can be added by applying the related pattern, as mentioned before.

The simulation and its results are shown in Section 4.3.2.

4.6. RESULTS

The concept modeling approach applied to the case study results in

several findings related to the used design libraries and multi-solution patterns.

Focusing on the demonstration of the presented modeling support, the

conceptual design of the 3D printer is only partially completed in SysML. There

are model elements of different domains used: “Electrical”, “Mechanical” and

“Software” for the printer itself and elements from the “Service” domain, as

shown in Section 4.4.2. Additionally there are magnetic and optic properties

modeled for the different position sensors, e.g. linear rails with optical

displacement sensing and servo motors with magnetic induction for determining

the angular displacement.

For the number of reused system elements there are 38 elementary

functions from the function library used in the functional model of the HBot

variant alone, twelve of them coming from applying the pattern. They are

structured into eight user-defined functions in four levels of hierarchy. For the

CoreXY variant there is a similar number of functions, with most of them being

identical to the HBot variant. The behavior simulation model, for instance, for the

HBot uses eleven different <<AmesimBlock>> elements from the library to create

52 simulation elements as part properties interconnected by 59 connectors. Most

of these elements are provided by the pattern and the model does not contain

any elements for propulsion and control. To evaluate the two kinematic variants,

the propulsion and control is added only in the Amesim tool itself to run the

simulations. Finally, there are four different services from the service library

4. Concept Modeling Approach in SysML

 100

reused to model two new custom services for remote inspections and on-site

maintenance. Further information on how these elements are used in parts of the

system model is given in the previous sections that illustrate the use of the

presented libraries and multi-solution patterns.

In total there are three multi-solution patterns created for the case

study. In addition to the “2D Kinematics” pattern of Section 4.5.2 there is the

“Provide Rotational Movement” pattern in the Appendix for different electric

motors and another pattern for alternative sensors of rotational mechanical

energy. All three patterns offer conceptual solutions in the form of partial models,

by correlating library elements with more information to offer coherent

subsystems. Through their solution-neutral target functions they enable the reuse

of alternative multi-disciplinary conceptual solutions for common problems, e.g.

the selection of an electric motor or a sensor. Yet, due to the fact that only limited

prior system models were available for the case study, most information content

of the patterns was created specifically for it, while aiming to be generally

applicable.

For creating the concept model using the libraries and patterns the

modeling workflow follows the concept design tasks of the VDI 2221 [14] with

the level structure of Eigner et al. [80], as shown in Section 4.1 with Figure 18.

The figure also display the need for design iterations, which are necessary to

create a concept model. This fits to the definition of system architecting being a

process to iteratively refine technical specifications [157]. Design iterations during

the creation of the case study especially involved refinements of the simulation

models, coming from their representation and use in the simulation tool.

In the task definition of the context level, the main requirements of the 3D

printer come from Wölkl [13] with certain refinements, e.g. related to the service

modeling in Figure 43. The main use cases and the context of the case study are

4. Concept Modeling Approach in SysML

 101

displayed in Figure 24, where also the printer’s main function is derived as a

black box with flow-based interfaces.

This is the starting point for the functional decomposition to determine

functions and their structure on the functional level. The function structure

provides a solution-neutral and hence domain-independent basis for the following

multi-disciplinary system development. Excerpts of the functional model are

shown in the Figure 26 and Figure 48 for three layers of the functional

decomposition of how to print in 3D and Figure 27 for functions of the service

modeling. The model uses flows from the library together with its elementary

functions for those functions that are not further decomposed. This reuse not only

clarifies the semantic meaning of the functions, but it also supports the modeling

through use of predefined functions with fixed and consistent interfaces.

The search for working principles as potential solutions to the elementary

functions constitutes the principle solution level. The <<PrincipleSolution>>

elements are hereby defined and detailed by various system elements. This step

is shown in Figure 34 with a principle solution associated to a simulation model,

containing <<AmesimBlock>> elements derived from the behavior simulation

library. The principle solution HBot realizes the user-defined function of

positioning the liquid plastic while subordinate elementary functions are

concretized by elements of the behavior simulation model. Another example of a

principle solution of the case study is given in Figure 42. A user-defined function

is concretized by two principle solutions, which are detailed by generic services

from the service library and different solution principles. Reusing common

services helps in extending the prior mechatronic system model into a PSS.

Alternatively to the shown behavior or service elements it is also possible to

directly link towards structural components, e.g. provided by the structure library

4. Concept Modeling Approach in SysML

 102

[13]. This relates to the idea of FBS that the behavior is only used where it is

needed to find concrete solutions [84].

The modeling of the system structure, i.e.components, and behavior

models for simulation further concretize the technical solution. For the behavior

model there is, for instance, the one of the HBot principle solution of Figure 34

refined. Parts of the simulation model in SysML and Amesim are displayed in

Figure 35. Two simulation results are shown in Figure 37, where they are used to

specify the orthogonal load on the used linear bearings. These results illustrate

the use of the behavior simulation library as a means of planning the comparative

evaluation and potential trade-offs of the two investigated configurations.

Examples of the structural view in the case study are the part properties of the

HBot kinematics subsystem in Figure 47 and the IBD in Figure 49, which shows

the wiring of the basic 3D printer configuration with its “Arduino Board” and

stepper motors [144].

Modeling the different 3D printer configurations and their variants

follows the approach of Weilkiens et al. [59]. The SysML model structure of the

case study, e.g. shown in Figure 12, Figure 13 and Figure 15, combines the

variation management with the multi-level system representation of [80]. In

general there is to say that the configuration management in SysML is possible,

yet needs further future improvements, e.g. through enhanced tool support.

4. Concept Modeling Approach in SysML

 103

Figure 49: Wiring schema of the basic configuration of the 3D printer with stepper
motors

A schematic overview of the modeling approach and model structure is

given in Figure 50. It shows the main modeling elements, the design libraries

they come from and simplified relations between them together with a pattern

database. There are for example allocations between the different levels,

composition and decomposition relations for the function, behavior and structure

models, associations to refine principle solutions, and a satisfy relation to trace

back from the detailed system structure to the requirements.

4. Concept Modeling Approach in SysML

 104

Figure 50: Schematic modeling approach overview

4. Concept Modeling Approach in SysML

 105

The model-based representation in SysML allows explicit relations

between various system elements to represent multi-disciplinary systems. For

PSS, for example, there are links shown in Figure 43 between service aspects,

the physical system and other elements such as actors, requirements or the

software to be modeled in UML. Another example for this traceability between

modeling elements throughout the SysML model is given in Figure 34. There are

semantic links between the different levels of abstraction, i.e. “vertically” to the

level structure of Figure 17, and there are “horizontal” semantic links between

elements on the same level. The “vertical” allocations connect functions with

elements that represent realizing principle solutions. The “horizontal” links exist

for instance as generalizations between library elements and their more detailed

child elements.

Other examples for the interrelations in the case study model are given in

Figure 47 with an allocation matrix or in Figure 51 with a tool generated relation

map, especially for traceability purposes. It shows the allocations from the

“Rotational Energy Provision” requirement over the elementary function

“ElectricalEnergy-RotationalEnergy:Convert” towards the “PrincipleSolution - DC

Motor”. This element is associated to an Amesim simulation model that contains

the simulation element “DC-Motor_emd_DirrectCurrentMachine”. This behavior

element is allocated to the “DC Motor” block, which is also alternatively allocated

directly from the elementary function. From the “DC Motor” block it is traced back

towards the requirement by a satisfy relation. Due to the decision of fulfilling this

requirement with its function through an electric DC motor the new requirement

“Electric Power Supply” gets derived that must be fulfilled in a following design

iteration.

4. Concept Modeling Approach in SysML

 106

Figure 51: Relation map of "Rotational Energy Provision” requirement

To use the elements from the libraries, specific allocations are required.

These are allocations from usage to definition. Such asymmetric allocation are

“not generally recommended since [they] can introduce notational ambiguity”

[70]. Yet, they are used here since both alternatives, allocations of usage and

allocations of definition do not apply. Using the function library, functions do only

exist as actions, i.e. using activities from the library. Allocating to realizing

elements from other libraries takes place before these elements are used in the

model. Therefore, allocations from usage to definition must be used, first.

Finally, when combing all presented design libraries with the multi-solution

patterns there is a total number of ten extra stereotypes used. This, compared

to other approaches [72, 134, 140, 141], relatively low number of stereotypes is

intended to reduce the learning effort of designers when using the presented

modeling approach. An overview of the major relations between the used

stereotypes is given in Figure 52.

4. Concept Modeling Approach in SysML

 107

Figure 52: Overview over used stereotypes

5. Functional Modeling User Study

 108

5. Functional Modeling User Study

Usability has been identified as a key challenge for both, functional

modeling [29, 89] and SysML modeling [5, 38]. This section investigates usability

of the developed modeling approach in a descriptive user study. It is conducted

to analyze the usability of the SysML function library developed, to highlight

advantages and areas for improvement. The function library serves here as an

example for the general library supported modeling approach in SysML. It

intends to support the use of the FB and more formal and guided functional

modeling. Other benefits are expected from reusing library elements, rather than

having to define them all from scratch.

5.1. EXPERIMENT SETUP

The experiment setup starts with the investigated research hypotheses

and the experimental factors. Derived from these follow the individual

performance measures and the general procedure of the study including its tasks

and instructions. The section ends with the master models as references for

these tasks.

5.1.1. Hypotheses and Experimental Factors

To determine the actual effects of the function library as modeling support,

its availability is defined as the single experimental factor under investigation.

This means that the FB is either given to the participants as tables printed out on

paper, based on [15], or that it is provided with the library in SysML. The SysML

library is then incorporated as a read-only module.

Considering the usefulness of the library, “time, quality and performance

are all […] benefiting from reuse” [105] of proven knowledge and model

elements. Based on this the following hypotheses are derived:

 Using the SysML library reduces the perceived modeling workload.

5. Functional Modeling User Study

 109

 Using the SysML library leads to “better” models.

 Using the library leads to bigger models.

 Using the library leads to more use of the FB,

resulting in more formal models.

 Using the library leads to less errors in the models.

 Using the library leads to a broader coverage of the

general top-level functions of the system,

compared relatively to master solution models.

5.1.2. Performance Measures

Two approaches are used in the conducted user study to complement

each other in measuring the modeling performance of the participants. The first is

a general questionnaire and the NASA’s TLX test [158] to mainly determine

the perceived workload and the user acceptance after the tasks. The used

questionnaire is given in Appendix B – User Study Questionnaire. Questionnaires

and established and recognized tests, such as RSME [159] or NASA-TLX are the

best practices when it comes to determining the user acceptance. The TLX test

uses six factors, each on a scale from low to high workload, going from zero to

100 in increments of five. The factors are: mental demand, physical demand,

temporal demand, performance, effort and frustration. These factors are

weighted towards each other by letting the participants compare them pairwise in

a random order at the end of the experiment.

The second approach is an analysis of the created models. In general

there exist different approaches to assess the quality of functional models as a

mean to determine the modeling performance. The ISO 9241-11 [160] standard

distinguishes between effectiveness, efficiency and user acceptance. A common

method to measure the effectiveness for object-oriented modeling is by counting

5. Functional Modeling User Study

 110

different model elements and their connections, as for example done for entity

relationship diagrams in [161]. The model size can also take incorrect model

elements separately into account to consider the model correctness, too. Besides

this there are relevant partial solutions defined and used for comparison to

determine the grade of task completion for the modeling effectiveness [162]. For

modeling efficiency, modeling time is an additional factor along with modeling

effectiveness [160]. In this user study the maximum modeling time is fixed for the

participants. This implies that the effectiveness measure already includes a

statement about modeling efficiency [162].

To conclude, the modeling effectiveness is mainly determined here by

using the model analysis parameters of covered top-level functions to determine

the grade of task completion. The reasons for this are that the model

completeness and correctness only consider the model size [162], but neglect

the information content contained. Determining a grade for the model correctness

is also not chosen since it requires the analysis of semantic modeling errors. The

collection of semantic errors, e.g. contradicting the common sense of how a

required system might work, is not done to avoid potential bias when determining

what counts as such an error. The same argument applies for not choosing

another method of establishing the quality of functional models from Nagel et al.

[163]. It defines problem specific questions that have only yes or no answers,

which are counted. A correct and unbiased selection of answers might be

ensured through multiple evaluators, but an unbiased selection of questions

seems to be more problematic.

In total, the following parameters are determined from the models:

 Number of functions as nodes

 Number of flows, i.e. edges connecting the functions

 Their combined number for the model size

5. Functional Modeling User Study

 111

 Number of functions from the FB

 Relative number of functions from the FB

 Number of flow types from the FB

 Number of functions from the SysML function library

 Number of flow types from the SysML function library

 Relative number of top-level functions, compared to the full master models

 Relative number of top-level functions, compared to the pruned master

models (for both master models see Section 5.1.4.)

