
PERFORMANCE-BASED

COMPUTATIONAL SYNTHESIS

OF

PARAMETRIC MECHANICAL SYSTEMS

Alex C Starling

St John’s College

January 2004

A dissertation submitted for the Degree of Doctor of Philosophy

Cambridge University Engineering Department

- 2 -

In memory of

MATTHIAS WAGNER

* 7 JUNE 1977 † 3 DECEMBER 2003

Taken too soon

Declaration

Except where otherwise stated, this thesis is the result of my own research and does

not include the outcome of work done in collaboration.

This thesis has not been submitted in whole or in part for consideration for any other

degree of qualification at this University or any other institute of learning.

This thesis contains 94 figures, 27 tables and less than 52,000 words.

Alex C Starling

St John’s College

Cambridge

January 2004

- 4 -

Abstract

Keywords: computational synthesis, design search, design synthesis, grammatical

design, parallel grammar, performance-based design, vehicle transmission design

This research seeks to develop a synthesis formalism to aid and enhance the design of

mechanical systems by harnessing the power of the computer. For computer-assisted

generative design to be effective for exploring purposeful design possibilities to a

given specification, many tasks that to date are performed manually or as part of

designer-intensive computer-based processes must be approached in new ways.

This research contributes a new type of production system, a parallel grammar for

mechanical systems, developed using a Function-Behaviour-Structure representation,

to generate and modify a variety of designs. Geometric and topological constraints are

used to bound the design space, termed the language of the grammar, to ensure the

validity of designs that can be generated with the grammar. Four case studies are

considered, namely the design domain of mechanical clocks and watches, the redesign

of an electromechanical camera winding mechanism, power drill design and the

generation of alternative vehicle gearbox configurations. For verification purposes,

the parallel grammar is used by hand to recreate existing designs. Computational

generation of novel design configurations is driven by performance-based evaluation

of designs using geometry-based metrics and behavioural analysis of automatically

generated simulation models. Multi-objective stochastic search, in the form of a

hybrid pattern search developed as part of this research, is used to generate Pareto sets

of optimally directed designs. The work is validated through an investigation into the

generation of novel transaxle gearbox designs in collaboration with an automotive

power transmission design company.

Acknowledgements

The following people and organisations have provided and/or facilitated funding for

various parts of this research. I am extremely grateful for this support.

Dr Kristi Shea The Royal Academy of Engineering

Dr R E McConnel Dr P John Clarkson

Mr Malcolm Shirley St John’s College, Cambridge

The American Association for Artificial
Intelligence

The Engineering and Physical Sciences
Research Council

The National Science Foundation The Newton Trust

Department of Engineering, Cambridge
University

The Royal Commission for the Exhibition
of 1851

The Leverhulme Trust

Many other people have assisted with contributions of an academic or technical

nature, notably Dr Rob Bracewell, Dr Chris Vale and Francesca Bolognini. I am

indebted to Dr Peter Poon and Barry James at Romax Technology for sharing their

vision of the future; thanks also to Kevin Hewitt at Black and Decker. Andrew

Flintham provided and maintained the infrastructure that made possible much of the

implementation side of this research. Above all, my thanks go to Dr Kristi Shea for

her acumen and drive, and for setting out high standards of achievement to strive for.

Finally, this thesis would not have happened without the support of my friends and

family.

Thank you all.

- 6 -

Contents

Declaration... 3

Abstract.. 4

Acknowledgements.. 5

Contents ... 6

Figures ... 10

Tables... 15

1. Introduction.. 17

1.1. Research motives ... 18

1.2. Storyboard.. 20

1.2.1. Storyboard scenario ... 20

1.2.2. Conclusions from storyboard scenario .. 22

1.3. Thesis structure.. 22

2. Method... 24

3. Background.. 28

3.1. Engineering design .. 29

3.2. Engineering design synthesis... 34

3.3. Production systems .. 37

3.3.1. Design grammars... 39

3.3.1.1. Shape grammars ... 41

CONTENTS

- 7 -

3.3.1.2. Graph grammars ... 45

3.4. Representation and functionality ... 47

3.4.1. Function, behaviour and structure ... 47

3.4.2. Functional integration.. 50

3.4.3. Bond graphs ... 52

3.5. Analysis and evaluation... 53

3.6. Search and optimisation... 55

3.6.1. Constraints ... 57

3.6.2. Spatial packing problems... 59

3.7. Comparison of existing research ... 60

3.8. Thesis contributions... 63

4. Design generation .. 66

4.1. A parallel grammar .. 66

4.2. The design domain of clocks and watches .. 67

4.3. A clock grammar ... 71

4.3.1. The function grammar ... 71

4.3.2. The structure grammar... 74

4.4. Constraint specification ... 77

4.5. Verification of the parallel grammar ... 81

4.6. Generation of clock designs .. 84

4.6.1. Complexity and generality... 84

4.6.2. Generate-and-test... 85

4.6.3. (Re)creating designs .. 87

4.6.4. Comparison of generated designs.. 92

4.6.5. Clans and families of designs .. 94

4.7. Conclusions.. 96

4.8. Limitations... 97

4.9. Implementation details .. 98

5. Finding preferred solutions.. 100

5.1. Modification of designs ... 101

5.1.1. Rationale for perturbation grammar .. 101

5.1.2. Modification issues.. 102

CONTENTS

- 8 -

5.1.3. Expanded generation framework... 102

5.1.4. Perturb rules... 103

5.2. Geometric design metrics .. 109

5.3. Searching for preferred designs... 112

5.3.1. Random downhill search ... 112

5.3.2. Simulated annealing .. 114

5.3.3. Random downhill search vs. simulated annealing 117

5.4. Improved design generation .. 117

5.5. Conclusions.. 125

5.6. Limitations... 125

5.7. Implementation details .. 127

6. Enhancing design evaluation ... 128

6.1. Framework for enhanced design evaluation.. 129

6.2. Behavioural modelling .. 130

6.2.1. Simulation.. 131

6.2.2. Camera mechanism example ... 132

6.2.3. Parallel grammar addition ... 137

6.3. Performance feedback ... 138

6.4. A multi-objective hybrid pattern search .. 142

6.4.1. Hybrid pattern search... 142

6.4.2. Multi-objective search ... 145

6.4.3. Hybrid search verification ... 148

6.5. Search results ... 152

6.5.1. Performance-based results... 152

6.6. Conclusions.. 158

6.7. Implementation details .. 159

6.7.1. Behavioural performance feedback... 160

6.7.2. Hybrid pattern search details ... 162

7. Industrial applicability ... 166

7.1. Validation of the parallel grammar.. 166

7.1.1. Power drill design.. 167

7.1.2. Vehicle gearbox design ... 171

CONTENTS

- 9 -

7.2. Clutches ... 177

7.2.1. Black and Decker drill ... 179

7.2.2. Transmission system.. 182

7.2.3. Graph modification.. 184

7.3. Conclusions.. 190

8. Discussion and conclusions ... 191

8.1. Contributions ... 191

8.2. Discussion.. 193

8.3. Further research ... 195

8.3.1. Short term .. 195

8.3.2. Long term... 196

8.4. Final words .. 196

9. Glossary ... 197

10. References.. 202

- 10 -

Figures

Figure 1-1: Thesis statement.. 18

Figure 1-2: Audi R8 Transmission by Ricardo (Bamsey et al. 2001)......................... 20

Figure 2-1: Design Research Methodology Framework (Blessing et al. 1998).......... 24

Figure 2-2: Methodology for researching computer aided engineering design tools

(Bracewell et al. 2001)... 25

Figure 2-3: Parametric synthesis framework... 26

Figure 3-1: Steps of the planning and design process (Pahl and Beitz 1996) 31

Figure 3-2: Generic development process (Ulrich and Eppinger 1995) 32

Figure 3-3: Product development process (Otto and Wood 2001).............................. 33

Figure 3-4: Function-Behaviour-State (or Structure) model (Umeda et al. 1990)...... 48

Figure 3-5: Representation comparison sketches I.. 61

Figure 3-6: Representation comparison sketches II .. 62

Figure 3-7: ‘Design-line’ comparison of existing work .. 63

Figure 4-1: A parallel grammar schematic .. 67

Figure 4-2: A clockwork alarm clock.. 69

Figure 4-3: Black box model of a clock .. 70

Figure 4-4: Simple Function-Behaviour-Structure model of a mechanical clock....... 70

Figure 4-5: The set FR of function rules... 72

Figure 4-6: A possible function graph for a clock with minute and hour hands,

escapement and power source. The connectivity labels [c] can, in general, be

suppressed for completed graphs without information loss. 72

Figure 4-7: Transformed function graph to represent power flow.............................. 74

Figure 4-8: The set SR of structure rules .. 77

Figure 4-9: Gear pair schematic for constraint visualisation....................................... 78

Figure 4-10: Synthesized model of real clock (base and face plates not included). ... 81

FIGURES

- 11 -

Figure 4-11: Application of rules to create a clock design. The colouring of elements

in these diagrams has no functional purpose and is intended to allow spindle

(orange), gear disk (red) and power source (white) elements to be easily

distinguished. ... 83

Figure 4-12: Application of structure rules ... 85

Figure 4-13: Generate-and-test algorithm for computational creation of design

solutions... 86

Figure 4-14: Solution set A – clock 1. Colourings are as before; in addition, plates are

blue and semi-transparent. Labels have been added to assist in spindle

identification. Spindle 7 ([E] indicates schematic escapement) is located behind

spindles 5 and 6. .. 88

Figure 4-15: Solution set B – clock 3 (left) and clock 5 (right) 90

Figure 4-16: Solution set C – function graph .. 91

Figure 4-17: Solution set C – clock 5 (left) and clock 11 (right) 91

Figure 4-18: Solution set D – function graph (see Table 4-2 for explanation of labels)

... 92

Figure 4-19: Solution set D – clock 12 (top left), clock 17 (top right), 92

Figure 4-20: Simple metric representation of solutions for data sets A, B, C and D.. 93

Figure 4-21: The clan hierarchy .. 95

Figure 4-22: Clans and families of designs – some examples 96

Figure 4-23: Inspecting a generated model with a VRML viewer.............................. 99

Figure 5-1: Finding preferred designs – modification and evaluation 103

Figure 5-2: Perturb rules I ... 104

Figure 5-3: Perturb rules II .. 105

Figure 5-4: Application of P-Rules to enable continuation of design generation. 108

Figure 5-5: Set of function rules FR with new rule D to insert/delete nodes 109

Figure 5-6: Objective function values for (1) non-optimal, (2) locally optimal and (3)

globally optimal design states.. 113

Figure 5-7: Random downhill search algorithm.. 114

Figure 5-8: Simulated annealing search algorithm.. 115

Figure 5-9: Initial solution #2. Thickness of initial solution is 20 mm. 118

Figure 5-10: Progress of RD (top) and SA (bottom) algorithms over 50,000 iterations.

... 120

FIGURES

- 12 -

Figure 5-11: Data set 5A, simulated annealing algorithm solution #18 – thinnest

design. Arrow highlights example of chunky gear disk. 121

Figure 6-1: A simple Modelica model of a gear pair .. 131

Figure 6-2: Function-Behaviour-Structure representation of a camera, adapted from

(Bolognini 2003).. 133

Figure 6-3: Vivitar camera with winding mechanism exposed (view from bottom) 134

Figure 6-4: Winding mechanism of existing camera (gear train close-up)............... 135

Figure 6-5: Function graph of original camera winding mechanism 135

Figure 6-6: Gear train class (Bolognini 2003)... 136

Figure 6-7: The end element [W] of the gear train that is connected to the film cradle

... 137

Figure 6-8: New addition to parallel grammar (perturb rule P15) for camera design138

Figure 6-9: Angle of rotation θ of spindles in gear train during camera operation... 139

Figure 6-10: Power consumption from battery during camera winding operation. .. 140

Figure 6-11: Performance-based evaluation – the tstop signal output 141

Figure 6-12: Hooke and Jeeves algorithm for a two-dimensional function space

(Hooke and Jeeves 1961)... 143

Figure 6-13: Flowchart of hybrid pattern search algorithm 144

Figure 6-14: A non-monotonic sequence of objective function changes (schematic)

... 145

Figure 6-15: Multi-objective synthesis algorithm. .. 147

Figure 6-16: Best archives generated for different pattern lengths Np 150

Figure 6-17: Very thin clock design (thickness 5.3 mm) – pattern step length 1=pN ,

solution #5 from 19th design archive ... 151

Figure 6-18: Multi-objective camera search results for tstop and qbattery (data set 01450)

... 154

Figure 6-19: Multi-objective camera search results showing initial solutions (data set

16042) .. 155

Figure 6-20: Multi-objective camera search results for mass [scaled metric value] and

tstop [s]... 155

Figure 6-21: Multi-objective camera search results for aspect ratio and battery usage

(data set 30691).. 156

FIGURES

- 13 -

Figure 6-22: Multi-objective camera search results for mass and battery usage (data

set 30698)... 156

Figure 6-23: Pareto solutions #43 (top) and #44 (bottom) from data set 16092....... 157

