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Abstract
Computers have the capability to support human designers in a variety of tasks. This
includes not only releasing the human designer from routine tasks by design automation
but also sparking and supporting innovation and creativity in development processes. In
order to support the concept phase effectively, a wide range of possible concepts, which
are quantitatively evaluated, should be considered to enable designers to explore the so-
lution space and to make advantageous decisions towards concepts to be considered in
consecutive development phases. To enable an automated systematic solution space ex-
ploration and evaluation, this research presents different approaches based on a graph-
based object-oriented knowledge representation. This representation is combined with
first-order logic and Boolean satisfiability as foundation for a generic automated approach
for requirement-driven computational design synthesis of solution spaces. To enable the
evaluation of the generated solution spaces, a generic approach to automatically translate
the generated graph-based product concepts into Bond graph-based simulation models is
described. Finally, a method is presented to parametrically optimize the generated con-
cepts using simulated annealing. Here, parameterizations are generated by automatically
setting up and solving constraint satisfaction problems and evaluated using the generated
simulation models. The methods are validated on the case studies of chemical process
engineering, automotive powertrains and 3D-Printer kinematic mechanisms. The main
contributions of this research are a continuous and generic approach starting with task
definitions and ending with a valid, parameterized product concept, a method which is
able to determine if an engineering task is solvable for a given set of synthesis building
blocks, and an approach for a generic transformation of the generated product concepts
to Bond graph-based simulation models. Thus, this research provides new knowledge
in terms of generic transformations between different knowledge representations in or-
der to generate, explore and evaluate large solution spaces with an, until now, unreached
expressiveness.
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Zusammenfassung
Die fortschreitende Entwicklung von Computern ermöglicht die Unterstützung von En-
twicklern bei vielerlei Aufgaben. Diese Unterstützung erlaubt nicht nur, durch Automa-
tisierung, Routineaufgaben des Entwicklers zu übernehmen, sondern kann auch Innova-
tion und Kreativität in Entwicklungsprozessen fördern. Um die Phase des Konzipierens
effektiv zu unterstützen muss eine grosse Anzahl von möglichen Konzepten erzeugt und
bewertet werden um dem Entwickler eine Beurteilung des Lösungsraumes zu ermöglichen
und ihn oder sie damit zu guten Entscheidungen zugunsten eines oder mehrerer Konzepte
zu befähigen, die in den folgenden Phasen ausgearbeitet werden. Um eine systematis-
che automatisierte Erschliessung von Lösungsräumen zu ermöglichen präsentiert die vor-
liegende Arbeit einen dreiteiligen Ansatz der auf einer graphbasierten objektorientierten
Wissensrepräsentation aufbaut. Im ersten Teil wird diese Wissensrepräsentation genutzt
um mit Hilfe von Prädikatenlogik und boolescher Logik eine generische automatisierte
Erzeugung von Konzepttopologien im Lösungsraum zu ermöglichen. Für jede erzeugte
Konzepttopologie wird, im zweiten Teil des Ansatzes, ein Constraint Satisfaction Prob-
lem erstellt und gelöst um, wenn möglich, auf der Grundlage von Anforderungen und
kritischen Betriebspunkten mögliche Parametrisierungen des Konzepts zu erzeugen. Im
dritten Teil des Ansatzes wird die optimale Parametrisierung jedes erzeugten Konzeptes
mit Hilfe der Optimierungsmethode Simulated Annealing ermittelt. Dazu wird automa-
tisiert für jedes Konzept ein Simulationsmodell in Form eines Bondgraphen generiert und
für verschiedene Parametrisierungen ausgewertet. Um den Ansatz zu validieren werden
verschiedene Fallstudien betrachtet: ein Beispiel aus der chemischen Verfahrenstechnik,
zwei Beispiele zur Entwicklung automobiler Antriebsstränge und ein Beispiel zur En-
twicklung von Mechaniken zum Antrieb von Druckköpfen in 3D-Druckern. Der Haupt-
beitrag der präsentierten Forschung ist ein kontinuierlicher generischer Ansatz der, ausge-
hend von einer formal definierten Entwicklungsaufgabe, parametrisierte Produktkonzepte
erzeugt und bewertet. In diesem Prozess kann, für einen endlichen Satz an möglichen
Bausteinen für die Konzeptsynthese, die Lösbarkeit der Entwicklungsaufgabe untersucht
werden. Ausserdem wird ein generischer Ansatz präsentiert der die erzeugten Konzept-
topologien in simulierbare Bondgraphen übersetzt. Somit erweitert diese Forschungsar-
beit den Stand der Technik mit neuen Ansätzen zu generischen Modell- und Repräsenta-
tionstransformationen und ermöglicht so grosse Lösungsräume zu erschliessen und, mit
bis dato unerreichtem Informationsgehalt, zu bewerten.
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1 Introduction
Over the last decades, computing power and programming techniques have greatly evolved.
These advances enable the support and automation of processes in engineering design
[7]. A success story of such design automation can be reported from a different domain,
namely VLSI1 Design [8]. VLSI design deals with the design of microprocessors, com-
bining nowadays billions of transistors on a single die. The growing number of transistors
that need to be included to support the growing computing requirements led to the de-
velopment of automated design approaches, since these numbers could not be handled
manually anymore. The success of these efforts can be seen by the fact that Moore’s law
[9] of 1965, i.e. the biannual duplication of the number of transistors in an integrated cir-
cuit, still holds today. In VLSI design almost all steps during development are supported
by partly automated compatible software tools.

In engineering design, this level of computational support is still far from being reached.
A well established viewpoint of the product development process is presented by Pahl et
al. [10]. According to them, the process is subdivided in four consecutive phases: i) plan-
ning and task clarification, ii) conceptual design, iii) embodiment design, and iv) detail
design. During planning and task clarification, the customer needs, the situation of the
market and the company are analyzed. The development task is refined and the require-
ments list is defined. In the conceptual design phase, different preliminary solutions, i.e.
concepts, are generated and evaluated against technical and economic criteria. Having
chosen the principal solution, or concept, embodiment design begins. Now, the prelimi-
nary form design is carried out and materials are selected. Different layouts are refined
until one candidate is chosen, which is developed into the definitive layout including a
preliminary part list, production, and assembly documents. In detail design, the product
documentation: detail drawings, parts lists and the complete production, assembly and op-
erating instructions, i.e. the product documentation, are produced for the definitive layout.

In later phases of the product development process, computational support is more and
more integrated. Modern CAD Tools, like CATIA [11] and Siemens NX [12], enable
modeling and dimensioning of parts. The resulting models can be transferred to further
analysis tools, e.g. for structural analysis and production by CNC2 milling machines and
rapid prototyping [7].

The support in earlier phases, however, is sparse in engineering practice. To support
planning and task clarification, several approaches are available in the research field of
requirements engineering [13]. Since this research field is not in the focus of this thesis, a
closer look towards this field is omitted. Conceptual design, however, is an inherent and
important part of every product development process [10]. Figure 1 shows the so-called
"dilemma of product development" [14]: In the early stages of the product life cycle the
possibility to influence the costs is high, but, at the same time, in these stages the least
is known about the actual costs. Another manifestation of this is the "rule of ten"[15]
(Figure 2). According to it, going through the different life cycle stages of a product, the

1Very Large Scale Integration
2Computerized Numerical Controlled
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Figure 1: Influence on cost and actual oc-
currence of cost over the life cycle of a prod-
uct (reproduced from [14]). Figure 2: Rule of ten [15] (reproduced from

[15]).

cost to fix the same error rises with one order of magnitude for each stage.

The decisions made in the conceptual design phase have a huge impact on the life cycle
costs of the product. Although the least amount of quantitative information is known, the
most important decisions are made here. To effectively choose which designs are to be
taken into embodiment and detail design, a large variety of concepts should be generated
and evaluated to fully explore the solution space in order to determine the most promising
feasible designs [16]. This need for systematic solution space exploration and the quanti-
tative description of the product requirements are a good precondition for the application
of computational design synthesis (CDS), the automated generation of solutions and so-
lution spaces for engineering tasks.

Since the beginning of research in artificial intelligence (AI), methods have been devel-
oped that aimed at supporting human designers. The first intention of these approaches
was to assist and automate routine and near-routine tasks, e.g. the preparation of technical
drawings. Once this field reached a certain level of maturity, research turned to automating
non-routine tasks [7]. The research field of CDS, also called formal engineering design
synthesis [17], covers such approaches. According to Cagan et al. [18], "computational
design synthesis is invoked in situations in which the human designers are often at a loss
of what avenues to pursue, or the best method of achieving a solution requires the gener-
ation and evaluation of countless alternatives" [18].

By generating these alternatives and, therefore, exploring the solution space, CDS can
provide new perspectives since computers are, in contrast to human designers, not biased
by known solutions, experience or education [19]. There is also the potential of generating
new and innovative designs. Further, encoding knowledge formally can provide a better
understanding of the particular design problem following the quote of Knuth [20]:

"It has often been said that a person doesn’t really understand something until
he teaches it to someone else. Actually a person doesn’t really understand
something until he can teach it to a computer [. . . ]"[20]

Case-evidence and a field study gathered and conducted by Thomke and Fujimoto [21]
also show the potential of implementing computational techniques in early phases of the



3

Figure 3: Problem solving rates (r) in product development processes. The right straight repre-
sents a conventional product development using high-fidelity methods (h − f ); the other curve
depicts a product development process supported by knowledge transfer (tr) and low-fidelity
methods (l − f ). In order to simplify the figure the trajectories are shown linearly (reproduced
from [21]).

product development process that they consider as consecutive problem solving. Figure 3
comprises their findings in two curves depicting the total number of solved problems in
a product development process over time. A conventional product development process
with a constant problem solving rate (rh-f) using high-fidelity methods (h-f ), i.e. phys-
ical prototypes is depicted as a straight line. The development time can be reduced by
transferring knowledge about problems that were solved in previous projects or in other
departments of the company (ptr) and the use of low-fidelity methods (l-f ), i.e. virtual
prototypes, digital mock-ups, simulation, etc., right from the start of the development.
Although the fidelity of those methods is lower, problems can be identified and solved
faster, thus resolving in a higher problem solving rate (rl-f). The same amount of prob-
lems can so be solved in less time. The saved time could be used to solve problems (ε)
that would remain unsolved in a conventional process to increase product quality.

So, given these advantages and that more computational support in the conceptual phase
of product development was already requested in the VDI guideline 2221 [22] in 1993;
why is there a hesitation to apply it in engineering practice?

There are several reasons for this fact. Although numerous approaches in CDS have
already been presented (cf. Section 2 for details), there are still unresolved issues [19]:

1. One challenge yet to be solved is that being confronted with a huge amount of de-
sign alternatives that can result from exploring solution spaces can be overwhelming
and overburdening for the user [19]. Most approaches focus on the sheer generation
of design alternatives and don’t consider advanced methods to evaluate the designs.
Due to this, the user is left with a set of solutions but only having limited informa-
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tion to rank them or to select a set of solutions for further investigations.

2. Another challenge is that formalizing knowledge is a difficult, tedious and error-
prone task that still lacks support [7, 19]. It requires not only a deep understanding
of the design task at hand and the engineering problem-solving knowledge, but also
a basic understanding of how the selected synthesis method including its operators
and algorithms works [23].

3. A related challenge is that different knowledge representations, e.g. statements,
sketches, mathematical models, etc., are needed to describe the various aspects of
design concepts. Currently, the designer has to manually select the one he or she
needs for a particular task. Similar observations can be made regarding representing
engineering problem solving knowledge. The importance of including different
representations in synthesis and the need to link these representations, either by
automated transformations between them or providing a symbolic representation as
a point of reference have been identified in literature [7, 18, 24]. This would enable
a seamless model, method and tool chain [7, 25].

4. Chakrabarti et al. [19] also state that scaling up current synthesis systems is re-
quired to meet the levels of complexity that such systems would most likely face in
engineering practice.

5. The last challenge in this list is identified by Eder [26]. He states, that engineering
designers usually work within a limited set of design problems where they have
sufficient knowledge about the usual processes and solutions. This inhibits the im-
plementation of formal methods, i.e. CDS approaches. Such approaches are only
needed if designers are confronted with problems that go beyond their experience.

Although this list is surely not conclusive, addressing all these issues goes beyond the
scope of one thesis. Especially the fifth one cannot be resolved by "just" improving the
tools and method but also by changing the perception and openness of human designers.

The main research question, this thesis intends to answer is the following:

How can we computationally generate concept alternatives to a level of com-
pleteness so that behavior simulation allows designers to make informed de-
sign decisions in conceptual design?

To address the research question, this work presents a new computational design syn-
thesis approach based on a graph-based object-oriented concept modeling framework
[27]. Starting with a metamodel, i.e. a set of available building-blocks with defined
interfaces and a system boundary that represents the design task as a finite number of
inputs that is to be converted into a finite number of outputs, concept topologies are au-
tomatically generated and optimized with respect to their parameters. Starting with the
building blocks and their inputs and outputs, a first-order logic is generated that describes
the solution space of topologies. This first-order logic is then, limited to a maximum
number of components in the solution topologies, translated into a Boolean Satisfiabil-
ity Problem. This, so-called, SAT-Problem is solved, generating the solution space of
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topologies. For all the solutions, simulation models are generated using partial simula-
tion models that are predefined for the building blocks. Further, a constraint satisfaction
problem (CSP) is generated that covers requirements from the design task and the used
building blocks. Solving the CSP, different assignments for the design variables of each
topology are created. The most opportune assignment is chosen using an optimization
method, i.e. simulated annealing.

Considering the conceptual design phase according to Pahl et al. [10], Figure 4 presents
the manual process as described in literature, and the alternative that this thesis proposes.
After the essential problems are refined, the metamodel and the system boundary are
defined by the designer. Once this task is completed, the method consists of the three
automated steps: topological synthesis using first-order logic and Boolean satisfiability,
generation of variable assignments using constraint satisfaction, and optimization using
simulated annealing, is applied. The generated and evaluated solution space is then trans-
ferred to the original process when it is the designers task to evaluate economic criteria,
which is not tackled in this work.

Figure 4: The conceptual design phase reproduced from [10] and the possibilities for automation
that this work enables.

In this approach, the knowledge is gathered in the problem specification and the build-
ing block set. It is accessed automatically and by the use of simulation, the performance
of each generated concept is assessed. Doing this, this work intends to contribute to



6

the first issue mentioned above that demands the use of advanced evaluation to provide
the designer with information to a more informed decision which concept(s) is/are to be
followed up in detail design. Providing generic model transformations, translating the
metamodel into a first-order logic description, and the generated concepts to CSPs and
simulation models, issues two and three are addressed. Since the whole approach is based
on a singular knowledge representation, the designer is relieved from manually tackling
different representations but still is able to gain the information they provide. The knowl-
edge formalization per se is simplified, since there is only one central location to store the
knowledge, i.e. the metamodel. The case studies that are presented in Section 6 address
different levels of complexity to contribute to issue four.

The proposed method can also contribute to a shorter development time by i) enabling
knowledge transfer in the sense of [21] by offering the possibility to store knowledge in
different problem specifications and building blocks and ii) the use of simulation to enable
faster problem solving [21]. A better assessment of the different concepts during concep-
tual design also reduces the probability of errors stemming from this phase which could
enable a reduction of cost along the life cycle of the developed product.

Concluding, this thesis’ expected contributions are a continuous, generic approach to
automatically generate and evaluate topological and variable solution spaces for engineer-
ing design problems in the domain of mechanic and mechatronic systems, generic model
transformations between the central graph-based object-oriented concept representation
and first-order logics, constraint satisfaction problems and simulation models, modeling
guidelines for defining simulation models for separate building blocks, and, therefore, an
automated method to generate and explore large solution spaces with a "new level of"
expressiveness. Further, a software prototype is provided that implements the method
and the model transformations. The case studies contribute example metamodels that can
serve as basis for future research endeavors and illustrate how the approach can be applied
to design problems with different levels of complexity.

1.1 Thesis Structure

Section 2 first gives a general introduction to computational design synthesis before cur-
rent approaches using different knowledge representations are presented. Further, ap-
proaches using logic and constraint satisfaction in design and recent work from the field
of simulation-driven design are introduced. Based on this literature review, the focus of
this work and refined research questions are elaborated.

Following this, Section 3 presents the background for the methodologies and approaches
that are used in this work: first order logic, Boolean satisfiability, bond graphs, and simu-
lated annealing.

Building on this knowledge, the method is presented in Section 4. Here, the frame-
work (Section 4.1) and the three consecutive parts of the method, the topological synthesis
(Section 4.2), the generation of variable assignments (Section 4.3), and the optimization
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using simulated annealing (Section 4.2) are described in detail.

Section 5 describes the software prototype that was implemented during the work for
this thesis. Special focus is given to the definition of the metamodel for the generation and
evaluation of concept models and the communication between the different tools utilized
in the implementation.

Section 6 presents four different cases studies to show the capabilities of the method.
The first case study (Section 6.1) is an example from the domain of chemical process en-
gineering and shows the potentials of the topological synthesis in the domain of process
engineering. The second case study (Section 6.2) deals with the generation of variants for
automotive powertrains. Here, topological synthesis is compared to a generic approach
using an object-oriented graph grammar [27]. The third case study (Section 6.3) offers an-
other viewpoint on automotive powertrains and shows the application of the whole method
including integrated simulation. The last case study (Section 6.4) investigates the genera-
tion and evaluation for alternative concepts on printhead drives for 3D printers.

Section 7 discusses the presented approach. It is compared to the literature and the
contributions are presented. Finally, limitations are analyzed and potential future work is
suggested.

In Section 8 concludes the thesis, summarizing the work and reviewing the contribu-
tions considering the challenges identified in this introduction.
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2 Related Work

This thesis presents a new method for the generation and evaluation of solution spaces.
The intention to support designers in conceptual design is not new and has been tackled
by numerous approaches. In order to put this thesis in context with literature and to point
out where the expected contributions are placed, this section will introduce the different
research fields that are related to this thesis.

Figure 5: The discussed literature in context of computational synthesis, constraint satisfaction
in design, conceptual design, and simulation-driven design

Figure 5 gives an overview about the reviewed literature in this section and its struc-
ture. In Section 2.1, the research fields of computational design synthesis and configura-
tion are introduced and discussed. Approaches using rule-based, model-based and mixed
knowledge representations are presented and compared. Following this, approaches ap-
plying logic descriptions in design are introduced in Section 2.2. After approaches using
constraint satisfaction in design are discussed, Section 2.4 reveals details of simulation-
driven design and related approaches. Section 2.5 draws the conclusions from the obser-
vations in the related work and refines the research question this thesis intends to answer.
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2.1 Computational Design Synthesis

There are two research fields that use AI methods to help designers by creating design
alternatives, computational design synthesis and configuration. Mittal and Frayman [28]
define a configuration task as follows:

"Given: (A) a fixed, pre-defined set of components, where a component is
described by a set of properties, ports for connecting it to other components,
constraints at each port that describe the components that can be connected at
that port, and other structural constraints (B) some description of the desired
configuration; and (C) possibly some criteria for making optimal selections.

Build: One or more configurations that satisfy all the requirements, where
a configuration is a set of components and a description of the connections
between the components in the set, or, detect inconsistencies in the require-
ments." [28]

Three aspects are pointed out explicitly towards this definition and summarized in [29].

"

1. one cannot design new components during the configuration task;

2. each component is restricted in advance to only be able to "connect" to
other certain components in fixed ways (i.e., they can’t be modified to
get arbitrary connectivity); and that

3. the solution specifies not only the components in the configuration but
also how they are related.

"[29]

The first aspect shows to be especially crucial since the level of abstraction in which
the components should be defined is not clearly defined [29]. If the components would
allow further refinement, i.e. changes in any parameters, there is a chance, that something
new is generated. Such incident, the creation of something new can be considered design
[29, 17].

Antonsson and Cagan [17] describe synthesis as "many different things, from the phys-
ical combination of atoms and molecules into a new molecule, to the combination of
existing parts or elements into a larger structure or system"[17]. Following up on this,
they characterize engineering design synthesis as "that portion of the engineering design
process having to do with the creation of new alternatives and candidate concepts"[17].

Brown [29] sees configuration as an inherent part of the design process. However, con-
figuration aims at supporting designers that know what they need and want to spare the
tedious task of combining predefined components, and checking compatibilities and re-
quirement fulfillment. An example for this is the configuration of computer systems as,
for instance, realized in the MICON system [30] or the design of paper handling systems
as realized in PRIDE [31]. (Computational) Design Synthesis, in contrast, aims at sup-
porting designers at a crossroads not knowing which direction to pursue or when the range
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of possible solutions for a task is too wide to be graspable manually [18].

In 2005, Cagan et al. [18] introduced a framework for computational design synthesis.
This generic model of computational design synthesis is composed of for major steps that
every system that automatically designs must implement:

• Representation

• Generation

• Evaluation

• Guidance

The representation is formulated by the developer of the computational design method
to capture the forms or attributes of the design space. Here the knowledge for the design
process has to be integrated. Alternative solutions are generated using this representation
within the generation task. Each design candidate is evaluated to determine its degree of
requirement fulfillment. Based on this calculation the guidance is returned to the search
process in order to improve the solution process [18].

Cagan et al. describe the representation as "key challenge in synthesis" [18]. Knowl-
edge for design synthesis can be formalized in several representational foundations [19,
32]. The following sections give an overview of current approaches utilizing rule-based
knowledge representations focusing on graph grammars, model-based and mixed knowl-
edge representations.

2.1.1 Rule-based Approaches

Rule-based knowledge representations include knowledge in rules. These rules are, basi-
cally, IF-THEN-relations that transform an initial state into a modified one [33].

In 1997 Schmidt and Cagan [34] introduced GGREADA3 (Schmidt1997 ). This ap-
proach generates optimal or near-optimal solutions for design tasks using a graph gram-
mar and simulated annealing. They apply this for generating Meccano R© set carts using
eleven different rules.

Following this work, Schmidt et al. [35] presented four general graph grammar rules
to synthesize mechanisms (Schmidt2000). These rules are applied to labeled graphs. The
approach is shown on the synthesis of epicyclic gear trains.