 Number of syntax errors in SysML, including the connectivity of the

functions and flows

5.1.3. Experimental Procedure

The experiment is executed as part of a tools course teaching activity for

mechanical engineering students at the ETH Zurich. Of the 11 participants, 8 are

bachelor students and the remaining 3 are doctoral students in mechanical

engineering. All participants have no prior knowledge or experience of using

SysML, creating functional models or the used modeling tool. The modeling is

supervised by the author and questions were answered about using SysML,

general functional modeling and the modeling tool, but not about how to do the

specific modeling task with its functional decomposition. The procedure of the

experiment is displayed in Figure 53. It contains three afternoon sessions with

the first two serving as a learning phase for the participants. On day 1 SysML is

introduced with the PKG, the UC and the ACT as a first step into MBSE.

Additionally the method of functional modeling with functions from the FB is

presented together with guidelines to decompose a target main function [23]. On

day 2 the REQ, the BDD and the concept of cross-cutting relations in SysML are

given together with the function library and its use.

5. Functional Modeling User Study

 112

Figure 53: User study experiment plan

The tasks for learning functional modeling on day 1 and 2 are the

creation of the two main aspects of an electric bike, to drive with support from the

electric motor on day 1 and to break while recuperating energy on day 2. These

tasks are selected to be fairly known by the participants and to cover a

mechatronic system. The first task is done without the library and the second

task is done with it to have the participants learn both ways equally. The

maximum time to complete the functional models is one hour each. Instructions

given to the participants consist out of general goal descriptions together with

multiple exemplary models, provided on paper and as an SysML model in the

modeling tool. When not having the library, the participants are nevertheless

instructed to use the terms of the FB, as provided on paper. When having the

library, it is assumed to be used, too. After the required introduction of the TLX

5. Functional Modeling User Study

 113

test with its scale and six factors, it is done for each task to familiarize the

participants with it. To gain initial insights into the behavior of the participants, a

pilot study is done with three participants for day 1 of the course. Because the

analysis of the results in Section 5.2 focuses exclusively on the modeling on day

3, these three participants are treated equally as the rest for the analysis.

On day 3, where the actual experiment takes place, two modeling tasks

are carried out by the participants, as displayed in Figure 53. Both tasks are

about the functional models of a small mechatronic consumer device, an

automatic bean-to-cup coffee maker. The two tasks represent the main aspects

of such a coffee maker, with modeling of the functionality of brewing fresh coffee

and grinding coffee beans into coffee powder. The modeling support through the

library is not provided for the first task and given for the second task. Half of the

randomly assigned participants do the brewing coffee task first and the grinding

coffee beans task second, while the other half of the participants performs the

two tasks in reversed order. This way a potential difference in the complexity and

required effort between the two tasks is compensated, while the maximum case

size can be used to test for the experimental factor of modeling with or without

library. On day 3 there are further TLX tests performed for each task and the

concluding weighting of the TLX scales is done as required. For this the scale

factors are randomly pairwise compared, it is counted how many times one of the

factors is determined to be more important, which then results in an average

weight for each factor. Besides this procedure for the experiment, the participants

are introduced to the SysML IBD as part of the tools course.

5.1.4. Master Models

The master models define potential target solutions for the two modeling

tasks of brewing coffee and grinding coffee beans. They are made to provide an

5. Functional Modeling User Study

 114

agreed-on mean for comparison of the participants’ solutions. Their direct

content in form of their elementary functions and how they are connected with

each other is not used for the comparison to avoid bias by different ways of

creating these models. Likewise, there are two different configurations of the

functional models used: One complete model and a pruned model, following the

rules of Caldwell et al. [164]. Examples for these pruning rules are to remove all

“Import” and “Export” functions or all “Couple”, “Join”, and “Link” functions

referring to any type of “Solid”. Pruned models are models with a reduced

number of functions to focus on the essential information and improve readability.

Three of the total four models are given in Figure 54, Figure 55 and Figure 56.

Figure 54 shows the complete functional model of the grinding coffee

beans task, as implemented on an ACT using the function library. It uses 13

functions, 12 elementary ones decomposing the single main function, and 18

object flows connecting the functions. It also shows, framed by dotted lines, the

six aspect, which define the top-level functions. They serve as more objective

parameters in a comparison to access model quality. They are needed to be

covered for fulfilling the main function. To grind coffee beans they include the

following six aspects of human control, providing and converting energy,

providing and grinding coffee beans and exporting the resulting grounded coffee.

The pruned version of the functional model of grinding coffee beans is

shown in Figure 55 with only 6 elementary functions that still cover 5 of the

original 6 top-level functions. The functionality of exporting the grounded coffee is

completely removed by the pruning rules. The pruned model consists in total out

of 7 functions and 12 object flows.

The task of brewing coffee consists of 8 top-level functions, covering

aspects of human control, energy, water and coffee powder provision, heating

5. Functional Modeling User Study

 115

the water, combining it with the coffee powder, separating them again and

exporting the brewed coffee. For this 18 functions are used together with 27

object flows. The pruned version of the brewing model, as displayed in Figure 56,

uses only 10 functions with 18 object flows and has again one top-level function

less, because of omitting the export of the coffee.

Figure 54: Full functional model of “Grind Coffee Beans” task, highlighting its six
top-level functions

5. Functional Modeling User Study

 116

Figure 55: Pruned functional model of “Grind Coffee Beans” task

Figure 56: Pruned functional model of “Brew Coffee” task

5. Functional Modeling User Study

 117

5.2. EXPERIMENT RESULTS

To look at the modeling effectiveness with respect to the use of the

function library, the results of the questionnaires about user acceptance and

perceived workload are described together with the results of the different

functional modeling tasks.

5.2.1. Questionnaire and TLX Test Results

The given questionnaire contains questions to assess the participants

prior experiences with SysML, the modeling tool, functional modeling and

concept modeling using these elements. It also asks about their importance for

early product development phases. The average approval rating is around 60 on

a scale from 0 to 100, with 0 meaning complete disagreement and 100 meaning

complete agreement. Only the aspect of functional modeling as a means to

define what a system is supposed to do before defining its structure is rated

highly important with an average approval rating of 87. The questions about the

use of the function library reached approval ratings around 59 to 60 for the

statements that modeling with the library in SysML improved the resulting model

and the modeling process.

The general results of the TLX tests are displayed in Figure 57, showing

the means of weighted ratings for the perceived workload for each of the four

measurements. The first two measurements are for the learning phase on day 1

and 2, with day 1 providing the FB only on paper and day 2 providing it with the

SysML library. The last two measurements are from day 3 of the course, with

again initially not providing the library before providing it. The values for the mean

overall workload are: 53.6 on day 1, 60.1 on day 2, 41.1 on the first

measurement of day 3 and 49.6 on the second measurement of day 3. These

lower values for the perceived workload on day 3 indicate a learning effect of the

participants. The standard deviations, coming from the 11 participants, are: 10.4,

5. Functional Modeling User Study

 118

10.7, 11.5 and 14.5 in the same order. The standard errors, which are indicated

from left to right in Figure 57 are: 3.1, 3.2, 3.5 and 4.4. The standard deviation

quantifies the scatter of the individual data points, i.e. how many of the values

vary from one another, while the standard error of the mean quantifies how

precisely the true mean of the population is known. It takes into account both the

sample size and the value of the standard deviation.

Figure 57: Overall perceived overall workload with standard errors from the TLX
tests by the means of weighted ratings

More details of day 3 with the results for the different factors and their

weightings are shown in Figure 58 and Figure 59. For the tasks of performing

functional modeling in SysML the following weights are derived for the six factors:

3.6 for mental demand, 0.5 for physical demand, 2.5 for temporal demand, 2.8

for performance, 3.4 for effort and 2.4 for the frustration aspect. These values are

5. Functional Modeling User Study

 119

displayed relatively as width of the columns on the horizontal axis in Figure 58

and Figure 59. The mean workload values for the six factors in Figure 58 are:

45.5 for mental demand, 13.6 for physical demand, 37.3 for temporal demand,

41.8 for performance, 44.5 for effort and 20.9 for the frustration aspect. Com-

bined with their individual weights they make up the overall workload value from

Figure 57, the 41.1 for the first measurement on day 3. For the second meas-

urement on the third day with the library, the following values are derived: 52.7

for the mental demand, 27.3 for the physical demand, 41.8 for temporal demand,

50.1 for performance, 52.3 for effort and 40 for the frustration aspect. These val-

ues are shown in Figure 59 together with again the same weighting factors for

the width of the columns. They also make up the overall workload value of 49.6

for the second measurement of day 3 of Figure 57.

Figure 58: Perceived workload on day 3 without library support, shown for each
factor with its relative weighting

5. Functional Modeling User Study

 120

Figure 59: Perceived workload on day 3 with library support, shown for each fac-
tor with its relative weighting

5.2.2. Model Analysis Results

The model analysis uses a total of 22 models, coming from the 11

participants, each performing two tasks. IBM SPSS Statistics v22 is used to

check for normal distribution of the data, to perform Wilcoxon tests [165] and

check for correlations between the parameters according to Spearman [166].

The results are summarized in Table 2, showing the mean values of the

number of functions, flows, the model size, the functions of the FB and their ratio,

the flow types of the FB, the functions and flows from the library, the covered top-

level functions with their ratio compared to the two master models and the

number of syntax errors. For each of these parameters the mean value is given

for modeling with and without the library, as well as for modeling the two tasks of

grinding and brewing. Table 2 also includes the standard deviations and standard

errors for the modeling with and without function library for each task.

5. Functional Modeling User Study

 121

Table 2 shows that the mean model sizes for the two modeling tasks are

not equal, with grinding coffee beans having an average size of 18.91 and

brewing coffee having 24.18. Yet, due to the two groups performing both tasks in

reversed order there is no impact on the results to be expected. Also the

workload measurements and questionnaires indicate a comparable task difficulty.

(N = 11)

Mean Value
Standard
Deviation

Standard
Error

without
library

with
library

grinding
task

brewing
task

without
library

with
library

without
library

with
library

functions 8.09 8.82 7.82 9.09 3.36 1.66 1.01 0.50

flows 12.18 14.00 11.09 15.09 4.26 4.60 1.29 1.39

model size 20.27 22.82 18.91 24.18 7.39 5.71 2.23 1.72

FB functions 2.82 7.09 5.00 4.91 3.31 2.70 1.00 0.81

ratio of FB functions 0.31 0.78 0.60 0.49 0.30 0.26 0.09 0.08

FB flow types 3.27 4.91 3.82 4.36 2.20 2.59 0.66 0.78

functions from library 0.00 7.09 3.91 3.18 0.00 2.70 0.00 0.81

flows from library 0.00 4.55 2.55 2.00 0.00 1.81 0.00 0.55

top-level functions 3.27 4.91 3.45 4.73 1.42 1.51 0.43 0.46

ratio of top-level
functions
(full master models)

0.46 0.71 0.58 0.59 0.18 0.19 0.05 0.06

ratio of top-level
functions (pruned

master models)
0.54 0.83 0.69 0.68 0.21 0.22 0.06 0.07

syntax errors 0.64 0.36 0.64 0.36 1.03 0.67 0.31 0.20

Table 2: Model analysis results with standard deviation and error

The Wilcoxon test [165] is a non-parametric statistical comparison of the

average of two samples, similar to the t-test. Unlike the t-test the Wilcoxon test

works with metric data that has no normal distribution and comes from two

dependent measurements. Although two different tasks are part of the

experiment, the two data sets of modeling with and without the library are

dependent from each other, since the same participants are involved. The

number of data points is equivalent to the number of participants: N = 11. Also

5. Functional Modeling User Study

 122

the data is not normally distributed, which is checked for the differences of the

two samples by Kolmogorov-Smirnov tests and graphically by histograms.

Finally, the Wilcoxon test is recommended for relatively small sample sizes, as in

this experiment. It checks, if the null hypothesis that the average signed rank of

two dependent samples is zero, i.e. that the factor under investigation has no

impact. Its p-value is the probability for the real mean value differences between

two compared groups being equal or bigger than the actual observed results.

The Z-value is a standardized and normally distributed signed number of

standard deviations by which the value of a data point is above the mean value

of what is being observed or measured. Results are statistically significant if p is

smaller than the critical value of 5% and Z is outside its critical values of ±1.96.

The results of the Wilcoxon test show several statistically significant relations, as

displayed in Table 3.