Figure 6-24: Pareto solution #32 from data set 16092 .. 158

Figure 6-25: Modelica model of Vivitar CV50 as animated in Dymola modelling

environment, adapted from (Bolognini 2003). .. 161

Figure 6-26: Performance feedback file structure ... 162

Figure 6-27: Pseudocode for hybrid pattern search algorithm 165

Figure 7-1: Black and Decker KR850CRE corded drill.. 168

Figure 7-2: Exploded part diagram of corded drill.. 169

Figure 7-3: Close-up detail of exploded drill gear mechanism 170

Figure 7-4: Sketch of front wheel drive passenger car layout, adapted from (James

2003) .. 172

Figure 7-5: A standard 5-speed gearbox layout, adapted from (James 2003)........... 173

Figure 7-6: An alternative 5-speed gearbox layout, adapted from (James 2003) 174

Figure 7-7: First speed loaded gears for alternative 5-speed gearbox layout, adapted

from (James 2003) ... 175

Figure 7-8: Multiple shaft connections with existing structure rules 177

Figure 7-9: New function rule E for the drill and gearbox case studies.................... 178

Figure 7-10: Two possible rule sequences to create a function representation for the

drill case study ... 180

Figure 7-11: Drill case study: function (top left) and structure (top right)

representations; assembled mechanism (bottom).. 181

Figure 7-12: Function graph for standard (left) and alternative (right) 5-speed

transaxle gearbox layout .. 183

Figure 7-13: Active edges for different speeds in the alternative 5-speed gearbox

graph (RHS of Figure 7-12) with node sequence for each speed...................... 184

Figure 7-14: Graph modification rules .. 185

Figure 7-15: A sequence of exploratory function graph transformations. 186

Figure 7-16: 5-speed gearbox configuration synthesised with the exploratory grammar

... 186

Figure 7-17: Active edges for different speeds in the novel 5-speed gearbox graph

(Figure 7-17) with node sequence for each speed to indicate power flow........ 187

Figure 7-18: Function graph for 15-speed gearbox for on/off-road vehicle 187

FIGURES

- 14 -

Figure 7-19: Active edges for different speeds in the 15-speed gearbox graph with

node sequence for each speed to indicate power flow 188

Figure 7-20: Schematic layout of 15-speed gearbox... 189

Figure 7-21: Alternative layout of 15-speed gearbox.. 190

- 15 -

Tables

Table 3-1: VLSI versus CEM design (Whitney 1996).. 35

Table 4-1: Sub-function embodiments for two different clocks 71

Table 4-2: Explanation of terminal labels used in the grammar 73

Table 4-3: Description of structure rules... 76

Table 4-4: Topological constraints .. 79

Table 4-5: Geometric constraints .. 80

Table 4-6: Detailed spatial constraints for generate-and-test experiments 89

Table 4-7: User-specified parameter values for generate-and-test experiments 94

Table 5-1: P-Rule details I... 106

Table 5-2: P-Rule details II ... 107

Table 5-3: Geometry-based metrics .. 111

Table 5-4: List of fundamental SA parameters with common value ranges used..... 116

Table 5-5: Summary of search methods used.. 117

Table 5-6: Summary of random downhill and simulated annealing solutions for thin

clock designs – data set 5A.. 119

Table 5-7: Results for weighted thickness metric – data set 5B 123

Table 5-8: Results for combined simple and weighted thickness metrics – data set 5C

... 123

Table 5-9: Results for simple thickness and mass metrics – data set 5D.................. 124

Table 5-10: Results for search using compactness metric – data set 5E................... 125

Table 6-1: Explanation of terminal labels used for the camera design problem....... 136

Table 6-2: Details of new perturb rule P15 ... 138

Table 6-3: Performance-based evaluation variables.. 141

Table 6-4: Summary of hybrid pattern search results for thin clock designs............ 149

Table 6-5: C++ functions and run-time variables for performance feedback 160

Table 6-6: Files used for performance feedback implementation 161

TABLES

- 16 -

Table 6-7: User-defined parameters for hybrid pattern search algorithm 163

Table 7-1: Summary of gearbox layout options .. 176

Table 7-2: Explanation of terminal labels used for the validation case studies 179

- 17 -

1. Introduction

In an age where computers pervade much of our lives, it is perhaps surprising that this

‘rise of the machines’ has been a very recent trend. Almost a century passed after the

death of Charles Babbage, the ‘father of computing’, in 1871 before truly automated

computing began to take a hold of Western civilisation. Since then, silicon-based

central processing units (CPUs) have become extremely fast calculating machines that

people rely on, directly and indirectly, as they go about their daily lives. For

engineers, the computer is a key tool, used for enhanced sketching, i.e. Computer

Aided Design (CAD), analysis and optimisation, as well as a myriad of other

purposes1. The success of these approaches lies in harnessing the power of the

computer to rapidly perform routine tasks that would otherwise take too much time to

carry out by hand.

While computational methods and tools have greatly influenced our ability to model

and analyse potential designs, they have not yet contributed greatly in terms of design

synthesis, i.e. the generation of novel product and artefact designs. Despite the

proliferation of computer tools for all aspects of engineering design, it seems that the

task of synthesising new ideas and creating innovative and original concepts has

remained almost the exclusive burden of the human mind. Mapping design

specifications to tangible embodiments, i.e. the synthesis of new design ideas,

remains, in this age of the computer, a manual task. The core question underlying this

research is whether computational methods can be developed that can stand alongside

the mechanical engineer as a ‘synthesis partner’ to further the development of

innovative design generation.

1 i.e. for machine tools, robotics, knowledge management, networking, communication, …

SECTION 1.1: RESEARCH MOTIVES

- 18 -

The aim of this research is summarised in the thesis statement in Figure 1-1.

‘The aim of this research is to enhance the design of
parametric mechanical systems through the

development and use of computational synthesis
methods and tools’

Figure 1-1: Thesis statement

1.1. Research motives

Clearly definable problems, such as might be encountered in mathematics, are well-

structured (Simon 1973). It is often possible to find a single solution to such problems

and then prove that it is correct. Analysis problems are examples of well-structured

problems. For instance, a simple hypothesis, e.g. a design can withstand a force X

applied at point Y in direction Z, can often be proved correct or incorrect using a

closed-world assumption. Not all problems, however, are well-structured. Design

synthesis tasks tend to be ill-structured (Simon 1973):

Definition: An ill-structured problem is a problem
whose structure lacks definition in some respect.

Definition 1-1: Definition of an ill-structured problem (Simon 1973)

Ill-structured problems are open-ended. There may be no prescribed method of

solution, no limitation on the number of possible answers and no knowledge of the

structure or size of potential design solutions. There is also no guarantee that a

solution can be found. ‘For the sake of illustration, what might we take as an ill-

structured task? Deciding on a career. Discovering a new scientific theory. Evaluating

a new ballet. Planning what to do with a free day. Painting a picture. Making

conversation with a just re-encountered long time acquaintance. Designing a new

house. Making a new invention. Finding a way out of Vietnam. Thinking up a critical

experiment to test a scientific hypothesis. Making a silk purse from a sow's ear.

Generating this list’ (Newell and Simon 1972).

SECTION 1.1: RESEARCH MOTIVES

- 19 -

Methods that could assist the solution of ill-structured problems would be of great

benefit to engineers. Fully automated design and manufacture has been described as

the ‘holy grail of the CAD/CAM2 field’ (Lipson and Pollack 2000a). Total automation

may be an unattainable goal, but the elevation of the computer from humble

workhorse to synthesis partner, capable of working alongside a human designer and

contributing innovative and credible design ideas must be considered a possibility for

the near future.

The aim of this research is to create and develop computational tools to assist the

work of the mechanical systems designer, following on from work already started in

this and other fields of research. By attempting to characterise the elements of

mechanical systems through parameterised form and function, it is hoped to create

examples of how generative methods can be used successfully to aid innovative

design of mechanical systems, an important part of being able to address ill-structured

problems. ‘Creativity is an inspirational force that generates new ideas or produces

novel combinations of existing ideas, leading to further solutions or deeper

understanding. Creativity is often associated with an intuitive, synthesising approach’

(Pahl and Beitz 1996). Without some aspect of innovation or creativity it would be

difficult to envisage the production of new ideas. ‘Synthesis is not a matter of sheer

inspiration. Creativity involves reasoning and calculation, too’ (French 1994). Design

synthesis problems, though ill-structured, are by no means impossible to solve, though

Wielinga and Schreiber (1997) note that ‘solving even the simplest forms of

configuration design and layout design requires advanced AI technology’.

Computational synthesis methods could be of assistance in their solution, acting in

concert with a designer to encourage lateral thinking and rapidly generate novel

solutions.

2 Computer Aided Machining.

SECTION 1.2: STORYBOARD

- 20 -

1.2. Storyboard

The example in the following storyboard is based on an actual design project that was

part of the inspiration for this research. The 6-speed gearbox shown in Figure 1-2 was

designed for the Audi R8 sportscar that swept to a 1-2-3 podium finish in the 2000 Le

Mans 24 hour race, subsequently also winning the 2001 and 2002 events. A classic

example of high quality engineering providing a clear-cut technological advantage, it

is this kind of design problem that provides the motivation for perfecting

computational synthesis tools that can have an impact on future design challenges.

1.2.1. Storyboard scenario

A team of designers have been given the task of producing a bespoke transmission

system for a particular car manufacturer. The manufacturer is hoping to enter a race

version of its car into a well-known endurance race in the hope of promoting its

reputation in the field of quality engineering (Bamsey et al. 2001). A graphical

representation of the resulting transmission system is provided in Figure 1-2.

Figure 1-2: Audi R8 Transmission by Ricardo (Bamsey et al. 2001)

SECTION 1.2: STORYBOARD

- 21 -

The car is already being raced with an older transmission system that is deemed to be

out of date. The new system is to fit into the old car, so rough size constraints and

power input/output envelopes are already known, though the engine of the new car is

likely to be developed further. The main problem with the old transmission is its

reliability: the endurance race is tough on transmissions due to a rough track surface

and so the designers have been charged with two main targets, (1) to ensure high

performance with exceptional reliability, so that there is a good chance that the

transmission need not be changed during the course of a race, and (2) to allow an easy

change of the complete transmission system in a pit-stop should this be necessary.

The former target takes precedence as any unnecessary pit-stop could be the

difference between winning and losing the race.

The design team would like to develop a new solution to this design problem, i.e.

more than minor modifications to the old transmission system. They would also like

to explore as many possible solutions as possible without necessarily going through

the whole design and prototype cycle as the race is an annual one and therefore there

is limited time for this project.

The team are able to use software that has been designed in-house over the last years,

allowing them to take advantage of code libraries of commonly used parts that are

required for the new transmission system. The new design ideas that they have for this

problem can be added to these libraries, which model function and parametric form.

Design proceeds using synthesis tools that permit both manual and computer-

controlled exploration of design alternatives, adapting possible embodiments to

spatial and behavioural constraints. These constraints include information on

manufacturing detail that have been ascertained by the designers over the course of

the design process, as well as generic common sense laws such as ensuring no overlap

of component parts. The search for good designs incorporates computational

optimisation to fine-tune designs, with objective functions targeting the desired

solution space, e.g. good endurance characteristics. Of the different results produced,

all of which exist as virtual prototypes, the most promising designs are selected for

further development, the final choice of design being made by the design team.

SECTION 1.3: THESIS STRUCTURE

- 22 -

1.2.2. Conclusions from storyboard scenario

Consideration of the storyboard scenario highlights some of the key facets required by

a successful computational method.

These include:

• parametric design representations that allow movement between different levels of

design detail,

• generative methods to create and modify designs at both a functional and spatial

level,

• methods of computationally exploring design spaces defined by the generative

method to mediate between possible designs,

• performance-based computational evaluation methods to afford fast and accurate

feedback on the quality of designs and

• effective data presentation and virtual prototyping for rapid dissemination of

synthesis results.

1.3. Thesis structure

This thesis is organised into chapters as follows:

Chapter 1 Introduction: the concept of design synthesis is introduced in the light of

the design motives for this research. A storyboard design synthesis scenario, the

inspiration for much of this research, is outlined.

Chapter 2 Method: the parametric synthesis framework used for this research is

described and placed in the context of existing general design methodologies.

SECTION 1.3: THESIS STRUCTURE

- 23 -

Chapter 3 Background: previous research pertinent to this thesis is discussed and

analysed. Particular research efforts are compared and the contributions of this thesis

are mapped out with reference to previous work.

Chapter 4 Design generation: a parallel grammar, consisting of function and

structure grammars, is introduced as a production system for synthesis of mechanical

designs. A clock grammar is considered as a case study for the parametric synthesis of

designs composed of gears, spindles and plates.

Chapter 5 Finding preferred solutions: a method of perturbing generated designs is

introduced. This extension to the parallel grammar enables design modification,

thereby facilitating search for optimally directed designs using simple geometry-based

evaluation metrics. Preferred clock designs are generated using the parallel grammar.

Chapter 6 Enhancing design evaluation: a performance-based evaluation method is

considered for use in conjunction with the parallel grammar. A simulation model is

generated to evaluate designs ‘on the fly’. A multi-objective hybrid pattern search

method is used to find preferred designs for a camera redesign case study.