A framework for engineering design grammars is the Design Compiler 43, which was
first presented in 2003 [36] (Alber2003). It allows the formalization of knowledge in rules
and rule sequences. A key feature of the Design Compiler 43 is the possibility to trans-
form design graphs into analysis models, e.g. FEM, CAD, etc. Recent applications are
the design of satellites [37](Schaefer2004) and aircraft cabins [38](Landes2011).

3Graph Grammar REcursive Annealing Design Algorithm
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Starling and Shea [39] present a parallel grammar approach for simulation-driven me-
chanical design synthesis in 2005 (Starling2005). Here, parallel means that the grammar
has graph and shape aspects. By applying grammar rules, a product structure is generated
which is then translated into a modelica-based simulation. A multi-objective hybrid pat-
tern search controls the synthesis process deciding on the rule applications.

In 2007, Bolognini et al. [40] propose to modify designs by five operators similar to
graph transformation rules (Bolognini2007 ). Their method called CNS-Burst4 starts from
an initial design and iteratively modifies it until either the maximum number of objective
evaluations is exceeded or a predefined termination criteria is reached. The evaluation
of the results is simulation-driven, calculates values for design objectives and decides
whether the modified graph is to be added to the design archive. The simulation driven
aspects of this work and the work of Starling and Shea [39] are further discussed in Sec-
tion 2.4.

Another example for a rule-based framework is the approach Lin et al. [41] presented
in 2009 (Lin2009). They synthesize automated gearboxes based on a set of problem spe-
cific rules that all involve two basic items: gears and shafts.

Another rule-based approach is the use of graph grammars to automatically synthesize
electromechanical designs by Kurtoglu and Campbell [42], also presented in 2009 (Kur-
toglu2009). Here, 189 rules were extracted during an empirical analysis of 23 products.

Whereas this approach is applying a breadth-first search to generate as many design al-
ternatives as possible, Campbell et. al [43] introduced a stochastic tree-search algorithm
that only generates a small subset of solutions that intends to closely match the user’s goal
(Campbell2012).

Stanković et al. [44] introduced formal models of technical processes and technical
process synthesis (Stankovic2012). All relevant knowledge is stored in a library of pro-
duction rules that is created for specific problems. The formal models are validated using
a stiffened panel assembly.

Rule-based approaches are a versatile way to encapsulate engineering design knowl-
edge. However, their concept representations suffer from a weak expressiveness. The
rules are often tailored for specific applications or classes of problems, which makes them
hard to be transferred to new classes of problems. The rule application is often controlled
by complex search algorithms. Another disadvantage, that partly arises from these facts,
is that defining rules, and rule application sequences or algorithms is difficult for design-
ers and not sufficiently supported [7, 19].

4Connected-Node System
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2.1.2 Model-based Approaches

Model-based knowledge representations capture knowledge in model libraries that can
include inheritance. The model libraries and models can be re-used in different instances
and combinations. Model-based reasoning methods enable the generation of models to
solve specific tasks [33].

An example for an approach using this kind of knowledge representation is the gener-
ation of concept variants by the approach of Wyatt et al. [46, 47] that was first presented
in 2009 (Wyatt2009/12). Here, engineering knowledge is encapsulated within a schema.
Available components and connections are organized in hierarchical structures and the
knowledge about their appearance and connectivity are represented using constraints. The
actual synthesis is an adaption of an initial design by four generic operators.

In 2010 Rihtaršič et al. [48] published a tool called Sophy5 (Rihtarsic2010). The foun-
dation of this work is a library of physical laws that are represented in so called basic
schemata models. The method creates chains of such basic schemata models and inter-
connects them to create a model that matches a given set of input and output variables.

Moullec et al. [49] present an approach for system architecture generation and per-
formance assessment using Bayesian networks (Moullec2013). They propose a way to
capture expert knowledge in a Bayesian network and an algorithm to generate all possi-
ble product architectures also considering uncertainty. However, the performance assess-
ments presented in this paper are only limited to basic calculations rather than simulations.

In comparison to the rule-based approaches, the model-based approaches provide more
expressive concept representations but currently only use simple search methods. Increas-
ing the search space, the computational effort grows. Due to this, there is a need for more
sophisticated search methods including design heuristics combined with a model-based
representation.

2.1.3 Mixed Approaches

More sophisticated search methods are used in rule-based approaches. So, several ap-
proaches [50, 27] resulted that combine aspects of both, rule- and model-based knowledge
representations.

The first mentioned is HiCED6, a computational design synthesis approach by Jin and
Li (2007) [50] (Jin2007 ). This method covers a rule-based functional decomposition pro-
cess by seven different rules and the coevolutionary approach that evolves the functional
model and maps means to functions using frame-based represented knowledge.

In 2012, Helms and Shea [27] introduce an object-oriented graph grammar approach
for computational design synthesis (Helms2012). Since this approach is the predecessor

5Synthesis of physical laws
6Hierarchical CoEvolutionary Design
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Figure 6: Graph-based product model using function, behavior, and structure levels and design
synthesis process steps; adapted from [27]

of this thesis and in Section 6.2 results will be compared, it will be described in more de-
tail. The work is based on a product model using function, behavior, and structure levels
(FBS). As depicted in Fig. 6, the approach starts with an overall function that describes
the purpose of the product. Manually, this overall function is decomposed into so-called
high-level functions that embody main functionalities of the product. Based on the input-
and output-flows (ports) of these high-level functions, they are decomposed into chains of
subfunctions that are based on the Reconciled Functional Basis [51]. To these subfunc-
tions, behaviors, i.e. physical-effects, are assigned by port-matching [52]. The same is
done to map behaviors to components. Finally, components that are not allowed to appear
multiple times in the product model are merged. Through this, the isolated FBS-models of
the different high-level functions are combined in one product model. The synthesis steps
from high-level functions to merging structure components are automatically realized by
a set of only four generic graph grammar rules that use the hierarchy of inheritance in
which all available components are defined and the components’ attributes. Further de-
tails can be found in [27, 53].

These approaches show a possible way to combine the advantages of both model-based
and rule-based approaches. Since Jin and Li (2007) [50] only use the rule-based ap-
proach to generate an initial functional model and continue strictly model-based it suf-
fers from the model-based shortcomings mentioned above. The approach of Helms and
Shea [27] shows a more promising way by accessing the knowledge in the model through
generic graph rules. However, this approach also has disadvantages: The limited number
of generic rules and the sequence of rule applications allows only the generation of sim-
ple product topologies for each high-level function, i.e. chains, or structures with at most
one branch point. Only merging the structure topologies of the high-level function allows
more complex structures. The disadvantage of not allowing highly intertwined topologies
to realize high-level functions and the strictly top-down process prevents a wider solution
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space exploration. Another limiting factor is the use of random walk search to guide the
rule application and, therefore, the concept generation.

2.1.4 Conclusion

Throughout this section, approaches in computational design synthesis using different
kinds of knowledge representations research fields are presented. Most approaches ([43,
41, 46, 47, 48, 38, 42]) considered computational design synthesis for conceptual design
(cf. Figure 5). This is in line with the characterization of Cagan et al. [18], that "computa-
tional design synthesis is invoked in situations in which the human designers are often at
a loss of what avenues to pursue, or the best method of achieving a solution requires the
generation and evaluation of countless alternatives" [18]. Such situations are common in
conceptual design, especially when new products are to be developed. Other approaches
in CDS either aim at supporting embodiment design [37], are located even before concep-
tual design, i.e. synthesize processes [44], or just show their methods on small examples
without a direct relation to the product development process [36, 34, 35].

Apart from the disadvantages already mentioned in the different subsection and al-
though the presented approaches constitute sufficient ways to generate solution spaces,
most of them lack a sufficient evaluation of the generated concepts. Only the approaches
of Starling and Shea [39] and Bolognini et al. [40] include aspects of simulation-driven
design which will be further discussed in Section 2.4.

2.2 Approaches Applying Logic Descriptions in Design

Already in 1969, Simon [54] stated "[. . . ] that the requirements of design can be met fully
by a modest adaptation of ordinary declarative logic"[54]. However, back then, no system
was available to actually tackle design tasks [54]. Today, different approaches using logic
exist.

An example is the 2001 approach of Braha [55] incorporating Boolean logic (Braha2001).
Here, a design problem is encoded as a Boolean satisfiability problem and a SAT-solver
(see Section 3.1) searches for a finite sequence of production rules. Executing this se-
quence, the description of a product design that fulfills the initial requirements results.
The Boolean variables relate to the existence of structural and functional attributes. The
knowledge that is needed to solve the design task is encoded in a set of structural at-
tributes, functional attributes, and production rules that set the two kinds of attributes into
relation.

In 2003, C-K theory was introduced [56] (Hatchuel2003). Logic is the foundation of
this design theory. This theory separates in two spaces: the "space of knowledge" (K) and
the "space of concepts" (C). K is a space of propositions that have a logical status (are
either true or false). In C there are propositions that have no logical status. Shai et al.
[57] used this theory combined with infused design to discover the face force variable in
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determinate trusses (Shai2009).

Hendriks and Kazakci [58, 59] extend and generalize the method of Semantic Tableaux
to Design Tableaux (Hendriks2011/12). It is related to CK-Theory and offers a possibility
to reason if a generated design concept fulfills a specific design task. The approach shows
the capabilities of description logics to evaluate the validity of product concepts. The ori-
gin of the concepts, however, is not described. Nevertheless, they show the capabilities of
logic in design.

Apart from C-K theory, Wyatt et al. [47] give an outlook for the use of logic in gen-
eral and SAT in particular to generate product architectures from their design schema.
However, they identify certain constructs from their method as not translatable. Addition-
ally, the derivation of architectures from existing product architectures, in their attempt to
transfer the system to SAT, is not possible. However, this derivation is a crucial step in
their approach.

Another approach to conceptual design using logic descriptions is the work of Kerzh-
ner [60] (Kerzhner2012). Here, mixed linear integer programming is used to formalize
solution spaces for product architectures and parameterizations. Constructs of the system
modeling language SysML [61] are used and, where needed, extended to define architec-
ture selection decisions that are then translated into mixed linear integer programming.
There, it is solved and possibly optimized.

Regarding Figure 5, Hendriks and Kazakci [58, 59] use logic reasoning to in conceptual
design, but (until now) only apply manual reasoning without any computational support
(although they claim such could be possible). Linking Boolean satisfiability and com-
putational design synthesis is only discussed but not implemented in the work of Wyatt
et al. [47]. Braha [55] only uses Boolean logics to control a rule-based system that is
designed for conceptual design but does not consider the direct use of logic in synthesis.
The approach of Kerzhner [60] uses mixed linear integer programming but also lacks a
sufficient evaluation of the generated concepts. This approach shows the potential of log-
ical descriptions, but the progress that has been made in research on algorithms to solve
Boolean satisfiability problems, the superordinate problem of logical descriptions [55],
remains to be investigated in direct application to design tasks.

2.3 Constraint Satisfaction in Design

Another way to implement computational support in design tasks, is to describe the tasks
as constraint satisfaction problems (CSP) and use constraint solving algorithms to gen-
erate solutions. CSPs are composed of three parts: a set of variables, a set of domains,
with a domain, i.e. the possible values, for each variable, and a set of constraints, where
the variables are linked with each other. Having defined a CSP, variable assignments that
fulfill all constraints can be generated using search methods (cf. Section 3.3). Especially
for configuration tasks as described in Section 2.1, constraint programming, i.e. encoding
variable relations in constraints and constraint satisfaction problems, is "the method of
choice" [62].
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There are several examples for the application of constraint satisfaction for configu-
ration tasks. Stumptner and Haslböck [63] developed COCOS7 which allows defining
and solving configuration tasks based on a generative constraint formalism [64] (Stumpt-
ner1994/93). Purvis and Pu [65] introduce an adaptation approach using constraint satis-
faction in the field of case-based reasoning and test it on configuration tasks and assembly
sequence generation (Purvis1995). Sabin and Freuder [66] realize configuration tasks us-
ing composite constraint satisfaction (Sabin1996). Here, values for certain variables can
be constraints themselves. If such a value is assigned, the constraint satisfaction problem
is dynamically updated. An application to the configuration of automotive powertrains is
presented in [67] (Silvas2015).

The approaches presented until now are limited to discrete variable definitions. Adding
continuous, or numerical, ranges for variables, Yvars et al. [68] optimize mechanical
systems using constraints satisfaction (Yvars2009). Additionally, Gelle et al. [69, 70]
developed constraint satisfaction methods to support mainly structural engineering by
generating solution spaces for engineering problems, i.e. single story steel buildings
(Gelle2000a/b). This research led to a method for solving mixed, i.e. including dis-
crete and numerical variables, and conditional, i.e. the existence of variables depends
on the values of other variables, constraint satisfaction problems [71] (Gelle2003). Using
numeric variables and constraints, Shah et al. [72] combined SysML and constraint-based
reasoning for component sizing in hydraulic systems (Shah2010). Due to including nu-
merical values for variables, these approaches go beyond the notion of configuration tasks
and towards computational design synthesis, since components can change throughout the
configuration of solutions.

These approaches show, that CSPs can be successfully applied to configuration and de-
sign. However, the expressiveness of the representations is often limited and the decisions
made during solving the CSP are only based on basic calculations. None of the approaches
tackles the analysis of the design’s behavior using simulation or other advanced methods.
This leads to the notion of simulation-driven design. Different approaches supporting this
paradigm will be presented in the following section.

2.4 Simulation-Driven Conceptual Design

"Simulation-driven design can be defined as a design process where decisions related to
the behavior and the performance of the design in all major phases of the process are
significantly supported by computer-based product modeling and simulation" [73]. To
support this methodology, different approaches have been presented.

In [74, 75] Shiau et al. present an automated approach to find an optimal hybrid-electric
vehicle design and allocation in order to achieve minimum life cycle costs, petroleum
consumption and greenhouse gas emissions (Shiau2010/11). The powertrain topologies

7COnfiguration through COnstraint Satisfaction
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investigated are limited to the topology used in the Toyota Prius and a comparable con-
ventional vehicle, i.e. a Honda Accord. The results are generated by optimizing the
parameters in the powertrains and simulating them using the Powertrain Systems Analy-
sis Toolkit.

A similar approach was published in [76] (Hauffe2008). Here, the parameters in a ba-
sic parallel hybrid powertrain topology are changed to investigate the impact of battery
weight and charging patterns on fuel consumption, CO2 emissions and costs. Similar to
[74, 75] different powertrain topologies are not considered.

Another example using the case study of automotive powertrains is shown in [77]
(Canedo2014). Here, the Functional Modeling Compiler is used to generate topologies
to a functional model which are then connected to simulation models. However in the
case-study, the simulation models for the different powertrains are hard-coded and then
linked to the topologies.

The approach of Starling and Shea [39] also includes aspects of simulation driven de-
sign. As mentioned before, they introduce a parallel grammar for simulation-driven me-
chanical design synthesis. By applying grammar rules, a product structure is generated
which is then translated into a Modelica-based simulation. To simulate different designs,
precompiled simulation models are used, that have to be created beforehand for every
design family that is to be investigated. During the synthesis, only the variables in this
precompiled models are changed.

In [78] Bayrak et al. present an automated approach to generate driving modes for
hybrid-electric vehicle architectures (Bayrak2013). The different driving modes are to be
realized using different connection schemes of two planetary drives, two electric engines,
and one internal combustion engine. To evaluate the driving modes, a bond graph model
for the basic configuration is created and then the computer iterates over all the different
connection possibilities. In the end the two modes are selected that are, in combination,
able to provide the minimum energy consumption for the vehicle. Whereas this approach
verifies the suitability of bond graphs to simulate multi-domain systems, the approach is
case-specific for powertrains that involve the components mentioned above.

Also, Wu et al. [79] present an approach in simulation driven design (Wu2008). They
aim at supporting designers with a tool to automatically create bond graph-based simu-
lation models during manual concept modeling of dynamic systems. For modeling the
concepts a new notion, so-called conceptual dynamics graphs, is introduced. The user
connects predefined components from a repository that are associated with generic simu-
lation models. The tool assembles such generic simulation models using various types of
connectors while the user is modeling and, in case of doubt, includes the user in decisions
over compatibility. When the concept is finished, an automated optimization of design
variables using genetic algorithms is carried out.

Another approach supporting manual product design is the integration of SysML and
Modelica introduced by Johnson et al. [80] (Johnson2012). Their work defines an ap-
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proach to model system dynamics in SysML by integrating Modelica code for specific
components in SysML’s Block Definition Diagram (BDD). The blocks defined in such
BDD can then be used in parametric diagrams to manually build up systems that are then
translated into Modelica code using a triple graph grammar.

The presented approaches can be distributed into three different categories:

1. Approaches using one [74, 75, 76] or several [77, 39] hard-coded or precomiled
simulation models.

2. Approaches alternating specific connections in simulation models to determine and
optimize different modes of use [78].

3. Approaches supporting human designers in manual concept design [80, 79].

The only approach adapting different architectures into simulation models is the ap-
proach of Bologini et al. [40]. However, their application in MEMS8 is highly problem
specific and can be classified as structural topology optimization [81]. Thus, their method
cannot be accounted for a generic approach towards using simulation for evaluation.

2.5 Conclusions & Research Questions
Concluding from the different approaches that were presented in this section, this work
intends to contribute by providing a seamless approach spanning all five research fields,
i.e. the fully automated generation and evaluation of solution spaces for conceptual de-
sign. In order to achieve this, engineering knowledge has to be encapsulated in formal,
i.e. computationally accessible form. Logical descriptions can be used to formalize design
tasks, but the manual formulation of abstract logical statements is tedious and error prone.
Formulating engineering knowledge in rule-based knowledge representations raises the
conflict as to where to include the knowledge: into the building block types or into the
rules. Basing on more expressive building block types enables a synthesis with a small
number of rules [27] whereas a huge set of rules is needed to handle more basic building
block types [37, 38]. Pushing the expressiveness so far, that no rules are needed anymore
would resolve the conflict. Model-based approaches show potential but, as mentioned
above, lack of advanced search methods when it comes to synthesizing solutions. These
observations lead to the refined research question one:

1. How can we formally encapsulate a task specification and engineering
knowledge without using rules for conceptual design to allow the generation
and automated behavioral simulation of the solution space using advanced
search methods?

Given the different aspects of engineering design, there is no one model or language
that can include all knowledge and information that is needed to solve engineering design
tasks [80]. Almost every approach presented in this chapter utilizes individual formal-
izations. Different approaches have shown potential in different tasks during design, e.g.

8MicroElectroMechanical Systems
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constraint satisfaction problems are suitable for sizing components, and simulation mod-
els give an outlook to the real world behavior of a system. In order to make use of suitable
representations, refined research question two results:

2. How can we implement and execute model transformations to support
automating conceptual design?

As mentioned in Section 1, an almost complete design automation has already been
achieved in VLSI design [8]. An advantage in VLSI is that the different components are
highly independent from each other and only communicate at defined interfaces. Design-
ing a new chip is, therefore, based on combining generic components that are developed
separately from the overall system [8]. Unfortunately, this cannot be directly applied to
mechanical engineering. In mechanical or mechatronic systems, the involved components
influence each other and show different behavior dependent on their deployment. Un-
til now, simulation-based support for conceptual design relies on hard-coded simulation
models for different overall concepts. Kerzhner [60] points out, that assigning and main-
taining a well defined causality in simulation models created from generated concepts is
a "significant problem". Following this, refined research question three is defined:

3. How can we enable a mapping between abstract components and simula-
tion models describing their behavior for computational design synthesis?

This thesis intends to provide answers to all the three research questions and by that
answer the greater research question raised in the end of Section 1. A model-based knowl-
edge representation is used to encapsulate the engineering knowledge and the design task
itself. First-order logic and Boolean satisfiability are used to generate alternative concept
topologies. Solving constraint satisfaction problems generated from these topologies en-
sure the feasibility of the topologies and generate variable assignments out of which an
opportune assignment is chosen employing simulated annealing. The following section
will give the background for the different formalisms used in this work, before Section 4
describes the method.
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3 Background

In this chapter, the background for the different methodologies and concepts is presented.
Section 3.1 gives the background on first order logic and Boolean Satisfiability. In Section 3.3
characteristics, constituents and solving techniques for constraint satisfaction problems
are described before Section 3.2 introduces bond graph modeling and simulation. Finally,
Section 3.4 gives a short introduction to optimization using simulated annealing.

3.1 First-order Logic & Boolean Satisfiability

3.1.1 First-order Logic

To explain the main components of first-order logic, the following, well known, example
is used [82]:

1. Socrates is human.

2. All humans are mortal.

3. So, Socrates is mortal, too.

The possibility of being human is a parametric expression is_human(x), which is true or
false dependent on the argument x. For the individual x = Socrates the expression is true,
but for different arguments, e.g. x = Table, it is wrong. An atomic statement whose truth
value depends on one or more arguments is called predicate. The second statement is a
quantitative expression about individuals. It says that all humans are mortal. Written in
logical terms this can be read as follows: for all x is valid: If is_human(x) is true, mor-
tal(x) has to be true as well.

Enhancing the propositional calculus, a logical combination of elementary statements
that are either true or false (atoms), by predicates with one or more arguments and the
possibility to quantify statements leads to first-order logic. Using this logic, the example
from above can be written as follows:

1. is_human(Socrates)

2. ∀x(is_human(x)→ mortal(x))

3. |= mortal(Socrates)

3.1.2 SAT and SAT-Solvers

SAT (Boolean Satisfiability Problem) describes decision problems of propositional log-
ics. In fact, the SAT problem is the question whether a propositional formula is satisfiable.
That means that there is at least one assignment for the variables so that the overall for-
mula returns true. Since it only covers propositional formulas, SAT problems have only
binary variables (true or false).
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The SAT problem is NP-complete9 [82]. SAT solvers are software tools that try to
prove the solvability of a Boolean formula by finding an assignment for each variable that
returns true for the complete formula. The clausal conjunctive normal form (CNF) [82] is
the input format for such solver. As shown in Eq. 1, a CNF (right side) is a set of clauses
(in parentheses) interpreted as conjunctions and a clause is a set of literals {C1, C2, C3}
interpreted as disjunction.