(N = 11)

mean values

Z p without
library

with
library

grinding
task

brewing
task

functions 8.09 8.82 7.82 9.09 -0.625 0.532

flows 12.18 14.00 11.09 15.09 -0.972 0.332

model size 20.27 22.82 18.91 24.18 -0.868 0.385

FB functions 2.82 7.09 5.00 4.91 -2,301 0.021

ratio of FB functions 0.31 0.78 0.60 0.49 -2,803 0.005

FB flow types 3.27 4.91 3.82 4.36 -2,113 0.035

functions from library 0.00 7.09 3.91 3.18 -2,820 0.005

flows from library 0.00 4.55 2.55 2.00 -2,869 0.004

top-level functions 3.27 4.91 3.45 4.73 -1.901 0.057

ratio of top-level functions
(full master models)

0.46 0.71 0.58 0.59 -2,346 0.019

ratio of top-level functions
(pruned master models)

0.54 0.83 0.69 0.68 -2.667 0.008

syntax errors 0.64 0.36 0.64 0.36 -0.816 0.414

Table 3: Wilcoxon test results (significant results: bold)

https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Mean

5. Functional Modeling User Study

 123

The number of used functions from the FB is significantly higher, with

the test statistic Z = -2,301 and the asymptotic p-value p = 0.021. The mean

value goes from 2.82 functions to 7.09 functions from the FB. This relation is

illustrated by a box plot in Figure 60 with error bars for the 95% confidence

interval and two outliers. Analog, there is an even stronger significant relation for

the relative number of functions from the FB, with mean values going from 0.31

to 0.78, Z = -2,803 and p = 0.005. This is shown in Figure 61. These two results

indicate that the availability of the library influences the use of the FB. This also

means that poor use of the FB is observed when it is only provided on paper

compared to the SysML library.

Having or not having the library also significantly influences the number of

functions used from the library. Here Z = -2,820, p = 0.005 and the mean values

go from 0 to 7.09. This means that at an average number of 8.82 functions per

model there are 7 of them reused from the library, if provided. This also indicates

good acceptance of the SysML library.

Similar significant results are observed regarding the flow types that

show that the number of flows used from the library rises from a mean value of 0

to 4.55 different flow types, if the library is provided. Here Z = -2,869 and the p-

value is p = 0.004. With a total of average 4.91 different flow types from the FB

used, this indicates again a good acceptance of the library by the participants.

The use of the flow types from the SysML library goes together with a higher use

of flow types defined in the FB. For this there is Z = -2,113, p = 0.035 and the

means are 3.27 without library and 4,91 with library, as displayed in Table 2.

5. Functional Modeling User Study

 124

Figure 60: Number of functions from the FB with and without function library (with
error bars and two outliers)

Figure 61: Relative number of functions from the FB with and without function
library (with error bars and three outliers)

5. Functional Modeling User Study

 125

To make statements about the modeling effectiveness and efficiency the

grade of task completion [162] is used by comparing the created functional

models to the master models and their top-level functions. For the relative

number of top-level functions there exists a statistically significant relation

depending on the availability of the function library. The covered ratio rises from

0.46 to 0.71 for the comparison with the full master models and from 0.54 to 0.83

for the pruned master models, when providing the library. For the full master

model Z = -2,346 and p = 0.019. For the pruned version there is Z = -2.667 and

with p = 0.008, which is even below the lower critical threshold of 1%. This

relation is displayed in the plot of Figure 62. It indicates that the modeling with

the library is more efficient, since its resulting models provide a broader coverage

of the necessary top-level functions of the modeling task.

Figure 62: Relative number of covered top-level functions compared to the full
master models with and without function library (with error bars and
one outlier)

5. Functional Modeling User Study

 126

For the other parameters of Table 2 there are no important and

statistically significant correlations found that relate to the provision of the

function library. Yet, the tendency is visible of bigger and therefore more

complete models with less modeling errors when having library support. Also, the

relatively low number of syntax errors mainly comes from the modeling tool itself

with its inherent constraints.

Bivariate correlations are calculated according to Spearman [166]

because the data is not normally distributed. It needs ranked data as input. The

number of data points is equivalent to all analyzed models: N = 22. The strength

of the correlations is determined by Spearman's correlation coefficient rs. It goes

from -1 for a perfect negative association of ranks, over 0 to indicate no

association between ranks, to +1 for a perfect positive association of ranks.

Following Cohen [167] the absolute value of rs being above 0.1 equals a weak

effect, above 0.3 equals a medium effect and above 0.5 is a strong effect. Again

the p-value is calculated to determine statistical significance.

A total of 47 statistically significant bivariate correlations are identified

for the investigated parameters, as displayed in Table 4. One example for a

noticeable significant correlations exists between the number of functions used

from the SysML library and the relative number of functions from the FB. The

correlation is strong with a coefficient rs = 0.802 and highly significant with p <

0.001. It indicates again that the initial assumption that the participants use the

FB provided on paper must be rejected. Functions from the FB are only used

when they are provided by the SysML function library.

Other significant and strong relations exist for the ratio of functions used

from the FB. There is one correlation for the number of flows from the FB with rs

= 0.641 and p = 0.001 and another one for the model size with rs = 0.505 and p =

0.017. A strong correlation exists also between the number of flows from the FB

5. Functional Modeling User Study

 127

(N = 22)

Top value:
rs

Lower value:
p-value

fu
n
c
ti
o
n
s

fl
o
w

s

m
o
d
e

l
s
iz

e

F
B

 f
u

n
c
ti
o

n
s

ra
ti
o
 o

f
F

B
 f
u
n
c
ti
o
n
s

F
B

 f
lo

w
 t
y
p

e
s

fu
n
c
ti
o
n
s
 f
ro

m
 l
ib

ra
ry

fl
o
w

s
 f
ro

m
 l
ib

ra
ry

to
p
-l
e
v
e

l
fu

n
c
ti
o
n
s

ra
ti
o
 o

f
 t

o
p
-l

e
v
e
l
fu

n
c
ti
o
n
s
 (

f.
)

ra
ti
o
 o

f
to

p
-l
e
v
e

l
fu

n
c
ti
o
n
s
 (

p
.)

s
y
n
ta

x
 e

rr
o
rs

functions -

flows
0.763
0.001 -

model size
0.879
0.001

0.971
0.001 -

FB functions
0.600
0.003

0.489
0.021

0.567
0.006 -

ratio of FB
functions

0.402
0.064

0.503
0.017

0.505
0.017

0.902
0.001 -

FB flow types
0.352
0.108

0.506
0.016

0.508
0.016

0.602
0.003

0.641
0.001 -

functions
from library

0.347
0.113

0.400
0.065

0.438
0.042

0.782
0.001

0.802
0.001

0.961
0.001 -

flows from library
0.303
0.170

0.396
0.068

0.422
0.051

0.745
0.001

0.781
0.001

0.568
0.006

0.961
0.001 -

top-level functions
0.465
0.029

0.648
0.001

0.631
0.002

0.540
0.009

0.536
0.010

0.582
0.004

0.572
0.005

0.569
0.006 -

ratio of top-level
functions (f.)

0.476
0.025

0.578
0.005

0.585
0.004

0.621
0.002

0.616
0.002

0.707
0.001

0.665
0.001

0.685
0.001

0.925
0.001 - -

ratio of top-level
functions (p.)

0.472
0.027

0.559
0.007

0.570
0.006

0.594
0.004

0.584
0.004

0.705
0.001

0.648
0.001

0.672
0.001

0.905
0.001 - -

syntax errors
(all negative rs)

0.338
0.124

0.379
0.082

0.420
0.052

0.096
0.670

0.116
0.607

0.213
0.342

0.347
0.113

0.282
0.204

0.305
0.168

0.310
0.161

0.326
0.138 -

Table 4: Spearman test results for bivariate correlations (significant results: bold)

and the model size with rs = 0.508 and p = 0.016. These interlinked correlations

allow the argumentation that either the better performing participants, i.e. those

that made larger models, also used more functions and flows from the FB or that

use of the FB itself results in more complete and larger models.

5. Functional Modeling User Study

 128

Yet, regarding the aspect of model quality there is the grade of task

completion favored before the model size for the model completeness. For this

there exists a highly significant and strong correlation between the ratio of

functions from the FB and the ratio of covered top-level functions with rs = 0.616

and p = 0.002. The data points for these two parameters are displayed in Figure

63 with respect to the provision of the function library. In Figure 63 there is to

note that with a higher relative number of FB functions there comes a higher

relative coverage of the required top-level functions. Figure 63 also displays that

the provision of the function library leads to higher relative use of FB functions

and covered top-level functions, which is shown before in Figure 60 and Figure

62. Therefore, it can be reasoned that the SysML function library leads to

relatively more terms used from the FB and hence to more formal models. Also it

leads to a higher grade of task completion with more covered top-level functions.

Equivalent results are derived when using the pruned master models for

comparison instead of the full versions. Its existence to avoid potential bias

through a single reference point is therefore superfluous in this case. An example

for this is shown for the significant relation of the relative number of top-level

functions depending on the availability of the function library.

5. Functional Modeling User Study

 129

Figure 63: Correlation between ratio of FB functions and covered top-level
functions relative to full master models

6. Discussion

 130

6. Discussion

In this thesis design libraries and multi-solution patterns are presented to

support the concept design in SysML. The following section discusses their use

for the case study with its benefits and limitations. There are several general

benefits expected when reusing knowledge and models in object-oriented

modeling. For example when reusing UML models and architectures in software

development, there are certain advantages to be expected [39, 41]: a better and

faster development, better understanding of the model and reduced development

risk. This is investigated in the user study of Section 5 for the function library,

which is discussed in the following Section 6.1.1.

These reuse benefits come with certain general disadvantages in the

form of additional effort for setting up and maintaining the libraries and patterns

with their content. Also the designers need training about using the patterns and

the libraries with their stereotypes and imposed formality. A demonstration for

this initially higher workload with library support is given with the user study.

Consequently, to keep this additional learning effort small, it is aimed to limit the

number of SysML extensions, as indicated in Figure 52.

When reusing solutions from patterns or model elements from libraries,

these model elements can also restrict the modeling freedom e.g. with their

higher formality. While the reuse provides a certain modeling and design

guidance, it can also restrict innovation. Following the definition of innovation

from Weber and Husung [124] there are two possibilities for creating product

innovation: by a novel combination of existing elements and by creating

something completely novel. The first way is supported by the offered reuse

knowledge, while its provision might mislead the designers away from an

innovation in the form of something completely novel.

6. Discussion

 131

6.1. MODELING WITH LIBRARY SUPPORT

Modeling with the presented libraries raises the model formality due to

reusing formally captured model elements with their defined interfaces that

capture design knowledge from existing and established knowledge bases. The

higher model formality has advantages of better consistency and a reduced

ambiguity for a “clear communication and sustainable documentation” [37]

together with a potentially better understanding of the model. It further enables

computational support, e.g. model consistency checking or eventually automated

model synthesis [9, 45]. Further formality comes from the use of a standardized

modeling language in the form of SysML. Extending SysML through the

stereotypes in the libraries allows a wide range of applications, including complex

and multi-disciplinary systems [34].

6.1.1. Modeling with the Function Library

Using the function library comes with certain modeling guidelines to

support functional decomposition by reusing proven design knowledge. This

design knowledge formalizes the syntax and semantics of functions and flows

from the FB [15] into standardized SysML model elements. This offers the

advantages of improved model formality, better model consistency and

avoidance of modeling errors as well as model ambiguity for handling complex

multi-disciplinary systems in a solution-neutral way.

One example of the benefits of the raised formality of the function

library is an improved capability to reuse partial functional models by their

standardized interface types from the library. This is for example the case when

applying a solution from a pattern. It goes together with a certain model

consistency checking of compatible flows in SysML, as seen in Figure 28.

Another example is the use of these material, signal and energy flows in the

6. Discussion

 132

other libraries to support a possible identification of suitable realizations of

functions and maintain traceability between the model levels.

In respect to modeling restrictions through the function library with the

FB there exists a general difficulty to express certain more static systems without

specific energy, signal and material flows. This is because the origin of the FB

and its flow-based representation lies in more traditional mechanical engineering

[15, 23]. Yet, here there are still use cases for a more design purpose oriented

functional view, user-defined functions that are not from the FB, the mandatory

auxiliary function interfaces and other additions for EFFBDs to use for more

modeling freedom. This way modeling flexibility is kept while utilizing defined

elementary functions for flow-based models.

Compared to similar functional modeling approaches, e.g. FUSE [131]

or the FAS method [132, 133] in SysML it should be noted that those approaches

lack formalization and modeling support in form of clear defined functions. Yet,

the FAS method includes certain additional tool support for grouping of functions,

which would be beneficial to be combined with the function library. Compared to

the initial version of the library by Wölkl in [13] there is especially the more

specified workflow [4], the improved modeling freedom due to auxiliary function

interfaces and additions to the function structure from EFFBDs as well as an

improved library structure.

This improved structure results from the functional modeling user study of

Section 5. The conducted study investigates the practical usability of the

function library. It considers two hypotheses: the library reduces the workload

for the participants and it leads to better functional models. The first hypothesis

must be rejected, due to the results of the TLX test. The perceived workload

increases for the untrained modelers when using the library. This seemingly

contrasts the expected reuse benefit of reducing modeling effort by reusing

6. Discussion

 133

predefined elementary functions and defined interfaces, instead of creating them

each time anew. In respect to the hypothesis of creating better models, the

results show that the library does lead to better models with a significantly higher

ratio of covered top-level functions. This is important, since according to Eckert

[86] functional modeling support must produce immediate benefit for the users,

which is indicated by the improved models.