Chapter 7 Industrial applicability: the parallel grammar is used for two industrial

case studies, the redesign of power drills and vehicle gearboxes. The grammar is

modified to allow parallel power paths for these systems, i.e. different output speeds

as selected by a user. A modification grammar is introduced to consider alternative

designs at a high level of abstraction.

Chapter 8 Discussion and conclusions: the thesis contents are discussed, future work

is mapped out and the thesis conclusions are made.

- 24 -

2. Method

A common methodology for engineering design research is shown in Figure 2-1

(Blessing et al. 1998). The four parts provide general guidelines for systematically

approaching engineering design research, namely (1) definition of success criteria, (2)

description of current design practice, (3) prescription of improvements to current

practice and (4) validation of newly changed practice.

Figure 2-1: Design Research Methodology Framework (Blessing et al. 1998)

Recently, more specific work has been carried out to formulate a methodology for

computer-aided engineering design (CaeD). Computer tools are becoming

increasingly vital to engineering design. Rapid and virtual prototyping,

communication between different software platforms, choices of design representation

and computer languages are of great consequence to the success of CaeD. As there is

no direct corollary to ‘pencil and paper’ design, computer-aided design research

CHAPTER 2: METHOD

- 25 -

requires a more tailor-made approach. A methodology, based on the framework in

Figure 2-1, is shown in Figure 2-2 (Bracewell et al. 2001).

Prescription
Following Step

Dependency

Rapid Change

Decide
Visualisation, Interaction

& Distribution
Requirements

Description II

Criteria

Description I

Define and Justify
Measurable Criteria

Choose Knowledge
Level Representations

Storyboard Tool in
Context of New
Design Process

Specify
Experiment
and Data
Collection
Software

Analyse
Data

Model Existing
Design/ Process

Rapid Software Prototyping

Social Science M
ethodology Support

E
ng

in
ee

ri
ng

 S
of

tw
ar

e
D

ev
el

op
m

en
t S

up
po

rt

Systems
Analysis

User Interface
Design

Computer
Science/A I

Data
Analysis

Method
Selection

Interview
Techniques

Observation
Techniques

Data
Mining

Experimental
Techniques

Interpretation

CSCW

Choose Knowledge
Modelling Tools

Choose
Methods

Knowledge
Modelling

Rapid Software Prototyping
Test by

Non-controlled
Experiment

Test by
Controlled
Experiment

Overall Success
Criteria

Evaluated Design
Tool

Choose
Development

Tools and
Components

Test
Theoretically

Choose
Development

Tools and
Components

Hardware
Technology

Software
Technology

Choose
Implementation

Level
Representations

Figure 2-2: Methodology for researching computer aided engineering design tools
(Bracewell et al. 2001)

This graphic is very complex and it is outside the scope of this chapter to discuss all

its aspects in detail. However, it is a useful summary of the large number of CaeD

issues that must be taken into consideration when undertaking software development.

This methodology has been validated by implementation of CaeDRe, a computer-

aided engineering design research environment (Bracewell and Shea 2001).

Continuing with the four-phase blueprint, a framework for design synthesis research

has been proposed (Starling and Shea 2002) based on a review of general approaches

(Antonsson and Cagan 2001) and previous, extensive work in the area of structural

synthesis, e.g. (Shea and Cagan 1997). This framework is shown in Figure 2-3.

CHAPTER 2: METHOD

- 26 -

Parametric
Synthesis

investigate

generate
evaluate

m
ed

ia
te

Figure 2-3: Parametric synthesis framework

The phases of the parametric synthesis framework provide a structure for design

synthesis research to investigate existing design domains, generate existing and novel

designs using performance-based evaluation to mediate between preferred novel

design alternatives (Shea and Starling 2003). The aim is to provide:

• a bottom-up synthesis model,

• three-dimensional parametric representations of fundamental design components

and their direct manipulation,

• sufficient knowledge within design representations to allow quantitative

performance analysis using integrated software where possible and enabling

possibilities for rapid prototyping,

• simple, flexible, robust and efficient representations of the design domain,

• generation of both innovative and conventional designs, the latter of which can be

used for theoretical verification of the system, and

CHAPTER 2: METHOD

- 27 -

• development of tools that enhance the capability of the designer for innovation

and creativity.

Subsequent research has provided analogous frameworks with similar aims, e.g.

(Campbell and Rai 2003). Such methods provide a rigorous yet flexible approach to

engineering design synthesis and specifically the development of useful computer

tools based on these synthesis principles.

The parametric synthesis methodology was followed during the undertaking of the

research in this thesis.

- 28 -

3. Background

This chapter places the design synthesis research contributions of this work in the

context of existing literature in relevant research areas. The following sections outline

the background that is relevant to this thesis. The chapter is structured as follows:

• Section 3.1 defines the concept of design and looks more closely at the nature of

the design process.

• Section 3.2 introduces the concept of engineering design synthesis. Relevant work

is presented to show the current state-of-the-art in this field.

• Production systems, a formalism for generation of designs, are introduced in

section 3.3. Design grammars, a type of production system, are presented as they

are particularly applicable to design synthesis research.

• Section 3.4 investigates the concept of a design, i.e. the tangible deliverables of

the design process.

• Section 3.5 shows how analysis and evaluation are vital parts of the synthesis

process. Behavioural evaluation is introduced as the basis of performance-based

synthesis.

• Section 3.6 looks at some of the tools available for search and optimisation that

can be used as part of synthesis methods to locate good design solutions.

Deterministic and non-deterministic (i.e. heuristic) optimisation methods are

SECTION 3.1: ENGINEERING DESIGN

- 29 -

differentiated. Constraints are discussed to highlight their importance for

successful optimisation routines.

• Section 3.7 compares selected pieces of existing design synthesis work in detail.

• Section 3.8 summarises the contributions of this thesis with respected to existing

research.

3.1. Engineering design

Due to its very nature, attempting a precise definition of engineering design is in itself

an ill-structured problem (Simon 1973). There exist a plethora of definitions, for

example (Andersson 2001; French 1999; Suh 2001; Yan 1998), that attempt, not

without success, to distil its essence. Dym (1994) proposes the following:

Definition: Engineering design is the systematic,
intelligent generation and evaluation of specifications
for artefacts whose form and function achieve stated

objectives and satisfy specified constraints.

Definition 3-1: Definition of engineering design (Dym 1994)

Definition 3-1 is useful for the purposes of this work as it clearly outlines the

fundamental issues that must be addressed when undertaking a design project. Firstly,

it enables the consideration of engineering design as a systematic process. Given an

unlimited amount of time, one can imagine an infinite number of proverbial monkeys

producing the complete works of Shakespeare (Elmo et al. 2002). Practically,

however, infinite time is not an available resource. Hence the need for ‘systematic,

intelligent generation and evaluation’.

Secondly, this definition targets the creation of real objects, or artefacts, that are

characterised by their ‘form and function’, in contrast to pure spatial design as might

be considered in the visual arts and architecture. Design representation issues for

computational design are addressed in section 3.4.

SECTION 3.1: ENGINEERING DESIGN

- 30 -

Thirdly, and perhaps most importantly, Dym’s definition highlights the importance of

design activities ‘[achieving] stated objectives’. While this statement may give the

impression of stating the obvious, achieving a number of objectives is not always an

easy task as they may, and indeed often do, come into conflict. For example, a new

power drill might be required to have a high degree of safety and also be inexpensive.

Finding the correct trade-off between these two fairly simple objectives will not

always be a straightforward task. Nevertheless, it is the responsibility of the design

engineer to develop solutions that provide good compromises to such problems.

Finally, Dym’s definition emphasises the need to ‘satisfy specified constraints’. It

would be wrong to perceive constraints solely as a straitjacket on design. Instead,

constraints provide an opportunity to design with a degree of accuracy, to create a

product that precisely fulfils the design requirements. Examples of constraints are

behavioural requirements, aesthetics, environmental and safety issues, price and

ergonomics. Constraints can be classified in many ways, for example hard or soft,

wish or must, achievable or not, equality or inequality. Interpreting design needs and

specifying the correct form to model constraints is a very important part of the design

process.

Understanding the design process goes further than giving a clear definition, as

successful design remains a hazy concept even for those who would claim to

understand it well. An often-quoted breakdown of the design process is given by Pahl

and Beitz, who divide it into four stages, (1) planning and task clarification, (2)

conceptual design, (3) embodiment design and (4) detail design (Pahl and Beitz

1996). Though these phases are sequentially arranged, Pahl and Beitz recognise the

need to allow a certain degree of overlap between them as well as iteration. The

flowchart in Figure 3-1 shows an overview of the general planning and design

process.

SECTION 3.1: ENGINEERING DESIGN

- 31 -

Task

Task Clarification

Design
Specification

Develop Principle
Solution

Concept

Develop
Construction

Structure

Preliminary
Layout

Define
Construction

Structure

Solution

U
pg

ra
de

 a
nd

 Im
rp

ov
e

P
la

nn
in

g
an

d
Ta

sk
 C

la
rif

ic
at

io
n

C
on

ce
pt

ua
l D

es
ig

n
E

m
bo

di
m

en
t

D
es

ig
n

Definitive
Layout

Prepare
Documentation

Product
Documentation

D
et

ai
l D

es
ig

n

Figure 3-1: Steps of the planning and design process (Pahl and Beitz 1996)

Ulrich and Eppinger (1995) outline a generic development process focussed

specifically on product design, encompassing marketing and manufacturing as well as

design. Their process is made up of five phases, of which the first four are very

similar to the Pahl and Beitz design stages. These are (1) concept development, (2)

SECTION 3.1: ENGINEERING DESIGN

- 32 -

system-level design, (3) detail design, (4) testing and refinement and (5) production

ramp-up (Figure 3-2).

Mission Statement Concept
Development

System-Level
Design Detail Design

Testing and
Refinement

Production
Ramp-Up Product Launch

Figure 3-2: Generic development process (Ulrich and Eppinger 1995)

Despite a slight contrast in emphasis between them, there is a large degree of overlap

between the planning and design process of Pahl and Beitz and the generic

development process of Ulrich and Eppinger. The former is a systematic approach to

engineering design in general, whereas the latter is geared more specifically towards

product design.

Another discourse on product design is provided by Otto and Wood (2001). With a

focus on reverse engineering and redesign for new product development, the authors

outline three main steps of a typical development process: (1) understand the

opportunity, (2) develop a concept and (3) implement a concept. In the case of

product development based on redesign, the design stages are slightly altered. A

graphical representation of Otto and Wood’s product development process is shown in

Figure 3-3.

SECTION 3.1: ENGINEERING DESIGN

- 33 -

New Product
Development

Product
Redesign

Reverse
Engineer

Develop a
Redesign

Implement a
Redesign

Understand the
Opportunity

Develop a
Concept

Implement a
Concept

Product

Figure 3-3: Product development process (Otto and Wood 2001)

The clear demarcation between design phases shown in these diagrams is for clarity of

representation. In practice, some design tasks bridge these divisions and their

classification into one particular design phase is not possible. Iteration is an important

part of all design process models. Apart from the three mentioned here, there are other

models that have particular emphases, such as the brand-recognition side of product

creation and placement, e.g. (Cagan and Vogel 2002). From an engineering

standpoint, the three models introduced here suffice as they give a firm basis from

which to research computational synthesis. Where possible, Pahl and Beitz will be

used as the main reference for design process terminology to avoid confusion arising

from the use of different nomenclature.

A final point to bear in mind is that while these models are meant to be descriptive,

i.e. illustrating how successful engineering design processes have worked in the past,

as well as prescriptive, i.e. outlining how successful engineering design processes can

be managed in the future, they are by no means exclusive. A solid engineering process

model, followed to the letter, is no guarantee of success. Equally, many designs have

been, and will continue to be, successfully produced without rigid adherence to the

principles behind the models introduced above.

SECTION 3.2: ENGINEERING DESIGN SYNTHESIS

- 34 -

3.2. Engineering design synthesis

Synthesis research, in the form of computational production systems, can be traced

back to the advent of the computer (Post 1943). Synthesis is a fundamental task of

engineering and can be thought of as attempting to create form to fulfil desired

behaviour (i.e. function). Existing research can be differentiated into computational

and non-computational, i.e. ‘paper-based’, methods.

Raphael and Smith (2003) describe synthesis from a logical point of view as being the

antithesis of analysis:

Definition: Synthesis is the reverse of analysis, where
target behaviour is used to infer a physical

configuration within an environment.

Definition 3-2: Definition of synthesis (Raphael and Smith 2003)

This definition does not capture the concept of generating designs as a formalism

within the parametric synthesis framework (Figure 2-3). Antonsson and Cagan (2001)

provide a more applicable definition of engineering design synthesis:

Definition: Synthesis is the creative step itself: the
conception and postulation of possibly new solutions to

solve a problem.

Definition 3-3: Engineering design synthesis (Antonsson and Cagan 2001)

Design synthesis is commonly a manual task: ‘In most engineering design, this step is

performed by creative human minds’3. Engineering design synthesis can be referred to

as being formal engineering design synthesis when it is ‘computable, structured and

rigorous, not ad hoc’3. The aim of this research is not to develop computational

creativity, but aid the creativity of designers through the provision of formal synthesis

methods for mechanical design, i.e. to enable the generation of novel mechanical

design solutions using computer tools.