(C1 ∨ C2) ∧ (C1 ∨ C3)⇒ (C1, C2), (C1, C3) (1)

There are two different SAT-solver categories: solvers working with modern variants of
the DPLL10-algorithm, a backtracking search algorithm, and solvers using stochastic lo-
cal search [83]. In this work conflict-driven solvers are used. These solvers extend the
DPLL-algorithms to raise efficiency and applicability to large SAT problems [84, 33].

The backtracking algorithm selects a variable in the propositional formula and sets it ei-
ther true or false. Then, the satisfiability of the simplified formula is recursively checked.
If it is not satisfiable, the opposite truth value is assigned and the same recursive check
is carried out. Doing this, the original problem is split into two sub-problems. These
sub-problems are simpler, because all clauses that are true under the assumption can be
removed as well as all literals that are false. DPLL enhances backtracking by unit propa-
gation, which deals with unit clauses. Unit clauses are clauses that only contain one literal.
The assignment of the variable is set to the truth value, such that the unit clause returns
true. Another enhancement is pure literal elimination. Pure literals are propositional vari-
ables where either all appearances are negated or not. For these variables the truth value is
assigned which makes all clauses that contain this variable true [33]. The conflict-driven
solvers offer further extensions, i.e. efficient conflict analysis, clause learning, backjump-
ing (non-chronological backtracking), activity heuristics, constraint removal, and random
restarts. For further information on these solving strategies please refer to [84, 33].

It is also possible to iterate through all possible solutions. To achieve this, the variable
assignment that is found as a solution is excluded by negating it in another clause. Solving
the adapted problem will generate a new result (if existent). By following this strategy, all
solutions to a SAT problem can be generated.

3.1.3 Transforming First-order Logic to SAT

To transform first-order logics into Boolean satisfiability problems, this work uses the ap-
proach presented by Torlak [85]. This transformation generates a Boolean satisfiability
problem that is able to generate models to the first-order logic, given a finite world. That
means, that the set of possible assignments for arguments must be constrained. The trans-
formation is carried out by representing each predicate as a matrix of Boolean variables
over the finite space. Quantifiers and logic combinations of the predicates are transferred
by specified matrix operations. The result is a Boolean satisfiability problem that can be
solved by a SAT-Solver. A Boolean solution, if existent, can then be traced back to the

9Nondeterministic Polynomial time
10Davis-Putnam-Logeman-Loveland
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first-order logic, generating a model to the logic. For further details on the transformation,
the works by Jackson [86] and Torlak [85] are recommended.

3.2 Simulation Using Bond Graphs
This work uses bond graph modeling [87, 88], a graph-based, multi-domain modeling
paradigm that uses declarative modeling. Bond graphs are based on the conservation of
energy. Along a bond (half-arrow), power P is transmitted between different elements
modeled by two so-called power variables: effort e and flow f . The amount of power at
each time step t can be calculated as shown in Eq. 2.

P (t) = e(t) · f(t) (2)

Apart from the bonds that are illustrated by half-arrows, bond graphs are built from nine
different basic elements. There are two kinds of energy conserving junctions: a 1-junction
where the flow at each bond is constant and a 0-junction where the effort at each bond is
constant. Additionally, sources of flow (Sf) and sources of effort (Se) can be modeled. The
remaining possible constituents are inertias (I), capacitors (C), resistors (R), transformers
(TF), and gyrators (GY). In order to influence their characteristics with signal-flows mod-
ulated versions of inertias, capacitors, resistors, transformers, and gyrators are used.

In order to get computable equations from a bond graph, the so-called causality in the
bond graph has to be well defined. Causality refers to the fact that on every bond, the
element on one side defines the effort variable and the element on the other side defines
the flow variable. The side of the bond that defines the flow is marked with a dash, the
so-called causal stroke. Sources of flow (Sf) and inertias (I) define the flow variable coer-
cively. Sources of effort Se) and capacitors (C) always define the effort variable. Figure
7 shows the different elements and their possible causalities towards a junction (J). After
setting up the general layout of a bond graph, the causality is forwarded from the elements
with fixed causality over the junctions to the rest of the elements. If invalid causal pat-
terns, i.e. causal conflicts result the model must be changed to enable a valid causality.
For further information about the bond graph methodology please refer to [87, 88].

3.3 Constraint Satisfaction
After first approaches appeared in computer science literature in the 1960s, constraint
satisfaction became of interest for the research field of artificial intelligence in the 1970s
[62]. A set of objects, where each object’s condition (example: a switch that is enabled
or disabled) has to satisfy a set of constraints is called a constraint satisfaction problem
(CSP).

In general, a CSP is composed of three constituents [62]:

1. an n-tuple of variables X = 〈x1, x2, . . . , xn〉

2. an n-tuple of domains D = 〈D1, D2, . . . , Dn〉 with xi ∈ Di
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Junctions:

1 0

Sources:
Sf J Se J

Inertia:
J I

Capacitor:
J C

Resistor:
J R J R

Transformer:
J TF J J TF J

Gyrator:
J GY J J GY J

Figure 7: Bond graph constituents and their causalities

3. a t-tuple of constraints C = 〈C1, C2, . . . , Ct〉

The following sections present variables and domains, as well as, different types of
constraints and solving algorithms.

3.3.1 Variables

Variables, in contrast to constants, have no definite value within the constraint context.
For each variable, a domain is defined which incorporates all possible values of the vari-
able are defined.

There are two different kinds of variables: numeric and discrete. The domain for a
discrete variable is defined with all explicit values that can be assigned. As an example, in
Eq. 3 the domain for the variable type is shown. This variable can have two assignments,
either "spur gear" or "planetary gear". As can be seen in Eq. 4, the domain for numeric
variables is defined by the maximum and minimum value that can be assigned. So, this
particular domain could also be formulated as 0.6 ≤ i ≤ 5.0. Domains containing discrete
values are defined using curly braces ({}) whereas for numeric domains square brackets
([]) are used.

D (type) = {"spur gear", "planetary gear"} (3)
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D (i) = [0.6, 5.0] (4)

3.3.2 Constraints

Constraints describe mandatory relations between variables. There are three different
kinds of constraints as described within the work of [71]:

• numeric constraints

• discrete constraints

• mixed constraints

Numeric constraints are mathematical equations or inequalities and only relate to nu-
meric parameters. An example of such a constraint would be that variable i2 has to be
bigger than the variable i3. This example is taken from a gearbox where the transmis-
sion ratio of the second gear has to be bigger than the transmission ratio of the third gear.
These numeric constraints are written as equations or inequalities [71]. The constraint in
this example would be defined as shown in Eq. 5.

i2 > i3 (5)

Discrete constraints handle discrete variables. These constraints’ representations are
started by aC. After that, the involved variables are given in parentheses. On the right side
of the :=-sign follow allowed combinations of variable assignments inside curly braces
[71]. An example is the correlation between type and supplier of, for instance, a gearbox
as shown in Eq. 6.

C (supplier, type) := {("ZF", "planetary gear") , ("Getrag", "spur gear")} (6)

Mixed constraints, the third constraint type, combine numeric and discrete variables.
The illustration is similar to that of discrete constraints. First, the involved variables are
referenced and, after that, allowed combinations are defined. In the numerical variables
not only explicit values can be set, but also their domains can be restricted or formulas
can be given connecting the numeric variables [71]. Three examples are given showing
the capabilities of these constraints. Eq. 7 shows an example, the connection between the
gearing type and efficiency eta of a gearbox.

C (type, eta) := {("planetary gear", 0.95) , ("spur gear", 0.98)} (7)

The second example is shown in Eq.8. It connects the variable type to the domain of
the variable n representing the possible range of power input.

C (type, n) := {("planetary gear", [900, 7000]) , ("spur gear", [800, 4800])} (8)

The third example combines the geometrical shape of, for instance, a tank ("hemispher-
ical" or "cylindrical") with its shape parameters volume V , diameter d and height h.

C (shape, V, d, h) =

{(
"hemispherical", V =

1

12
πd3 +

1

4
πd2
(
h− d

2

))
,(

"cylindrical", V =
1

4
πd2h

)}
(9)
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Besides these three types, there is another constraint type: global constraints. They
capture relations between a non-fixed number of variables. An example for this is the
constraint alldifferent(x1, . . . , xn) meaning that the values assigned to the variables
x1, . . . , xn have to be pairwise different [62]. Typically, these constraints can also be
realized by a set of simpler constraints. The advantage of global constraints is twofold.
First, the clarity during constraint programming is improved and second, these constraints
can be solved faster than a set of simpler constraints describing the same issue.

3.3.3 Solver

It is the solver’s task to solve the constraint satisfaction problem. This happens by assign-
ing values to each variable such that all constraints are fulfilled. Depending on the used
types of constraints and parameters and other boundary conditions, different methods to
solve the constraint satisfaction problem have to be chosen. Possible solving algorithms
are [62]:

• algorithms for nonlinear problems:

– backtracking

– local consistency

– local search

• algorithms for linear and polynomial equations and inequalities:

– variable elimination

– simplex algorithm to solve linear and polynomial equations and inequalities

The explicit background of these algorithms is not within the scope of this work and
therefore omitted. Detailed information can be found in [62, 71].

3.4 Optimization with Simulated Annealing

Simulated annealing is a stochastic metaheuristic that mimics the crystallization of molten
metal. If this crystallization happens during a slow cooling process, called annealing, a
state of minimum energy is reached when the crystallization is finished. Simulated anneal-
ing was presented in 1983 by Kirkpatrick et al. [89] and adapts this natural phenomenon
to optimization problems.

minimize
x

f(x) (10)

The general simulated annealing algorithm for the basic optimization problem shown
in Eq. 10 can be formulated as follows [90]:

1. The initial temperature T0 and an initial value for x with objective function value
f(x) is set.

2. A random x∗ is selected from the neighborhood of x and f(x∗) is calculated.
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3. The two objective function values are compared using the Metropolis criterion. If
U ≤ e(−

∆
T
), with U being a random real number between zero and one, T being the

current temperature, and ∆ = f(x∗) − f(x), x is set to x∗. Otherwise, x remains
unchanged.

4. Steps two and three may be repeated depending on some criterion, e.g. if x was
changed to x∗ or a number of iterations is reached.

5. The temperature is lowered and the process starts over from step two.

This process is repeated until a global abort criterion, for instance a total maximum num-
ber of iterations or a maximum number of iteration without change of x, is reached. The
use of the Metropolis criterion in step three enables the possibility that values for x∗ can
be accepted even if ∆ > 0. This allows the algorithm to overcome local minima. Using
Markov chains convergence for simulated annealing, given infinite time, was proven [90].
In order to fit the algorithm to specific tasks, the user has to define the annealing schedule,
e.g. the vanilla schedule [91], and the starting temperature, the neighborhood function,
and the stopping criteria.

In the context of this thesis, simulated annealing was chosen due to several reasons.
First, it showed its potential in a wide range of synthesis applications, e.g. [39, 34]. Sec-
ond, and more important, the variables do not have to be encoded in a fixed representation
as, for instance in genetic algorithms [92]. Since different numbers of variable can be
expected from alternative concepts, no generic encoding scheme for sets of variables with
different sizes has to be developed.
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4 Method
Using and applying the methodologies presented in Section 3, this section presents an
automated approach to synthesize and simulate solution spaces for energy- and signal-
based engineering tasks in an object-oriented graph-based environment [53]. As shown in
Figure 8, the method comprises the following steps:

1. Definition of the metamodel

2. Topological synthesis using first-order logic and Boolean satisfiability

3. Variable assignment generation using constraint satisfaction

4. Single-objective optimization using simulated annealing

Figure 8: Structure of the method

The starting point of the method is the metamodel. Within the metamodel, the de-
signer encapsulates the task specification. He or she defines the types of elements that
are available for the concept generation. There are two basic different types: components,
from which the concepts can be composed, and a system boundary, that represents the
environment of the product to be designed. Interfaces between components and between
components and the system boundary are modeled using ports. These ports represent en-
ergy and signal flows. The set of interfaces of an element is called its port configuration.
Apart from the port configuration the elements have further attributes. These include de-
sign variables, constraints on those variables, constraints linking the variables with the
energy and signal flows, and a partial simulation model for the components and critical
operation points, a partial simulation model, and an optimization problem for the system
boundary.

Representing the design task in the metamodel, i.e. the definition of the components
and the system boundary, can be achieved after the main function "that represents the
intended overall relationship between the inputs and the outputs of a plant, machine or
assembly" [10] is defined in the beginning of the conceptual design. This overall rela-
tionship is represented in the port configuration of the system boundary which also refers
to the theory of technical systems where Hubka and Eder [93] suggest understanding a
technical artifact, i.e. a product, as a system that is connected to the environment by its
in- and outputs.
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The next step is to generate concepts by connecting the open ports of the system bound-
ary using the defined components, such that a complete topology [94], i.e. a topology with
no open ports, results. This problem is referred to as port-matching-problem (PMP). To
tackle this task, the knowledge stored in the metamodel is used in the topological syn-
thesis using first-order logic and Boolean satisfiability. The metamodel, and basic
constraints are translated into logical expressions that describe the solution space. The
basic constraints cover the following:

1. The maximum number of components to be used in the solution

2. Only ports of the same type can be connected

3. There has to be exactly one system boundary per solution

4. There must be no unconnected ports in the solution

The first constraints prohibits an infinite problem with an, therefore, infinite solving time.
The second one implements the compatibility information that is founded in the port hier-
archy. Constraints three and four are the basis for the actual synthesis: There has to be one
system boundary that has ports which are to be connected using relation and components
so that there is no more open port. The combination and connection of the components
between themselves and the system boundary build the representation of the concept, a
concept model graph (CMG). In order to achieve this, the logical expressions are trans-
formed into a Boolean satisfiability problem. This is then solved by a SAT-solver, i.e. a
software tool to solve Boolean satisfiability problems, and the Boolean solution (if one
is found) is transformed back into a CMG. An example CMG is shown in Figure 9. By
negating the discovered Boolean solution and beginning a new search for a solution, the
solution space can be explored exhaustively.

Figure 9: An example concept model graph (CMG) for a hybrid automotive powertrain

In the next step, the variable assignment generation using constraint satisfaction,
for all generated CMGs, assignments for the design variables are generated. From the
constraints that are embedded in each component and operation points that are defined in
the system boundary, a constraint satisfaction problem is generated and then solved. This
allows the detection of concepts that cannot fulfill the operation points. These solutions
are removed from the solution space and for the rest of them, a predefined number of
possible variable assignments is generated.
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To find the optimal variable assignment, the last step of the method, single-objective
optimization using simulated annealing is conducted. A simulation model is build from
the partial simulation models of the components and the system boundary. This is done
by retrieving the partial simulation models and connect them as the corresponding ele-
ments are connected in the CMG. The simulation model is used to evaluate the generated
concept and calculate the objective function value as defined in the optimization problem
in the system boundary. When the simulated annealing process is completed for every
concept, the final set of solutions is finished. It consists of solutions that each contain
a CMG, the optimal variable assignment and the solution’s performance, i.e. the results
from the simulation with the optimal variable assignment.

In the following Section 4.1, details for the metamodel, its constituent, and the meta-
modeling process are given. Then, Section 4.2 gives insights on the topology generation
and Section 4.3 on the generation of variable assignments. Finally, Section 4.4 describes
the simulated annealing process including the automated generation of simulation models.
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4.1 Metamodel

The foundation for the solution space generation and evaluation is the metamodel. The
ISO 11179 [95] defines a metamodel as a "data model that specifies one or more other
data models". Here, it is the definition of types of available elements which are compo-
nents and a system boundary to the product environment and the definition of different
port types. Thus, the definition of the metamodel formalizes the task specification and the
engineering problem-solving knowledge.

In the following sections, the three constructs defined in the metamodel, elements,
ports, and edges are described. Apart from the constituents and their meaning, also guide-
lines for the metamodeling are given.

4.1.1 Ports

Ports, i.e. instances of the port types defined in the metamodel, are interfaces from one
element to another. There are in total two basic types of ports: flow-ports and conceptual
ports. Flow ports, as the name suggests, model a flow between two elements. Two types
of flows are divided: energy and signal flow. Conceptual ports model more abstract rela-
tions, e.g. dependencies.

Ports, in general, have two attributes. One is an identifier that is used to identify a spe-
cific port within a port configuration and constraints of an element (see 4.1.2). The other
defines the port’s direction. It can have two different values: in or out. For energy flow
ports, the value defines the reference direction of the energy flow, similar to the half-arrow
in bond graphs [87], for signal flow and conceptual ports, the obligatory connection di-
rection is set here.

Table 1: Power and energy variables in various energy domains (reproduced from [87])

Energy domain Effort e Flow f

Translational mechanics Force F [N] Velocity v [m/s]

Rotational mechanics Angular momentum M [Nm] Angular velocity ω [rad/s]

Electrical Voltage u [V] Current i [A]

Hydraulic Total pressure p [N/m2] Volume flow rate Q [m3/s]

Thermodynamic Temperature T [K] Entropy flow rate Ṡ [J/K/s]

Chemical Chemical potential µ [J/mol] Molar flow Ṅ [mol/s]

Additional to these basic attributes that are inherited from the basic port type, energy
flow ports have further attributes to specify the magnitude of the associated energy flow.
Following the bond graph theory, energy flow Ė(t), i.e. power P (t), can be divided into
effort e(t) and flow f(t), see Eq. 11. Tab 1 shows flow and effort definitions for different
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energy domains.

Ė(t) = P (t) = e(t) · f(t) (11)

For each energy flow port, the magnitude of each, flow and effort, have to be con-
strained. As shown in Eq. 12, both values have to remain between two borders. These
two constraints are called flow-range and effort-range.

emin ≤ e(t) ≤ emax

fmin ≤ f(t) ≤ fmax
(12)

The taxonomy of inheritance in which the ports are defined is shown in Fig. 10. The
different attributes are depicted in curly brackets. Three vertical dots indicate where addi-
tional port types, e.g. further energetic domains, specific signals, dependencies etc., can
be defined as needed. Due to the inheritance in the port hierarchy, the attributes are only
defined once and then inherited.

Figure 10: Port hierarchy showing different types of flow values.

Material flow can only be modeled if it can be represented as chemical energy flow as
shown in Table 1. This is due to the use of bond graph-based simulation that is based
on the exchange of energy. However, material flow can only be modeled conceptually.
An example for this will be shown in the case study on chemical process engineering in
Section 6.1.

4.1.2 Elements

In the metamodel two basic types of elements are defined: a) the system boundary of the
product that is to be designed and b) components, i.e. physical structures and parts. An
exemplary illustration of both these element types is shown in Fig. 11.

Every element has attributes that specify certain characteristics and properties. The at-
tributes are grouped in different categories. There are general attributes, design variables
and constraints, and mapping to partial simulation models which relate to both types of
elements, and an optimization model, that is defined as attribute of the system boundary.
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Figure 11: An exemplary illustration of components and system boundaries with the positioning
of their in- and out-ports. This exact positioning is applied all throughout this thesis.

The different categories are described in the following paragraphs.

General Attributes The general attributes are a unique ID that allows the identifica-
tion of every instance and a port configuration. This configuration determines which ports
the element has. An example gearbox component with its port configuration are shown in
Fig. 12. It has one signal in-port that defines which gear to engage ( ), one signal out-
port transmitting the rotational speed at the input shaft ( ) and two mechanical rotational
energy ports ( ): one in- and one out-port representing the input and output shaft of the
gearbox. As shown in Figure 11 and 12, throughout this thesis, the in-ports are always
located on the left and the out-ports always on the right side of the element.

Figure 12: The port configuration for a gearbox component.

Design Variables and Constraints As mentioned in the beginning of Section 4,
assignments for design variables are set by generating and solving constraint satisfaction
problems. To enable this, constants, variables, input-output-relations, and additional con-
straints can be defined for components.

• Constants are constant values that are specific for the particular component.

• Variables are numeric design variables that are to be defined for the final design. For
each variable, a domain has to be defined. This domain consists of the minimum
and maximum value between which the assigned value has to be chosen.

• Input-output-relations define the equations or inequalities that connect the input and
output energy- and signal-flows of the component. These energy flows are divided
in flow and effort, as introduced in Section 3.2. Every input-output-relation has to
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Constants Variables

η = 0.98 0.6 ≤ im ≤ 5.0,m ∈ {1, 2, . . . , 6}

Additional constraints Input-output-relations

i1 > i2 ωI
1
iG

= ωO

i2 > i3 TI iG η = TO
... E = ωI

Figure 13: The gearbox component’s constants, variables, additional constraints, and input-
output-relations. G,E,I,O are the identifiers of the associated ports.

include at least one variable that is related to an in- or out-port. Whereas simulation
models are time-dependent, input-output-relations are static and, therefore, time-
independent.

• Additional constraints define dependencies between the component’s design vari-
ables and constants. In contrast to the input-output-relations, effort and flow or
signal variables must not be used in these constraints.

For the gearbox component, the four different parts are shown in Fig. 13. Here, the
only energy flow ports used are rotational mechanical. As shown in Tab. 1, rotational
mechanical power is distributed in rotational speed ωn and torque Tn with n being the
identifier of the associated port (G,E,I or O). When a signal port is used, the port’s identi-
fier is used directly (E).

In the system boundary, no constants, variables, constraints, and relations are defined,
but so-called operation points. Operation points are typical and/or critical operational
states that the design has to fulfill. For each operation point, the flow and effort values for
every energy flow in-port and out-port and the signals from and to the system boundary
can be defined.

Mapping to Partial Simulation Models In order to allow a performance evaluation
of the generated concepts, every element has to be mapped to a bond graph-based partial
simulation model. Such partial models are not closed and, therefore, contain junctions
where they can be connected to other partial simulation models, so-called open connec-
tors.

To build partial simulation models for the components and the system boundary, the
following guidelines have to be followed:

1. Open connectors of the partial simulation model have to fit the element’s port con-
figuration
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2. A resistor-capacitor-connection has to be modeled in front of connectors in the par-
tial simulation model that map to out-ports in the port configuration

3. After connectors that map to in-ports are modeled an inertia has to follow

4. Modelwide definitions have to be defined in the partial simulation model that is
linked to the element representing the system boundary

The first guideline relates to the fact that in there are to be no open connectors in a
well-defined simulation model. Since, as mentioned before, one of the constraints for the
topological synthesis (more in Section 4.2) is that in a CMG no unconnected ports are
allowed, the one-to-one mapping between the ports in the port configuration and the open
connectors in the simulation model assures a well defined simulation model.