A major factor for both of these results is that with the very high

acceptance of the library, the use of the FB is equally high. This is in contrast to

the case where the library is not available, where the participants are using the

formal terms of the FB less. This might be caused by the simple convenience of

reusing elements provided with the function library in SysML. The conclusion can

be drawn that the increased workload as well as the better model quality are very

likely a result of the guidance and more formal representation of the functions of

the FB itself and not directly caused by the function library. This way the library

shows its benefits and usefulness by bringing inexperienced designers towards a

more correct use of the FB, achieving more formal and complete functional

models.

This reasoning does also fit to comments of the participants from the

questionnaire: It is said that having the “library forces you to break down the

activity further” and that it “triggers [the] thought process”, leading to a “resulting

model [that is] more fundamental”. Yet, at the same time the participants felt

“very limited by the functions of the library” because of “having to look up

functions [and] decide which are appropriate”, which both comes from using the

FB and not the function library itself. Therefore the claimed benefit of a higher

model quality and completeness of the system seem reasonable. Also the benefit

of faster modeling through reusing predefined elementary functions with their

6. Discussion

 134

interfaces could most likely not be shown because of the one-sided use of these

defined terms from the FB.

For the conduction of the user study itself it has been confirmed that the

three half days of an ETH tools course is too little time for introducing MBSE,

functional modeling, SysML and its modeling tool. Yet, the TLX test results show

an improvement for the third day indicating a learning effect for the students.

6.1.2. Modeling with the Behavior Simulation Library

For the use of the behavior simulation library certain advantages are

identified. It supports the designer by providing proven design knowledge from

Amesim ready for reuse. This guides and supports the behavior modeling within

the integrated modeling approach in SysML. The design knowledge can be used

either as a repository to find solution principles to realize the modeled

functionalities or also to plan Amesim simulation models within the SysML model.

The enabled modeling of Amesim simulation models directly in SysML

supports the capability to simulate aspects of multi-disciplinary systems at an

early conceptual design stage, for example to evaluate the system concepts, to

perform trade-off studies or even to optimize system parameters. The main

aspect of the support is the improved linkage and traceability between the

simulation model and other system knowledge in SysML, as shown in Figure 34.

Although there is knowledge used from the following structural model, the

simulation model represents the expected behavior [83] for the system’s

expected actions for guidance and evaluation of potential design solutions on a

conceptual level. The contrasting structure behavior would include properties of

the system that are measured, calculated or derived from the observation a

specific design solution, e.g. on the right half of the V-model [79].

6. Discussion

 135

The use of the behavior simulation library elements as a knowledge

resource to search for solution principles supports the identification of

behaviors that realize the modeled functions before their concretization, similar to

FBS. The library offers hereby formally captured behaviors from multiple

disciplines and grades of abstraction, ranging from fundamental physics-based

elements to more specific application oriented ones. The elements come with

illustrating icons and documentation that contains underlying equations and

principles to remove ambiguity for better usage. The addition of functional flow

types to the interfaces of the Amesim elements further enhances the linkage

between them and the functions that they realize.

Comparing the here presented behavior modeling to other approaches in

literature it is to note that this is basically a generic library to plan and formally

model simulation models in SysML. It does not include the simulation itself.

SysML4Modelica [140], a very detailed SysML profile to allow model

transformations between SysML and Modelica, for example tries to recreate

complete Modelica models with all the required equations within SysML. This

makes the modeling in SysML more complicated with a great number of very

specific stereotypes. It also currently lacks in providing the existing knowledge of

Modelica databases. Kerzhner’s approach [141] of using a domain-specific

language in SysML consequently only considers domain- and application-specific

simulation knowledge that must be created anew for each different project.

Finally, creating the simulation models directly on SysML PARs lacks the

simulation power and flexibility of custom simulation tools as well as their

inherent simulation knowledge.

One identified disadvantage of using the behavior simulation library is the

limited tool support for the model transformations between SysML and Amesim.

Going from SysML to Amesim requires additional software [155] and a manual

6. Discussion

 136

mapping for each element. It does not use the existing and detailed submodel

information in the SysML model that comes with the library. Yet, even more

problematic is the not supported transformation from Amesim back to SysML for

iterations of the simulation models or to integrate simulation results.

Other disadvantages exist regarding the modeling in SysML itself. The

consistency checking in SysML is lacking compared to Amesim, despite offering

a certain level of model consistency, as shown in Figure 36. A reason for this lies

in the bond-graph origin of Amesim with its causality, which also complicates the

modeling in SysML with changing submodels. Since the causality and therefore

the submodels may change whenever an element is added to the model it is

recommended to initially model without specific submodels assigned. This

modeling with unspecific parent elements without concrete submodel is less

convenient in SysML than the modeling in Amesim, where elements without

fitting submodels cannot be connected and all submodels are specified after the

modeling. Finally, there are still some model elements lacking in the simulation

tool database, for example to represent stepper motors or the material transport

with joint melting in the print head of the 3D printer case study. If needed, such

more specific simulation elements must be added together with their underlying

differential equations in the simulation tool.

6.1.3. Modeling with the Service Library

There are two main advantages of the service library. First it provides

service modeling in SysML itself with the extension of SysML in form of the

defined stereotype and its properties. This relates to the representation of PSS

design information as one foundation of PSS design [26], by suggesting formal

and object-oriented SysML models with defined service elements. The raised

6. Discussion

 137

formality with the service stereotype also provides modeling guidance and

documentation for understanding and reuse.

SysML is identified to be capable to model and represent PSS through its

generic modeling capability of multi-disciplinary systems that includes

requirements, the system structure, its behavior as well as the service’s behavior

and involved stakeholders. Based on literature [29] as well as on the modeling of

the case study it is argued that there exists a general analogy between PSS and

mechatronic design, especially when using functional models. The modeling in

SysML explicitly allows necessary linkage from the services towards their

stakeholders, contents and other properties as well as towards other PSS

elements, since all model elements are part of a single unified SysML model.

This allows traceability not only between solution-neutral functions and their

services, but also backwards to requirements and use cases or forwards to

structural elements and software as illustrated in Figure 43. The traceability

through the model relates to the identified issues in current PSS design to

especially “represent design information to relate service receivers […] and

service providers (in terms of their products and services)” [26], to be able to gain

“reasoning capabilities to answer queries by tracing back” [26].

The second main advantage of the service library is the supported

modeling through the provision of generic services with the library elements.

These services help designers to identify suitable services for their products by

providing realistic possibilities in form of a checklist [17]. The service library

reduces the required effort for the PSS design process step of information

collection and organization [26] and it supports the modeling in SysML, by

providing reusable system elements for specialization. Compared to the original

catalogue [17], these service elements are enhanced in SysML with further

generic information in form of their properties. Examples are the captured linkage

6. Discussion

 138

to solution-neutral functions and use cases, which are already used for the

service catalogue build-up, or the generic relations to service stakeholders.

An issue with the service library lies in its implementation with these

service properties, also because they are not part of the initial service catalogue.

This added information must be modeled generally enough to be generally

applicable, as are the services themselves. Examples are given with the

properties in Figure 39, e.g. a generic “Inspection Report” for the service content

or the “Remote Access” requirement.

Compared to other PSS development approaches, it is similar to an

implementation of the process by Kim et al. [24] in SysML and has improved

modeling capabilities of non-service aspects compared to the method of Nemoto

et al. [7] that also uses a knowledge database for its services. Also there is no

source of knowledge stated for the formalized services in its specific design

catalogue viewer. A common issue in literature [7, 24, 28] is the lacking

evaluation of service quality and performance in respect to its benefits for the

service receiver. This is neither addressed by the service library, nor by the multi-

physics simulation models of behavior simulation library. The service stereotype

of the library only has a grading for the quality property, as seen in Figure 43.

These properties are usually not generic and are therefore not assigned to the

elements in the library.

6.2. MODELING WITH MULTI-SOLUTION PATTERNS

It is observed that the multi-solution patterns meet their requirements

of being able to contain multiple solutions with partial models that cover multiple

levels of abstraction, fit to the solution-neutral problem description and are able

to include multiple domains. Their copy and paste application during the

modeling process allows a dynamic selection of solutions and their required

6. Discussion

 139

adaption to the concrete context for a broad range of possible applications [122].

The coverage of multiple domains is tested by the different modeled patterns.

The rotation sensor pattern for example includes sensors that use electronics,

optics, magnetism and mechanics to measure the rotational motion. Different

level of abstraction exist for example between this rotation sensor pattern that

documents alternative single components, and the presented “2D Kinematics”

pattern that contains whole subsystems with its multiple pulleys, belts and

bearings.

The presented multi-solution patterns have the main difference compared

to Anacker et al. [122, 123] of containing multiple solutions at once. This is also

the main difference compared to pattern definitions in systems engineering [106,

116, 156]. Having multiple solutions in one pattern contrasts to the usual

definition of patterns, which allows only a single solution per pattern.

Conventional pattern definitions need multiple independent patterns for multiple

exchangeable solutions. Yet, this causes the issue of how designers should

choose one of multiple alternative patterns, since they become “confused if

several patterns have similar or identical problem descriptions” [116]. Also

offering multiple solutions at once supports the creation of alternatives through

the repeated application of patterns with their different solutions. Other

differences compared to the solution patterns of Anacker et al. [122, 123] are that

here the functional model is not a simple hierarchy, but consists of a network

structure with energy, signal and material flows fitting for mechatronics. Such

flow-based representations are argued to fit better to especially mechatronic

systems, with their explicit signal and energy flows [74]. Further, the patterns

here are implemented with the modeling language SysML for a more formal and

standardized approach. Also, they can contain simulation models with the

behavior simulation library, instead of only solution principles.

6. Discussion

 140

Several advantages of applying a pattern are identified. Reusing their

partial models that capture the essential parts of working designs, results in

fewer modeling steps being necessary, since these partial models must only be

adapted and not created from scratch. Having the essential parts of solutions

formally documented in patterns also provides an effective mean for

communicating complex concepts effectively between designers, as shown for

software patterns in industry [117]. This improved communication goes together

with a potential skill increase of novices that are encouraged to use the contained

best practices, as well as a raised understanding of the system by the designers

[118]. More specific advantages come from the included functional

decomposition. It supports traceability throughout the partial models, the

understanding of how the offered solution works, the identification of auxiliary

supporting functions for the selected solution and the model consistency, by

ensuring that “the functional description of a solution pattern as well as the

definition of the desired system [stay] comparable" [122].

Identified disadvantages of the presented multi-solution patterns include

the currently limited tool support for pattern application, resulting in manual copy

and paste operations. A potential improvement for this exists in an extension of

the pattern application capabilities of the modeling tool [65] for these multi-

solution patterns. The creation of the patterns itself remains an issue, too. From

industrial experience with software design patterns it is known that “good

patterns are difficult and time-consuming to write” [117]. This is even more true,

when not only complex system models with various aspects including simulation

must be captured, but even captured to offer multiple comparable solutions at

once. Also the knowledge to be incorporated must not only exist, but it must be

identified as suitable for being formally documented as a pattern.

7. Summary and Future Extensions

 141

7. Summary and Future Extensions

The presented approach in SysML uses four libraries and multi-solution

patterns together with corresponding simulation models to support model-

based concept design of multi-disciplinary systems, e.g. mechatronic

systems and PSS. It addresses the main initial research question from Section

1.2 of how to provide improved support for multi-disciplinary concept design.

Improved support is provided by offering generic and formal design

knowledge in the form of libraries and patterns for reuse in SysML. With respect

to the research question of which knowledge to integrate there are three

libraries presented in detail. Their incorporation of specific existing design

knowledge and its implementation in SysML implicitly addresses the research

question about the levels of formality and detail. The design libraries are for

functional modeling, behavior modeling and structure modeling [13], to follow

loosely the FBS model with an additional service library. The function library is

based on the verbs and nouns of the FB [15]. The behavior simulation library is

based on the Amesim simulation tool [16]. It addresses the research question of

enabling a link between the modeling approach and model simulation by an

analog representation of simulation elements in both databases and therefore

both models. The service library for service modeling and identification is based

on a current service catalogue by Schmidt et al. [17]. To link the provided

knowledge together the function library serves as a basis that is used throughout

the other libraries to model functions and to define function flow interfaces.

Further, the multi-solution patterns contain multiple concept solutions in

the form of partial models. These models build coherent subsystems by

correlating library elements with other aspects. Such correlations within patterns

are based on having a unified and model-based system representation in SysML.

7. Summary and Future Extensions

 142

SysML enables hereby to link together knowledge from different domains, levels

of abstraction and sources, e.g. from the libraries.

The libraries as well as the patterns are implemented using a limited

number of stereotypes to simplify their introduction to their users. Their

cooperation as well as the provided design knowledge also define a modeling

workflow shown by the case study. This addresses the research question for a

modeling workflow to use for the developed approach.