3 These quotations are both obtained from (Antonsson and Cagan 2001).

SECTION 3.2: ENGINEERING DESIGN SYNTHESIS

- 35 -

Design synthesis of mechanical systems is a non-trivial task. Whitney (1996)4

compares VLSI (Very Large Scale Integration – referring exclusively to transistors)

and complex electro-mechanical (CEM) design to explain why the computational

generation of mechanical designs is a hard problem. Four specific reasons are outlined

in Table 3-1 that complicate the synthesis tasks for CEM design.

Table 3-1: VLSI versus CEM design (Whitney 1996)

Main distinctions Rationalisation

1.
Mechanical systems
carry significant power
at high tolerances

Multiple side effects of high power levels are not of
particular issue in VLSI design. CEM designers
spend a large proportion of their time ‘anticipating
and mitigating a wide array of side effects’.

2.
VLSI systems are
predominantly signal
processors

VLSI circuit design can be building-block based
without altering system behaviour.

3. Single versus multiple
functions per device

The function of VLSI elements is logic; other
functions are usually negligible. Function sharing
(Ulrich and Seering 1990) is more prevalent in CEM
and functions are not usually logic-based. Intricate
reasoning strategies are necessitated by back
loading5, the interaction of components in a design at
run-time.

4.

Ability or inability to
separate component
design from system
design

Due to back loading, system and component design
are inseparable in CEM design. For example,
particular components might require redesign due to
possible system configuration. This results in further
complication.

Essentially, these differences stem from the significant levels of power transmission

inherent in mechanical designs. Burgess et al. (1997) have evidence of significant

scale effects in mechanical engineering design, using flexible hinge elements as an

example. Ward (2001) argues for the need for mechanical design compilers, i.e.

4 At the time, the publication of this paper provoked excitement in the design community, Antonsson
strongly arguing that Whitney was being too pessimistic about the potential for automation of
mechanical design tasks (Antonsson 1997). After further correspondence (Antonsson and Whitney
1997) the two protagonists agreed to couch their arguments in terms of challenging research agendas.

SECTION 3.2: ENGINEERING DESIGN SYNTHESIS

- 36 -

software for formal engineering design synthesis. These compilers must be able to (1)

provide a flexible high-level language to define mechanical systems, (2) accept any

syntactically correct and semantically meaningful input which is expressed in this

language and (3) transform this input to a manufacturing system to produce high-

quality designs. Success of these mechanical design compilers hinges on being able to

overcome the inherent difficulties associated with mechanical design synthesis. The

aim is to be able to generate innovative design solutions, producing mechanical

structures, ideally from first principles (Cagan and Agogino 1987).

Hoover and Rinderle (1989) propose a graph-based strategy for design of mechanical

devices to incorporate functional integration and take incidental behaviour into

account. This paper-based method is not able to produce strongly innovative designs

as design make-up is limited to fixed sets of non-parametric component libraries. An

abstract description of the desired behaviour is put together as a specification graph.

To obtain a representation of a design that can be implemented, function-preserving

transformations are applied so that the graph more closely resembles a collection of

actual, or theoretically possible, components. Transformations such as these that do

not alter functionality are referred to as being function-preserving. e.g. the

transformation of a 9-1 gear pair into two sequential 3-1 gear pairs. On a more

detailed level these changes result in different behaviours, as using two pairs rather

than one will change the direction of rotation as well as introduce spatial

consequences.

The resulting design description is then transformed further by carrying out

component-directed transforms. Relevant components are located in a database and

compared with the transformed graph for validity, e.g. ensuring that usability ranges

of inputs or outputs are not compromised. If the component is suitable a component-

directed transform is invoked to replace the portion of the graph under consideration

with a description of the chosen part.

5 Attaching a module to a power train, such as a load to a motor, results in a back effect that alters the
behaviour of the existing power train, i.e. in this case the motor will start drawing increased levels of
power. This is referred to as ‘back loading’.

SECTION 3.3: PRODUCTION SYSTEMS

- 37 -

Ulrich and Seering (1989) present a paper-based method for schematic synthesis of

devices that can be represented as networks of lumped-parameter systems. Kota and

Chiou (1992) have investigated the computational synthesis of mechanisms using

functional and physical building blocks. A qualitative matrix representation is used to

describe building blocks. A motion transformation matrix (MTM) holds information

on input and output rotations and translations with respect to Cartesian co-ordinates.

Constraint matrices holds information such as the reversibility (or otherwise) of

allowed couplings and behaviour such as intermittent motion. By using row shift,

column shift and decomposition operators, these matrices can be manipulated in order

to find sub-function MTMs that match those of existing building blocks. These

building blocks can then be used to synthesise new solutions to the problem

represented by the original MTM.

Further work introduces a lower-level representation to provide a geometric

relationship between input and output axes of building blocks (Chiou and Kota 1999).

The implementation includes a library of 43 building blocks representing different

elements. More recently, Moon and Kota (2002) use dual vector algebra for

transformation and alignment of building blocks as part of topological synthesis.

Campbell et al. (1999; 2000; 2003) propose agent-based design (A-Design) of electro-

mechanical systems. A hierarchy of software ‘agents’ work semi-autonomously to

produce a number of designs based on input from a user, who has the opportunity of

controlling the process by indicating when to choose certain design goals. A-Design

was demonstrated to work effectively in electro-mechanical configuration design for a

weighing machine design case study (Campbell et al. 1999).

3.3. Production systems

Post (1943) first coined the term production system as a general but formal model of

computation. A number of different production system formalisms have been applied

in different research areas, including linguistics, programming, architecture and

spatial design (Gips and Stiny 1980). Knowledge-based systems (KBSs), often

referred to as expert systems, are an example of production systems. The ‘expert’

SECTION 3.3: PRODUCTION SYSTEMS

- 38 -

comes from the fact that knowledge-based systems use information from experts and

often achieve expert-level performance in design (Stahovich 2001). There are many

KBS definitions, e.g. (Dym and Levitt 1991; Sriram 1997) and references to further

sources cited by these authors. A useful definition of a knowledge-based system is

given by Dym and Levitt (1991):

Definition: A knowledge-based (expert) system is a
computer program that performs a task normally done
by an expert or consultant and which, in so doing, uses

captured, heuristic knowledge.

Definition 3-4: Definition of a knowledge-based (expert) system (Dym and Levitt
1991).

Knowledge-based systems have been shown to successfully solve complex and ill-

structured problems (Sriram 1997) but are less suited to geometric reasoning

(Stahovich 2001) due to the difficulties in representing geometry with a small set of

simple axioms (Forbus et al. 1991).

Lipson and Pollack (2000a; 2000b) have implemented a sophisticated production

system for design synthesis. Using genetic algorithms, they are able to generate robots

out of struts and actuators using a fitness function based on locomotive ability. A rule-

based synthesis strategy is used to modify parametric bars, ball joints and actuators.

Chakrabarti and Bligh (1996; 2001) and Chakrabarti et al. (2002) use a ‘compositional

synthesis’ approach to generate solution concepts with different levels of abstraction

to address coupled mechanical design problems with their functional synthesiser

‘FuncSION’. Exhaustive search is employed to generate vector-representations of

potential solution concepts of single-input, single-output problems with orthogonality

restrictions. A hierarchy of representation levels are used to represent full solutions:

(1) a topological solution, (2) a spatial configuration and (3) a physical solution

representing form. The spatial configuration consists of vectors that represent

functional elements such as tie rods, screws, levers, wedges and cams. Combination

of these elements allows solution representation with basic topology as prescribed by

SECTION 3.3: PRODUCTION SYSTEMS

- 39 -

the top level of the representation hierarchy. The form representation has neither been

fully implemented nor linked to the main generation software.

Liu et al. (1999) have improved FuncSION to include spatial configurations, using

heuristics to ‘prune’ infeasible solutions. Compatibility between elements is

maintained by ensuring that normal vectors of contact points are coincident and both

form and motion requirements are fulfilled, that is, pieces fit together and required

movement is not restricted. This work also exhibits computer-aided sketching of

generic three-dimensional embodiments, though this has only been implemented for

two simple components, a wedge and a lever.

Wahl et al. (2003) have developed a general framework for synthesis of three-

dimensional one degree-of-freedom mechanism models. Intended for the early phases

of conceptual design, this assistance tool uses two synthesis steps to generate layout

information of potential designs from a pre-defined library of elementary mechanical

blocks. A series of solutions are generated using qualitative reasoning and, after

further analysis, are presented to the designer.

3.3.1. Design grammars

Chomsky (1957) was the first to use the word ‘grammar’ in the technical context of

production systems (Post 1943) while developing string grammars to generate valid,

i.e. ‘grammatically correct’, linguistic sentences. Other grammars have since been

developed, e.g. shape grammars (Gips and Stiny 1980). The use of grammars to assist

design is conceptually simple. In the same way as a natural language is based on rules

(termed the grammar), it is possible to develop a language of designs. Starting with a

legal construct, repeated application of different grammar rules generates new

designs. The sum of different designs produced by application of grammar rules in

this manner is termed the design language.

Design grammars lend themselves to computational implementation in much the same

way as scripting languages are a useful tool for writing computer code. High level

scripting languages are powerful, yet flexible and easy to use. Writing a piece of code

SECTION 3.3: PRODUCTION SYSTEMS

- 40 -

in a scripting language to carry out a series of computing tasks might take longer than

carrying out those tasks manually. Once written, however, the script can be used

many times to reproduce different variations of that series of tasks much more

efficiently than one could ever achieve by hand.

Similarly, once a grammar has been written, it can be employed repeatedly to discover

new design possibilities. Paper-based application of grammar rules is of limited use,

but a computational grammar implementation holds increased potential for the

exploration design spaces in a more thorough manner than could be achieved

manually. There is a large body of existing research investigating of the use of design

grammars. Some examples include little or no implementation work, concentrating on

developing the grammars themselves, while others have put considerable effort into

creating usable prototypes, using optimisation algorithms to find designs.

Schmidt and Cagan (1997) highlight three main reasons why grammars are useful for

mechanical engineering design: they can (1) express and retrieve any possible design

from a full space of design possibilities, (2) transform the design process into a direct

computational procedure and (3) recognise emergent mechanical behaviour.

Regarding point (1) it must be noted that designs produced by a grammar are limited

to the language of that particular grammar. A grammar-based design system will be

unable to produce new solutions outside the scope of its language. This is not so much

a limitation on grammar usage but rather should be viewed as a challenge to formulate

flexible and powerful grammar rules.

Point (3) above introduces the concept of emergence. This phenomenon occurs when

large collections of very simple systems exhibit complex macro-behaviour. For

example, it is believed that nesting ants interact in a bottom-up manner – a few simple

rules governing individual ant behaviour result in complex, so-called emergent,

behaviour of the whole ant colony (Johnson 2001). Emergent behaviour can be

beneficial to a design but can also introduce unwanted side effects (Chakrabarti and

Johnson 1999). Hence due to the high propensity for mechanical designs to

incorporate some sort of function-sharing, an understanding of emergent behaviour is

important for grammatical design, a bottom-up process (Brown 1997; Stiny 1991).

SECTION 3.3: PRODUCTION SYSTEMS

- 41 -

3.3.1.1. Shape grammars

George Stiny (1980b) introduces the concept of a language of design using shape

grammars. His work is based on the ‘kindergarten method’ of Frederick Froebel – a

method of teaching young children about spatial awareness using ‘constructive play’.

Children’s play blocks are introduced to a child in stages of increasing complication

to encourage the child to use the blocks available to create forms. Languages of

design are based on a vocabulary of blocks that are available for use. It is then

possible to define spatial relations that are legal, which leads on to the formulation of

shape rules, for example the construction of an arch using specific building blocks.

Starting from an initial shape, a complete grammar of such rules can be used to

generate constructions that aim to have characteristics of three different categories:

forms of knowledge, life and beauty. In relation to optimisation, this basic analysis

already introduces the concept of an objective function: the goal being to attain

solutions that satisfy, or satisfice6, the conditions laid out in the different categories.

Stiny (1980a; 1991) develops the idea of shapes up to and including three dimensions

as the basis for algebras that form the objects of shape grammars. Including labels in

an algebra allows more information to be conveyed in the shape representation. Rules

can be defined that act on particular shapes and label combinations. This allows for

flexibility in defining rules that are relevant to particular situations, rather than just

looking for shape considerations. Similarly, weights can be added to shape grammars

to enrich design properties (Stiny 1992), for example a line can be given a weighting

that describes its thickness. The idea of weightings can be extended, for example by

assigning different radii to points, different shadings to planes and literally different

weights to solids.

Shape grammars can be formally defined thus. Rules are of the form BA→ , where

both A and B are shapes. If the shape in the left hand side (LHS) of the rule, i.e. A ,

can be found in an arbitrary design C then this rule is a valid potential rule

application. Having determined the applicability of a rule, i.e. the presence of A

6 To satisfice means to ‘decide on and pursue a course of action that will satisfy the minimum
requirements necessary to achieve a particular goal’, i.e. without necessarily fulfilling the desired

SECTION 3.3: PRODUCTION SYSTEMS

- 42 -

within C , the designer or algorithm-controlled decision-maker can choose whether or

not to modify the design C by applying the rule. If it is chosen to proceed, the

transformation)())((BtAtCC +−→ is carried out, replacing the LHS (A) in shape

C by the right hand side (RHS) shape (B), where t is the transformation that makes

A a sub-shape of C . The language of a grammar consists of the members of the

solution set, i.e. all possible results C that can be produced from a specified starting

shape S after application of different sequences of the possible rules in the grammar.