The second and third guideline are needed to assure a valid causality in the simulation
model that is generated from a CMG.

As mentioned in Section 3.2, in order to get a valid causality, every bond in a bond
graph must define flow at one and effort at the other end of the bond and conform to the
obligatory causalities that certain elements dictate. That means, that the bond graph con-
stituents cannot be connected arbitrarily. An example for an invalid connection in a bond
graph is shown at the top of figure 14: the series connection of two inertias. The causality
of the left inertia is correct and forwarded over the 1-junction to the right inertia where a
wrong causality results (the causality stroke has always to be on the side of the inertia).

Series connection of inertia:
I 1 I

Fixed connection with capacitor and resistor:

I 0 1 I

1

C R

Figure 14: Compatibility issues between two elements of one kind and their solution. The
erroneous bond in the upper example is highlighted in thick gray.

Considering the example of the series connection of the two inertias in the mechan-
ical translational domain, two masses would be connected by a push rod that could be
represented by a CMG where the masses are modeled by two components that are con-
nected via an edge between mechanical translational ports. A real world push rod has a
spring coefficient, a damping coefficient, and an inertia itself. Cutting between the spring
(capacitor) damper (resistor) connection and the inertia in the corresponding bond graph,
distributes the model of the push-rod in two different partial simulation models. In the
bottom part of Figure 14, such a capacitor-resistor-connection is included and a valid
causality is established. This is transferred to every energy domain and is applied at each
port. So, the connection of two compatible ports results in a valid connection between the
two related partial simulation models which, in the end, leads to a simulation model with
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a well defined causality.

According to the fourth guideline, global variables and definitions, for instance fluid
properties or environmental data as, for instance, the ambient temperature, have to be de-
fined in the system boundary. As mentioned before, every CMG has exactly one instance
of this element type. Thus, duplicate global definitions are being prevented.

In Figure 15, a gearbox element with its associated partial simulation model is shown.
Using their unique identifiers, each port is linked to one open connector in the partial sim-
ulation model. In Figure 15 this mapping between connectors and ports is illustrated using
dashed gray lines. The shaft-element highlighted on the right side of the partial simulation
model represents the capacitor and resistor that was added following the presented guide-
lines. On the very left of the partial simulation model in Figure 15, the temperature of the
oil in the gearbox is fixed to the parameter k. This is a) done to simplify the model (here,
the warming and waste heat were not considered) and b) necessary so that the open con-
nectors of the partial simulation model meet the port configuration of the graph element
in the metamodel.

Figure 15: Graph symbol and partial simulation model. The dashed gray lines illustrate the
mapping between the connectors in the simulation model and the ports in the graph model.

Figure 16 illustrates a system boundary and its partial simulation model. This element
represents the system boundary for an automotive powertrain as it is used in Section 6.3.
A brake- ( ), acceleration- ( ), and gear-signal ( ) are provided and to be turned into
translational mechanical energy ( ) and an engine speed signal ( ). As defined in the
guidelines, on the upper left of the partial simulation model, the model-wide definitions
are set (mission profile, ambient data, and fluid properties).

Optimization Model In each system boundary an optimization model has to be de-
fined as shown in Eq. 13. x refers to a variable assignment for the concepts design
variables that has to be taken out of V , which is the set of variable assignments that is
created using constraint satisfaction (see Section 4.3 for details). The size of V has to
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Figure 16: An example system boundary for hybrid powertrains. Around the graph symbol the
partial simulation model is illustrated.

be defined to y which controls how many variable assignments are to be generated, as
well as the amplifier k that is needed to be set to z for the optimization (further details
in Section 4.4). f(x) is the objective function. It is calculated during the simulation
in the partial simulation model of the system boundary. In the example shown in Figure
16, it is the deviation of a given speed profile that is derived in the lower part of the model.

minimize
x

f(x)

subject to x ∈ V,
size(V ) = y,

k = z

(13)

4.1.3 Edges

To connecting two ports of different elements an undirected relation-edge-type is defined.
An edge of this type can only be set if two preconditions are met: a) both ports are of the
same type and b) the value of the direction attribute of one of the ports is in and the other’s
is out. Further, if the two energy flow ports are to be connected, the flow and effort ranges
of both ports must each intersect. An exemplary use of a relation-edge is shown in Figure
17, where it is used to connect an electric machine and a gearbox.
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Figure 17: A connection between an electric machine and a gearbox as an example for elements
and their connections. Throughout this thesis, the in-ports are always located on the left-hand side
and the out-ports always on the right-hand side of the element.
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4.2 Topological Synthesis Using First-Order Logic and
Boolean Satisfiability

Figure 18 presents a process overview for synthesizing concept topologies using first-
order logic and Boolean satisfiability. The process builds on a metamodel defined after
Section 4.1.

Figure 18: Topological synthesis process overview.

Following the process shown in Figure 18, a first-order logic description is generated
from the metamodel and the general constraints described on page 30. All needed infor-
mation is extracted and translated into logical expressions. Once the logic is completed,
it is transformed into a Boolean satisfiability problem (SAT). A SAT-solver checks if the
problem is solvable, given the maximum number of components and, if so, returns a solu-
tion. This Boolean solution is interpreted and a model to the first order logic is generated.
This model is transformed into a solution containing a CMG within the initial object-
oriented graph-based environment. The main parts of the process are described in the
following sections.

4.2.1 First-order Logic Representation of the Metamodel

In this subsection, the metamodel is turned into a first-order logic description. This first-
order logic describes everything regarding solving the PMP that is defined by system
boundary, ports, and components. A new general taxonomy is defined. As shown in Fig-
ure 19, a thing class is introduced. This thing class is a fixed part of ontologies [96]. It
is the superclass of all classes that may be used in the solution graph. As descendants of
this class, two new classes are introduced: element and port. Further, the port-class has
two descendants: port_in and port_out.

The element types and port types from the metamodel are integrated into the general
taxonomy (Figure 19). The original hierarchy of inheritance that structures the elements
in the original metamodel is not transferred into this taxonomy. Instead, the components
are organized in categories that are created based on the total number of in- and out-ports
of each component.
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Figure 19: First-order logic general taxonomy with example ports and elements

An example taxonomy is shown in Figure 19. Since in the logic, ports and elements
do not have attributes, the value of the direction attribute that determines the direction of
the port as described in Section 4.1.1 has to be reflected in the port name. This is done
by adding a suffix (_in or _out) to the original port name. Apart from the components be-
ing organized in categories, the system boundary element is directly included as element.
This element embodies the PMP and its port configuration.

One-digit predicates are derived from each class. Those predicates return true if its
argument is an instance of the corresponding class. One example from the hierarchy in
Figure 19 is the predicate E1(x). Next, the taxonomy’s reduced inheritance has to be de-
fined using facts. The first fact (Eq. 14) assures that all elements used within the solution
graph are defined in the metamodel. The following facts implement the inheritance (for
example Eq. 15). They are all similar, stating that every building block x that is of a
specific type is also an instance of its super type.

∀x(thing(x)) (14)
∀x(element(x)→ thing(x)) (15)

The next step is to transfer each element’s port configuration into a logical description.
To do this, two predicates are needed: hasport(x,y) and identical(x,y) (cf. Eq. 16 and 17).
As shown in Figure 20, hasport(x,y) is true if a port y is part of the port configuration of
an element x. Figure 20, also illustrates identical(x,y). This predicate returns true if both
variables, x and y, both point to the same item. Since the model is a CMG, an item is
either an element or a port. Variables cannot point to edges due to them being modeled as
predicate, i.e. connected(x,y) which is described later, and not things.
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hasport(x, y) (16)
identical(x, y) (17)

(18)

Figure 20: The evaluation of the different predicates on a generic graph example.

The facts describing an element’s port configuration are built as follows: First, all
things are restricted to the ones meant to be treated in the fact. For the example ele-
ment E1 (Figure 21) this is ∀x E1(x). If this is true the following statement is implicated:
∃y1 P1,in(y1) ∧ ∃y2 P1,out(y2). Also, y1 and y2 have to be linked to the element E1:
hasport(x, y1) ∧ hasport(x, y2). As it is still allowed to add any other port, since ∃ only
implies "one or more" and there are no statements considering the other port types, an-
other statement has to be added: ¬∃z port(z) ∧ ¬identical(z, y1) ∧ ¬identical(z, y2) ∧
hasport(x, z). This statement means that there is no port z that is not identical to either y1
or y2 and also belongs to the element x. Using this structure, also port configurations with
more ports of the same type can be realized by assuring that they are not identical. The
resulting fact for E1 is shown in Eq. 19. Removing the need of two ports of the same type
to be not identical also allows the dynamic definitions of ports, for instance if an element
has one or more ports of one type, so-called port ranges.

∀x(E1(x)→ (∃y1(P1,in(y1) ∧ ∃y2(P1,out(y2)

∧ ¬∃z(port(z) ∧ ¬identical(z, y1) ∧ ¬identical(z, y2) ∧ hasport(x, z)))))) (19)

Figure 21: Example element E1

Finally, it has to be assured that no port belongs to two different elements or is isolated.
So, the fact in Eq. 20 is defined. It says that for every port there is only one element that
it belongs to.

∀y(port(y)→ (∃x1(element(x1) ∧ ¬∃x2(element(x2)
∧ ¬identical(x1, x2) ∧ hasport(x1, y) ∧ hasport(x2, y))))) (20)
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All information from the metamodel is integrated into the logical description. Next, the
following constraints are integrated to produce valid CMGs:

1. There are no unconnected ports.

2. Exactly one system boundary element is part of the solution CMG.

The first constraint corresponds to the need for a complete topology [94]. Such topolo-
gies do not have any loose ends, i.e. open ports. For ports that model an energy flow,
this also corresponds to the conservation of energy. As shown in the example concept
model graph in Figure 9 on page 30, a concept topology "fills" the system boundary
and connects the ports to the product environment using the components defined in the
metamodel. Therefore, exactly one system boundary is needed to be the frame for each
generated concept. This is assured by constraint two.

connected(x, y) (21)

To model these constraints, further predicates are needed. The first is called con-
nected(x,y) (cf. Eq. 21). As shown in Figure 20, this predicate returns true if x and y
are ports that are connected by an undirected edge. As mentioned in the first constraint,
all ports have to be connected. So, Eq. 22 results.

∀y1(port(y1)→ (∃y2(port(y1) ∧ connected(y1, y2)))) (22)

types_match(x, y) (23)
directions_match(x, y) (24)

However, there are more constraints that have to be assured for two connected build-
ing blocks since not all building blocks in the solution are allowed to be connected. If
connected(x,y) is true, x and y both have to be ports, they are not allowed to be identical
and both their types and directions have to match. In order to achieve this, two further
predicates are introduced: types_match(x,y) (cf. Eq. 23) and directions_match(x,y) (cf.
Eq. 24). The predicate types_match(x,y) returns true if the types of both ports x and y are
compatible, so if y is of the same type as x. directions_match(x,y) returns true when the
directions of both ports x and y are matching. That means that neither two port_in-ports
or two port_out-ports are connected. All other combinations are valid. This is realized in
Eq. 25.

∀y1∀y2(connected(y1, y2)→ (port(y1) ∧ port(y2)
∧ ¬identical(y1, y2) ∧ types_match(y1, y2)

∧ directions_match(y1, y2)) (25)

The second constraint is also transferred into a logical statement. The system boundary
element has to be part of the graph since if there are no unconnected ports it then contains
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a topology that fits to the original PMP. Eq. 27 shows the fact assuring the system bound-
ary element’s occurrence and states that one element in the solution is an instance of the
problem class. The second conjunction of the statement assures that there is exactly one
system boundary element. Additionally, it has to be guaranteed that the system boundary
element must be reachable from any other element in the graph. That means that no iso-
lated subgraph islands are allowed to appear in the solution graph. As shown in Figure
20 the predicate reachable(x, y) (cf. Eq. 26) embodies this correlation. reachable(x, y)
is true, if the corresponding things of x and y are directly or indirectly connected by rela-
tions. In this method, every thing must be able to reach the system boundary element. So,
the third conjunction in Eq. 27 results.

reachable(x, y) (26)

∃x1(system_bountary(x1) ∧ ¬∃x2(system_bountary(x2) ∧ ¬identical(x1,
x2)) ∧ ∀x3(¬identical(x3, x1)→ reachable(x3, x1))) (27)

Now, the complete first-order logic for the reduced metamodel can be generated based
on the equations 14 to 27. The next step is to transform this logic into a Boolean satisfia-
bility (SAT) problem.

4.2.2 Conversion to SAT and Solving

As mentioned in Section 3.1.3, to translate first-order logic descriptions to a finite SAT
problem, a scope has to be defined. The scope is defined as the number of elements from
each category and the total number of ports in the solution graph. The possible scopes
are determined from the metamodel. As described in the last section, the components are
sorted into categories. These categories differ in the number of in- and out-ports. The
sorting is realized by abstracting each element’s port configuration. For instance, the ex-
ample element shown in Figure 21 is part of the category for elements with one in- and
one out-port.

The open port configuration of the system boundary element can only be closed by
specific sets of instances of the abstract categories. In order to find all possible scopes, all
valid assignment for the variables ni ∈ Z∗ with i ∈ {1, 2, . . . , c} and c being the number
of categories are generated using breadth-first search. Valid assignments have to satisfy
Eqs. 28 and 29 where zPin,i is the number of in-ports and zPout,i is the number of out-ports
for category i and zPin,sb and zPout,sb are the number of in- and out-ports for the system
boundary.

c∑
i=1

(ni · (zPin,i − zPout,i)) + zPin,sb − zPout,sb = 0 (28)

c∑
i=1

ni ≤ nmax (29)
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For each assignment of ni, the total number of ports zP is calculated using Eq. 30.

zP =
c∑

i=1

(ni · (zPin,i + zPout,i)) + zPin,sb + zPout,sb (30)

Each calculated scope is then solved as described in the following paragraphs.

To solve the problem for the defined scopes, the process introduced by Jackson [86] and
Torlak [85] as described in Section 3.1 is used to transform the scope and the first-order
logic description of the metamodel into a Boolean satisfiability problem. The resulting
Boolean formula that is then solved by a SAT-solver. If the solver finds a Boolean solu-
tion, it is translated into a model to the first-order logic description. This model is then
further translated to a CMG in the original object-oriented graph based framework. There-
fore, the element types are instantiated that correspond to those in the first-order model.
The ports are also connected as defined in the model. The result is a solution containing a
CMG for the initial design task.

4.2.3 Energy and Signal Conservation check

The final step of the topological synthesis is to check the signal and energy conservation
within the model. Therefore, a total of four checks are performed:

1. Is an energy source (element without energy inports and at least one energy outport)
or the system boundary reachable from every energy inport?

2. Is an energy sink (element without energy outports and at least one energy inport)
or the system boundary reachable from every energy outport?

3. Is a signal source (element without signal inports and at least one signal outport) or
the system boundary reachable from every signal inport?

4. Is a signal sink (element without signal outports and at least one signal inport) or
the system boundary reachable from every signal outport?

If all four checks are true, energy and signal consistency is given. Thereby, so-called
closed circuits in the simulation model are avoided. Solutions that do not fulfill one or
more of the four checks are removed from the solution space.

Instead of checking these conditions after the generation it would also be possible to
include further facts in the first-order logic description by defining new predicates and
constraints. However, this method for topological synthesis is designed to work with gen-
eral PMPs also outside the domain of mechanical- and signal-based systems (an example
is presented in the case study on chemical process engineering in Section 6.1). Extending
the logical description limits the range of applications, since the existence of energy and
signal ports (at least in the definition) would have to be presumed.
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For the solutions that remain after the energy and signal conservation check the next
step is the generation of variable assignments for the design variables. The details for this
part of the method is given in the following Section.
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4.3 Variable Assignments Generation Using Constraint
Satisfaction

The target of this step is to generate variable assignments for the design variables that are
defined in the components of the metamodel. For each solution, the associated CMG is an-
alyzed and a constraint satisfaction problem (CSP) is created and then solved to generate
the predefined number of variable assignments that are to be available for the simulated
annealing process that is described in Section 4.4. In Section 4.3.1 the automated genera-
tion of a CSP based on a CMG is described before Section 4.3.2 discusses solving it.

Figure 22: Process overview for the generation of alternative variable assignments

4.3.1 Constraint Satisfaction Problem Generation

From the given CMG in the solution, certain attributes are gathered from the used compo-
nents and the system boundary. The variables that need assignment and their maximum
and minimum values and the constants of every component are identified. Also, the addi-
tional constraints from each component are collected. Following this, the operation points
are pulled from the system boundary. For each operation point, the following steps are
carried out:

1. A variable is defined for every signal port representing the signal that is transmitted.

2. For every energy port one flow- and one effort-variable is defined within the partic-
ular flow and effort range, respectively.

3. The input-output relations from each component in the CMG are linked to these
signal-, flow-, and/or effort-variables.

4. From the relations in the CMG, the connected signal-, flow, and effort-variables are
set to be equal.

5. The values that are fixed for the ports of the system boundary are fixed to the asso-
ciated port-variables.

Given the gearbox component and its variables and constraints (cf. Figure 13) as sole
component in a system boundary as shown in Figure 23. The system boundary defines
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two operation points O1 and O2 each setting the gear signal out-port (S) value to SO1

and SO2 and the flow- and effort-values for the rotational mechanical in-port (Y) to ωY,O1 ,
MY,O1 and ωY,O2 , MY,O2 , respectively.

Figure 23: An example CMG with a system boundary SB and a gearbox GB. S,T,X,Y being the
identifier of the system boundary’s ports and G,E,I,O being the identifier of the gearbox’ ports

Following the given procedure, the constant (Eq. 31) and design variables (Eq. 32) from
the gearbox are included in the CSP. As are the additional constraints (Eq. 33). To link
the variables and constants to the corresponding element, here the gearbox component,
they are indexed with the element’s identifier, here GB:

ηGB = 0.98 (31)
0.6 ≤ im,GB ≤ 5.0,m ∈ {1, 2, . . . , 6} (32)
i1,GB > i2,GB; i2,GB > i3,GB; . . . (33)

Steps one through five are carried out for each operation point. Eq. 34 to 55 show the
resulting definitions and constraints for operation point 1. ωPID,EID,OPi

represents the flow
variable of rotational mechanical power and MPID,EID,OPi

the effort variable. Here, PID
is the identifier of the associated port, EID is the identifier of the associated element,
and OPi identifies operation point number i. ωPID,EID,min, ωPID,EID,max, MPID,EID,min, and
MPID,EID,max are the maximum and minimum values for the flow- and effort-variables for
port PID at element EID as defined the port’s effort- and flow-ranges (cf. Eq. 12 on page
33). As mentioned before, the signals are directly linked to the signal ports’ identifier.
Therefore, PIDEID,OPi

represents the signal flow at the port with identifier PID associated
to the element with the identifier EID at operation point number i. Finally, elements’
variables and constants are linked to the associated elements using the element’s identifier.
Here, this is the case for the variable iGB and the constant ηGB.

1.

SSB,OP1 , GGB,OP1 ∈ N (34)
ESB,OP1 , TGB,OP1 ∈ R (35)
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2.

ωX,SB,min ≤ ωX,SB,OP1 ≤ ωX,SB,max (36)
ωY,SB,min ≤ ωY,SB,OP1 ≤ ωY,SB,max (37)
ωI,GB,min ≤ ωI,GB,OP1 ≤ ωI,GB,max (38)
ωO,GB,min ≤ ωO,GB,OP1 ≤ ωO,GB,max (39)
MX,SB,min ≤MX,SB,OP1 ≤MX,SB,max (40)
MY,SB,min ≤MY,SB,OP1 ≤MY,SB,max (41)
MI,GB,min ≤MI,GB,OP1 ≤MI,GB,max (42)
MO,GB,min ≤MO,GB,OP1 ≤MO,GB,max (43)

3.

ωI,GB,OP1 ·
1

iGGB,OP1
,GB

= ωO,GB,OP1 (44)

MI,GB,OP1 · iGGB,OP1
,GB · ηGB = MO,GB,OP1 (45)

ESB,OP1 = ωI,GB,OP1 (46)

4.

SSB,OP1 = GGB,OP1 (47)
ESB,OP1 = TGB,OP1 (48)
ωX,SB,OP1 = ωI,GB,OP1 (49)
ωO,GB,OP1 = ωY,SB,OP1 (50)
MX,SB,OP1 = MI,GB,OP1 (51)
MO,GB,OP1 = MY,SB,OP1 (52)

5.

SSB,OP1 = SO1 (53)
ωY,SB,OP1 = ωY,O1 (54)
MY,SB,OP1 = MY,O1 (55)

The same number of definitions and constraints has to be defined for operation point
O2. Then, the CSP for this example is completely defined.

4.3.2 Constraint Satisfaction Problem Solving

The CSP is then solved using depth first search as presented in Section 3.3.3. After a basic
constraint propagation linking the directly connected variables, the different variables are
set consecutively to random values in their ranges which are updated as soon as a new
variable is defined. This stochastic depth first search is carried out until the predefined
number of variable assignments is generated. If no variable assignments can be found, the
solution is removed from the solution space. This set of assignments in combination with
the CMG is the base for the simulated annealing process which is described in the next
section.
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4.4 Single-Objective Optimization Using Simulated Annealing
The last step of the method, intends to find the optimal variable assignment regarding the
minimization of the objective function defined in the system boundary. This enables a
better comparison of the generated concepts and their performances, since after the op-
timization, every concept can be assessed. As shown in Figure 24, the input of this part
of the approach is a solution that contains a CMG and a set of variable assignments that
were generated as described in Section 4.3. The simulated annealing process starting with
a random variable assignment searches for a solution with the minimum objective func-
tion value. To evaluate the performance of the concept, a simulation model is built based
on the CMG and parameterized according to the variable assignment that is to be inves-
tigated. The simulation is performed and the objective function value is retrieved from
the simulation results. The detailed process is shown in Figure 25 and described in more
detail in the following paragraph.