To demonstrate the supported modeling approach and answer the

research question as to whether it is able to model mechatronic systems and

PSS a 3D printer case study is conducted. The results of the case study show

that the various elements from the libraries together with multiple solutions taken

from patterns can be used to create different concept variations. Traceability

through the concept model in SysML is shown for example with relations

between functions and services or between requirements and representations of

Amesim simulation models. Their simulation results quantitatively show

differences between two investigated solutions to move the print head of the 3D

printer.

To answer the final research question about how the approach can

support designers, an initial user study is conducted. The results show improved

model quality when using the FB with the SysML function library through a higher

grade of task completion with significantly more covered top-level functions and

increased formality. At the same time it shows a higher workload for adapting to

the more formal functional modeling approach.

7.1. CONTRIBUTIONS

Compared to the previous work by Wölkl [13], the function library has

been significantly improved. This includes its use together with other SysML

7. Summary and Future Extensions

 143

elements and within the other libraries and patterns to provide a comprehensive

modeling approach. Additionally, there are suggested extensions of the terms of

the FB for mechatronic systems. The integration of the FB in SysML contributes

by improving the reusability and consistency of functional models. Its defined

syntax and semantics increase the formality of SysML ACTs while reducing

ambiguity. Adjunct to the function library the user study provides an initial

validation of the function library.

The contributions of the behavior simulation library lie in its support to

plan powerful simulation models directly in SysML. The reuse of provided

simulation knowledge supports simulation in a commercial simulation tool to

provide a first concept evaluation. The library also contributes to concept

modeling in SysML by offering generic behavior elements that concretize

functions as solution principles, similar to the FBS model. The library not only

formally captures the simulation knowledge of the Amesim database in SysML,

but it extends this knowledge by additional function flows. These properties

contribute to the identification of suitable library elements by corresponding to the

flows of functional models.

The service library contributes to service modeling in SysML. It contains

an extension of SysML that allows the formal representation of services including

their properties in a standardized and object-oriented way. This supports the

necessary traceability to other non-service system elements within SysML, e.g.

from functions. The service library also contributes to the PSS modeling by

offering a collection of common services within SysML to help PSS designers

identify suitable services for their systems. This includes the addition of further

generic information to the provided services for their object-oriented description,

e.g. in the form of functions or requirements.

7. Summary and Future Extensions

 144

The presented multi-solution patterns contribute by offering a means to

formally capture and then reuse engineering solutions in the form of partial

SysML models. The patterns support concept model creation by utilizing the

libraries through the provision of already interconnected system elements. The

second main contribution of the multi-solution patterns is the novelty of capturing

multiple solutions, each with different possible viewpoints and levels of

abstraction, in one pattern. This supports the notion that multiple solutions exist

for solution-neutral functions. It also supports the investigation of alternative

concepts, as shown with the case study.

Finally, the complete modeling approach and workflow, utilizing four

design libraries and solution patterns is shown. It offers consistent support of

multi-disciplinary concept modeling in SysML by including proven and formally

captured design knowledge for reuse and a process to build concept models.

The unified model-based system representation within SysML also enables

traceability among model elements and levels, e.g. from functions to services.

7.2. LIMITATIONS

The first main limitation of the presented work is the additional effort for

introducing and maintaining the libraries. Even with intentional small-scale

SysML extensions there is additional effort required to utilize the libraries and

patterns, as shown with the modeling workload in the user study. Further effort is

needed to maintain the libraries and especially to derive and formally document

additional useful multi-solution patterns.

A second limitation with respect to modeling is a lack of support to find

suitable elements in the libraries. For example, when using the structure library it

is difficult to find suitable elements to realize functions, since the suggested port

matching of the function flow ports is not sufficient [13]. The function flow ports of

7. Summary and Future Extensions

 145

the pulley representations of Figure 34 for example are different for the behavior

simulation library and structure library. Both of them include the required flows of

the elementary function and can therefore be found via port matching. Yet,

deriving one from another might be challenging and there are many other

elements in the libraries to be expected to offer these same basic interfaces.

Another functional modeling limitation comes with the FB and its

difficulty to express systems without specific energy, signal and material flows. In

the presented approach it is mainly addressed by including previous use case

models, as explained in Section 4.2.2. and in [2].

Finally, there are modeling limitations when including simulation

capabilities in SysML with the behavior simulation library. First, there is a limited

expressiveness of the modeling elements from the Amesim database, which for

example does not include a stepper motor model. Second, there is limited

compatibility checking between behavior simulation library elements in SysML

and the handling of changing submodels. Third, there is limited support for the

necessary two-way model transformations between SysML and Amesim.

7.3. FUTURE EXTENSIONS

There are several potential future extensions now identified. First of all,

there are bidirectional and more automated model transformations between

SysML and Amesim required. These model transformations need further

investigation for utilizing the captured design knowldege in SysML, e.g. the

identification of specific submodels and their properties. Also, for the behavior

simulation library there might be an improved compatibility checking through

additional OCL constraints to be investigated.

7. Summary and Future Extensions

 146

For an improved application of the multi-solution patterns there exists

potential to integrate them into the used modeling tool, similar to already offered

common software engineering patterns by [18].

Further potential modeling support comes with the integration of

computational design synthesis. Computational design synthesis enables

automatic model generation while utilizing formalized knowledge [9, 49] and

circumventing or respectively automating the search for suitable elements in the

libraries. To include automation raises the chance of finding novel and creative

solutions from having more generated concepts [51]. The standardization and

graphical nature of SysML also might improve usability aspects of potential

synthesis approaches [139] in return. Yet, at the same time it is argued that

designing combines art and technology and cannot be fully automated. Some

tasks might be suitable for automated support, but the main work is based on the

experience of the designer and guided by heuristics [59].

Finally, there are additional user studies to be done to further validate

the presented approach. Based on the findings of the conducted user study there

is further work required to re-evaluate the increase of modeling speed for more

experienced designers on a broader scale. Also the other libraries, the patterns

and the total approach would need further practical application and validation.

8. Conclusion

 147

8. Conclusion

Rising complexity of today’s multi-disciplinary systems leads to the need

for improved concept design since the concept phase offers the biggest potential

to ensure a successful development process. One promising way for enhanced

concept design is by model-based systems engineering (MBSE). The presented

modeling approach combines formalized knowledge with object-orientation and

the multi-disciplinary modeling power of SysML to support function-based

concept design and evaluation through simulation. The thesis contributes to

knowledge in the area by providing usable design libraries for supporting

functional modeling, behavior modeling to plan concept simulation in an external

simulation tool and service modeling for PSS design. The additional multi-

solution patterns formally capture multiple alternative concept solutions in the

form of partial models to support the reuse of common subsystems in addition to

single library elements.

The concept modeling approach is demonstrated through a 3D printer

case study model in SysML that combines elements from the libraries with

solutions from patterns. In addition to the mechatronic models, it includes models

for additional inspection services and representations of two kinematic solutions

for simulation. All of this information is captured in a unified and object-oriented

model, thus, enabling traceability between the different model elements. To

initially evaluate the approach, a user study is conducted for the function library,

indicating that by using the SysML function library the model quality and

completeness is improved.

 148

REFERENCES

[1] Kruse, B., and Shea, K. Design Library Solution Patterns in SysML for
Concept Design and Simulation. 26th CIRP Design Conference. Stockholm,
Sweden; 2016. p.620-625.

[2] Kruse, B., Gilz, T., Shea, K., and Eigner, M. Systematic Comparison of
Functional Models in SysML for Design Library Evaluation. 24th CIRP Design
Conference. Milano, Italy; 2014.

[3] Kruse, B., Münzer, C., Wölkl, S., Canedo, A., and Shea, K. A Model-
Based Functional Modeling and Library Approach for Mechatronic Systems in
SysML. ASME 2012 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference. Chicago, IL, USA; 2012.

[4] Kruse, B., Münzer, C., Wölkl, S., Canedo, A., and Shea, K. Workflow and
Modeling Conventions for Function and Product Structure Modeling of
Mechatronic Systems in SysML Using Libraries. Mechatronics 2012. Linz,
Austria; 2012.

[5] Beihoff, B., Oster, C., Friedenthal, S., Paredis, C. J. J., Kemp, D.,
Stoewer, H., Nichols, D., and Wade, J. A World in Motion – Systems Engineering
Vision 2025. INCOSE. 2014.

[6] Eigner, M., Gerhardt, F., Gilz, T., and Nem, F. M. Informationstechnologie
Für Ingenieure. ISBN: 3642248934. Springer-Verlag; 2012.

[7] Nemoto, Y., Akasaka, F., and Shimomura, Y. A Knowledge Management
Method for Supporting Conceptual Design of Product-Service Systems. ASME
2013 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference. 2013.

[8] Ehrlenspiel, K., Kiewert, A., Lindemann, U., and Hundal, M. S. Cost-
Efficient Design. ISBN: 9783540346487. Springer; 2007.

[9] Chakrabarti, A., Shea, K., Stone, R. B., Cagan, J., Campbell, M. I.,
Hernandez, N. V., and Wood, K. L. Computer-Based Design Synthesis
Research: An Overview. Journal of Computing and Information Science in
Engineering, 2011. 11:2.

[10] Andreasen, M. M. 45 Years with Design Methodology. Journal of
Engineering Design, 2011. 22:5. p.293-332.

 149

[11] OMG. OMG Systems Modeling Language (OMG SysML). Version 1.4. No.
formal/2015-06-03. 2015.

[12] Haskins, C. Systems Engineering Vision 2020. No. INCOSE-TP-2004-
004-02, INCOSE. 2009.

[13] Wölkl, S. Model Libraries for Conceptual Design. Thesis, Munich,
Germany: Technische Universität München. 2012.

[14] VDI-Gesellschaft. VDI 2221: Methodik Zum Entwickeln Und Konstruieren
Technischer Systeme Und Produkte. No. 03.100.40. 1993.

[15] Hirtz, J., Stone, R. B., Mcadams, D. A., Szykman, S., and Wood, K. L. A
Functional Basis for Engineering Design: Reconciling and Evolving Previous
Efforts. No. 1447, Washington, D.C., USA: NIST. 2002.

[16] Siemens PLM Software. LMS Imagine.Lab Amesim. 09.01.2017.
http://www.plm.automation.siemens.com/de_ch/products/lms/imagine-
lab/amesim/

[17] Schmidt, D. M., Malaschewski, O., Jaugstetter, M., and Mörtl, M. Service
Classification to Support Planning Product-Service Systems. Asian Design
Engineering Workshop (A-DEWS) Hong Kong, China; 2015. p.34-39.

[18] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. ISBN: 0201633612. Addison-
Wesley Professional; 1994.

[19] Torry-Smith, J. M., Qamar, A., Achiche, S., Wikander, J., Mortensen, N.
H., and During, C. Challenges in Designing Mechatronic Systems. Journal of
Mechanical Design, 2013. 135:1.

[20] Van Der Auweraer, H., Anthonis, J., De Bruyne, S., and Leuridan, J.
Virtual Engineering at Work: The Challenges for Designing Mechatronic
Products. Engineering with Computers, 2013. 29:3. p.389-408.

[21] Alvarez Cabrera, A. A., Foeken, M. J., Tekin, O. A., Woestenenk, K.,
Erden, M. S., De Schutter, B., Van Tooren, M. J. L., Babuška, R., Van Houten, F.
J. a. M., and Tomiyama, T. Towards Automation of Control Software: A Review
of Challenges in Mechatronic Design. Mechatronics, 2010. 20:8. p.876-886.

http://www.plm.automation.siemens.com/de_ch/products/lms/imagine-lab/amesim/
http://www.plm.automation.siemens.com/de_ch/products/lms/imagine-lab/amesim/

 150

[22] Komoto, H., and Tomiyama, T. Multi-Disciplinary System Decomposition
of Complex Mechatronics Systems. CIRP Annals - Manufacturing Technology,
2011. 60:1. p.191-194.

[23] Pahl, G., and Beitz, W. Konstruktionslehre: Grundlagen Erfolgreicher
Produktentwicklung. Methoden Und Anwendung. ISBN: 9783540340607.
Springer; Berlin, Germany: 2007.

[24] Kim, Y., Lee, S., Jin, H., Shin, J., Park, J., Lee, Y., Kim, C., Seo, B., and
Lee, S. Product-Service Systems (PSS) Design Process and Design Support
Systems. In: Functional Thinking for Value Creation, ISBN: 9783642196898.
Springer, 2011.

[25] Törngren, M., Qamar, A., Biehl, M., Loiret, F., and El-Khoury, J.
Integrating Viewpoints in the Development of Mechatronic Products. Journal of
Mechatronics 2013. p.745-762.

[26] Komoto, H., and Tomiyama, T. Systematic Generation of PSS Concepts
Using a Service CAD Tool. In: Introduction to Product/Service-System Design,
ISBN: 9781848829091. Springer, 2009.