A grammar is defined by a 4-tuple),,,(SRXVG = , where V is the set of objects

that are manipulated by the grammar, X is a set of terminal and non-terminal

symbols, S is the initial symbol and R is a set of rules of the form outlined above.

The language of the grammar G is the set of all results produced from the start

symbol that consists of only terminal symbols. Having terminal and non-terminal

symbols is meant as a flag to indicate whether or not a design is complete. Hence

formal grammars will have specific rules whose sole purpose is to replace non-

terminal shapes and labels with equivalent terminal symbols to complete the design.

Early design work using shape grammars can be found in the field of architecture

(Knight 1994). A recent example is mass customisation of affordable housing. A

house grammar has been shown to be a useful tool for elucidating the language of

possible templates for designs of a particular style, specifically Alvaro Siza's houses

at Malagueira (Duarte 2003; Duarte in progress). Chase (1996) has worked on using

shape grammars with symbolic logic to produce tools capable of manipulating shapes

while upholding geometrical, topological and logical constraints. This work has found

applications in geographic information systems and architectural plans.

Research into engineering design grammars has also resulted in advances in structural

design generation. Shea and Cagan (1998) have developed a truss structure grammar

that was used to generate novel designs during a study of the roof trusses of a building

at Carnegie Mellon University. This grammar was used in conjunction with a shape

annealing algorithm (Cagan and Mitchell 1993) and different design constraints to

requirements. This is meant in contrast to a similar verb, to satisfy, that indicates providing implied
total satisfaction or contentment (source: Oxford English Dictionary).

SECTION 3.3: PRODUCTION SYSTEMS

- 43 -

develop optimally directed7 designs. The designs produced for the roof truss were

found to compare favourably with separate designs produced by architects and

structural engineers who proposed solutions for the same design task. Other examples

of this work include innovative dome designs (Shea and Cagan 1997) and

transmission tower redesign (Shea and Smith 1999). The structure grammar is now

implemented as a general truss design tool called eifForm (Shea et al. 2003). Similar

work has been carried out for bicycle frame design (Suppapitnarm et al. 1999). A

multi-objective simulated annealing (MOSA) algorithm was used to redesign diamond

frame configurations that agree with common wisdom on bicycle design.

Much effort has been invested into developing grammars for mechanical designs and

examples exist for form generation of diverse products such as Harley-Davidson

motorcycles (Pugliese and Cagan 2002) and coffeemakers (Agarwal 1999). Earl

(1987) discusses the use of shape grammars for generation of form as well as

function. Finger and Rinderle (1989; 2002) have developed a grammar based on the

manual manipulation of form-behaviour diagrams using bond graphs (Paynter 1961)

for conceptual design of topological configurations from a part-based element library.

Geometry is considered without generation of detailed form. A series of different

manual transformations (behaviour-preserving, component-directed and other) are

used to produce different designs. This research is one of the early pieces of work in

mechanical design grammars and has not been implemented computationally, due to a

lack of a software interpreter for parametric shape grammars.

McCormack and Cagan (2000) have developed a two-dimensional parametric shape

grammar interpreter and demonstrated its use for the design of vehicle inner bonnet

panels. This inner hood8 grammar has been used to generate new bonnet designs using

agent-based design optimisation. The shape grammar interpreter follows a step-wise

classification process that enables the interpreter to decide which design sub-shapes

particular rules should be applied to. The process differentiates between different sub-

7 When seeking solutions to ill-structured problems it can be impossible to tell with certainty whether
the best solution found so far is a global optimum or not. In cases like this, such solutions can be
referred to as being optimally directed (Cagan and Mitchell 1993). See also section 3.6.
8 ‘Hood’ is an American expression for the English term ‘bonnet’ (source: Oxford English Dictionary).

SECTION 3.3: PRODUCTION SYSTEMS

- 44 -

shape groups by calculating line intersections and considering line symmetry. This

inner hood grammar is limited to shapes consisting of straight lines.

A shape grammar interpreter that can compute shapes with curved lines would

enhance the possibilities for producing interesting designs. An example of such a

‘curvy’ grammar is the parametric Buick grammar (McCormack et al. 2002). The

grammar represents a two-dimensional view of a vehicle from a front-on perspective.

Modified rule sets are used to examine the Buick automobile brand. A curved line

interpreter is under development that uses a two step approach to (1) perform shape

matching with equivalent straight-line shapes and (2) verify transformations on the

actual curved lines (McCormack and Cagan 2003). As an example, the shape

interpreter has been used in conjunction with the Buick grammar to generate an

alternative headlight design for a Buick Rendezvous9.

A shape grammar for mechanical systems will have to be able to describe curved

shapes in three dimensions. Work has also been done on boundary solid grammars,

considering complex solids and operations that can be carried out on them, such as

merging and inverting (Heisserman and Woodbury 1994). Other work analyses

special shape grammars that can be used to recognise shape boundaries (Krstic 2001).

Agarwal and Cagan (2000) have used grammars to generate Micro Electro-

Mechanical Systems (MEMS) resonators. Using a parametric grammar with weights

and labels, it is possible to generate different MEMS that fulfil minimum conditions

for legality of such structures, e.g. each generated MEMS resonator has at least one

spring and one actuator. Function and form are represented in the MEMS grammar

through the use of appropriate labels.

Boeing use a computer-aided design system called Genesis for grammar-like

generation of aeroplane designs (Heisserman and Mattikalli 1998). Due to the

functional demands of the innately mechanical systems of an aeroplane, the

developers of Genesis have had to contend with the abstraction of function from form,

9 The ‘curvy’ grammar interpreter currently exists as a paper-based method. Illustrations of such curved
designs are, as yet, still created by hand.

SECTION 3.3: PRODUCTION SYSTEMS

- 45 -

resulting in a potential basis for the development of bottom-up synthesis in

mechanical designs, as opposed to a more rigid top-down approach.

Schmidt and Cagan (1995) generate solutions to a power supply generation problem

using string grammars. The tool ‘FFREADA’ (Function to Form Recursive Annealing

Design Algorithm) is used to produce designs from a library of machine components

and their functional attributes. A hierarchical simulated annealing method is used to

search for good designs. The same algorithm is also used to generate optimally

directed hand-held power drill designs (Schmidt and Cagan 1998).

3.3.1.2. Graph grammars

FFREADA was superseded by a new algorithm, GGREADA (Graph Grammar

Recursive Annealing Design Algorithm), that was developed for tasks that feature

non-serial function and form dependencies, including a limited amount of function

sharing (Schmidt and Cagan 1997). Grammar rules are used to modify graph-based

representations (Al-Hakim et al. 2000) that are hierarchical abstractions of designs,

hence these are referred to as graph grammars.

The ability to reason about the capability of particular components to fulfil functional

requirements is a prerequisite for being able to transform a design concept into a

collection of machine components whose spatial arrangement and connectivity

combine to make a viable design. As an example, the case study investigated is the

top-down design of a small mechanical cart out of components using Meccano, a toy

construction set. A supply of a limited set of components and sub-assemblies is made

available, with functional goals set for the design of carts. These functional goals

include ensuring that the cart can roll and has a flat space that can support a load.

Minimum weight is used as the objective function for the search aspect of the

algorithm.

The space of designs produced for a particular problem statement is typically ill-

behaved, as small changes to a design can affect its fitness for fulfilling the desired

specification. For example, removing a wheel component of a small cart design,

SECTION 3.3: PRODUCTION SYSTEMS

- 46 -

essentially a small change, can result in a cart that does not roll properly, and so does

not fulfil the conditions in the design specification that require it to be able to roll.

GGREADA does not recognise emergent behaviour. The authors indicate that a

grammar capable of recognising emergent behaviour would require a representation

that models all possible behaviours in a standard manner, such as a bond graph

representation (Paynter 1961). Challenges leading on from this work include moving

away from structural tasks based on fixed part libraries to more open-ended design

problems with more degrees of freedom.

Graph grammars have been used to build platforms for product families, where they

describe the design envelope of these families (Siddique and Rosen 1999). The

example of coffeemakers was taken to show common and optional functions for this

particular product family. This research is being expanded to develop a Product

Family Reasoning System (PFRS) to represent members of product families (Siddique

and Rosen 2001).

Other research has investigated the use of a graph-grammatical approach to synthesis

of mechanisms, specifically for epicyclic gear train (EGT) mechanisms (Schmidt et al.

2000). This work has been implemented as a grammar-based designer assistance tool

for EGT design (Li and Schmidt 2000). The assistance tool creates functional

schematics from graphs, where edges are joints (weights are used to distinguish gear

and revolute joints) and vertices are gears and carriers. Exhaustive search is used to

generate concepts. While not in itself able to generate novel designs, the tool was able

to assist the process of innovation. Following the discovery of a new ring-plate type

cycloid drive (RCD) design that was not in the language of the original grammar, a

restricting assumption was removed from the EGT grammar by adding an additional

grammar rule to expand the language of described designs. This new language

incorporates the newly discovered cycloid drive design and the new grammar was

used to generate novel RCD-type designs (Li et al. 2001).

SECTION 3.4: REPRESENTATION AND FUNCTIONALITY

- 47 -

Another graph grammar-based approach is the generic formalism ‘43’10, a non-

platform-specific design framework that aims to provide a ready-to-use

implementation for different design domains (Alber and Rudolph 2003). Alber et al.

(2002) propose an object-oriented approach to design representation using graphs and

cite a space-station configuration problem as an example of the type of design their

method is capable of generating.

3.4. Representation and functionality

Having discussed the design process in general and design synthesis in more detail, it

is important to define what is meant by a design artefact. What constitutes a design, in

particular a mechanical design? Stiny (1990) proposes the following:

Definition: A design is an element in an n-ary relation
among drawings, other kinds of descriptions, and

correlative devices as needed.

Definition 3-5: Definition of a design (Stiny 1990)

This definition is useful as it indicates that a design is essentially a model of the final

implemented product, structure or entity that is to be created. Designs must be able to

convey all the pertinent information necessary for the representation and subsequent

creation of the artefact.

3.4.1. Function, behaviour and structure

Definition 3-5 introduces the concept of some sort of connections, or ‘correlative

devices’. This concept results from a need to represent more than just the physical

characteristics of a design. Interest in a design that is being created will be determined

by the purpose that it is supposed to fulfil. How can this function of a design be

represented, and, most importantly, be linked to the eventual form of the design?

Similarly, the predicted and actual behaviour of a design implementation are of

10 The name of this framework derives from a well known work of fiction that gives the answer ‘42’ to
the Ultimate Question of Life, the Universe and Everything (Adams 1988). The aim of Alber’s

SECTION 3.4: REPRESENTATION AND FUNCTIONALITY

- 48 -

importance. Linking behavioural information to form and function considerations

enables a more complete depiction of design intentions and ultimately leads to a more

effective representation.

Umeda et al. (1990) have made a formal definition of a Function-Behaviour-Structure

(FBS) relation (Figure 3-4). Structure and State are seen as interchangeable terms in

this work as it is argued that state is time-dependent structure, so for instantaneous

snapshots of an entity the use of these terms are one and the same. Behaviour is linked

to structure by physical laws, this is termed the B-S relationship; function is linked to

behaviour by a human-specified mapping Γab, this is termed the F-B relationship.

These connections allow the three parts of a design, i.e. function, behaviour and

structure/state, to be linked together to model a particular design. Finally, the context

of the FBS model is determined by the view, i.e. the ‘physical situations of the current

interest’ (Umeda et al. 1990). FBS models have been previously used for grammatical

design: Chase (2002) outlines a model for redesign based on a Function-Behaviour-

Structure model using graph grammars.

F-B Relationship

B-S Relationship Physical laws

Behaviour Set

State Set

Function Set

Γab

View

Figure 3-4: Function-Behaviour-State (or Structure) model (Umeda et al. 1990)

Winsor and MacCallum (1994) present a review of functionality modelling in design.

There exist different perceptions of functionality: use of the word ‘function’ as a verb

or noun results in different meanings. Used as a noun, ‘function’ indicates a sense of

approach is to go one better than this, hence 42 + 1 = 43.

SECTION 3.4: REPRESENTATION AND FUNCTIONALITY

- 49 -

purpose, i.e. the over-riding raison d’être of an object. Used as a verb, the same word

conveys how an object works, i.e. what actual physical processes take place while the

object is in use. Hence one might say that the function of a bicycle is to transport

people from place to place, but a bicycle functions by using energy from a person’s

body to produce a torque that acts on the wheels of the bicycle, ultimately resulting in

translational motion. To distinguish between the two, it is sensible to differentiate

between function (as purpose) and function (as action), the latter being referred to as

behaviour. Hence use of the noun should be reserved for the first meaning where

possible. Finger and Rinderle (1989) propose a definition of the terms function and

behaviour:

Definition: The function of a design is what it is used
for, the behaviour of a design is what it does. Hence
function indicates the subset of behaviours that are

required for a device to work correctly.