Figure 24: Input and output of the simulated annealing process.

As shown in Figure 25, the process starts with the definition of basic parameters. The
initial temperature T0 is set to 100 and the final temperature Tn is set to 0.1. During the
simulated annealing process, the temperature is decreased using a vanilla schedule [91]
that is further described in the course of this section. Two counters, i for the outer loop
and ismall for the inner loop, are initialized and set to 0. The maximum number of iter-
ations of the outer loop n, the maximum number of iterations of the inner loop m, and
the amplifier k are defined by the user via the system boundary in the metamodel. The
amplifier k will be described more detailed in the course of this section.

A random variable assignment VA is selected from the set of variable assignments in
the solution. In order to evaluate it, a simulation model is built based on the CMG. Fig-
ure 26 schematically illustrates the generation of the simulation model, here using the
bond graph-based commercial simulation software LMS Imagine.Lab Amesim (cf. Sec-
tion 5.2.4). The partial simulation models are retrieved from the components and system
boundary in the CMG and connected according to the connections in the CMG. The de-
sign variables defined in the variable assignment VA, in the example in Figure 26 the max-
imum power of the electric maching Pmax, the gear ratios in the gearbox i1, i2, . . . i6 and
the gear ratios of the differential in the wheels and vehicle component idiff are transferred
to the simulation model, before the model is compiled and the simulation is executed. The
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Figure 25: Flow diagram of the simulated annealing process. n, m, and k are defined by the
user via the metamodel.
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objective function value P is retrieved from the simulation results if possible.

Figure 26: A CMG of an electric powertrain and its combined simulation model in LMS Amesim.

Disregarding a well-defined simulation model, the simulation might fail. This can hap-
pen, when partial simulation models are driven to states that were not intended and cannot
be represented. An example for this is when the simulation model of a combustion en-
gine, due to the other elements in the concept, is forced towards reversing the rotational
speed at the flange. This state is not modeled and, therefore, the simulation aborts. If
this happens, a new variable assignment is selected randomly and then simulated. This
is done until either a variable assignment is found that would simulate without aborting
or the number of iterations in this inner loop reaches r. If the simulation is successful,
the performances Pold and the best performance found yet Pbest is set to P . The same is
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done for the variable assignment itself. In the case that no variable assignment is found
that can be simulated, Pold and Pbest are set to positive infinity and VAold to VA. Here,
VAbest remains undefined. Pbest has to be defined, since in the end of every outer loop, the
resulting Pnew is compared to Pbest and, once the end of the process ends, Pbest 6= ∞ is
checked to consider if a variable assignment was found, that could be simulated.

Beginning the outer loop, first it is checked if the abort criterion, i.e. the maximum
number of iterations, has been reached. If not, i is increased, the temperature Ti for the
current iteration is calculated using Eq. 56 and ismall is reset to zero. The temperature
schedule, i.e. a vanilla schedule [91] that results for n iterations is shown in Figure 27,
with T0 being the starting temperature, Tn being the target temperature, and n being the
maximum number of iterations. The vanilla schedule is defined as Ti = αT i

0 [91]. Here,
α is set according to Eq. 57 to assure that the target temperature Tn is reached after n
iterations.

Ti = T0 ·
(
Tn
T0

) i
n

(56)

α =

(
Tn
T0

) 1
n

(57)

Figure 27: The temperature schedule that results from Eq. 56 and n iterations with T0 = 100
and Tn = 0.1.

A variable assignment VAnew "near" VAold is randomly selected from the set of variable
assignments. To do this, the Euclidean distance between VAold and all remaining variable
assignment is calculated. All variable assignments that have a distance from VAold that is
smaller than 10% of the distance to the variable assignment that is the furthest away. As
described before, the simulation model is generated and executed. If the simulation fails,
as described above, an inner loop is started looking for another variable assignment that
can be simulated near VAold. Given the case that within r iterations in the inner loop no
such variable assignment is found, the next iteration of the outer loop is started. Given that
the simulation is successful, it is evaluated if the performance Pnew of VAnew is better than
Pold. If Pnew is smaller than Pold, VAnew becomes the starting point for the next iteration
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of the outer loop, by setting Pold = Pnew and VAold =VAnew. If Pnew is also smaller than
Pbest, the current variable assignment VAnew is the new VAbest. However, if Pnew is larger
than Pold, Eq. 58 is used to determine if VAnew should serve as a starting point for the next
iteration of the outer loop nonetheless.

Rnd [0, 1] < e−
k·∆P

T (58)

In Eq. 58, the Metropolis criterion (cf. Section 3.4) is enhanced by k as amplifier of
∆P = Pold − Pnew. The amplifier k has to be defined by the user in the system boundary
and is used to tune the acceptance rate of variable assignments that lead to worse objective
function values than their predecessors. In Figure 28 the influence of amplifier k on the
acceptance of an objective function value with ∆P = 0.001 is shown.

Figure 28: The acceptance rate of an objective function value with ∆P = 0.001 for different
settings of the amplifier k.

Once the maximum number of iterations for the outer loop is reached, it is checked if
Pbest 6=∞. If yes, VAbest becomes the final variable assignment as well as Pbest becomes
the final performance. If Pbest 6=∞ is false, no variable assignment has been found within
n + (n · r) different tested variable assignments. In this case, the solution is marked for
further investigations by the designer.
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4.5 Summary

Figure 29: Complete view of all the different parts of the presented method.

Figure 29 shows the complete overview of the method with all its steps. Starting with
the metamodel in the object-oriented graph-based environment, applying the topological
synthesis using first-order logic and Boolean satisfiability, a solution space of topologies
is created. For each of the generated solutions, if possible, variable assignments are de-
termined that apply to the operation points and constraints in the variable assignment
generation. Finally, optimization using simulated annealing attempts to find the variable
assignment with the optimal performance regarding the objective function. In the end, a
solution comprises a CMG with its optimal variable assignment and the associated per-
formance, i.e. the simulation results.

This method introduces generic model transformations between the metamodel and a
first-order logic description, between CMGs and constraint satisfaction problems, and
between CMGs and bond graph-based simulation models. Using this transformations it
presents an approach that can be fully automated after the definition of the metamodel.
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5 Implementation

To show the capabilities of the method presented in Section 4 and to evaluate it, a software
prototype is implemented. This section of the thesis describes the implementation. First,
in Section 5.1 an overview of the software prototype is given. Section 5.2, then, presents
descriptions of the tools that are used in the software prototype. After that, Section 5.3
shows how the metamodel definition is realized in the software prototype before Section
5.4 introduces the internal procedures that take place during the application of the proto-
type.

5.1 System overview

Figure 30 gives an overview of the implemented software prototype.

Figure 30: Schematic overview of the generic structure of the software prototype.

The framework of the prototype is GrGen.Net. Using its built-in C# interface, the syn-
thesis process is controlled and different model transformations are carried out. Once the
metamodel is defined, the first order logic models are created in C#. A java script is ex-
ecuted that accesses the API of Alloy analyzer. It loads the generated logics into Alloy
and solves them internally using MiniSat, a solver for Boolean Satisfiability Problems.
The resulting models to the first order logic are transformed into graphs in GrGen.Net.
Following the topological synthesis, the generated CMGs are transformed into constraint
satisfaction problems. A C++ program including the generated CSP is compiled. Using
Gecode’s libraries, the CSP is solved to generate the needed number of variable assign-
ments for each solution. Finally, the parametric optimization for each generated solution
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is carried out. To do this, different variable assignments for the simulation models created
according to the CMGs are simulated. The python API of LMS Amesim is used to build
and execute the simulation models before retrieving the simulation results.

5.2 Used tools
As mentioned above, different tools are used to implement the method. GrGen.Net (Sec-
tion 5.2.1) is the framework for the implementation, the Alloy Analyzer (Section 5.2.2) of-
fers a way to implement relational first-order logic descriptions, translate them to Boolean
satisfiability problems and solve those using included SAT-solvers, Gecode (Section 5.2.3)
is a toolkit to define and solve constraint satisfaction problems, and LMS Imagine.Lab
Amesim (Section 5.2.4) is a commercial simulation suite. These tools are briefly de-
scribed in the following sections.

5.2.1 GrGen.Net 4.4

GrGen.NET is a tool that offers languages for graph modeling and transformation [97].
Further, it provides a graph transformation engine. GrGen.NET defines three different
languages:

• The graph modeling language allows the definition of metamodels based on edge
types, node types and user defined types that are realized in C# classes. It enables
multiple inheritance and the definition of attributes. In the software prototype im-
plementation it is used to define the metamodel for the method.

• The rule set language offers the possibility to define graph transformation rules.
Since the presented method is not using graph transformation rules, this language
has no meaning for the prototype.

• The rule application control language offers a means to execute and combine graph
transformation rules and user defined functions. Complex combination of rules and
functions are realized using the Boolean return value of each.

Further, GrGen.Net provides the possibility to define individual functions and sequences
using a built-in C# interface that can be executed. The main part of the prototype is
realized within this interface in C#. Here solutions and CMGs are built, the model trans-
formations are mostly carried out and the overall process is controlled.

5.2.2 Alloy Analyzer

The Alloy Analyzer is a front-end to the tool kodkod [98, 86]. It provides a program-
ming language with the same name that has been developed to provide an easy way to
program logical problems that are rooted in the field of relational and first-order logic.
Having formulated such a problem, the Alloy Analyzer transcribes it into a kodkod suit-
able input. kodkod translates the logic into a suitable input for the SAT-Solver11. To solve

11For details on the transformation please refer to Section 3.1 and [98, 85]
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this so-called clausal normal form of the Boolean satisfiability problem it is transferred
to the SAT-solver. Different third-party SAT-solvers are part of the Alloy package: Min-
iSat [99], SAT4J [100], BerkMin [101] and zChaff [102]. For this implementation, the
conflict-driven SAT-solver MiniSat [99] was used. MiniSat is a fast, complete and effi-
cient solver. Here, "complete" means that the solver is able to iterate over all possible
Boolean solutions. MiniSat checks the satisfiability of the transferred SAT-problem and
returns, if the problem is satisfiable, a solution. kodkod now turns the Boolean solution
into an Alloy model.

5.2.3 Gecode 4.4.0

Gecode [103] is a framework for the development of constraint based systems and ap-
plications. It is developed at KTH Stockholm. Gecode offers float, integer, and boolean
variables and constructs to build constraints over these variables. To solve constraint
satisfaction problems, Gecode offers two different search engines, depth-first search and
branch-and-bound search that can be also used in restart-based search as meta-search en-
gine. To allow the search engines to return to previous states, a hybrid ar recomputation
and cloning is used. Gecode models are programmed in C++ linking to the needed Gecode
headers and libraries.

5.2.4 LMS Imagine.Lab Amesim

Amesim12 [104] is a commercial 1D simulation software that was originally developed by
LMS International and is now continued by Siemens PLM Software. It supports multi-
domain system modeling and analysis. In its core it is bond-graph based. Amesim pro-
vides extensive validated libraries for different physical domains, e.g. fluids, electronics,
mechanics, thermodynamics, etc. and application libraries, for instance for air condi-
tioning, automotive powertrains and internal combustion engines. Apart from a GUI13,
Amesim offers a C and a Python API to be accessed externally. Amesim offers fixed-step
and variable-step integration algorithms to solve differential equations. There are three
options for fixed-step integration methods: Euler, Adams-Bashforth, or Runge-Kutta.
To run simulations most effectively using variable-step integration, Amesim employs the
methods DASSL [105] if implicit variables are present and LSODA [106] otherwise. Both
methods comprise a collection of different solvers and decide which one to use by moni-
toring the characteristics of the differential algebraic equations that are to be solved.

5.3 Metamodel Definition
To define the metamodel for the synthesis, the graph modeling language of GrGen.Net is
used and extended. Element types are modeled as node types, port types as C# classes
and the relation type as an undirected edge. Three subclasses inherit from the general port
class. One with no variable that is transmitted, one with one variable, its type (integer

12from Advanced Modeling Environment for performing SIMulations)
13graphic user interface
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or double) and minimum and maximum value, and one with two variables, their types,
and minimum and maximum values. Based on these three types, the port hierarchy for
the synthesis task is developed. Energy port types, for instance, pass a flow and an effort
variable and, therefore, inherit from the port type with two variables. Signal port types
that only pass one value inherit from the port type with one variable.

Figure 31: Definition of the abstract element node type.

The definition of the basic element node type is shown in Figure 31. Every element
contains the following attributes:

• id is an unique identification string which is set during the instantiation of the
particular element.

• name is a string that contains the name of the element.

• portdefstring is the port definition string. Here, the user includes all the re-
quired information to define the port configuration of the element.

• active_ports is a list of Port objects that represent the obligatory ports in the
element’s port configuration. It is created during the instantiation of the element.
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• inactive_ports is a list of Ports objects that represent the optional ports in the
element’s port configuration. It is created during the instantiation of the element.

• availability is a Boolean variable that is set by the user to indicate if the
element is supposed to be available for the topological synthesis. Since the general
element type is not supposed to be part of any solution this is set to false.

• supercomponent is a string containing the name of the supercomponent in
Amesim that is associated to the element.

• submodel is a string containing the submodel of the elements supercomponent.

• submodel_dir is a string containing the submodels location on the harddrive.

• fixed_parameters is an array of strings that allows fixing certain parameters
in the simulation model to constant values.

• variable_parameters is an array of strings that allows a parameter explo-
ration within a simulation model. For the parameter a minimum and maximum
value and a step size can be fixed to investigate the effects of a parameter.

• plot_variables is an array of strings that is set to define the resulting variables
that are to be stored after the simulation.

• constants is a map of strings that is intended to include constant names and
there values when such are needed in the definition of the additional constraints and
input-output-relations.

• parameters_to_solve is a map of strings that allows defining variables for
which an assignment is supposed to be found during the variable assignment gener-
ation.

• i_o_relations is an array of strings that include the relations between the in-
ports and out-ports following the Minimodel convenience [107].

• additional_constraints is an array of strings that include the additional
constraints for the variable assignment generation.

• csp_sim_linker is a map of strings that links the variable assignments to pa-
rameters in the simulation model.

The implementation of the metamodel allows the definition of variable port configura-
tions. That means, that the number of ports can vary between different instantiations of
one element type. The definition of variable port configurations, however, is only avail-
able if the topological synthesis is the only step of the method that is carried out, since
the simulation models always have a fixed number of open connectors and definition of
several simulation models for one element is not supported.

To define partial simulation models, Amesim’s feature of supercomponents is used. A
supercomponent is a modeling element that includes a part of a simulation model. For



62

each needed element type, a supercomponent is created with a submodel. The supercom-
ponent is added to Amesims libraries and the submodel stored on the harddrive. Modeling
the partial simulation models follows the guidelines presented in Section 4.1. However,
modeling in Amesim, though bond graph-based, does not always follow the appearance of
a bond graph. An example for this is the modeling of electrical circuits. Figure 32 shows
a simple electric circuit diagram, as it would also be modeled in Amesim, on the left and
the corresponding bond graph on the right. Since an electric circuit has to be grounded
and closed which is not explicitly included in the bond graph, this has to be reflected in the
modeling of partial simulation models for electric components. Therefore, the electrical
ports in the metamodel have to map to two connectors in the partial simulation model, one
for the outgoing and one for the return line, corresponding to a two-core cable.

MSf 0 1 R:R

C:C1 C:C2

C:C3

Figure 32: A simple electric circuit with corresponding bond graph, reproduced from [88]

For the system boundary, further, the objective function value is calculated in the partial
simulation model. In order to suit to the software application, it has to be defined that the
intended value is passed at the final time-step of the simulation.

In Figure 33, the definition of the gearbox component is presented. Here, examples for
the different attributes are shown. The port definition string defines four different ports,
the first one is defined in the following statement:

[Rotational;in;1;1;[-160.0,160.0];[-50.0,50.0];[InShaft];[3]]

The different parts of this statement mean the following:

• Rotational refers to the type of the port, here rotational mechanical energy

• in refers to the direction of the port, here it is an in-port

• The first 1 refers to the minimum number of this port in the port configuration

• The second 1 refers to the maximum number of this port in the port configuration,
so this component has one rotational mechanical in-port

• [-160.0,160.0] describes the flow range of this port in SI units. For this gear-
box it is assumed that it can run in both senses of rotation between -160 rad

s
and 160

rad
s .
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Figure 33: Definition of the gearbox element type.

• [-50.0,50.0] describes the effort range of this port in SI units. For this gearbox
it is between -50 Nm and 50 Nm.

• [InShaft] is the label of the port, to which is referred in the definition of input-
output-relations or operation points. If the port configuration contains more than
one of this port, the different labels for the instances are given in the square brackets
separated by commas.

• The expression [3] corresponds to the identifier of the open connector in the partial
simulation model in Amesim. If the port configuration contains more than one of
this port, the different identifier for the instances are given in the square brackets
separated by commas to link all the port instances to individual open connectors.

As can be seen in Figure 34, the system boundary contains, in addition to the already
mentioned, additional attributes:

• optimization_variables contains the name of the result variable that de-
livers the objective function value for the optimization. It is designed as an array
to support multi-objective optimization which should be considered in future work
(cf. Section 7).
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• OP_setting is an array of strings that include the operation points as flow-,
effort-, and signal values for the specific ports that are identified using their labels.

• run_parameters is an array of strings which define the run parameters for the
simulation, i.e. start time, stop time, write interval etc.

• maximum_number_of_components defines the maximum number of compo-
nents to be used in the topological synthesis.

• number_of_variable_assignments defines the number of variable assign-
ments to be created for each solution.

• optimization_amplifier refers to the amplifier k (cf. Eq. 58) that is used
to control the acceptance rate during simulated annealing.

Figure 34: Definition of the system boundary element type.

5.4 Application
The application begins and ends in GrGen.Net. Here, the different processes are triggered
and the results are presented. In order to be able to make use of the extended information
in the metamodel, functions are implemented to handle the initialization of solutions and
to build and include a CMG within them. In this section, first, a more detailed view on the
path from the metamodel to a set of solutions with CMGs is given before the generation
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of variable assignments and the variable optimization are presented. The focus lies on the
communication between the different tools and their integration in the process.

5.4.1 Topological Synthesis

Figure 35: Topological synthesis implementation.

Figure 35 illustrates the implementation of the topological synthesis. The metamodel
is analyzed and logical statements are created as described in Section 4.2. For each of the
different scopes that are calculated an ASL-file is created. These ASL-files include the
complete first-order logic written in Alloy. They each finish with an execution command
that triggers the generation of solutions. The solutions for each individual scope have to
exactly consist of the precise number of elements from the categories and ports as pre-
scribed in the scope.

In order to cope with the expensive solving of the Boolean satisfiability problems, the
translation of first-order logics to Boolean satisfiability problems and their solving is de-
signed to be run on Brutus, the high performance cluster of ETH Zurich14. There, the
different scopes are solved in parallel. Additional to the ASL-files, bash scripts are cre-
ated to enqueue the needed calculations on Brutus. A java script has been written that
accesses the Alloy Analyzer java-API, loads the ASL-file and starts the model generation
using MiniSat. When a solution is found, it is analyzed and a GRS-file is created that
generates the solutions including their CMGs in GrGen.Net. Therefore, C# functions are
called that instantiate elements, add them to a graph and connect them according to the
model generated in Alloy Analyzer.

As a means to support symmetry breaking, the prevention of redundant solutions due
to multiple Boolean solutions mapping to one graph solution, first the string sets of that

14http://www.cluster.ethz.ch/index_EN
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generate the different graphs are compared. If the strings are identical, the solution is
disregarded. Solutions with different strings are included in the GRS-file. However, after
each solution is generated, it is compared to the already generated solutions using Gr-
Gen.NET’s graph isomorphism check. As a result, redundant solutions in the solution
space are prohibited.

5.4.2 Variable Assignment Generation

To realize the generation of alternative variable assignments, the capabilities of Gecode
are taken advantage of. A C++ application was developed that includes the Gecode li-
braries. Additionally, a header is included that contains the constraint satisfaction prob-
lem. In this program the constraint satisfaction problem is solved using the built-in restart-
based depth-first search and random branching for the variables that need assignment.

Figure 36: Variable assignment generation implementation.

As shown in Figure 36, the header-file containing the constraint satisfaction problem is
generated from the CMG within each solution. The process resembles the method pre-
sented in Section 4.3. A process is invoked in GrGen.Net in which the C++ application
is compiled and then executed. The output of the system, the variable assignments, are
written to the standard output of the process which is read by the hosting process. The
variable assignment are collected, and compared to each other to avoid redundant assign-
ments which could result from the restarts and on the different number of decimal places
between the different frameworks.

In the case of complex CMGs and rising numbers of operation points, the solving of
the CSPs may become inefficient. To deal with this case, the functionality was included
to generate the C++ header file without compiling and solving the actual program. Here
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it is advantageous to use the parallel computing capabilities of Gecode and the possibility
to run several instances of the program at the same time. Therefore, a second version
of the C++ program was developed that runs on Brutus, the high performance cluster of
ETH Zurich. The user copies the C++ header to Brutus, compiles the software there and
runs the variable assignment generation there, adapted to his or her account limitations,
i.e. the maximum number of cores that are allowed to be used. Running the application
on Brutus, a txt-file is generated. This file is updated during the program application to
be able to make also use of partial results. The txt-file is then copied back to the working
directory of GrGen.Net where it is recognized for the variable optimization.

5.4.3 Variable Optimization

Figure 37: Variable optimization implementation.

In the variable optimization, simulation models are generated from the different CMGs.
As illustrated in Figure 37, the CMG is analyzed and a python script is derived that in-
cludes the right supercomponents, their particular submodels, their variables and the con-
nections in between them. Further, a routine to write the result variables that are to be
available in the CMG to the console is included in this script. Amesim includes a Python
console which is started from GrGen.Net, the script is transmitted to the console and the
results are read from there. The results are then stored within the CMG and can optionally
be saved as CSV15-file.