[27] Shimomura, Y., and Tomiyama, T. Service Modeling for Service
Engineering. In: Knowledge and Skill Chains in Engineering and Manufacturing,
Springer, 2005.

[28] Vasantha, G. V. A., Roy, R., Lelah, A., and Brissaud, D. A Review of
Product–Service Systems Design Methodologies. Journal of Engineering Design,
2012. 23:9. p.635-659.

[29] Müller, P., Schmidt-Kretschmer, M., and Blessing, L. T. M. Function
Allocation in Product-Service Systems-Are There Analogies between PSS and
Mechatronics? AEDS 2007 Workshop. Pilsen, Czech Republic; 2007.

[30] Bossak, M. A. Simulation Based Design. Journal of Materials Processing
Technology, 1998. 76:1. p.8-11.

[31] Modelica Association. Modelica® - a Unified Object-Oriented Language
for Systems Modeling. Language Specification. 2012.

[32] Phoenix Integration, Inc. ModelCenter. 24.11.2016. www.phoenix-int.com/

http://www.phoenix-int.com/

 151

[33] Thomke, S., and Fujimoto, T. The Effect of “Front‐Loading” Problem‐
Solving on Product Development Performance. Journal of Product Innovation
Management, 2000. 17:2. p.128-142.

[34] Wölkl, S., and Shea, K. A Computational Product Model for Conceptual
Design Using SysML. ASME 2009 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference. San
Diego, CA, USA; 2009.

[35] Dhanesha, K. A., Hartman, A., and Jain, A. N. A Model for Designing
Generic Services. IEEE International Conference on Services Computing
(SCC'09). 2009. p.435-442.

[36] Kim, Y., Wang, E., Lee, S., and Cho, Y. A Product-Service System
Representation and Its Application in a Concept Design Scenario. 1st CIRP
Industrial Product-Service Systems (IPS2) Conference. 2009.

[37] Albers, A., and Zingel, C. Challenges of Model-Based Systems
Engineering: A Study Towards Unified Term Understanding and the State of
Usage of SysML. In: Smart Product Engineering, ISBN: 3642308163. Springer,
2013.

[38] Friedenthal, S., and Burkhart, R. M. Evolving SysML and the System
Modeling Environment to Support MBSE. INCOSE, Insight, 2015. 18:2, p.39-41.

[39] Kruse, B. Modell-Basierte Satellitenentwicklung: Wieder- Und
Weiterverwendung Objektorientierter Systemmodelle Nach Der Konzeptphase.
Thesis, Garching: Technische Universität München. 2010.

[40] Griss, M. L. Software Reuse: Architecture, Process, and Organization for
Business Success. 8th Israeli Conference on Computer Systems and Software
Engineering. 1997. p.86-89.

[41] Chughtai, A., and Vogel, O. Software-Wiederverwendung - Theoretische
Grundlagen, Vorteile Und Realistische Beurteilung. In: Software Management,
ISBN: 3642627129. Springer, 2002.

[42] Gajski, D. D. Embedded System Design : Modeling, Synthesis and
Verification. ISBN 9781441905031. New York : Springer; 2009.

[43] Lienig, J. Layoutsynthese Elektronischer Schaltungen — Grundlegende
Algorithmen Für Die Entwurfsautomatisierung. ISBN 9783540299424. Springer
Berlin Heidelberg; Berlin, Germany: 2006.

 152

[44] Jackson, C., and Maura, B. The Design Reuse Benchmark Report:
Seizing the Opportunity to Shorten Product Development. Boston, MA, USA:
Aberdeen Group, Inc. 2007.

[45] Bonev, M., Hvam, L., Clarkson, J., and Maier, A. Formal Computer-Aided
Product Family Architecture Design for Mass Customization. Computers in
Industry, 2015. 74:1. p.58-70.

[46] Li, B., Xie, S., and Xu, X. Recent Development of Knowledge-Based
Systems, Methods and Tools for One-of-a-Kind Production. Knowledge-Based
Systems, 2011. 24:7. p.1108-1119.

[47] Prasad, B. Designing Products for Variety and How to Manage
Complexity. Journal of Product & Brand Management, 1998. 7:3. p.208-222.

[48] Münzer, C., and Shea, K. A Simulation-Based CDS Approach: Automated
Generation of Simulation Models Based from Generated Concept Model Graphs.
ASME 2015 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference. Boston, MA, USA; 2015.

[49] Cagan, J., Campbell, M. I., Finger, S., and Tomiyama, T. A Framework for
Computational Design Synthesis: Model and Applications. Journal of Computing
and Information Science in Engineering, 2005. 5:3. p.171-181.

[50] Münzer, C., Helms, B., and Shea, K. Automatically Transforming Object-
Oriented Graph-Based Representations into Boolean Satisfiability Problems for
Computational Design Synthesis. Journal of Mechanical Design, 2013. 135:10.

[51] Kudrowitz, B. M. Haha and Aha! Creativity, Idea Generation,
Improvisational Humor, and Product Design. Thesis,
http://hdl.handle.net/1721.1/61610 Massachusetts Institute of Technology. 2010.

[52] De Weck, O. L. Feasibility of a 5x Speedup in System Development Due
to Meta Design. ASME 2012 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference. 2012.
p.1105-1110.

[53] Blessing, L. T. M., and Chakrabarti, A. DRM: A Design Research
Methodology. ISBN 9781848825864. Springer; 2009.

[54] Gero, J. S. Design Prototypes - a Knowledge Representation Schema for
Design. AI Magazine, 1990. 11:4. p.26-36.

http://hdl.handle.net/1721.1/61610

 153

[55] Umeda, Y., Takeda, H., Tomiyama, T., and Yoshikawa, H. Function,
Behaviour, and Structure. IEA/AEI-90. Boston, MA, USA; 1990. 1. p.177-193.

[56] Walden, D. D., Roedler, G. J., Forsberg, K. J., Hamelin, R. D., and
Shortell, T. M. Systems Engineering Handbook. San Diego, CA, USA: INCOSE;
2015.

[57] BKCASE-Editorial-Board. The Guide to the Systems Engineering Body of
Knowledge (Sebok). Hoboken, NJ, USA: The Trustees of the Stevens Institute of
Technology; 2016.

[58] Tepper, N. A. Exploring the Use of Model-Based Systems Engineering
(MBSE) to Develop Systems Architectures in Naval Ship Design. Thesis,
Cambridge, MA, USA: http://hdl.handle.net/10945/24368 Massachusetts Institute
of Technology. 2010.

[59] Weilkiens, T., Lamm, G. J., Roth, S., and Walker, M. Model-Based System
Architecture. Wiley Series in Systems Engineering and Management, ISBN
9781118893647. Hoboken, New Jersey : John Wiley & Sons, Inc.; 2016.

[60] Reil, R. What Makes Model-Based Systems Engineering
Transformational? INCOSE, INSIGHT, 2015. 18:3, p.16-17.

[61] Qamar, A. An Integrated Approach Towards Model-Based Mechatronic
Design. Thesis, Stockholm, Sweden: KTH-Royal Institute of Technology. 2011.

[62] Königs, S. F., Beier, G., Figge, A., and Stark, R. Traceability in Systems
Engineering – Review of Industrial Practices, State-of-the-Art Technologies and
New Research Solutions. Advanced Engineering Informatics, 2012. 26:4. p.924-
940.

[63] London, B. A Model-Based Systems Engineering Framework for Concept
Development. Thesis, Cambridge, MA, USA: Massachusetts Institute of
Technology. 2012.

[64] Eigner, M., Dickopf, T., Apostolov, H., Schaefer, P., Faißt, K.-G., and
Keßler, A. System Lifecycle Management: Initial Approach for a Sustainable
Product Development Process Based on Methods of Model Based Systems
Engineering. In: Product Lifecycle Management for a Global Market, ISBN:
3662459361. Springer, 2014.

http://hdl.handle.net/10945/24368

 154

[65] No Magic, Inc. Magicdraw. 23.09.2016.
http://www.nomagic.com/products/magicdraw.html

[66] Estefan, J. A. Survey of Model-Based Systems Engineering (MBSE)
Methodologies. INCOSE Technical Data, 2008. 25:8.

[67] Kasser, J. E. Seven Systems Engineering Myths and the Corresponding
Realities. Systems Engineering Test and Evaluation Conference. Adelaide,
Australia; 2010.

[68] OMG. UML 2.0 Infrastructure: Version 2.4.1. 2011.

[69] OMG. UML 2.0 Superstructure: Version 2.4.1. 2011.

[70] Friedenthal, S., Moore, A., and Steiner, R. A Practical Guide to SysML:
The Systems Modeling Language. ISBN 9780123743794. Elsevier, Morgan
Kaufmann OMG; Amsterdam [u.a.]: 2009.

[71] Petrasch, R., and Meimberg, O. Model Driven Architecture: Eine
Praxisorientierte Einführung in Die MDA. ISBN 3898643433. dpunkt-Verlag;
2006.

[72] Kaiser, L. Rahmenwerk Zur Modellierung Einer Plausiblen Systemstruktur
Mechatronischer Systeme. Thesis, Paderborn, Germany: Universität Paderborn.
2013.

[73] Holt, J., and Perry, S. SysML for Systems Engineering. ISBN
0863418252. Institution of Engineering and Technology; Stevenage: 2008.

[74] Eigner, M. Überblick Disziplin-Spezifische Und -Übergreifende
Vorgehensmodelle. In: Modellbasierte Virtuelle Produktentwicklung, ISBN
9783662438152. Springer, Berlin, Heidelberg; 2014.

[75] VDI-Gesellschaft. VDI/VDE 2422: Entwicklungsmethodik Für Geräte Mit
Steuerung Durch Mikroelektronik. No. DE18949719. 1994.

[76] Gajski, D. D. Construction of a Large Scale Multiprocessors. No.
UIUCDCS-R-83-1123, Urbana, IL, USA: Cedar Project, Laboratory for Advanced
Supercomputers, Dept. of Computer Science, University of Illinois at Urbana-
Champaign. 1983.

[77] Whitney, D. E. Why Mechanical Design Cannot Be Like VLSI Design.
Research in Engineering Design, 1996. 8:3. p.125-138.

http://www.nomagic.com/products/magicdraw.html

 155

[78] Boehm, B. Guidelines for Verifying and Validating Software Requirements
and Design Specifications. No. USC-CSE-79-501, North Holland: Euro IFIP 79.
P. A. Samet. North-Holland Publishing Company. 1979.

[79] VDI-Gesellschaft. VDI 2206: Entwicklungsmethodik Für Mechatronische
Systeme. Düsseldorf, Germany. 2004.

[80] Eigner, M., Dickopf, T., and Huwig, C. An Interdisciplinary Model-Based
Design Approach for Developing Cybertronic Systems. 14th International Design
Conference, Design 2016. Dubrovnik, Croatia; 2016. p.1647-1656.

[81] Pohl, K., Hönninger, H., Achatz, R., and Broy, M. Model-Based
Engineering of Embedded Systems: The Spes 2020 Methodology. ISBN:
3642346146. Springer; 2012.

[82] Helms, B., and Shea, K. Computational Synthesis of Product Architectures
Based on Object-Oriented Graph Grammars. Journal of Mechanical Design,
2012. 134:2.

[83] Kannengiesser, U., and Gero, J. S. Is Designing Independent of Domain?
Comparing Models of Engineering, Software and Service Design. Research in
Engineering Design, 2015. 26:3. p.253-275.

[84] Deng, Y.-M. Function and Behavior Representation in Conceptual
Mechanical Design. AI EDAM (Artificial Intelligence for Engineering Design,
Analysis and Manufacturing), 2002. 16:5. p.343-362.

[85] Summers, J. D., Eckert, C., and Goel, A. K. Function in Engineering:
Benchmarking Representations and Models. International Conference On
Engineering Design, ICED13. Seoul, Korea; 2013.

[86] Eckert, C. That Which Is Not Form: The Practical Challenges in Using
Functional Concepts in Design. AI EDAM (Artificial Intelligence for Engineering
Design, Analysis and Manufacturing), 2013. 27:3. p.217-231.

[87] Arlitt, R. M., Stone, R. B., and Tumer, I. Y. Impacts of Function-Related
Research on Education and Industry. In: Impact of Design Research on Industrial
Practice: Tools, Technology, and Training, ISBN 9783319194493. Springer
International Publishing, Cham; 2016.

[88] Erden, M. S., Komoto, H., Van Beek, T. J., D'amelio, V., Echavarria, E.,
and Tomiyama, T. A Review of Function Modeling: Approaches and Applications.

 156

AI EDAM (Artificial Intelligence for Engineering Design, Analysis and
Manufacturing), 2008. 22:2. p.147-169.

[89] Eisenbart, B., Gericke, K., and Blessing, L. T. M. An Analysis of Functional
Modeling Approaches across Disciplines. AI EDAM (Artificial Intelligence for
Engineering Design, Analysis and Manufacturing), 2013. 27:Special Issue 03.
p.281-289.