Definition 3-6: Definition of function and behaviour (Finger and Rinderle 1989)

A successfully designed product fulfils the tasks required of it, i.e. its function,

without violating any constraints, such as might be governed by environment, for

example limits on height and weight, and usability, for example non-toxicity.

Definition 3-6 conforms to usage of the term ‘function’ in this field of research, e.g.

by Chandrasekaran and Josephson (2000), Pahl and Wallace (2002) and Simon

(2001). There are different suggested methods for representing functionality. Function

grammars are used as a formalisation of common language usage to express function

as a verb-noun pair. Function can be represented as input/output relationships,

indicating a flow of information, matter and energy (Pahl and Beitz 1996; Ulrich and

Eppinger 1995). Functional decomposition of ‘black box’ models with object/verb

pairs allows detailed understanding of sub-functions, however, this reliance on flow

can result in difficulties when attempting to classify the function of a fixed structure,

such as a shelf supporting books.

SECTION 3.4: REPRESENTATION AND FUNCTIONALITY

- 50 -

Early work in this field includes the Edinburgh Designer System (EDS), developed by

Popplestone (1987) to infer modules based on rigid bodies, features11 and connecting

ports. Other related work includes the field of Qualitative Physics, a method of

representing functionality using rules of thumb to describe the physical world (De

Kleer and Brown 1984; Forbus 1984). Stone and Wood (2000) have developed a

functional basis for design to aid systematic function structure generation. Rosen

(1993) investigates the concept of feature-based design for CAD systems.

3.4.2. Functional integration

Hoover and Rinderle (1989) have investigated aspects of functionality in mechanical

systems. They note how components in good mechanical designs are often highly

inter-related: many components fulfil multiple purposes in the complete design, i.e.

there is a high degree of function sharing (Definition 3-7). This is because having a

‘one-function, one-component’ strategy is often not viable, economically or spatially,

for mechanical systems, unlike many others design domains (Whitney 1996).

Definition: Function sharing is the simultaneous
implementation of several functions by a single

structural element.

Definition 3-7: Definition of function sharing (Ulrich and Seering 1990)

Furthermore, good mechanical designs make use not only of the intended function of

components or sub-assemblies, but also utilise their behaviour in the given

circumstance. In parallel with the purpose/action distinction (Winsor and MacCallum

1994), Hoover and Rinderle suggest that the difference between behaviour and

function is intent. Behaviour can be utilised deliberately or be incidental, the former

indicating that this behaviour contributes towards the fulfilment of the intended

function and the latter that it does not. Purely functional components do not exist, as

all components will have some sort of behavioural data associated with them.

Function and behaviour are therefore irrevocably linked and must be considered

11 A feature is an interpretation of geometry and conveys meaning about components beyond that
supplied by geometry alone (Brown et al. 1995).

SECTION 3.4: REPRESENTATION AND FUNCTIONALITY

- 51 -

simultaneously. A design that fulfils functional requirements adequately can only be

considered a favourable design after analysis of its behaviour.

For example, the function of a casing around a machine might be to fulfil Health &

Safety requirements in order that a user cannot damage his or her fingers. The

behaviour of the casing might also contribute to the structural integrity of the whole

machine. A good design will ensure that this behaviour is taken into account. An

opportunistic rather than compensatory approach to this incidental behaviour, which

can also be emergent behaviour, will result in better designs.

Jensen (2000) portrays functional integration through the use of ‘wirk’ elements,

based on domain theory (Hansen and Andreasen 2002). These are derived from the

German noun Wirkung which defies easy translation into English12. Wirk elements

can be used to describe and analyse functional integration. Design models consist of

wirk elements, termed the organ domain, and form elements, termed the part domain.

Structural and behavioural aspects of mechanical artefacts are linked using a function-

means tree (Hansen and Andreasen 2002).

Hoover and Rinderle (1989) use an approach that relies on abstract primitives with

component-directed transforms to move towards a final design. Ulrich and Seering

have looked at ways of using ‘design and debug’ methods to synthesise designs by

using different computational modules called ‘perspectives’ for different design goals

(Ulrich and Seering 1987). This has been demonstrated for mathematical control tasks

as well as for the design of a car speedometer.

Genesis (Callahan and Heisserman 1997; Heisserman and Mattikalli 1998) uses a

hierarchical assembly representation that can describe complex product designs. The

assembly representation allows each physical part to be included in a design, while

minimising any necessary repetitions in data storage. The representation used by

Genesis is therefore suitable for large assemblies, such as aircraft design. Components

that are used in large numbers, for example a rivet or a bolt, have a separate data store

for information that is the same for all instantiations. However, instantiation-specific

12 A loose translation of the German word Wirkung might yield something like ‘active effect’.

SECTION 3.4: REPRESENTATION AND FUNCTIONALITY

- 52 -

data (such as a protective covering required in an area subject to corrosive substances)

gets stored separately in the part-occurrence area of the assembly representation.

Relationships between parts in an assembly are signified by what are referred to as

ports. These are snake-like connections that criss-cross the assembly representation

with information on pair-wise relationships between parts, such as physical

connectivity.

Stahovich and Kara (2001) look at function and behaviour of components in design

from a different angle. Their use of ‘causal-processes’ allows analysis of existing

designs in an attempt to disseminate meaning from the presence of particular parts and

then subsequently assign explanations for the existence of these components in a

design.

3.4.3. Bond graphs

Bond graphs, developed by Paynter13 (1961), Thoma (1975) and Karnopp et al.

(2000), are used for synthesis by Sharpe (1978), Finger and Rinderle (1989), Broenink

(1999) and Bracewell (2002). Bond graphs present a unified and flexible

representation of physical systems by describing the transferral of energy through

behavioural entities of a design in terms of effort and flow. Hence, as with

input/output systems, bond graph representation is limited to systems with some

aspect of flow. However, in such cases they are a useful tool for modelling the

physical behaviour of complex systems, regardless of domain.

Bond graphs model engineering systems as energy interchange. Elements of a system

are modelled as ports that are connected by power bonds. Ports are classed differently

depending on their function: 1-ports dissipate or store power, e.g. resistors or

capacitors, and 2-ports transform power, e.g. gear pairs. Analogous to junctions in

electrical circuits, junctions in the graph (designated 0- and 1-junctions) are governed

by generalised Kirchoff’s laws (Gustafson and Wilcox 1998). Hence in a 0-Junction,

13 Early in his career, Paynter was influenced by the work of Steinmetz (1909) and concluded that
‘energy and power alone are the fundamental dynamical variables, the ultimate currency of all physical
interaction and transaction’. This belief led to the creation of his bond graph representation, based on
Couper’s (1858) structural formulae for chemistry (Karnopp and Rosenberg 1968).

SECTION 3.5: ANALYSIS AND EVALUATION

- 53 -

also referred to as a parallel junction, the effort in each bond is equal: the system has

common effort. In a 1-Junction, also referred to as a series junction, the flows in each

bond are equal: the system has common flow.

Ports, which can be labelled for computational purposes, are connected by bonds

which represent an exchange of power. Power is the product of effort and flow, which

act in opposing directions. Bonds are given a direction by a half-arrow attached to one

end of the bond. This direction depicts whether power is entering or leaving the port

through this bond. A causal stroke is added to one end of each bond to determine

effort and flow: effort is defined as acting towards the end of the bond that has the

causal stroke; flow is defined as acting towards the end of the bond that does not have

the causal stroke.

Using bond graphs allows systems to be modelled and, potentially, designed

irrespective of domain, as the energy flow model does not limit the model to a

particular representation. Modelica14 (Tiller 2001), an object-oriented software

language for the modelling of physical systems, is based on a bond graph

representation.

Welch and Dixon (1991) use behaviour graphs, similar to bond graphs, as a basis for

generating solutions for conceptual design of mechanical systems. Bracewell and

Sharpe (1994; 1996) have utilised a bond graph methodology to develop a

knowledge-based design package called Schemebuilder. Tay et al. (1998) exploit

bond graphs to generate and analyse dynamic systems for design of, for example, air

pumps and vibration isolation mechanisms. The process involves using genetic

algorithms to alter bond graph representations of possible solutions.

3.5. Analysis and evaluation

Quantitatively and rapidly evaluating the quality of a mechanical design is a

challenging task. Being able to do this is a prerequisite for a successful generative

design tool based on the parametric synthesis framework. In some design domains,

14 http://www.modelica.org/ (last accessed 11 November 2003)

SECTION 3.5: ANALYSIS AND EVALUATION

- 54 -

cost-based methods of evaluation can be beneficial despite their simplicity. For

example, when building a simple mechanical artefact the main restriction on a

particular project may be the cost of materials. In this case, designs can be evaluated

based on the quantity and quality of materials. This information could be gleaned

from a design relatively easily and employed as a useful quantitative measure of the

‘goodness’ of this design.

Apart from simple objective functions based on geometric properties of materials in a

design, it is possible to investigate the performance of a particular design with respect

to manufacture, assembly and subsequent disassembly for recycling. Data from such

analysis can be used to estimate the quality of designs quantitatively. For example,

‘design for assembly’ (DFA) is a popular method of calculating such data based on

estimated assembly times for particular parts in a design (Boothroyd and Dewhurst

1989). Other methods are ‘design for manufacturing’ (DFM) that includes information

on component and supporting production costs (Boothroyd et al. 1994; Ulrich and

Eppinger 1995), as well as more generic ‘design for X’ methods where the ‘X’ can be

selected from a myriad of different possibilities, e.g. ease of disassembly for

electronic equipment (Campbell and Hasad 2003). Such methods have been

incorporated into evaluation methods for grammar-based generation (Agarwal 1999).

However, mechanical design problems are usually not as simple as this if one wishes

to take into account criteria such as performance, ergonomics, environmental impact

and aesthetics. More seriously, what if a design is unsafe? Even trained human

designers and risk assessors have been known to fail when analysing designs for

safety (Petrovski 1994). Additionally, as noted in section 3.4.2, designs that are

perceived to be ‘good’ mechanical designs often exhibit a high degree of function

sharing. Evaluating this degree of functional integration in a design is not a trivial

task.

Some heuristics have been used relatively successfully for evaluation purposes in

generative design. In his framework for conceptual design, Wahl (2001) uses the so-

called ‘skeleton model’ as a preliminary measure of ‘goodness’ of one degree-of-

freedom kinematic chains. This simple model ignores element volumes and measures

the length of the functional path of the main design modules. By minimising this

SECTION 3.6: SEARCH AND OPTIMISATION

- 55 -

distance, the skeleton model can be used to make a judgement on the potential of the

concept being analysed by assuming a simple inverse relationship between length of

skeleton and quality of design.

Such heuristic methods, however, side-step the most important evaluation criteria of

all, namely the actual behaviour of designs. One of the strengths of Shea’s eifForm

tool (see section 3.3.1.1) is the ability to use inline evaluation in the form of finite-

element analysis to judge the quality of designs ‘on the fly’. This underpins the

concept of performance-based synthesis (Shea and Starling 2003).

A mechanical equivalent of such analysis work would be to generate models as part of

the generation process that can be analysed using behavioural modelling tool such as

Dymola15. Dymola employs Kron’s method of ‘tearing’ (Kron 1963) to solve

multidimensional systems without resorting to linear simplifications. As an object-

oriented modelling system, Dymola is suited to object-based synthesis using the

modelling language Modelica (see section 3.4.3). Other domain-specific modelling

toolboxes exist, such as Boeing’s Easy5 tool16 and Romax Technology’s

RomaxDesigner17. These tools can be used to produce simulation data to analyse

design performance. The disadvantage of this sort of approach is the time it can take

to run evaluation simulations, making evaluation from simulation less suitable for

search algorithms that require a relatively high number of objective function

calculations to be able to return beneficial designs.

3.6. Search and optimisation

Having investigated the possibilities for evaluation in design synthesis algorithms, the

notion of search must be discussed in more detail. Simple, well-structured problems

(Simon 1973), such as finding the minimum of a one-dimensional, continuous and

differentiable function, can often be found analytically, i.e. a series of calculations can

be undertaken to work out a precise answer to the question that can subsequently be

verified. Such methods of finding optimal solutions are also termed deterministic.

15 http://www.dynasim.se/ (last accessed 30 December 2003)
16 http://www.boeing.com/assocproducts/easy5/ (last accessed 28 October 2003)

SECTION 3.6: SEARCH AND OPTIMISATION

- 56 -

Given the same starting point, deterministic methods will always find the same

optimal solution to an optimising search problem. Examples of deterministic search

methods are exhaustive search, as well as gradient (Papalambros and Wilde 2000),

branch-and-bound (Winston 1993) and pattern search (Torczon 1997) methods.