5.5 Summary
In this section, the software prototype is described. The focus lies on how to define a meta-
model that is applicable for the presented method. Further, the tools that were used in the

15comma separated value
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implementation are described and how they communicate. In contrast to the method, the
implementation only realizes a semi-automated work-flow. Due to the batch system that
works on Brutus, directly accessing the calculation nodes on the cluster is not possible.
The files that are needed to run the calculations on Brutus are generated, but the user has
to transfer them to the cluster and queue them in the batch system manually. The software
prototype is a means to show the potential of the method on four case studies, which are
presented in the following section.
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6 Case Studies
In this section, four case studies are presented. The goal of this chapter is to provide
a proof-of-concept for the presented method and to show its suitability for supporting
conceptual design for technical systems of different order of complexity. Four orders of
complexity, ranging from parts to plants are defined by Hubka and Eder [93] and charac-
terized in Table 2.

Table 2: Classification of technical system by degree of complexity (reproduced from [93])

Level of Technical Characteristic Examples
Complexity System
I Part, Elementary system Bolt, bearing sleeve,
(simplest) Component produced without spring, washer

assembly operations
II Group, System that can Gear box, hydraulic

Mechanism, fulfill some higher drive, spindle head,
Sub-assembly functions brake unit, shaft

coupling
III Machine, System that consists of Lathe, motor vehicle,

Apparatus, sub-assemblies and parts electric motor
Device that perform a closed

function
IV Plant, Complicated system that Hardening plant,

Equipment, fulfills a number of machining transfer
Complex functions and that line, factory
machine unit consists of machines, equipment

groups and parts that
constitute a functional
and spatial unity

The first two cases studies are preliminary cases studies that are conducted using an
earlier software prototype where only the topological synthesis using Boolean satisfia-
bility was implemented. The scope calculation in this prototype only distinguished the
different scopes using the total number of elements and ports in the solution. Further, this
prototype used the java-based SAT-Solver SAT4J [100].

The first case study (Section 6.1) shows an application of the topological synthesis to
higher-order technical systems, i.e. the synthesis of a chemical plant. Different possibili-
ties to realize a chemical process, i.e. the ethylene to ethyl alcohol process, are generated.
This case study is conducted to show the applicability of the topological synthesis to tech-
nical systems of a high level of complexity (IV) [93] and outside the domain of energy-
and signal-based systems. The results are validated against literature in chemical process
design [108].

The second case study (Section 6.2) is a preliminary study tackling the generation of
automotive powertrain topologies. Here, the applicability of the topological synthesis for
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technical systems of lower level of complexity (III) [93] is presented. The cases study on
automotive powertrains that was conducted by Helms and Shea [27] is implemented using
this work’s method and the results are compared.

Case study three and four are conducted with the final prototype as presented in Section
5. Here, in addition to the topological synthesis, also the variable assignment generation
using constraint satisfaction and the optimization via simulated annealing are preformed.

Case study three (Section 6.3), provides another viewpoint to the case study about au-
tomotive powertrains. Here it is shown that technical systems of level of complexity III
can not only be generated but also automatically simulated.

Finally, case study four (Section 6.4) presents the concept generation and optimization
of printhead drives for a 3D printer. These sub-assemblies of 3D printers (level of com-
plexity II [93]) consist of different basic kinematic mechanisms and linear drives. The
successful integration of different domains (electric, mechanic, and hydraulic) and the
feasibility of simulations with more than one dimension.

Section 6.5 concludes the findings from the case studies.

Each study is structured as follows: After a general introduction that puts the study
in context and highlights the rationale behind it, the metamodel for the synthesis is pre-
sented. Following this, the metamodel of the particular case study is presented giving
details to the components and the system boundary. Then, details from the application of
the method are given, distributed by its different phases. Each case study description is
concluded with the presentation and discussion of the results.

6.1 Case Study I - Chemical Process Engineering

This example comes from the domain of chemical process engineering; the case-study of
the ethylene to ethyl alcohol process from [108] is used. The task can be described as
follows: Water (W) and a feed of 95 mole-% ethylene (EL), 3% propylene (PL) and 1%
methane (M) is to be converted into other products that can be sold. The desired products
are ethylalcohol (EA) and diethylether (DEE). In general, the task is to design a chemical
plant at a high level of abstraction. This case study’s intent is to deliver a proof-of-concept
of the topological synthesis and to show its suitability to tackle design task with complex-
ity level IV (cf. Table 2). Further, it shows the method’s capabilities outside the energy-
and signal-based domain. The following sections give details about the metamodel, the
method application and the results.

6.1.1 Metamodel

From the description in [108], a port hierarchy is developed that includes the chemical
flows that are relevant for this process (see Fig. 38). The chemical flows are distributed
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in four different categories: i) the desired products of the plant, ii) stable mixtures of
by-products, iii) by-products that can be recycled in the process, and iv) byproduct con-
sidered waste. The different components and the system boundary is shown in Figure 39.
Three chemical reactors and five different separators are modeled. The system boundary
is modeled with the ports to the environment: W and EL, PL, M-mixture out-ports, and
EA and DEE in-ports.

Figure 38: Port hierarchy for chemical process synthesis.

Figure 39: Element hierarchy for chemical process synthesis.

6.1.2 Method Application

In order to solve the design task that is modeled in the system boundary, the metamodel
is reduced to those port types that are not considered waste. This reduced metamodel is
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Figure 40: Reduced metamodel for the topological synthesis.

shown in Figure 40. The scopes are calculated as presented in Section 4.2.2. There are
three different categories of elements:

• category 1 having one in-port and one out-port,

• category 2 having one in-port and three out-ports, and

• category 3 having three in-ports and one out-port.

In this case study, the environment provides two in- and two out-ports. Using the cat-
egories described above and five as maximum number of components, the scopes that
are to be investigated for solutions are calculated. As mentioned before, this case study
was conducted with a preliminary prototype, so the scopes are written as "number of ele-
ments/number of ports" instead of separated enumerators for every category. The scopes
are composed of either

• no element at all (Scope: 1/4), or

• an arbitrary number of category 1 elements (scopes: 2/6, 3/8, 4/10, 5/12, 6/15), or

• one category 2 and one category 3 element with none to infinite elements of category 1
(scopes: 3/12, 4/14, 5/16, 6/18), or

• two combinations of one category 2 and one category 3 element with none to infinite
elements of category 1 (scopes: 5/20, 6/22).

Building on these scopes the Boolean satisfiability problem is created and solved.

6.1.3 Results

Solving the process design task reveals all the different alternatives that are also found in
[108]. One solution is found for scope 3/12 and two are found for scope 4/24. Samples in
higher scopes lead to no further results. The three solutions are shown in Figure 41 and
the same as the proposed solutions in [108]. The solutions in Figure 41 are represented
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using the metamodel defined in Figure 39 which leads to the open ports. Those ports
were not represented in the reduced metamodel in Figure 40 and, consecutively, during
synthesis.

Figure 41: The three generated process alternatives for the chemical process synthesis task.

This example shows the capability of the topological synthesis for concept generation
for technical systems with a high level of complexity. This is due to the power of the
possibility to freely define port types. However, the modeling in this case study was
carried out at a high level of abstraction and no evaluation of the generated concepts is
available since it is outside the energy- and signal-based applications. Nevertheless, this
study shows that the topological synthesis presented in this work is not only applicable to
concept topology generation but also process synthesis.
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6.2 Case Study II - Automotive Powertrains I
This case study is about the generation of automotive powertrain topologies, i.e. a techni-
cal system with level of complexity III (cf. Table 2). In [27], Helms and Shea present an
approach to topological synthesis using object-oriented graph grammars. They tackled a
problem of synthesizing concept topologies for automotive powertrains. Since, with their
approach, only topologies with at most one branching point can be generated, this case
study shows that since this work’s method is able to also generate network-like structures,
more solutions can be generated.

The case study in [27] is described as follows: Powertrain topologies are to be generated
for four different, so-called, high-level functions:

1. "Displace vehicle electrically", i.e. the conversion of a signal- and an electric
energy-flow into a mechanical translational energy-flow,

2. "Displace vehicle conventionally", i.e. the conversion of a signal- and a chemical
energy-flow into a mechanical translational energy-flow,

3. "Recuperate energy electrically", i.e. the conversion of a mechanical translational
energy-flow into an electric energy-flow, and

4. "Boost", i.e. the conversion of a electrical energy- and a chemical energy-flow into
a mechanical translational energy-flow.

The metamodel for the generation in [27] consists of nine elementary functions, twelve
physical principles/laws, and seven components all modeled as available elements for the
topology as shown in Figure 42.
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Figure 42: Metamodel for the approach of Helms and Shea [27]

The remainder of this section contains the description of the metamodel for this work’s
approach, and details for the method application. In the end, the results from the method
application are presented and compared to [27].
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Figure 43: Port hierarchy showing different
types of flow values.
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Figure 44: Metamodel for this work.

6.2.1 Metamodel

As presented in Section 2.1.3 on page 13, the approach of Helms and Shea [27] directly
uses representations of the high-level functions as initial conditions for the synthesis.
This work’s approach, however, is based on PMPs. So, elements representing the sys-
tem boundaries of the desired product have to be introduced that resemble the functions’
port configurations but with swapped direction attributes. For example, the "Displace
electrically" function, which has a signal and an electrical energy in-port, and a transla-
tional mechanical energy out-port, is represented by an system boundary that provides a
signal and an electrical energy out-port, and a translational mechanical energy in-port.

The port hierarchy for this approach is shown in Figure 43. Figure 44 presents the
metamodel. Since this work’s method does not support the possibility of swappable com-
ponents (attribute swap in Figure 42), such components are each represented twice, with
mirrored port configurations. Therefore, ten different components result, as shown in Fig-
ure 44.

6.2.2 Method Application

For the scope calculation, three different component categories exist as shown in Figure
45:

• category 1: one in-port, one out-port

• category 2: two in-ports, one out-port

• category 3: one in-port, two out-ports

The system boundary has either two in- and one out-ports ("SB Displace electrically",
"SB Displace conventionally", "SB Boost") or one in- and one out-port ("SB Recuperate
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...
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Figure 45: The elements structured in categories over their abstracted port configuration from
Fig. 44

electrically"). Since no port in the resulting graph is allowed to be unconnected, only
particular sets of elements are feasible. In order to match the port configuration of the
two in-, one out-port problem element, there must always be one more category 2 element
than category 3 elements. The number of category 1 elements is irrelevant. So, for this
problem element the only valid combination can also be written as follows:

• n category 1 elements with 0 ≤ n <∞,

• m category 2 elements with 1 ≤ m <∞, and

• m− 1 category 3 elements.

The scope16 can now be calculated using the absolute number of elements and ports for
the specific categories:

• problem: 1 element, 3 ports

• category 1: 1 element, 2 ports

• category 2: 1 element, 3 ports

• category 3: 1 element, 3 ports

So, for this defined problem element, Eqs. 59 and 60 are used to calculate the number
of elements ze and number of ports zp. The "+1" in Eq. 59 and the "+3" in Eq. 60 both
at the end represent the system boundary.

ze = m+ (m− 1) + n+ 1 = 2m+ n (59)

zp = 3m+ 3(m− 1) + 2n+ 3 = 6m+ 2n (60)

16It has to be remarked that this cases study was conducted with an early software prototype that did not
include the scope calculation as presented in Section 4.2.2
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The scopes that result are as follows (written as ze/zp): 2/6, 3/8, 4/10, 5/12, etc. For the
"Recuperate electrically" function the resulting scopes are: 2/4, 3/6, 3/8, 4/8, 4/10, 5/10,
etc.

Scopes up to a maximum ze of ten (corresponds to ten components in the solution
and one system boundary) are solved using the SAT-solver SAT4J. The time needed to
calculate the first solution for the SB Boost system boundary are presented in Table 3. As
can be seen, the calculation time grows exponentially with the scope.

Table 3: Calculation times for the first solution – “Boost”-system boundary – Case Study I

Scope: 5/12 6/14 7/18 9/22 11/30

Time: 4 sec 7 sec 43 sec 1 min 28 min

6.2.3 Results

Table 4: Results

Number of unique solutions
Function Scope (ze/zp): 3/6 4/10 5/12 6/14 6/16 7/18 8/20 8/22 9/22

Displace conventionally - 1 - 2 - - - 2 2
Displace electrically - 2 - - 1 - - 2 -
Recuperate electrically 1 - - 1 - - 1 - -
Boost - - 1 1 - 2 3 - 1

The number of solutions for the four system boundaries defined using this method are
shown in Table 4. The shown number of solutions is limited to so-called unique ones. Ev-
ery problem element has a set of such fundamentally unique solutions, e.g. the one shown
in Figure 48 for the corresponding high-level function "Boost". These unique solutions
can be enhanced by certain structures (see Figure 46) to create derivative solutions. This
is illustrated in Figure 47 for one unique solution of the high-level function "Boost".

Table 5: Result of both approaches, limited to unique solutions

Number of unique solutions
Function this work Helms and Shea [27]

Displace conv. 7 2
Displace elec. 5 2
Recuperate elec. 3 1
Boost 8 2

In Figure 48, the unique solution that was found for the scope of 11/30 is presented.
On first sight, it seems redundant. However, assuming that the power-splitting planetary
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Figure 46: Structures enhancing the unique solutions. The subtopologies on the left-hand side
can be replaced by those on the right-hand side.

drive can switch between both outputs using brakes, this solution defines a hybrid power-
train, offering four different transmission ratios for conventional driving, one for electric
driving, and four for hybrid driving, using the combustion engine and electric engine at
the same time. So, there are nine different paths through the CMG to get power to the
wheels. These paths can be interpreted as speeds in a gearbox. Thus, including all plan-
etary drives would create a 9-speed-gearbox for hybrid drives. Since such a device was
not introduced until now and no research towards this is known to the author, this result
shows the capability of this method to spark innovative solutions in engineering.

Table 5 shows this work’s results on the left-hand side and those from the method of
Helms and Shea [27] on the right-hand side. To enable a comparison, their solutions were
also reduced to the unique ones. The comparison between the topological synthesis of this
work and the approach of Helms and Shea [27] reveals the following: Helms and Shea’s
[27] approach is not able to generate all solutions that can be derived from the metamodel.
This is not surprising given the simple search used, i.e. random walk. Disregarding the
unique solutions, the approach only created a small portion of the possible designs. None
of the highly intertwined solutions could be generated. This is due to the fact, that Helms
and Shea [27] only build chains of elements with at most one branch point.

Another disadvantage of the approach of Helms and Shea [27] is using a random selec-
tion of elements to create chains. Due to this, the generation of all, or even one, solution
can never be guaranteed, even if replaced by more sophisticated stochastic search. Al-
though, using a high number of iterations, a particular degree of certainty can be reached.
This approach, in contrast, uses the derived SAT problem to determine if the design task
at hand is solvable for a specific scope. So, it offers a determination of the solvability
of PMPs at specific scopes and with a defined metamodel. Further, if it is solvable, all
solutions to the problem for a specific scope can be generated. Increasing the scope is
only limited by the time needed for calculation.
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Figure 47: Comparison between a unique and an enhanced solution.

Figure 48: Unique solution (Scope: 11/30, calculation time: 28min).

The presented topological synthesis method offers a more systematic approach to com-
putational design synthesis. Starting with the smallest calculated scope to create the small-
est solutions first, and then going step-by-step towards more complex solutions by in-
creasing the scope the solution space can be explored systematically. Further, this thesis’
approach is able to generate more solutions due to its capability to generate highly inter-
twined topologies, or networks, and proves its capability to generate potentially innovative
solutions. So, this approach is a logical next step coming from a purely rule-based method
to rule- and model-based approaches to a purely model-based approach in combination
with sophisticated logical reasoners.

However, the approach of Helms and Shea [27] offers the possibility to define problem-
specific rules in addition to the generic rules that are used for the synthesis. These rules
incorporate further engineering knowledge for the specific design task. So, disadvanta-
geous solutions can be prohibited or changed into more advantageous ones. However, the
concept modeling framework used in this thesis is based on the one presented in [27] and,
theoretically, still supports the application of problem-specific rules. Due to the intentions,
to release the designer from defining rules, this possibility is not considered in this work’s
approach, but including such rules could render advantages in specialized applications.
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6.3 Case Study III - Automotive Powertrains II
This section presents another application of the presented method for the case study of
automotive powertrains. But in contrast to Section 6.2, here also the generation of vari-
able assignments and optimization using simulated annealing, thus the whole method pre-
sented in Section 4 is performed. Therefore, this case study gives a proof-of-concept for
the method and its applicability also for the evaluation of technical systems of level of
complexity III. The following sections will first describe the metamodel and then give de-
tails about the method application before the results are presented and selected powertrain
concepts are discussed.

6.3.1 Metamodel

The port hierarchy used in this case study is shown on the left side of Figure 49. Apart
from the energy ports, four different signal ports are defined:

• Acceleration signal port: transmits the acceleration pedal position between 0 and 1.

• Brake signal port: transmits the brake pedal position between 0 and 1.

• Gear signal port: transmits the gear that is to be enabled if a gearbox is present
{1, 2, 3, 4, 5, 6}.

• Engine speed signal port: transmits the rotary speed at the input shaft of the gearbox.

Figure 49: The port hierarchy on the left and the defined components on the right.

The metamodel is illustrated in Figure 49. Thirteen different components with param-
eters, constraints and partial simulation models are modeled as described in Section 4.1.
These components are presented in the following paragraphs.
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Gearbox This element models a six speed manual gearbox with included clutch. The
gear to be engaged is transmitted at the signal in-port while the rotational speed at the input
flange is transmitted at the signal out-port. For the parameterization and optimization, the
component’s variables are the transmission ratios of the six different forward speeds of
the gearbox.

Gearbox Dummy This component is defined to allow powertrain concepts without
gearboxes although gearbox-specific signals are required by the system boundary. The
gearbox dummy component takes a gear signal at the in-port and returns a default engine
speed signal at its out-port.

Planetary Drive The planetary drive component in this case study has two rotational
mechanical energy in-ports representing the sun gear and the planet carrier and one rota-
tional mechanical out-port that represents the ring gear. This component’s variables are
the ring and the sun gear radius.

Battery The battery element represents a rechargeable battery with one electric energy
out-port. In the associated partial simulation model the total discharge Eel the battery
undergoes during the drive cycle is recorded using Eq. 61 where Pel is the charging and
discharging electric power.

Eel =

∫
Peldt (61)

Internal Combustion Engine This component represents a four-cylinder four-stroke
gasoline internal combustion engine. It has an acceleration signal in-port where the pedal
position is transmitted and a rotational mechanical energy out-port representing the en-
gine’s output flange. In its partial simulation model, the cumulated CO2 emission is
recorded.

Wheels and Vehicle This component represents the differential, two wheels, the
chassis and body work of the car. The rotational mechanical energy that is transmitted
at the in-port drives the rear axle after going through the differential. The transmission
ratio of the differential is the component’s variable. Additionally, the brake signal which
is expected at the signal in-port controls the brakes of the car. The movement of the car
which is generated at the footprint of the driven wheels is represented by the translational
mechanical energy out-port.

Acceleration Junction (Acc. Junct.) This is a signal junction that copies the ac-
celeration signal at the in-port to both out-ports.

Brake Junction (Brake Junct.) The brake junction is a signal junction that copies
the brake signal at the in-port to both out-ports.
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Electric Junction (Elec. Junct.) At this energy junction electric energy is dis-
tributed according to Kirchhoff’s current law between the electric energy in-port and the
two electric energy out-ports.

Drive-Through Electric Generator This component represents an electric engine
that is able to both, a) increase a rotational mechanical energy flow by superimposing
positive torque generated from electric energy and b) decrease a rotational mechanical
energy flow by superimposing negative torque and generating electric energy. Therefore,
the drive-through electric generator has both, one rotational mechanical in- and one out-
port. The gas pedal position is transmitted at the acceleration signal in-port and electric
energy at the electric energy in-port. Its variable is the nominal power of the embedded
electric machine.

Drive-Through Electric Machine In contrast to the drive-through electric genera-
tor, this electric engine is only able to increase a rotational mechanical energy flow by
superimposing positive torque generated from electric energy. It has an acceleration sig-
nal in-port, a electric energy in-port and each one rotational mechanical in- and out-port.
Its variable is the nominal power of the embedded electric machine.

Electric Generator The electric generator component models an electric engine that
is capable of both, transforming an electric energy flow into a rotational mechanical one,
and vice versa. Electric energy is transmitted at the electric energy in-port while the en-
gine’s flange is represented by one rotational mechanical out-port. The gas pedal position
is transferred at the acceleration signal in-port. The electric machine’s nominal power is
the component’s variable.

Electric Machine In contrast to the electric generator, this element represents an elec-
tric engine that is only capable of transforming an electric energy flow into a rotational
mechanical one. Apart from the electric energy in-port and the rotational mechanical
out-port it also has an acceleration signal in-port and the machine’s nominal power as
variable.

Figure 50: System boundary for hybrid powertrains

System Boundary The system boundary is shown in Figure 50. Basically, it repre-
sents a driver who wants to follow certain speed profiles, once the urban driving cycles
(UDC) and once the extra-urban driving cycle (EUDC) from the New European Driving
Cycle (NEDC) [109]. The NEDC is a defined speed profile which is used in the European
Union to measure fuel consumption and emissions from cars in order to classify them
in different energy efficiency classes. The speed profile used in this case study and the
operation points used for the generation of variable assignments are shown in Figure 51.
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To follow this speed profile, the system boundary provides an acceleration signal, a brake
signal, and a gear signal. For the concept a translational mechanical energy flow is re-
quired and an engine speed signals to trigger the shifting of gears in a possible gearbox.
The objective function for the simulated annealing optimization is defined to minimize the
cumulated error ei between the actual driven speed (vactual) and the required one (vdemand)
over the driving cycle (Eq. 62). Therefore, the optimization model shown in Eq. 63 is
defined in the system boundary, with x being a variable assignment for the generated solu-
tion, V being the set of variable assignments generated for the solution, size(V ) defining
the size of V , i.e. the number of variable assignments to be created, and k being the am-
plifier for simulated annealing..

ei =

∫
|vdemand − vactual| dt (62)

minimize
x

ei(x)

subject to x ∈ V,
size(V ) = 10000,

k = 1

(63)

Figure 51: The UDC (580s ≤ t < 780s in the NEDC) and the EUDC (780s ≤ t < 1180s in the
NEDC). The operation points used in the case study are indicated with black diamonds.