[90] Saunders, M. N., Seepersad, C. C., and Hölttä-Otto, K. The
Characteristics of Innovative, Mechanical Products. Journal of Mechanical
Design, 2011. 133:2.

[91] Simon, H. A. The Sciences of the Artificial. ISBN: 0262264498. MIT press;
1996 (1st edition: 1969).

[92] Chandrasekaran, B., and Josephson, J. R. Function in Device
Representation. Engineering with Computers, 2000. 16:3-4. p.162-177.

[93] Vermaas, P. E. The Coexistence of Engineering Meanings of Function:
Four Responses and Their Methodological Implications. AI EDAM (Artificial
Intelligence for Engineering Design, Analysis and Manufacturing), 2013. 27:3.
p.191-202.

[94] Chen, Y., Zhang, Z., Xie, Y., and Zhao, M. A New Model of Conceptual
Design Based on Scientific Ontology and Intentionality Theory. Part I: The
Conceptual Foundation. Design Studies, 2015. 37:1. p.12-36.

[95] Stone, R. B., and Wood, K. L. Development of a Functional Basis for
Design. Journal of Mechanical Design, 2000. 122:4. p.359-370.

[96] Szykman, S., Racz, J. W., and Sriram, R. D. The Representation of
Function in Computer-Based Design. ASME Design Engineering Technical
Conferences, 1999.

[97] Oman, S., Gilchrist, B., Rebhuhn, C., Tumer, I. Y., Nix, A., and Stone, R.
Towards a Repository of Innovative Products to Enhance Engineering Creativity
Education. ASME 2012 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference. 2012. p.207-218.

[98] Caldwell, B. Evaluating the Use of Functional Representations for Ideation
in Conceptual Design. Thesis, Clemson, SC, USA:
http://tigerprints.clemson.edu/all_dissertations/875 Clemson University. 2011.

http://tigerprints.clemson.edu/all_dissertations/875

 157

[99] Caldwell, B. W., Sen, C., Mocko, G. M., Summers, J. D., and Fadel, G. M.
Empirical Examination of the Functional Basis and Design Repository. In: Design
Computing and Cognition'08, ISBN: 1402087276. Springer, 2008.

[100] Sen, C., Caldwell, B. W., Summers, J. D., and Mocko, G. M. Evaluation of
the Functional Basis Using an Information Theoretic Approach. AI EDAM
(Artificial Intelligence for Engineering Design, Analysis and Manufacturing), 2010.
24:01. p.87-105.

[101] Caldwell, B. W., Sen, C., Mocko, G. M., and Summers, J. D. An Empirical
Study of the Expressiveness of the Functional Basis. AI EDAM (Artificial
Intelligence for Engineering Design, Analysis and Manufacturing), 2011. 25:3.
p.273-287.

[102] Sen, C., Summers, J. D., and Mocko, G. M. Topological Information
Content and Expressiveness of Function Models in Mechanical Design. Journal
of Computing and Information Science in Engineering, 2010. 10:3.

[103] Mili, H., Mili, A., Yacoub, S., and Addy, E. Reuse-Based Software
Engineering: Techniques, Organization, and Controls. ISBN: 0471398195. Wiley-
Interscience; 2001.

[104] Girczyc, E., and Carlson, S. Increasing Design Quality and Engineering
Productivity through Design Reuse. 30th International Design Automation
Conference. 1993. p.48-53.

[105] Duffy, A. H. B., and Ferns, A. F. An Analysis of Design Reuse Benefits.
International Conference On Engineering Design, ICED99. 1998. p.799-804.

[106] Cloutier, R. J., and Verma, D. Applying the Concept of Patterns to
Systems Architecture. Systems Engineering, 2007. 10:2. p.138-154.

[107] Borutzky, W. Bond Graph Modelling and Simulation of Multidisciplinary
Systems – an Introduction. Simulation Modelling Practice and Theory, 2009.
17:1. p.3-21.

[108] Gaiardelli, P., Resta, B., Martinez, V., Pinto, R., and Albores, P. A
Classification Model for Product-Service Offerings. Journal of Cleaner
Production, 2014. 66 p.507-519.

[109] Tukker, A. Eight Types of Product–Service System: Eight Ways to
Sustainability? Experiences from SusProNet. Business Strategy and the
Environment, 2004. 13:4. p.246-260.

 158

[110] Maximilien, E. M., and Singh, M. P. A Framework and Ontology for
Dynamic Web Services Selection. IEEE Internet Computing, 2004. 8:5. p.84-93.

[111] De Groot, R. S., Wilson, M. A., and Boumans, R. M. A Typology for the
Classification, Description and Valuation of Ecosystem Functions, Goods and
Services. Ecological Economics, 2002. 41:3. p.393-408.

[112] Lee, S., and Park, Y. The Classification and Strategic Management of
Services in E-Commerce: Development of Service Taxonomy Based on
Customer Perception. Expert Systems with Applications, 2009. 36:6. p.9618-
9624.

[113] Wemmerlöv, U. A Taxonomy for Service Processes and Its Implications
for System Design. International Journal of Service Industry Management, 1990.
1:3. p.20-40.

[114] eCl@ss e.V. eCl@ss - Classification and Product Description. 17.01.2017.
http://www.eclass.de/

[115] Alexander, C., Ishikawa, S., and Silverstein, M. A Pattern Language:
Towns, Buildings, Construction. ISBN: 0195019199. Oxford University Press;
1977.

[116] Meszaros, G., and Doble, J. A Pattern Language for Pattern Writing.
Pattern Languages of Program Design, 1998. 3:1. p.529-574.

[117] Beck, K., Crocker, R., Meszaros, G., Vlissides, J., Coplien, J. O.,
Dominick, L., and Paulisch, F. Industrial Experience with Design Patterns. 18th
International Conference on Software Engineering. 1996. p.103-114.

[118] Zhang, C., and Budgen, D. What Do We Know About the Effectiveness of
Software Design Patterns? IEEE Transactions on Software Engineering, 2012.
38:5. p.1213-1231.

[119] Shvets, A. Design Patterns: Explained Simply. sourcemaking.com; 2015.

[120] Cloutier, R. J. Applicability of Patterns to Architecting Complex Systems.
Thesis, Castle Point on Hudson, Hoboken, NJ, USA: Stevens Institute of
Technology. 2006.

http://www.eclass.de/

 159

[121] Hein, A., Kruse, B., Lopez, R. P., and Brandstätter, M. Object-Oriented
Modeling Methods: Enable Model Reuse for Hardware Systems. Tag des
Systems Engineerings 2010. Munich, Germany; 2010.

[122] Anacker, H., Schierbaum, T., Dumitrescu, R., and Gausemeier, J. Solution
Patterns to Support the Knowledge Intensive Design Process of Intelligent
Technical Systems. International Conference On Engineering Design, ICED13.
Seoul, Korea; 2013.

[123] Anacker, H., Dumitrescu, R., and Gausemeier, J. Design Framework for
the Integration of Cognitive Functions Based on Solution Patterns. In: Design
Methodology for Intelligent Technical Systems, ISBN: 9783642454349. Springer,
Dordrecht; 2014.

[124] Weber, C., and Husung, S. Solution Patterns – Their Role in Innovation,
Practice and Education. 14th International Design Conference, Design 2016.
Dubrovnik, Croatia; 2016. p.99-108.

[125] Weber, C. Modelling Products and Product Development Based on
Characteristics and Properties. In: An Anthology of Theories and Models of
Design, ISBN: 9781447163374. Springer London, 2014.

[126] Salustri, F. A. Using Pattern Languages in Design Engineering.
International Conference On Engineering Design, ICED05. Melbourne, Australia;
2005.

[127] Deigendesch, T. Kreativität in Der Produktentwicklung Und Muster Als
Methodisches Hilfsmittel. Thesis, IPEK - Institut für Produktentwicklung:
Karlsruher Institut für Technologie (KIT). 2009.

[128] Yoshioka, M., Umeda, Y., Takeda, H., Shimomura, Y., Nomaguchi, Y.,
and Tomiyama, T. Physical Concept Ontology for the Knowledge Intensive
Engineering Framework. Advanced Engineering Informatics, 2004. 18:2. p.95–
113.

[129] Kurtoglu, T., Campbell, M. I., Arnold, C. B., Stone, R. B., and Mcadams,
D. A. A Component Taxonomy as a Framework for Computational Design
Synthesis. Journal of Computing and Information Science in Engineering, 2009.
9:1.

[130] Christophe, F., Sell, R., Bernard, A., and Coatanéa, E. OPAS: Ontology
Processing for Assisted Synthesis of Conceptual Design Solutions. ASME 2010
International Design Engineering Technical Conferences & Computers and

 160

Information in Engineering Conference - 35th Design Automation Conference.
New York; 2010. p.249-260.

[131] Hutcheson, R. S., Mcadams, D. A., Stone, R. B., and Tumer, I. Y.
Function-Based Systems Engineering (FUSE). International Conference On
Engineering Design, ICED07. 2007. p.28-30.

[132] Lamm, G. J., and Weilkiens, T. Funktionale Architekturen in SysML. Tag
des Systems Engineering 2010. Munich, Germany; 2010. p.109-118.

[133] Lamm, J. G., and Weilkiens, T. Method for Deriving Functional
Architectures from Use Cases. Systems Engineering, 2014. 17:2. p.225-236.

[134] Chen, R., Liu, Y., Cao, Y., and Xu, J. A SysML-Based Modeling Language
for Mechatronic System Architecture. ASME 2015 International Design
Engineering Technical Conferences & Computers and Information in Engineering
Conference. Boston, MA, USA; 2015.

[135] Wu, J. C., Poppa, K., Leu, M. C., and Liu, X. F. Integrated Function
Structure and Object-Oriented Design Framework. Computers in Industry, 2012.
63:5. p.458-470.

[136] Eisenbart, B., Gericke, K., Blessing, L. T. M., and Mcaloone, T. C. A DSM-
Based Framework for Integrated Function Modelling: Concept, Application and
Evaluation. Research in Engineering Design, 2016. p.1-27.

[137] Eisenbart, B., Mandel, C., Gericke, K., and Blessing, L. T. M. Integrated
Function Modelling: Comparing the IFM Framework with SysML. International
Conference On Engineering Design, ICED15. Milano, Italy; 2015.

[138] Wan, J., Canedo, A., Faruque, A., and Abdullah, M. Functional Model-
Based Design Methodology for Automotive Cyber-Physical Systems. IEEE
Systems Journal, 2015.

[139] Münzer, C. Constraint-Based Methods for Automated Computational
Design Synthesis of Solution Spaces. Thesis, Zurich, Switzerland: ETH Zurich.
2015.

[140] Paredis, C. J. J., Bernard, Y., Burkhart, R. M., Koning De, H.-P.,
Friedenthal, S., Fritzson, P. A., Rouquette, N. F., and Schamai, W. An Overview
of the SysML-Modelica Transformation Specification. INCOSE International
Symposium, 2010.

 161

[141] Kerzhner, A. A. Using Logic-Based Approaches to Explore System
Architectures for Systems Engineering. Thesis, Athens, GA, USA: Georgia
Institute of Technology. 2012.

[142] Bracewell, R. H., Shea, K., Langdon, P. M., Blessing, L. T. M., and
Clarkson, P. J. A Methodology for Computational Design Tool Research.
International Conference On Engineering Design, ICED01. Glasgow, Scotland,
UK; 2001. p.181-188.

[143] Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., and
Bowyer, A. Reprap – the Replicating Rapid Prototyper. Robotica, 2011. 29:01.
p.177-191.

[144] Aebischer, M., Beer, Y., Grossenbacher, F., Nieland, A., Rüttimann, L.,
and Vogel, A. 3D-Printing: Raptype - Building the Future. Zurich, Switzerland:
EDAC, ETH Zurich. 2014.

[145] Moyer, I. E. Core(X,Y). 05.02.2016. http://corexy.com/

[146] 3D Printers Sp. z o.o. Hbot 3D Printers. 05.02.2016. http://hbot3d.com/

[147] Nagel, R. L., Vucovich, J. P., Stone, R. B., and Mcadams, D. A. Signal
Flow Grammar from the Functional Basis. International Conference On
Engineering Design, ICED07. Paris, France; 2007. p.28-31.

[148] Sridharan, P., and Campbell, M. I. A Study on the Grammatical
Construction of Function Structures. AI EDAM (Artificial Intelligence for
Engineering Design, Analysis and Manufacturing), 2005. 19:3. p.139–160.

[149] Williams, C. B., Mistree, F., and Rosen, D. W. A Functional Classification
Framework for the Conceptual Design of Additive Manufacturing Technologies.
Journal of Mechanical Design, 2011. 133:1.

[150] Anacker, H., Dorociak, R., Dumitrescu, R., and Gausemeier, J. Integrated
Tool-Based Approach for the Conceptual Design of Advanced Mechatronic
Systems. 2011 IEEE International Systems Conference (SysCon). 2011. p.506 -
511.