Unfortunately, deterministic methods cannot be expected to solve many of the design

tasks one might wish to solve in engineering design. For example, the tractability of a

problem depends on the number of variables, the type of variables (discrete,

continuous, mixed), the size and extent of the search space, the objective function and

constraints on the solution (Raphael and Smith 2003). Deterministic methods may be

represented as tree-traversal problems. If all possible solutions are considered as leaf

nodes of a tree, then moving from node to node will, at some point, lead to the correct

solution. Unfortunately, the number of paths, i.e. links between nodes, explodes

exponentially, i.e. for a tree of depth d (length of path to leaf nodes) with a branching

factor b (number of parallel paths to descendant nodes) the number of solutions is
db . In such cases exhaustive methods are not suitable as they would take too long to

generate a viable solution, i.e. the problem has exponential complexity.

Non-deterministic methods, otherwise known as stochastic methods, rely on random

numbers and are not always guaranteed to produce the same answer to an under-

constrained design problem. In many cases, especially in synthesis tasks, stochastic

methods present the best approach for finding optimal or near-optimal solutions to an

optimisation problem. Such solutions are sometimes termed optimally directed

solutions (Cagan and Mitchell 1993)18. Non-deterministic methods often rely on

‘rules-of-thumb’ to make acceptance and rejection decisions with regard to new

solutions and so are often referred to as ‘heuristic’ techniques (Definition 3-8).

17 http://www.romaxtech.com/ (last accessed 2 December 2003)
18 Optimally directed design was first defined by Cagan (1990) to refer to search for designs in the
region around the design optimum. This was redefined by Shea (1997) to ‘design optimisation that
directs […] design generation towards the numeric range of a global optimum’.

SECTION 3.6: SEARCH AND OPTIMISATION

- 57 -

Definition: A heuristic technique (or simply, a
heuristic) is a method which seeks good (i.e. near-

optimal) solutions at a reasonable computational cost
without being able to guarantee optimality, and possibly

not feasibility. Unfortunately, it may not even be
possible to state how close to optimality a particular

heuristic solution is.

Definition 3-8: Definition of a heuristic technique (Reeves 1996)

Examples of stochastic search methods are simple generate-and-test methods, such as

Monte Carlo search. Other methods include simulated annealing (Kirkpatrick et al.

1983), tabu search (Glover and Laguna 1997), genetic algorithms (Holland 1975) and

genetic programming (Koza et al. 2003). More detail on artificial intelligence and

engineering design optimisation are provided by Winston (1993) and Papalambros

and Wilde (2000). Deb and Jain (2003) use evolutionary algorithms for the

optimisation of multi-speed gearbox layouts.

3.6.1. Constraints

Using constraints wisely is a very important part of engineering design. For example,

it has been established that, all too often, an excessive restriction or too great an

expansion of the search space is allowed during conceptual design (Fricke 1996). This

can also be looked at from another angle – it is important to ensure that optimisation

problems are ‘well posed’ (Papalambros and Wilde 2000). Ideally, constraints must

narrow down the search space of a design problem enough to avoid endless, fruitless

problem-solving. However, they must also not be too restrictive, as in so doing they

may well rule out potentially useful design solutions.

For example, in some structural design cases it is often assumed that some sort of

symmetry is advantageous. Hence, optimisation problems may often be set up to

assume some level of symmetry as this can also make the optimisation problem less

computationally intensive and hence more manageable. Shea and Cagan (1998) use a

roof truss generation grammar to seek out asymmetric designs that are optimally

directed and often better than solutions found when enforcing symmetry. In this case

SECTION 3.6: SEARCH AND OPTIMISATION

- 58 -

setting a symmetry design requirement could have precluded finding good solutions

by restricting the search space excessively.

Shea and Cagan (1998) use soft, as opposed to hard, constraints. Optimisation with

soft constraints allows designs that violate some design constraints to be temporarily

explored during the search process. This has the advantage that design solutions that

lie close to constraint boundaries are easier to find using iterative optimisation

methods. In cases where the design space is disjoint and non-convex due to the

presence of forbidden regions, ‘tunnelling’ through these regions becomes possible to

enable solutions across the complete design space to be found. The disadvantage of

using soft constraints is that too much time can be spent considering designs that are

outside the constraint boundaries. Even with increased tightening of soft constraints, it

can sometimes not be possible to be certain of finding viable solutions. Using hard

constraints can be more restrictive on the search process, but, by ensuring the

consideration of designs within the constraint boundaries, can guarantee viable

solutions, assuming any are found.

Constraints therefore ensure the validity of designs generated by the synthesis

process. Bracewell and Johnson (1999) demonstrate the direct solution of a large set

of design variables that are connected by various types of constraint. This work

presents an alternative solution method for problems based on a component-based

representation method that uses parameters and constraints to satisfy local

optimisation problems (Thornton 1993). Interacting points of interest between

components introduces connectivity and optimisation takes place through constraint

satisfaction.

Similar work has been done by Schmidt et al. (1999) who are making an assembler to

build on data produced by GGREADA as described in the previous section. The

assembler uses a Constraint Satisfaction Problem (CSP) approach to produce

geometrically legitimate designs from the functional and connectivity data provided

by GGREADA. The vision of the work is to ‘bridge the generation gap’ (Schmidt et

al. 1999) between abstract functional models and the use of synthesis methods to

create legal configurations that satisfy function and form requirements for mechanical

engineering design. Some success has been achieved. However, many of the designs

SECTION 3.6: SEARCH AND OPTIMISATION

- 59 -

produced, while fulfilling the relevant constraint networks, do not fulfil mundane

design objectives such as compactness, practicality and usability. An extension of this

work utilises behaviour constraints for generative configuration design to help ensure

suitable design variety in the generated solutions (Shi 2003).

3.6.2. Spatial packing problems

Spatial packing problems are an example of constrained design synthesis tasks based

on what is known as the knapsack problem (Martello and Toth 1990). The idea is to

pack objects into a confined space, i.e. the knapsack, using algorithmic means. A

harder problem is the geometrically constrained knapsack problem (Cagan 1994),

where objects in the knapsack are required to orient themselves in particular ways.

A variation on this problem specification is the class of routing problems where

objects must be laid out and connected using cables or pipes. Szykman and Cagan

(1995) have investigated such component layout problems. Cylinders and blocks are

packed into a constrained volume using rules that allow object translation, rotation

and swaps. This work was expanded to add pipe routing to the problem for application

to HVAC (Heating, Ventilation and Air-Conditioning) systems (Cagan et al. 1996).

Using a simulated annealing search algorithm (Kirkpatrick et al. 1983), dense packing

was achieved for a heat pump example. Non-orthogonal pipe routing problems were

solved for one-dimensional pipes, i.e. pipes without thickness. This work also

investigated the packing of elements with spatial placement constraints for a battery-

operated drill case study (Szykman and Cagan 1997).

Yin and Cagan have used a pattern search method (Torczon 1997) and grammar-

based approach to solve complex shape packing problems, packing cogwheels with no

connectivity constraints into a restricted area, as well as car engine parts into an

engine compartment (Yin and Cagan 2000b). An extended pattern search method

using a number of different heuristics to identify search directions provided faster

convergence over previously used simulated annealing-based search for the same

tasks.

SECTION 3.7: COMPARISON OF EXISTING RESEARCH

- 60 -

3.7. Comparison of existing research

It is helpful at this juncture to outline a comparative snapshot of the main design

synthesis approaches introduced in the previous sections. With a view to developing

the storyboard design tool from chapter 1, four examples were chosen on account of

the varied representations used and their impact on computational mechanical

synthesis (Finger and Rinderle 2002; Li et al. 2001; Liu et al. 2003; Wahl et al. 2003).

Sketches of the representations used can be found in Figure 3-5 and Figure 3-6. Note

that the large arrow indicating levels of abstraction is meant as a guide and should not

be used as an absolute measure for detailed comparison between the four examples.

Li et al. (2001) use a formal graph grammar to generate languages of epicyclic gear

train designs. The new ring-plate-type cycloid drive in Figure 3-5 is a physical

prototype that could not be represented by the original grammar. Following

modification of the grammar, further cycloid drive designs were generated.

Liu, Bligh and Chakrabarti (2003) generate serial design configurations using a top-

down exhaustive search with ‘pruning’ to limit results to potentially useful designs.

Computational generation of physical solutions from spatial configurations is

currently under development. Implementation issues are likely to include collision

detection and scaling issues for anything more complicated than one-input, one-output

systems.

The method proposed by Finger and Rinderle (2002) is the only one of the four to use

a specific bond graph representation. Transformation rules are used to generate

topological configurations from an initial specification. Synthesis is carried out

explicitly ‘by hand’ and as yet this work has not been implemented computationally.

Wahl et al. (2003) evaluate one degree of freedom mechanisms using a skeleton

model built from an extensive library of elementary blocks. A palette of possible

design configurations is generated for a designer to consider. Optimisation is carried

out at a high level of abstraction by minimising the length of the skeleton model and

at a low level of abstraction through least-squares matching of the output motion

compared to specification.

SECTION 3.7: COMPARISON OF EXISTING RESEARCH

- 61 -

G
ra

ph
 r

ep
re

se
nt

at
io

n

Fu
nc

tio
na

l s
ch

em
at

ic

Ph
ys

ic
al

 p
ro

to
ty

pe

5
3

4

21
1.

Fr

am
e

2.

D
ri

vi
ng

 c
ra

nk
3.

C

ou
pl

er
 w

ith
pi

n
ge

ar
4.

D

ri
ve

n
cr

an
k

5.

C
yc

lo
id

 g
ea

r

T
op

ol
og

ic
al

 so
lu

tio
n

Sp
at

ia
l c

on
fig

ur
at

io
n

Ph
ys

ic
al

 so
lu

tio
n

Figure 3-5: Representation comparison sketches I

M
or

e
ab

st
ra

ct

L
es

s
ab

st
ra

ct

(L
i,

Sc
hm

id
t,

H
e,

L
i a

nd
 Q

ia
n

20
01

)

(L
iu

, B
lig

h
an

d
C

ha
kr

ab
ar

ti
20

03
)

SECTION 3.7: COMPARISON OF EXISTING RESEARCH

- 62 -

Sk
el

et
on

 m
od

el

Pa
ra

m
et

er
 ta

bl
e

G
eo

m
et

ri
c

m
od

el

2
4
0
:
1

2
0
:
1

I
n
p
u
t

I
n
p
u
t

1

T
F

T
F

L
o
a
d
1

L
o
a
d
2

2
0
:
1

2
4
0
:
1

G
eo

m
et

ri
c

co
nf

ig
ur

at
io

n

T
op

ol
og

ic
al

 c
on

fig
ur

at
io

n

Sp
ec

ifi
ca

tio
n

I
n
p
u
t

1
4
:
1

5
:
1

T
F

3
:
1

4
:
1

T
F

L
o
a
d
2

T
F

L
o
a
d
1

T
F

Figure 3-6: Representation comparison sketches II

M
or

e
ab

st
ra

ct

L
es

s
ab

st
ra

ct

(W
ah

l,
Sa

rt
or

 a
nd

Pa
re

de
s 2

00
3)

(F
in

ge
r

an
d

R
in

de
rl

e
20

02
)

SECTION 3.8: THESIS CONTRIBUTIONS

- 63 -

3.8. Thesis contributions

A selection of background research has been summarised on a simplified ‘design-line’

(Figure 3-7). This attempts to plot the scope of research contributions with respect to

the main Pahl and Beitz design phases (shown at the top of the diagram). Given the

one-dimensional and simple nature of this sketch, it should be borne in mind that this

graphic is indicative only. Some entries are broader than others and this does not

necessarily mean that they subsume the content of smaller entries, rather that the

research had broader rather than deeper implications on the design process. However,

this does not detract from the intention of this particular graphic. It serves a useful

purpose in allowing, at a glance, particular contributions to be ‘mind-mapped’ in

relation to other work. The bottom entry (‘Starling 2004’) proposes the scope of

research presented in this thesis.

Task clarification Conceptual design Embodiment design Detail design

DESIGN SYNTHESIS

Finger and Rinderle (2002)

Thornton (1993)

Bracewell and Sharpe (1996)

Liu and Chakrabarti (2003)

Szykman and Cagan (1997)

Schmidt and Cagan (1998)

Li and Schmidt (2001)

Campbell et al. (2003)

Lipson and Pollack (2000)

Wahl et al. (2003)

Starling (2004)

Figure 3-7: ‘Design-line’ comparison of existing work

SECTION 3.8: THESIS CONTRIBUTIONS

- 64 -

This thesis concentrates on design synthesis of mechanical systems with a view to

developing a synthesis formalism to underpin future computer tools as a possible

basis for a mechanical design compiler (Ward 2001). This work is grounded in the

parametric synthesis framework introduced in chapter 2. With respect to the literature

reviewed in this chapter, the key areas of focus for this are as follows:

• Chapter 4: Design generation.

A flexible and generic parallel grammar is developed to generate mechanical

systems composed of gears, spindles and plates. The parallel grammar enables the

synthesis of a language of mechanical designs from a library of parametric parts.

Geometric and topological constraints ensure that only purposeful designs are

contained in this language. Automatic generation of virtual prototype models is

incorporated into the implementation of the parallel grammar.

Parametric synthesis phases: investigate and generate.

Contribution: a new parametric parallel grammar formalism is developed for

computational form and function synthesis of mechanical systems.

• Chapter 5: Finding preferred solutions.