6.3.2 Method Application

For the topological synthesis, the maximum number of components within the powertrain
is set to ten. Following the calculations presented in Section 4.2.2, seven different com-
ponent categories are identified and 1189 different scopes result. For these scopes, the
first-order logics and following that the Boolean satisfiability problems are generated and,
consecutively, solved using the high performance cluster of ETH Zurich with the restric-
tion of a maximum calculation time of four hours per scope. This time showed to enable
moderate waiting times on the server with sufficient solution space exploration. Since
not all scopes required the maximum time, the total CPU time used for the topological
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synthesis was approximately 2500 hours.

In the end, 162 different solutions containing only CMGs are generated. Following the
method, the CSP for each solution is generated and solved, generating 10000 variable as-
signments for every topology where possible. For 43 topologies, no valid parameterization
exists. Now, all the 119 remaining topologies are optimized to best meet the defined speed
profile. For 28 topologies, even though the CSP could be solved, no variable assignment
could be found, that could be simulated without error. All these 28 powertrain concepts
include at least one internal combustion engine and a planetary drive. So, although, all op-
eration points defined in the system boundary can be realized in the powertrain according
to the variable assignment generation, due to dynamic effects in the interplay between the
internal combustion engine and another source of torque over the planetary drive in the
simulation model, the internal combustion engine is forced to an operational state where it
would have to run backwards. This causes the simulation to abort, since the model of the
internal combustion engine cannot handle backwards rotation. In the end 91 powertrains
were successfully optimized setting the amplifier k (cf. Section 4.4) to one for the change
of the objective function and 500 iterations. On average the simulated annealing process
converges after approximately 200 iterations. The total CPU time for the optimization of
all 91 powertrains was approximately 400 hours.

6.3.3 Results

To compare the different optimized concepts, the following performance values are used:
first, the total CO2 emissions generated during the driving cycle. For conventional pow-
ertrain concepts this is the cumulated CO2 emissions of the combustion engine(s). For
electric powertrain concepts the electric energy that was discharged from the battery(s)
is multiplied by 522 g CO2/kWh [110], to take into account the CO2 emissions during
the electricity production. Hybrid powertrain concept emissions are calculated using both
calculations. The second performance value is the objective function, the cumulated error
from the speed profile.

The solution space is shown in Figure 52. As can be seen, using more than one internal
combustion engine significantly increases the CO2 emissions. Excluding the 27 solutions
containing two or more internal combustion engines results in a reduced solution space.
It is shown in Figure 53. Here, the dominant sets regarding cumulated error and total CO2

emission for each powertrain type (conventional, hybrid, electric) are illustrated in black.

In Figure 53 four example powertrain concepts (indicated with (1)-(4) in Figure 53) are
indicated which are described in more detail and discussed in the following paragraphs.
The results for the four concepts are comprised in Table 6 and the convergence of the
objective function value averaged over 4 runs is shown in Figure 54.

Solution 1 (see Figure 55) represents a conventional powertrain. An internal com-
bustion engined is connected to a gearbox which is itself connected to the differential that
drives the wheels within the wheels and vehicle component. The cumulated error from the
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Figure 52: Complete solution space. The hashed region marks the area in which only power-
train concepts are found that utilize at least two internal combustion engines.

Figure 53: Solution space excluding concepts with two internal combustion engines. The dom-
inant concepts with regard to cumulated error and CO2 emission are indicated in black for each
powertrain type, the dominated ones in grey.
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Figure 54: The convergence of the objective function of solution 1-4 averaged over 4 runs with
each 500 iterations.

Table 6: Comprised results for the example powertrain concepts 1 – 4.

Solution 1 2 3 4
Figure 55 Figure 56 Figure 57 Figure 58

Cumulated error 267 m 154 m 63 m 118 m
Total CO2 emissions 2419 g 2290 g 1171 g 3751 g

given speed profile is approx 267 m while emitting a total of approximately 2419 g CO2.
LMS Amesim provides a reference model for a conventional automotive powertrain. This
model was validated on a real automotive powertrain. Comparing the generated solution
to this reference model reveals the following. Simulating the reference model using the
same speed profile results in a cumulated error of approximately 69 m and a total CO2

emission of approximately 2154 g. The better values of the reference model are due to
all the components in the reference model being carefully matched to each other. That
means, that not only the design variables that are optimized in the metamodel are adapted
to this specific use case, but also further variables are assigned to support that specific
powertrain concept. Therefore, the reference model represents a final design in contrast
to a conceptual design (cf. Section 1). Taking this into account, it can be concluded that
the presented method can give a good indication of the performance of the different con-
cepts.

Figure 56 illustrates solution 2. Here, the internal combustion engine is supported
by two electric engines, a drive-through electric machine in front of the gearbox, and a
drive-through electric generator behind the gearbox. Simulating this hybrid powertrain
concept results in a cumulated error of approximately 154 m and a total CO2 emission
of approximately 2290 g. Compared to the conventional solution (1), the two electric
machines help to achieve a lower cumulated error. Further, the support of the internal
combustion engine in disadvantageous operation states and the rudimentary possibility to
recuperate energy of the electric generator help obtain a lower total CO2 emission even
though the used electric energy is penalized with 522 g CO2/kWh [110].
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Figure 55: Solution 1 - conventional powertrain - total CO2-emissions: 2419 g - cumulated error:
267 m (only for illustration purposes, the relations connecting signal ports are colored grey and
those connecting energy ports are colored black)

Figure 56: Solution 2 - hybrid powertrain - total CO2-emissions: 2290 g - cumulated error: 154
m (only for illustration purposes, the relations connecting signal ports are colored grey and those
connecting energy ports are colored black)

The pure electric concept that generates the smallest cumulated error of approx. 63 m
is shown in Figure 57. Basically, this powertrain resembles solution 2 without the internal
combustion engine and the recuperation capabilities, since another drive-through electric
machine is used instead of the drive-through electric generator that is placed between
the gearbox and the wheels and vehicle component. For such a small error, the electric
machine is favorable over the generator. This is due to the recuperation’s negative torque
in combination with the conventional brakes resulting in a deceleration that is steeper than
the intended one. Therefore, the total CO2 emission could be reduced by using a generator
instead of the drive-through electric machine in combination with a better control strategy.

The hybrid automotive powertrain represented in solution (4) is shown in Figure 58.
Here, the gearbox dummy component is used to connect the given input to the output
of the system boundary only, thus providing a complete solution according to the SAT
problem even though no gearbox is present. In this CMG, the internal combustion engine
is supported by one electric machine and a drive-through electric machine. The internal
combustion engine and the electric machine are placed on one side of a planetary drive
whereas the drive-through electric machine is on the other side in front of the wheels
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Figure 57: Solution 3 - electric powertrain - total CO2-emissions: 1171 g - cumulated error: 63
m (only for illustration purposes, the relations connecting signal ports are colored grey and those
connecting energy ports are colored black)

Figure 58: Solution 4 - hybrid powertrain - total CO2-emissions: 3751 g - cumulated error: 118
m (only for illustration purposes, the relations connecting signal ports are colored grey and those
connecting energy ports are colored black)

and vehicle component. Therefore, solution (4) resembles the powertrain that is imple-
mented in the Toyota Prius II. For this vehicle Toyota advertised a CO2 emission of 104
g CO2/km [111]. From the results from the simulation of solution (4) a CO2 emission
of 349 g CO2/km is calculated. For this calculation only the emissions from the internal
combustion engine are considered, since the official measuring procedure only accounts
for local CO2 emission. Local CO2 emission are emissions that are produced directly in
the vehicle. The emissions from the generation of the electric energy are not considered.
This shows, that the results from the hybrid powertrains can only be used to a certain
extent to compare the different powertrain concepts since no real hybrid driving modes
are considered and controlled. When the driver in the system boundary wants to acceler-
ate, due to the absence of an adapted control allocation strategy, the acceleration signal is
simply forwarded to all possible receiving components and not only to the most oppor-
tune ones to reduce CO2 emissions. Since the Toyota Prius only produces less than 30 %
of the CO2 emission of solution 4, the potential of “intelligent” control strategies can be
seen. Therefore, future work should consider generic ways to optimize the control alloca-
tion and, by that, the CO2 emission independent from the powertrain layout to which it is
applied.
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6.4 Case Study IV - Printhead Drive for 3D Printers
This case study deals with the conceptual design and optimization of kinematics and
drives for printheads for 3D printers. It is based an undergraduate student group project.
Its task was to develop a 3D printer that could print faster than 3D printers that were avail-
able at that time. In order to choose an appropriate kinematic mechanism for the printer,
different possibilities of kinematic mechanisms had to be evaluated. In the project, this
was achieved by comparing the average kinetic energy in the kinematic mechanism while
moving the printhead along a predefined profile [112]. This thesis’ method investigates
different concepts to achieve as high as possible print speed with a given precision. This
case study is conducted to show the possible application of the method in a design project,
the generation and evaluation of technical systems of complexity level II, and to show an
application on a two-dimensional mechanism. In the following sections, first, the meta-
model will be presented before the method application and the results are shown and
discussed.

6.4.1 Metamodel

The metamodel for this case study consists of eight different components that can be used
in the topological synthesis: two kinematics (two-slider kinematic and scissors kinematic)
and six different drives as can be seen in Figure 59. In order to enable the possibility of
a topological synthesis using the method presented in Section 4.2, the different drives
have to be defined separately for two different connection points to the kinematic mecha-
nism. This is done, since the two kinematic mechanisms each need drives at two different
connection points and it has to be assured that the control signals that are calculated for
the drives of each connection point actually reach the drive that is connected to it. Con-
secutively, this differentiation must also be reflected in the port taxonomy that is shown
in the left part of Figure 59. The different elements are described in the following sections.

Kinematic In this case study, the kinematic mechanism moves the printhead of the
3D printer. A kinematic mechanism has two connection points (translational mechanical
in-ports) for the drives that actuate the movement of the printhead. The control signals
(Machine Signal 1 and 2 ports) for these drives are calculated from the specified x- and
y-position of the printhead. The actual position of the printhead is transmitted at the x-
and y-position signal ports. The two kinematic mechanisms available for the CMGs are
presented in the following paragraphs.

Two-Slider Kinematic The first kinematic mechanism is a two-slider kinematic as
illustrated in the left part of Figure 60. One slider is moved to achieve movement in
y-direction and a second, smaller slider is driven on the bigger slider for movement in
x-direction. Here, the demanded x- and y-position are also the machine signals one (pos1)
and two (pos2): pos1 = xdem and pos2 = ydem. The partial simulation model of the two-
slider kinematic is shown in Figure 61. At the bottom, the specified x- and y-positions
are converted into the demanded machine positions using a gain of one. The main part
of the partial simulation model consists of two bodies that are constrained to move along
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Figure 59: The metamodel of available elements and the port hierarchy for the printhead drive
case study.

the y-axis and the x-axis of the first body respectively. The second body represents the
printhead. Two sensors are used to obtain the x- and y-position and two other sensors
for the x- and y-speed. The two speeds are used to calculate the absolute speed of the
printhead vprinthead (Eq. 64). vprinthead is recorded during the simulation.

vprinthead =
∣∣∣√v2x + v2y

∣∣∣ (64)

Scissors Kinematic The scissors kinematic shown in the right part of Figure 60 is
the second kinematic mechanism used in this case study. Here, the printhead is located
on the hinge joint between the two arms. The other ends of these arms can be moved in
the x-direction in order to allow a free movement of the printhead. As in the previous
kinematic mechanism, the needed machine positions are derived from the demanded x-
and y-position of the printhead. The machine positions are calculated using Eqs. 65 and
66, where a is the length of the arms and ω0 their initial angle to the x-axis (cf. Figure
60). In this kinematic mechanism the absolute speed of the printhead is calculated from
its x- and y-speed (cf. Eq. 64) and recorded during the synthesis.

pos1 = (xdem + a cos (ω0))−
∣∣∣∣√a2 − (ydem + a sin (ω0))

2

∣∣∣∣ (65)

pos2 = (xdem − a cos (ω0)) +

∣∣∣∣√a2 − (ydem + a sin (ω0))
2

∣∣∣∣ (66)

Drive The drive components represent different ways to actuate the movement of the
connection points to the kinematic mechanism. Therefore, each drive has a machine sig-
nal input, that actually describes the needed displacement at the connection point that is
represented by a translational mechanical energy port. In this case study, each drive is
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Figure 60: Schematic drawings of the two basic kinematic mechanisms: the two-slider kinematic
on the left and the scissors kinematic on the right. The numbers 1 and 2 indicate the movement
that is generated by the drive at connection point one or two, respectively.

internally powered by electric energy and the total amount of electric energy Eel that is
used during a simulation is calculated using Eq. 67 where Pel is the measured electric
power. To allow the evaluation of the demanded energy in the simulation Eel is recorded
throughout the simulation.

Eel =

∫
|Pel| dt (67)

Although six different drive components are defined in the metamodel, only three distinct
types exist. The two versions of each drive type (1 and 2) only differ in the instantiated
port types but the constraints and partial simulation models are the same. This is done, to
prevent solutions where a machine in position two receives machine signals intended for
position one. Each type is only presented once.

Hydraulic Drive The hydraulic drive models an electric engine that drives a pump.
This controllable pump drives a hydraulic cylinder that realizes a translational displace-
ment that is to be transferred at the output of the system. The design variables are the
expected rotary speed of the pump ndem and its displacement per revolution Vdis. Ad-
ditionally, the expected rotary speed ndem affects the electric engine that has to provide
this speed. The product of ndem and Vdis, i.e. the pump’s flow rate, has to be higher than
2 × 108m3

s
to assure the unit’s operation and avoid unwanted vibrations. This value was

experimentally determined during the design of the drive type.

Belt Drive The belt drive is a controlled electric engine that is connected to a pulley.
Between that driven pulley and a non-driven pulley a belt is taut. On this belt a mass that
models the connection point of this drive, is pulled or pushed to the position given by the
input signal. The element’s variable is the radius of the driven pulley.

Toothed Rack Drive The toothed rack drive shares the underlying setup of the belt
drive. The rotational motion from the electric engine is transformed into translational
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Figure 61: Partial simulation model of the two-slider kinematic in LMS Amesim.

motion by a pinion gear that drives a toothed rack. The variable is the radius of the pinion
gear.

System Boundary As described in Section 4, the system boundary describes the
environment of the concept. The outputs to the concept are the specified x- and y-positions
of the printhead and the inputs of the system boundary are the measured x- and y-positions
of the printhead.

At the beginning of the simulation, the printhead is in the center position (x = 0 and
y = 0) and, starting there, is to drive a circle with a radius of 0.1 m and a constant fre-
quency of 0.2 Hz. After 5 seconds, i.e. one full circle, the speed is linearly increased until
the simulation stops. The stopping criterion is a deviation between the demanded and
actual position of the printhead that is more than 1 mm. This deviation ∆ is calculated
using Eq. 68 where xact and yact are the actual and xdem and ydem the demanded x- and
y-positions of the printhead.

The objective for the optimization is to maximize the speed of the printhead v (Eq. 69)
with a maximum deviation of the given printhead path of 1 mm. Since the method is
designed to minimize an objective, the sign is reversed for the always positive speed v.
The optimization model shown in Eq. 70 results, with x being a variable assignment for
the generated solution, V being the set of variable assignments generated for the solution,
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and size(V ) defining the size of V , i.e. the number of variable assignments to be created.

∆ =
∣∣∣√(xact − xdem)2 + (yact − ydem)2

∣∣∣ (68)

v =
∣∣∣√ẋ2 + ẏ2

∣∣∣ (69)

minimize
x

− v(x)

subject to x ∈ V,
size(V ) = 20000,

k = 10000

(70)

6.4.2 Method Application

Performing the topological synthesis as described in Section 4.2 results in a total of 18
different concepts, the maximum number of combinations for two basic kinematic mech-
anisms with each two connection points and three different types of drives (2 · 2 · 3 = 18).
For parameterization and optimization, six concepts are investigated. These concepts are
each powered by only one drive type (hydraulic, belt, or toothed rack). Mixed concepts
are not considered since the use of two different types in one printhead drive is not desired.

The parameters for the simulated annealing process are set as follows. The amplifier k
for the change of the objective function value between the iterations is set to 10000 (cf.
Section 4.4). This is due to the output of the objective function being calculated in m

s

but only small changes in the order of magnitude of mm
s

are expected between the dif-
ferent iterations. Given the increase of 0.125 m

s2 and a time-step of 0.025 s, the expected
difference between two data points is 0.003 m

s
. Without the amplifier, small differences

between the objective function values would push the acceptance function close to one
(cf. Section 4.4). This would mean that almost all investigated variable assignments are
accepted during the simulated annealing process. The size of the calculated set of variable
assignments is 20000 and the number of iterations is set to 500.

Two-slider Kinematic Scissors Kinematic

Figure 62: The development of the objective function value averaged over five simulated an-
nealing runs with different starting points.
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To assure convergence and since simulated annealing is a stochastic method, the op-
timization process is performed five times for each of the six solutions using different
initial variable assignments. The development of the different runs for each solution are
illustrated in Figure 62. It can be seen, that the concepts converge reliably within the 500
iterations.

6.4.3 Results

In Figure 63, the printhead’s deviation ∆ from the intended path (cf. Eq. 68) over the
printhead speed is shown for all investigated concepts. The deviation for the concepts
using the scissors kinematic rise more nonlinearly than the deviation of concepts using
the two-slider kinematic. This is due to the superposition of rotational and translational
accelerations in the scissors kinematic which leads to a more complex dynamic behavior
than the strictly translational motions in the two-slider kinematic. The oscillation of the
two-slider concepts, especially becoming apparent at higher speeds, results from the con-
trol in the drives, which is not adapted during the optimization.

In Figure 64, the effect of the direction of motion on the deviation ∆ is investigated.
The graph shown for both kinematic mechanisms driven by a toothed rack drive is rep-
resentative for all the other drives. The error of the two-slider kinematic is independent
from the sense of direction of the circular path and, therefore, of the printhead’s direction
of motion. However, the scissors kinematic shows a different behavior when the sense of
direction is changed. This means, that the deviation ∆ of the printer is not only dependent
from the speed of the printhead but also the direction of motion. This behavior is a disad-
vantage of the scissors kinematic since the effort to assure a certain precision in printing
is higher than for the two-slider kinematic. The investigation, however, also shows that
more than one load case should be simulated to enable a higher solid foundation for the
decision towards one or the other concept. For this case study, not only circular paths, but
also quadrangular paths at different positions of the printing table. Since the main intent
of this case study was to show the applicability of the presented method, these use cases
were not considered.

The different recorded values that result from the simulated annealing process (cf. Sec-
tion 4.4) are shown in Table 7. Etotal refers to the total energy consumption of the par-
ticular concept that was calculated by adding the used electric energy from every drive in
the particular solution. vmax,0.5mm and vmax,1mm are the maximum speed of the printhead
with a maximum deviation of 1 and 0.5 mm, respectively. As described before, vmax,1mm

was maximized during the simulated annealing process. vmax,0.5mm was obtained by the
simulation results as shown in Figure 63.

The results in Table 7 show that the two-slider kinematic with two toothed rack drives
dominates all other solutions in every performance value. Further, the maximum speed is
higher for the two-slider kinematic than for the scissors kinematic for all drive variants.
Therefore, it can be concluded that a two-slider kinematic is better suited for investigation
for fast, high-precision 3D printing. It must be noted that the control of the different drives
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Two-slider Kinematic with
hydraulic drive

Scissors Kinematic with
hydraulic drive

belt drive belt drive

toothed rack drive toothed rack drive

Figure 63: Diagrams showing the error between the printhead’s intended and actual path over
printhead speed. The points where vmax,0.5mm and vmax,1mm are obtained are indicated.
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Two-slider Kinematic - Toothed Rack
Drive

Scissors Kinematic - Toothed Rack
Drive

Figure 64: Diagrams each comparing the printhead’s deviation for driving the circular path in
opposite directions.

Table 7: Results for the investigated 3D printer kinematic concepts. The best results for each
criterion is highlighted in grey.

etotal vmax,1mm vmax,0.5mm

[J]
[

mm
s

] [
mm

s

]
Two-slider kinematic with

hydraulic drive 13489.0 1044.27 611.20
belt drive 1611.0 808.95 558.67

toothed rack drive 975.8 1157.26 817.60
Scissors kinematic with

hydraulic drive 1009.6 538.88 358.75
belt drive 1742.6 651.33 503.12

toothed rack drive 1158.3 778.08 535.88

was not changed during the optimization process. Optimizing the control variables could
open another possibility to increase the printhead speed. However, the printing speed of
a 3D printer is not only limited by the capabilities of the chosen kinematic mechanism.
Melting and delivering the filament are also important factors that limit the speed in 3D
printing processes.

In the student project, the two-slider kinematic was chosen for the final design. But, in
contrast to the presented results, a belt drive was chosen. This was chosen since belt drive
can be designed in a way that both electric engines that drive the belt are placed outside
the moving parts. In the end, the project’s final printer was able to print with a speed of
400 mm/s.