[151] Bock, C. SysML and UML 2 Support for Activity Modeling. Systems
Engineering, 2006. 9:2. p.160-186.

http://corexy.com/
http://hbot3d.com/

 162

[152] Jansen, S. Eine Methodik Zur Modellbasierten Partitionierung
Mechatronischer Systeme. Thesis, Bochum, Germany: Ruhr-Universität Bochum.
2006.

[153] FAS4M. Mechanics Modeling Language (MechML), Version 1.0. 2016.

[154] Wikimedia Foundation, Inc. Iso/IEC 80000. 19.09.2016.
https://en.wikipedia.org/wiki/ISO/IEC_80000

[155] Siemens PLM Software. LMS Imagine.Lab Sysdm. 09.01.2017.
https://www.plm.automation.siemens.com/de_ch/products/lms/imagine-
lab/sysdm/

[156] Pfister, F., Chapurlat, V., Huchard, M., Nebut, C., and Wippler, J. L. A
Proposed Meta-Model for Formalizing Systems Engineering Knowledge, Based
on Functional Architectural Patterns. Systems Engineering, 2012. 15:3. p.321-
332.

[157] Komoto, H., and Tomiyama, T. Computational Support for System
Architecting. ASME 2010 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference, 2010.

[158] Hart, S. G., and Staveland, L. E. Development of NASA-TLX (Task Load
Index): Results of Empirical and Theoretical Research. Advances in Psychology,
1988. 52 p.139-183.

[159] Oswald, W. D., and Roth, E. Der Zahlen-Verbindungs-Test:(ZVT); Ein
Sprachfreier Intelligenz-Schnell-Test. Verlag für Psychologie Hogrefe; 1978.

[160] DIN German Institute for Standardization. Ergonomic Requirements for
Office Work with Visual Display Terminals (VDTs). Part 11: Guidance on usability
(ISO 9241-11:1998). 1999.

[161] Genero, M., Poels, G., and Piattini, M. Defining and Validating Measures
for Conceptual Data Model Quality. Advanced Information Systems Engineering.
2002. p.724-727.

[162] Vogel-Heuser, B. Usability Experiments to Evaluate UML/SysML-Based
Model Driven Software Engineering Notations for Logic Control in Manufacturing
Automation. Journal of Software Engineering and Applications, 2014. 7:11.
p.943-973.

https://en.wikipedia.org/wiki/ISO/IEC_80000
https://www.plm.automation.siemens.com/de_ch/products/lms/imagine-lab/sysdm/
https://www.plm.automation.siemens.com/de_ch/products/lms/imagine-lab/sysdm/

 163

[163] Nagel, R. L., Bohm, M. R., Linsey, J. S., and Riggs, M. K. Improving
Students’ Functional Modeling Skills: A Modeling Approach and a Scoring
Rubric. Journal of Mechanical Design, 2015.

[164] Caldwell, B. W., Thomas, J. E., Sen, C., Mocko, G. M., and Summers, J.
D. The Effects of Language and Pruning on Function Structure Interpretability.
Journal of Mechanical Design, 2012. 134:6.

[165] Wilcoxon, F. Individual Comparisons by Ranking Methods. Biometrics
Bulletin, 1945. 1:6. p.80-83.

[166] Spearman, C. Demonstration of Formulae for True Measurement of
Correlation. The American Journal of Psychology, 1907. p.161-169.

[167] Ruiz-Cabello, J., Vuister, G. W., Moonen, C. T., Van Gelderen, P., Cohen,
J. S., and Van Zijl, P. C. Gradient-Enhanced Heteronuclear Correlation
Spectroscopy. Theory and Experimental Aspects. Journal of Magnetic
Resonance (1969), 1992. 100:2. p.282-302.

 164

APPENDIX A – MULTI-SOLUTION PATTERN EXCERPT:
“PROVIDE ROTATIONAL MOVEMENT”

 165

 166

DC Motor Solution:

 167

 168

Stepper Motor Solution:

 169

 170

 171

APPENDIX B – USER STUDY QUESTIONNAIRE

Please read the following questions carefully. If anything is unclear feel free to ask.

Name: __

PRIOR EXPERIENCE:

Prior experience with SysML (or UML): □ No □ Yes

If Yes, please specify: ___

Prior experience with Magicdraw (or similar software): □ No □ Yes

If Yes, please specify: ___

Prior experience with Functional Modeling: □ No □ Yes

If Yes, please specify: ___

Prior experience about Model-based Systems Engineering: □ No □ Yes

If Yes, please specify: ___

GENERAL QUESTIONS:

Concept Modeling: Creating concept design models is interesting.

Disagree Agree

Concept Modeling: I think that formal modeling of system concepts is important.

Disagree Agree

SysML: I enjoy using SysML to specify my design.

Disagree Agree

SysML: I believe that creating SysML models is a valuable activity in product development.

Disagree Agree

SysML: Learning SysML helps me design better products.

Disagree Agree

 172

Tool: I was able to create the models as I intended, using Magicdraw.

Disagree Agree

Functional Modeling:
It is important to define what a system is supposed to do before its structure is defined.

Disagree Agree

Functional Basis: The application of the Functional Basis improved the quality of the model.

Disagree Agree

Function Library:
Modeling with the library in SysML improved the resulting model compared to not having the library.

Disagree Agree

Please explain your answer:__

Function Library:
Modeling with the library in SysML improved the modeling process compared to not having the library.

Disagree Agree

Please explain your answer:__

Function Library:
I prefer having the library when doing functional modeling in SysML compared to not having it.

Disagree Agree

Libraries:
Additional similar libraries for SysML (e.g. for structure or simulation models) would be advantageous.

Disagree Agree

Function Library: What did you like most when doing functional modeling using the library?

Answer here: ___

Function Library: What could be improved regarding functional modeling using the library?

Answer here: ___

	Abstract
	Zusammenfassung
	Contained Publications
	List of Tables
	List of Figures
	Glossary
	1. Introduction
	1.1. Motivation
	Figure 1: Historical trends of system complexity (adapted from [5])

	1.2. Research Goals
	Figure 2: Simplified research impact model, modeled in UML

	1.3. Thesis Overview
	Figure 3: Design Research Methodology (DRM) framework [53]
	Figure 4: Overview of methodological research process

	2. Background
	2.1. Systems Engineering
	2.1.1. Model-Based Systems Engineering (MBSE)
	2.1.2. The Systems Modeling Language SysML
	Figure 5: Overview of SysML/UML interrelationship (adapted from [11])
	Figure 6: SysML diagram taxonomy [11]
	Figure 7: BDD and IBD example
	Figure 8: ACT example diagram
	Figure 9: SysML system model as a framework for analysis and traceability (adapted from [70])

	2.2. Development of Multi-Disciplinary Systems
	2.3. Function – Behavior – Structure (FBS)
	2.4. Functional Modeling
	2.4.1. Use of Functional Modeling
	Table 1: Contrasting pairs of aspects related to the term "function" (adapted from [37])

	2.4.2. The Functional Basis (FB)

	2.5. Design Libraries as Knowledge Bases
	2.5.1. Why Libraries?
	2.5.2. Knowledge Bases Used

	2.6. Design Patterns
	2.6.1. What are Patterns?
	2.6.2. Patterns in Engineering Design

	2.7. Related Work

	3. Case Study
	3.1. The Reprap 3D Printer
	Figure 10: FDM based 3D printer set-up
	Figure 11: Raptype 3D printer visualization [144]

	3.2. 3D Printer Concept Model
	Figure 12: Model overview of case study Reprap
	Figure 13: Reprap variations structure
	Figure 14: CoreXY (left) and HBot (right) kinematic schemas [1]
	Figure 15: Modeled Reprap configurations

	4. Concept Modeling Approach in SysML
	4.1. Concept Modeling Approach Overview
	Figure 16: Libraries and patterns in the context of the adapted V-model (based on VDI 2206 [79], adapted from Eigner et al. [64])
	Figure 17: Level structure of model framework (based on [80, 82])
	Figure 18: Modeling workflow schema

	4.2. Function Library
	4.2.1. Function Library Definition and Refinement
	Figure 19: Defined stereotypes in function library
	Figure 20: Transformation of some FB flows [15] into the SysML function library hierarchy
	Figure 21: "ElectricalEnergy" flow with redefined effort and flow parameters as well as custom extensions for DC and AC
	Figure 22: Definition of functions [15] implemented in a SysML library with their inputs and outputs
	Figure 23: Function library containment (left: functions, right: flows)

	4.2.2. Function Library Usage
	Figure 24: Derivation of main function "Print 3D-Object" of case study
	Figure 25: Function library (left) used to define "ElectricalEnergy:Regulate" function as call behavior action (right)
	Figure 26: Excerpt of functional decomposition of "Print 3D-Object" main function
	Figure 27: "Maintain Printer" function with control flow and swimlanes
	Figure 28: Function flow consistency examples

	4.3. Behavior Simulation Library
	4.3.1. Behavior Simulation Library Definition
	Figure 29: Stereotypes in the behavior simulation library
	Figure 30: Behavior simulation library implementation in SysML (left) with corresponding database in Amesim (right)
	Figure 31: Rotary load elements in Amesim and their implementation in SysML with parent element without specified submodel
	Figure 32: Excerpt of flow port type hierarchy defined in behavior simulation library
	Figure 33: Excerpt of value type, unit and enumeration definition of behavior simulation library

	4.3.2. Behavior Simulation Library Usage
	Figure 35: Excerpt of simulation models in Amesim (left) and in SysML (right) (adapted from [1], concept sketch from [144])
	Figure 36: Interface compatibility examples of behavior simulation library elements
	Figure 37: Simulation results of oscillating orthogonal forces on the linear bearings of the sliding carriage for HBot and CoreXY [1]

	4.4. Service Library
	4.4.1. Service Library Definition
	Figure 38: <<Service>> stereotype in the service library
	Figure 39: "Remote inspections" service from service library
	Figure 40: Service library hierarchy excerpt with “Product Inspections” services
	Figure 41: Excerpt of actor hierarchy for service providers and service receivers

	4.4.2. Service Library Usage
	Figure 42: Principle solution example for “Remote Inspections” service of the 3D printer
	Figure 43: Model excerpt for custom “Raptype Remote Inspection” service, showing its linkage to other model elements

	4.5. Multi-Solution Patterns
	4.5.1. Multi-Solution Pattern Definition
	Figure 44: Multi-solution pattern stereotypes

	4.5.2. Multi-Solution Pattern Example
	Figure 45: Cropped "2D Kinematics" design pattern (adapted from [1])
	Figure 46: Cropped "HBot Solution" pattern solution (adapted from [1])
	Figure 47: Excerpt of allocation matrix of "HBot Solution"

	4.5.3. Multi-Solution Pattern Usage
	Figure 48: Functional model adaption at pattern application

	4.6. Results
	Figure 49: Wiring schema of the basic configuration of the 3D printer with stepper motors
	Figure 50: Schematic modeling approach overview
	Figure 51: Relation map of "Rotational Energy Provision” requirement
	Figure 52: Overview over used stereotypes

	5. Functional Modeling User Study
	5.1. Experiment Setup
	5.1.1. Hypotheses and Experimental Factors
	5.1.2. Performance Measures
	5.1.3. Experimental Procedure
	Figure 53: User study experiment plan

	5.1.4. Master Models
	Figure 54: Full functional model of “Grind Coffee Beans” task, highlighting its six top-level functions
	Figure 55: Pruned functional model of “Grind Coffee Beans” task
	Figure 56: Pruned functional model of “Brew Coffee” task

	5.2. Experiment Results
	5.2.1. Questionnaire and TLX Test Results
	Figure 57: Overall perceived overall workload with standard errors from the TLX tests by the means of weighted ratings
	Figure 58: Perceived workload on day 3 without library support, shown for each factor with its relative weighting
	Figure 59: Perceived workload on day 3 with library support, shown for each factor with its relative weighting

	5.2.2. Model Analysis Results
	Table 2: Model analysis results with standard deviation and error
	Table 3: Wilcoxon test results (significant results: bold)
	Figure 60: Number of functions from the FB with and without function library (with error bars and two outliers)
	Figure 61: Relative number of functions from the FB with and without function library (with error bars and three outliers)
	Figure 62: Relative number of covered top-level functions compared to the full master models with and without function library (with error bars and one outlier)

	Table 4: Spearman test results for bivariate correlations (significant results: bold)
	Figure 63: Correlation between ratio of FB functions and covered top-level functions relative to full master models

	6. Discussion
	6.1. Modeling with Library Support
	6.1.1. Modeling with the Function Library
	6.1.2. Modeling with the Behavior Simulation Library
	6.1.3. Modeling with the Service Library

	6.2. Modeling with Multi-Solution Patterns

	7. Summary and Future Extensions
	7.1. Contributions
	7.2. Limitations
	7.3. Future Extensions

	8. Conclusion
	References
	Appendix A – Multi-Solution Pattern Excerpt: “Provide Rotational Movement”
	Appendix B – User Study Questionnaire