The method that is presented in this thesis could have supported the undergraduate stu-
dent team by releasing them from manually modeling the different kinematic mechanisms
and giving them simulation results. Those could have helped to chose an opportune kine-
matic mechanism and drive to solve the conflict between speed and precision instead of
judging the different concepts using the average kinetic energy.
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6.5 Summary
This section presents four case studies that show different applications for the method
that is presented in this work. The two preliminary case studies (Section 6.1 and 6.2) are
restricted to the topological synthesis, whereas case studies two and three use the whole
method. The results show that energy- and signal-based technical system with levels of
complexity II and III can be automatically generated and evaluated. Technical system
with levels of complexity IV can be tackled using the topological synthesis only. Such
systems, i.e. plants, are mostly not limited to energy- and signal-flow but also incorporate
material-flow and, especially, spatial layout. Both can, in the current state, not be fully
included in the approach. Conceptually, as shown in Section 6.1 for material flow, they
can be considered but an evaluation, or even optimization, is currently not feasible. An-
other issue that affects the simulation is the issue of controlling the simulation models.
In the studies presented in Section 6.3 and 6.4, only simple control strategies are used
and not adapted to the different concepts. As mentioned in the respective sections, that
leads to sub-optimal performance. The challenge in adapting control with this method
is that the variable assignments are generated based on static equations. To effectively
design a controller, the dynamic of the system has to be known which is unknown dur-
ing the generation of the variable assignments. Therefore, a specific controller for every
variable assignment would have to be designed based on the dynamics of the simulation
model that is not included in the method. Either possibilities to effectively include this or
generic strategies in optimal control theory [113] and control allocation [114] should be
investigated in future work to allow a better evaluation of the performance of the gener-
ated concepts.
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7 Discussion

The method presented in this thesis provides a continuous generic approach to genera-
tion, evaluation and optimization of concepts. A graph-based object-oriented modeling
framework and bond-graph based simulation models are used to automatically gener-
ate, evaluate and, by that, explore solution spaces for engineering tasks in the domain
of energy- and signal-based systems. Thus, it provides computational support in the con-
ceptual design phase of the product development process. Further, this work responds to
the demand for the utilization of different representations [18, 24] and automated trans-
lations between them [24]. The design tasks this method can handle have the following
characteristics. The elements from which the concepts are created and their interfaces
have to be defined and the design synthesis task must be formalized as a transformation
from none to a finite number of inputs to none to a finite number of outputs as long as there
is at least one in- or output. The behavior of the different components must be known and
modeled as partial simulation models according to the guidelines developed in this thesis.
Defining the input-output-relations for every component and the operation points for the
system boundary is optional, though helps to generate promising variable assignments.
This reduces the needed iterations in the optimization (more details on this are presented
in Section 7.2).

The topological synthesis introduced in this thesis resolves disadvantages of the rule-
based representations through a model-based representation offering a high adaptability
and expressiveness. By introducing more sophisticated reasoning, i.e. conflict analy-
sis and clause learning [84, 33], that is available for Boolean satisfiability problems, the
drawbacks of the simple search methods within the model-based approaches are compen-
sated. Combining a graph-based object-oriented concept modeling framework with logics
also exempts the human designer from the manual definition of abstract logical statements
[58, 57, 55] and from the definition of rules but enables the use of logical reasoning to
synthesize product topologies. Further, this approach overcomes the limited scope of ap-
plication that restricts the approach of Hendricks et al. [58, 59].

Apart from the differences to the approach of Helms and Shea [27] (cf. Section 6.2),
the method presented in Section 4 differs from the approach of Wyatt et al. [47], by uti-
lizing no constructs that cannot be translated to logics. In addition, the expensive manual
definition of a design schema is omitted here. It is replaced by a more intuitive meta-
model definition. However, whether this leads to a reduction in modeling time has to be
examined. Component number constraints, direct connection constraints and fan out con-
straints can be transferred by the metamodel definition. Indirect connection constraints
can only partly be transferred because, using this work’s method, the number of paths
between two ports cannot be defined in advance. A further advantage of this work is that
no initial model has to be provided to start the generation of alternatives.

This work relates to C-K theory [56] by utilizing the expansion of knowledge space K
to deduce all possible element combinations from the metamodel and the disjunction from
K to concept space C to generate concepts for the given system boundary. Future work
should investigate the advantages that could be achieved by also including the expansion
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of C and the conjunction of C to K in CDS approaches. Engineering design tasks that are
formulated as in the work of Braha [55] can also be tackled with this method. However,
the approach of Braha [55] is, due to its written description, easy to comprehend for hu-
man designers. This is especially an advantage considering the inclusion of requirements.

Adding the evaluation by simulation enriches the expressiveness of the results, since
this work is able to generate and simulate alternative concept topologies. This step is not
undertaken by any of the literature mentioned so far [58, 57, 55, 58, 59, 27, 47]. The
presented method overcomes the limitations in [74, 75, 76, 39] where the optimization
is carried out by only changing parameters in predefined simulation models. However,
[74, 75, 76] can make use of advanced control strategies since they rely on a fixed topol-
ogy. These control strategies enable a more realistic evaluation of the generated power-
train concepts. Additionally, where Bayrak et al. [78] only change possible connections
in a predefined framework of one combustion engine, two electric machines and two plan-
etary drives, this work’s method is capable of combining the available components to en-
tirely different powertrain topologies detached from the fixed composition of components.
However, Bayrak et al. are investigating possible driving modes to identify a beneficial
hybrid control strategy in the powertrain. Their work can be considered a possible next
step for the case study presented in Section 6.3, looking for advantageous driving modes
in the powertrains that were generated using this works method.

In many approaches presented in the literature review in Section 2, functions are used
within the synthesis process, e.g. [27, 47, 50, 34]. Functions are often defined as a combi-
nation of a noun and a verb, e.g. "increase pressure", that relate to the energy-, material-
and signal-flow in the system [10]. In [51] a functional basis is presented that gives a stan-
dardized terminology for the definition of functions. Functions were initially introduced
to support designers in a solution-neutral approach to a design task and to overcome their
bias towards already known solutions. This work is not using functions for the synthesis.
The port-based modeling of components implicitly includes their functions in the sense
of converting inputs to outputs and the system boundary reflects the technical system’s
overall function that is the "overall relationship between the inputs and the outputs of a
plant, machine or assembly" [10]. Further, the mapping from functions to components
is often conducted by port-matching, i.e. selecting components that reproduce the inputs
and outputs of the associated function, e.g. in [27, 77]. In the method presented in this
thesis, this step can be considered redundant, since the components are used to connect
the ports of the system boundary equivalent to modeling an overall functions with ele-
mentary functions. If the required functionality of the product can be provided by the
generated concepts is evaluated using the generated constraint satisfaction problems and
the simulation models in the sense of a test for functionality [21]. Therefore, the explicit
use of functions is not needed in this work and would not render any advantage.

7.1 Contributions

Where the mentioned literature always only tackles one part, either the topological syn-
thesis, or variable assignment and simulation, this work combines topological synthesis,
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generation of variable assignments and finding the most opportune variable assignment
using optimization and simulation in one seamless approach. In order to achieve this,
three different generic model transformations are introduced. Starting with the meta-
model in the object-oriented graph-based concept modeling framework (cf. Section 4.1)
a first-order logic describing the solution space of topologies. For the CMGs that are
generated in the topological synthesis two further model transformations are provided: i)
to a constraint satisfaction problem describing the variable solution space for the design
represented by the CMG, and ii) to a bond graph-based simulation model that can be used
to evaluate the solution at hand. In order to assure that the metamodel only contains com-
patible partial simulation models for each element, modeling guidelines are introduced.

In the following paragraphs this work’s impact is elaborated guided by the refined re-
search questions defined in Section 2.5:

1. How to formally encapsulate a task specification and engineering knowl-
edge without using rules for conceptual design to allow the generation and
automated behavioral simulation of the solution space using advanced search
methods?

The answer to this question, provided by this work, is the metamodel presented in
Section 4.1. The object-oriented aspect of this engineering knowledge repository allow
including compatibility constraints modeled in the port configuration and the definition of
relations between these interfaces by equations and simulation models. The graph-based
aspects, envisioning components as possible nodes in a graph support the accessibility for
human designers. This accessibility is also facilitated by the fact that the designer does not
have to define rules to encapsulate the engineering knowledge. In order to make advanced
search methods available, this work uses the solving techniques that are accessible for
Boolean satisfiability problems. The first version of DPLL-algorithm was developed in
1958 and has since then been further developed [115]. Torlak [85] developed a way to map
relational logic to Boolean satisfiability problems. This work presents a generic way to
translate engineering design tasks that are modeled in the metamodel to a first-order logic
description and, by that, allow using the advanced algorithms to solve Boolean satisfia-
bility problems. A further advantage is that future developments in SAT and SAT-solving
can be easily used since the actual solving process is independent from the modeling of
the design task.

2. How to implement and execute model transformations to support automat-
ing conceptual design?

Being able to transform generated models in CDS allows adding viewpoints to such
models that were not intended, or are not available in the original representation. To facil-
itate the method presented in this thesis, model transformations between the metamodel
and first order logic, generated solutions and constraint satisfaction problems, and gen-
erated solutions and bond graph-based simulation models were developed. The overall
method constitutes a way to include such transformations into CDS to support the gen-
eration and evaluation step of the general CDS framework by Cagan et al. [18]. In this
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work, the transformations enable the synthesis of concept topologies using the algorithms
available for solving Boolean satisfiability problems, the generation variable assignments
using constraint satisfaction and the behavioral simulation of the generated concepts.

3. How to enable a mapping between abstract components and simulation
models describing their behavior for computational design synthesis?

As described in Section 2.5, the success of design automation in VLSI design is highly
due to the independence of the generic components that are used to design new chip
designs [8]. Therefore, the concepts used there cannot easily be transferred to solving
engineering design tasks where different components highly influence each other. This
work introduces a modeling guideline to allow a mapping between abstract components
and corresponding partial simulation models. Characteristics of bond graphs are used to
assure the compatibility of these models. This step allows the evaluation of generated
concepts without being constrained to predefined simulation models and narrow fields of
application.

7.2 Limitations & Future Work
Several challenges exist using this method. The metamodel definition has to be carried
out carefully. Although the inclusion of declarative knowledge in a metamodel, as used in
this work, is more intuitive than in rules or rule sequences and can, therefore, more easily
be taught to designers from industry, the formulation of an engineering task as a PMP is
not trivial. A further refinement of the port and element hierarchies is often needed to
prevent insufficient solutions. Additionally, modeling the partial simulation models for
the system boundary and the different components requires in-depth knowledge of the in-
cluded domains. However, considering the method in an industrial context, the different
components would be modeled and designed by specialist departments. The development
department, where the final synthesis is carried out, provides the port hierarchy to ensure
the compatibility of the different components and defines the system boundary for the
development task that is to be tackled. Applying the method enables the development
department to generate and evaluate the solution space for the specific task, instead of
only investigating 5-20 different concepts, which is usual manual development processes
[16]. However, this application is only an imaginary application. Future work should
include user studies in an industrial context to investigate the modeling effort and support
provided by the method.

Another issue is the calculation time. Since SAT problems are CPU-intensive, the cal-
culation time for bigger scopes becomes unbearable. In this work’s case studies the actual
time per scope evaluation was limited due to the batch system working on Brutus17. Al-
though a lot of the small scopes could be evaluated for a time limit of four hours in the
second powertrain case study (cf. Section 6.3), most of the scopes were stopped at the
time limit. However, during the work on this case study, the time limit of four hours
proved to be a good compromise between waiting time on the server and solution space

17http://www.brutus.ethz.ch/
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exploration. But, this means, that the complete exploration of the solution space cannot be
guaranteed. Apart from the solving times regarding the SAT problem, the solving times
for the CSP and the time to run the simulation are also to be considered. For the sec-
ond powertrain case study (cf. Section 6.3) the generation of 10000 variable assignments
need between 5 seconds and more than 160 hours CPU-time on Brutus. Applying parallel
solvers and several instances of the solving process are used to reduce the actual time
needed for solving. The optimization of the 97 different powertrain concepts needed in
total approximately 395 hours which results in on average four hours for 500 iteration for
each powertrain concept.

Future work has to consider strategies to reduce the total application time of the method.
One possibility is to implement a better scope prediction to eliminate the time spent
searching scopes with no solutions. Another possibility is to break large engineering
tasks into smaller subtasks with, therefore, smaller scopes. Additionally, future work
should consider a generic way to find reasonable settings for the different parameters of
the method: i) the number of iterations for simulated annealing, ii) the number of variable
assignments to generate, iii) the amplifier k for the optimization. The number of iterations
directly influences the application time, since every simulation run, i.e. calculation of the
objective function value, takes a certain amount of time depending on the complexity of
the simulation model. The time expense for the generation of the variable assignments
becomes linearly larger with each additional variable assignments. The influence of the
amplifier k was already described in Section 4.4.

Another factor that influences the needed calculation time is the number of operation
points that is defined in the system boundary. The following example data was revealed
using the powertrain CMG presented in Figure 57 on page 88. Table 8 shows the times
needed to generate 10000 variable assignments with different number of operation points
and shows that the needed time increases with the number of operation points. However,
the number of operation points also influences the number of iterations needed in sim-
ulated annealing. Figure 65 shows the convergence of the objective function value for
a powertrain averaged over each ten runs of the optimization using simulated annealing
with different starting points. As can be seen, having defined 13 operation points, the
simulated annealing process starts in a more advantageous position. Only after about 80
iterations, the average cumulated error considering no operation points reaches the initial
value of the average cumulated error considering 13 operation points.

Table 8: The influence of the number of operation points on the solving of the CSP for an electric
powertrain with nine design variables and 10000 assignments to be generated.

Number of operation points [-] Solving time on Brutus [s]
0 10
7 2355

13 3807

Implementing a stopping criterion that stops simulated annealing after n iterations with
no change of the objective function value could be a possibility to reduce the application
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Figure 65: The average convergence of the ten runs of the simulated annealing process for
a powertrain concept, once having defined none and once having defined 13 different operation
points.

time. To investigate the impact of such criterion on application time and solution quality,
a study on the example powertrain CMG mentioned above (cf. Figure 57) is conducted,
including variable assignments generated with and without operation points.

The results of the study are shown in Figure 66. The average solution quality qav is
calculated following Eq. 71 with rni

being the objective function value when reaching
the stopping criteria in run i, rmi

being the objective function value after performing the
maximum number of iterations for run i, and z being the number of runs with different
starting points. The average time savings tav are calculated using Eq. 72, with kni

being
the total number of iterations performed in run i given the stopping criteria n and m being
the maximum number of allowed iterations.

qav =
1

z

z∑
i=1

(
1− rni

− rmi

rmi

)
(71)

tav =
1

z

z∑
i=1

m− kni

m
(72)

The results of the study with z being 10,m being 500, and n ∈ {25, 50, 75, 100, 125, 150}
are shown in Figure 66. As can be seen, the implementation of a stopping criterion en-
ables substantial time savings, especially for a small n. However, the result quality qav
decreases the smaller n is chosen. Investigating the influence of including operational
points in the generation of variable assignments the following can be concluded. Whereas
the time savings are similar whether operation points are included or not, the solution
quality is consequently higher, especially for a small n. For instance for n = 125, the
time savings with and without operational points are about 30 % (32.7 % with; 28.6 %
without) but the result quality with operational data is at 99.6 % whereas the one without



105

Figure 66: The average time savings and result quality (each averaged over ten runs) over the
stopping criterion n given a maximum number of 500 iterations.

operational data is only 89.4 %. However, this study was only conducted on one pow-
ertrain example and the general validity of the findings has yet to be confirmed using a
representative set of the results from the case studies.

If the observations are confirmed after generally including the stopping criterion in the
method, future work should consider developing heuristics to automatically set the pa-
rameters of the method. To do that, the metamodel and the generated CMGs should be
analyzed in order to find the most opportune combination of parameters that reduces the
application time while maintaining a reasonable quality of the results.

Another approach that should be investigated is a hybrid approach using this method
in combination with a graph grammar. Graph grammar rules can be generated using this
work’s topological synthesis approach by generating replacements for single components
or connections. An example process is shown in Figure 67. Here, two example replace-
ments for an internal combustion engine are generated by inverting the internal combus-
tion engine’s port configuration and including it in a system boundary. The topologies
that are generated for this system boundary can be used to replace an internal combustion
engine component in a CMG. The rules that result can be used to systematically evolve an
initial model, which is generated for the design tasks initial system boundary. Due to be-
ing able to simulate the concepts, the effect of rule applications on the objective function
value can be evaluated. Advantageous rules [116] and rule application sequences [117]
can be identified and used to guide the generation process. This approach could combine
the advantage of this work’s method, i.e. that the designer is released from defining the
rules manually, with the advantages of graph grammars, i.e. computationally inexpensive
graph transformations and advanced search algorithms.

In this work, simulated annealing is used. As introduced in Section 3.4, simulated
annealing [89] is a stochastic optimization method and was chosen because it showed
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Figure 67: Example process for generating two example replacements for a combustion engine
component using the metamodel from Section 6.3

its potential in a wide range of synthesis applications and the variables do not have to
be encoded in a fixed representation for the method application. The method presented
in this thesis could also work with other optimization methods. The only restriction is,
that these methods have to allow the identification of the next variable assignment to be
evaluated in the generated set of variable assignments. Despite this, more advanced opti-
mization methods should be investigated to reduce the number of needed iterations and to
avoid local optima and, therefore, to improve the results. One possibility is pattern search
[118]. Here, the surrounding of the initial variable assignment are investigated at a certain
distance and the next iterations are pursued in the direction that showed promise in the
initial investigation. When the surroundings contain no more opportune assignments, the
distance is decreased and the search continued. Another possibility is the covariance ma-
trix adaptation evolution strategy (CMA-ES) [119]. In this method, starting at an initial
variable assignment, variable assignments are investigated in a multivariate normal distri-
bution around the initial assignment. A percentage of the best found assignments is used
to average a new mean value for the normal distribution. The dependencies between the
variables are embodied in a covariance matrix. This matrix is updated on every iteration
to increase the possibility of pursuing previously successful search directions.

Besides looking for alternative optimization methods, two more limitations should be
resolved. The first one is the current restriction to single-objective optimization. Making
multi-objective optimization available would enable a better evaluation of the generated
concepts. The second limitation is the almost exclusive use of continuous numerical vari-
ables. Whereas methods exist to solve mixed constraint satisfaction problem [71], the
optimization method used in this work relies on the Euclidean distance between the vari-
able assignments. This only works limited for variables in an integer domain, but not for
other discrete variables. This issue should be resolved in future work.

Another research field that will be investigated is overcoming the limitation of only be-
ing able to generate and evaluate energy- and signal-based systems. As shown in Section
6.1, the synthesis method used in this work allows the free definition of ports. The gen-
eral approach of combining partial simulation models, per se, works with any declarative
modeling paradigm for simulation. Modelica, for instance, allows the user to define any
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connector not being limited to different forms of energy and signals. However, modeling
guidelines similar to the ones presented in this work for bond graphs have to be developed
to assure that the generated concepts can be simulated in the end.

Design automation not only considers conceptual design but also other phases of the
product development process. As mentioned before, this method is a big step in automat-
ing conceptual design, but it is dependent on the results from the planning and task clarifi-
cation, i.e. the requirements list [10]. In order to automate requirements engineering, new
challenges will have to be faced. A formal description of requirements is needed, which
then allows to automatically refine to bring the the requirements to the needed level of
granularity. One possibility could be adapting target cascading methods, as, for instance,
introduced by Kim et al. [120] for automotive vehicle design. Further, to make it more
accessible, natural language processing should be included as, for instance, presented in
[121] in the domain of software requirements.
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8 Conclusion

The gap between available information and the importance of the decisions makes con-
ceptual design a crucial phase of every product development process. The trend towards
higher product complexity incorporating different engineering domains even magnifies
this gap. But for all that, the computational support in conceptual design is still sparse
and uncommon.

In Section 4, this thesis presents a seamless automated computational design synthe-
sis approach for the generation and evaluation of solution spaces for conceptual design
tasks. The object-oriented graph-based framework provides designer with the possibility
to encapsulate task specifications and engineering knowledge in the metamodel. Using
the embedded knowledge, alternative concept topologies are generated using first-order
logic descriptions and Boolean satisfiability. Assignments for the design variables are
generated using constraint satisfaction and the optimal assignment is the generated set is
determined using simulated annealing, evaluating the concepts with automatically gener-
ated simulation models.

This thesis intends to help to resolve the issues one through four raised in Section 1
and, by that, make CDS more attractive for engineering practice. The first challenge is the
often overwhelming number of design alternatives that is presented to the user without
sufficient evaluation. To this issue, this thesis contributes a new method to generate and
evaluate solution spaces for engineering tasks. The mapping to simulation models allows
the performance evaluation of the concepts in the actual task, giving designers a means to
efficiently select promising concepts for embodiment design.

The second challenge states the difficulty of knowledge formalization and the lack of
support for designers doing it. In this work’s method, the designer is only concerned with
the definition of the metamodel. In contrast to, for instance, rule-based approaches, there
is no knowledge needed about the methods operators and their execution. The designer
only defines the available components and the system boundary, the rest of the method is
designed to work fully automatically. To support designers developing partial simulation
models for the different component types, modeling guidelines are presented to assure a
well defined causality in the generated simulation models.

The third challenge is the limitation of viewpoints towards a concept due to the lim-
ited use of different knowledge and concept representations. Towards this challenge, this
thesis contributes generic model transformations between the object-oriented graph based
modeling framework and i) first-order logic, ii) constraint satisfaction problems, and iii)
bond graph-based simulation models. Each representation is used to enhance the com-
pleteness of the concept definition to support the designer with as much knowledge as
possible to base his or her decision making on.

To address the fourth challenge, the shortfall of synthesis systems that scale up to the
complexity of the tasks in engineering practice, in Section 6, four case studies are pre-
sented that aim at three different levels of complexity (II, III, and IV). This shows the ap-
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plicability of the method for the design of technical system ranging from sub-assemblies
(printhead drives in Section 6.4) over more complex machines (automotive powertrains in
Section 6.2 and 6.3) to plants (chemical process engineering in Section 6.1). The meta-
models provided for these case study further provide a good start and example application
for further research projects.

The main issues that remain for future work are means to reduce the calculation time.
These can include strategies to subdivide design tasks, more effective optimization algo-
rithms or an automated model transformation towards a set of graph rules that could be
used in a guided search instead of exhaustive generation. Further, ways should be inves-
tigated to aim at further automating design process in the direction of planning and task
clarification as well as in the direction of embodiment design.

With regards to the conceptual design phase according to Pahl et al. [10] (see Figure
4 on page 5), this thesis proposes a method that allows automating most parts of con-
ceptual design. Especially when envisioning using the method over several projects, the
metamodel is predefined and the designers’ task is merely the definition of the system
boundary. Applying the method generates a solution space including concept alternatives,
each with a performance evaluation. From these alternatives, the designer can select the
most promising concepts for the evaluation of economic criteria and after that, has a good
foundation to support the decisions towards one or more principle solutions.
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