The parallel grammar is expanded to include modification rules that facilitate the

use of search algorithms to direct generation towards preferred designs. Design

performance is quantified through geometry-based metrics to enable evaluation of

designs to drive basic search for preferred designs.

Parametric synthesis phases: generate, evaluate and mediate.

Contribution: modification rules, an extension of the parallel grammar, allow

basic search for preferred designs driven by geometry-based performance

measures.

SECTION 3.8: THESIS CONTRIBUTIONS

- 65 -

• Chapter 6: Enhancing design evaluation.

Performance-based synthesis of mechanical systems is investigated by evaluation

of behavioural simulation models that are automatically generated ‘on the fly’ as

designs are generated. This introduces behavioural evaluation to the suite of

performance metrics that can be used for seeking out optimally directed designs.

The parallel grammar is used with a hybrid pattern search algorithm to generate a

multi-objective palette of solutions for a camera winding mechanism redesign

case study.

Parametric synthesis phases: generate, evaluate and mediate.

Contribution: performance evaluation is enhanced through behavioural

simulation to close the loop on computational performance-based mechanical

synthesis by enabling the automatic generation and feedback of analysis data.

• Chapter 7: Industrial applicability.

Validation of the parallel grammar for parametric synthesis is provided by

applying the method to power drill and vehicle gearbox design. The parallel

grammar is enhanced to model clutches and allows more innovative exploration of

potentially novel designs.

Parametric synthesis phases: mediate and investigate.

Contribution: the parallel grammar is enhanced to allow function graph

modification, so providing a means of generating novel design configurations.

- 66 -

4. Design generation19

This chapter introduces a parallel grammar for the creation of mechanical systems.

Based on a Function-Behaviour-Structure representation, the parallel grammar

consists of two inter-related grammars for the generation of form and functional

attributes of designs. The generation of clocks and watches is investigated as an

implementation example of the parallel grammar. An existing clock design is

recreated, using the parallel grammar, to verify the method. Novel clock layouts are

then generated computationally, using a basic generate-and-test search method, to

explore the design space described by the grammar.

4.1. A parallel grammar

It is desired to generate parametric mechanical designs to user-defined specifications

using a computational tool. Synthesis approaches for such design tasks require a

degree of abstraction to cope with domain-specific design issues, e.g. (Hoover and

Rinderle 1989; Ward 2001).

In this work, a Function-Behaviour-Structure model (Umeda et al. 1990) is utilised in

combination with a design grammar formalism (Chase and Liew 2001; Liew and

Chase 2001). A parallel grammar is developed to create structures of mechanical

designs that contain elements including, in the first instance, support plates, axles and

gear disks. The parallel grammar consists of two grammars, (1) a function grammar

that defines design connectivity and (2) a structure grammar that builds the physical

parts of a design. Hence the function grammar is not dependent on spatial or form

concerns. The ‘glue’ that links these two grammars is provided by geometric and

19 An early version of this work is given in (Starling and Shea 2002).

SECTION 4.2: THE DESIGN DOMAIN OF CLOCKS AND WATCHES

- 67 -

topological constraints that ensure a consistent form and function representation for a

design whose behaviour matches the requirements laid down by specification. These

grammar constraints are discussed in more detail in section 4.4. A schematic of the

parallel grammar is shown in Figure 4-1. The two grammars are referred to as being

in ‘parallel’ as both are used simultaneously to generate a design: rule applications in

the function grammar are followed by one or more rule applications in the structure

grammar. Together, the two grammars produce designs that fulfil the constraints

necessary for the required behaviour.

Function
Connectivity

Structure
Parametric

Parts

Function
Grammar

Structure
Grammar

Behaviour
Constraints

Figure 4-1: A parallel grammar schematic

4.2. The design domain of clocks and watches

Access to inexpensive, accurate and robust timekeeping is something that is taken for

granted in the 21st century, but it was not always so. Throughout the millennia a

variety of ingenious devices have been used for the purposes of keeping time, from

simple hourglasses and sundials to more complex contraptions based on the flow of

water. So-called ‘clockwork’20, mechanisms based on springs, ratchets and winding

gears, was, and to some extent still is, a popular method of powering and controlling

mechanical clocks. In fact, reliable clockwork mechanisms made for the first accurate

positioning system for ships at sea21.

20 A clockwork power source stores energy in springs and imparts this energy to a gear train by
effecting the rotation of an attached gear.
21 In the days before inertial navigation and the Global Positioning System, determination of ships’
latitude could be measured fairly precisely using a sextant, however, East-West measurements
remained fraught with error. Parliament’s Longitude Act of 1707 established a substantial financial
reward for a ‘practicable and useful’ method of determining longitude. John Harrison, an English
clockmaker, won this prize with a mechanical clock that could operate despite the heaving and rolling

SECTION 4.2: THE DESIGN DOMAIN OF CLOCKS AND WATCHES

- 68 -

These days more accurate methods22 are available for keeping time, and the

clockwork mechanism has been rendered obsolete as an indispensable technology.

However, clock-making has continued to push technological advances. The demand

for personal timekeeping devices, such as pocket-clocks and, subsequently,

wristwatches, has led to many important innovations and advances in precision

engineering, such as the use of jewel bearings for highly accurate positioning of

mechanism components. The watchmakers’ craft is highly skilled and is still a greatly

respected art, to the extent that a large market still exists for luxury clockwork

wristwatches that are worn as much for their functionality as for their image and the

kudos associated with being able to afford such an expensive artefact. Certainly the

most intricate examples of products from this industry boast a remarkable level of

precise manufacturing. As an example, the IWC Shaffhausen ‘Da Vinci’ and

‘Portuguese’ wristwatches boast mechanical perpetual calendars with gear reduction

ratios of 1 : 6,315,840,000. These watches will run with a high level of accuracy up

until the year 2499 (Egginger 2003).

Today, consumer timekeeping devices take advantage of many different technological

advances, such as electronic and mechatronic products that use quartz resonators to

provide time lapse information. Different demands, skill sets and manufacturing

options have resulted in a broad spectrum of products made to a variety of different

specifications to fulfil combinations of secondary functions, e.g. being lightweight,

accurate, in a particular cost bracket, of a particular size or having high perceived

quality. In some cases, these secondary functions can become crucial to marketing

strategy: the Swiss company Swatch emphasise the thinness of their wristwatches

(Ashby and Johnson 2002), the current ‘Skin’23 range having a case thickness of a

mere 3.9 mm.

Various clocks and watches, such as the clockwork alarm clock shown in Figure 4-2,

have been analysed for this thesis using a reverse engineering approach (Otto and

Wood 2001) to gain understanding of the design domain. A large quantity of non-

motion of ships and was accurate enough to be used to compare ship time with Greenwich Mean Time,
so providing a method of determining longitude (Sobel 1998).
22 In 1955 the first Caesium atomic clock was built at the National Physics Laboratory in the UK.
Nowadays, atomic clocks have an accuracy way beyond that achievable by mechanical means.

SECTION 4.2: THE DESIGN DOMAIN OF CLOCKS AND WATCHES

- 69 -

technical data on clocks and watches is available in the public domain that, while of

use, was not as valuable as information obtained from craftsmen, original patents

from the US patent office24 and published material from the International Watch

Company25, a Swiss corporation that produces clockwork watches for the luxury

market. Clocks have also been used in academic research as examples for work in

qualitative physics (Forbus et al. 1991).

Figure 4-2: A clockwork alarm clock

From a technical point of view, the high-level function of a clock can be defined as

follows:

Definition: The function of a clock is to keep track of
the passage of time and display this information on
demand in a fashion that is convenient to the user.

Definition 4-1: The function of a clock

This definition can be used to establish system functionality using a ‘black box’

model (Otto and Wood 2001). It is common practice to establish three types of inputs

and outputs: energy, material and information (Figure 4-3). The black box essentially

represents the clock function (Definition 4-1) that can also be broken down into

smaller sub-functions.

23 http://www.swatch.ch (last accessed 13 January 2004)
24 http://www.uspto.gov (last accessed 4 November 2003)
25 http://www.iwc.ch/ (last accessed 4 November 2003)

SECTION 4.2: THE DESIGN DOMAIN OF CLOCKS AND WATCHES

- 70 -

Clock

Energy

Information

Material

waste heat, sound

time signaluser data input

wear and tear
extreme temperature

energy source

lubricant

Figure 4-3: Black box model of a clock

Function-Behaviour-Structure (FBS) design models describe the relationships

between function and structure, and link these to the behaviour of the design (Umeda

et al. 1990). Information from the black box model in Figure 4-3 can be used to

construct a simple FBS model of an analogue clock, shown in Figure 4-4 without

product-specific details such as an alarm function. The product architecture is

organised into a series of ‘chunks’ (Ulrich and Eppinger 1995).

A clear mapping exists between chunks and functions, for instance the clock face

chunk has a direct link to the ‘display time’ function. However, inter-dependencies

among chunks impact both behaviour and function so that these chunks cannot be

designed in isolation. The desired behaviour of the clock is captured in the two

requirements ‘display time’, the direct user-required behaviour, and ‘have physical

integrity’. This basic model was found to be valid for a large range of different types

of clocks investigated: Table 4-1 shows a non-exhaustive list of comparative sub-

function embodiments for a clock and a watch.

Provide
Power

Produce
Rotation

Control
Timing

Clock
FaceHave

Physical
Integrity

Allow Absolute
Time Set

F B S

Display
Time

Gear
Train

Time Set
Mechanism

Power
Source

Escapement /
Controller

Base Plates,
Support Struts

Figure 4-4: Simple Function-Behaviour-Structure model of a mechanical clock

SECTION 4.3: A CLOCK GRAMMAR

- 71 -

Table 4-1: Sub-function embodiments for two different clocks

Sub-function Electro-mechanical watch Clockwork travel clock

Provide power Lithium battery Clockwork mechanism

Produce rotation Gear mechanism

Control timing
Piezo crystal used to provide
timing for pulsed, quantised

rotation

Mechanical escapement26

in series with gear train

Display time Clock face with hour, minute
and second hands

Clock face with hour and
minute hands

Allow absolute
time set

Manual gear train control in parallel with standard power
supply

4.3. A clock grammar

The FBS model provides a good basis for developing the parallel grammar for design

generation. Mechanical clocks are chosen as an initial demonstration problem for the

parallel grammar as they have relatively straightforward functionality, as shown in

Figure 4-4, but exhibit complex topologically and geometrically constrained

parametric configurations, i.e. they are not just a linear gear train of standard parts.

4.3.1. The function grammar

The function grammar describes the connectivity of sub-functions in the design and is

a grammar of the form:

),,,(FFFFunction SRXVG = Equation 4-1

}{ ,, TFNFF XXX ∪∈ Equation 4-2

{ }nullX NF ∈, Equation 4-3

},,,,,,{, SMHEPtcX TF ∈ Equation 4-4

{ }♠∈FS Equation 4-5

26 An escapement is a type of ratchet mechanism that allows incremental advancement of a gear
mechanism. When attached to a spindle oscillating in a simple harmonic manner, this device permits
discrete advancements at regular time intervals, so providing a time control device.

SECTION 4.3: A CLOCK GRAMMAR

- 72 -

V is a set of vertices with labels FX in an directed acyclic graph (DAG) (Standish

1998). FX is made up of a set of non-terminal labels NFX , and terminal labels TFX , .

FR is the set of rules that are used to create and transform the function graph and FS

contains the initial symbol (see Table 4-2 for an explanation of labels used). The set

of rules FR are presented in Figure 4-5.

1

n n

m

A

B

X ∈ XF X ∈ XF

Cn

X ∈ XF, N

n

X ∈ XF, T

♠

X ∈ XF, N

X ∈ XF, N

Rule A:
Create first vertex

Rule C:
Change vertex label from
non-terminal to terminal

Rule B:
Create vertex with non-

terminal label

Figure 4-5: The set FR of function rules

Rule A, the initial rule, is applied at the outset to create the first vertex in the graph.

Rule B creates new vertices in the graph, adding the correct labels as required. Rule C

allows the creation of terminal labels. Rules B and C are reversible to allow

backtracking during the synthesis process. A function graph developed using these

rules is shown in Figure 4-6.

31[M] [H]

5

4

2

7

6

[E] [P]

[c]
[c]

[c]

Figure 4-6: A possible function graph for a clock with minute and hour hands,
escapement and power source. The connectivity labels [c] can, in general, be

suppressed for completed graphs without information loss.

SECTION 4.3: A CLOCK GRAMMAR

- 73 -

Table 4-2: Explanation of terminal labels used in the grammar

Label Meaning

c A vertex indicating further connectivity. A vertex with this label is a valid
point to apply further structure rules.

t
A vertex indicating no further connectivity. A vertex with this label cannot
have another connection added to it in the function graph through the use of
rule B.

P A vertex marking the power source in the function graph.

E A vertex marking an escapement in the function graph.

M A vertex that corresponds to the minute hand in the watch structure.

H A vertex that corresponds to the hour hand in the watch structure.

S A vertex that corresponds to the second hand in the watch structure.

For presentation purposes, the function graphs have been laid out in an ordered format

to aid visualisation. Main terminal vertices are highlighted using colour and placed on

a grid of isosceles triangles. Hence in Figure 4-6, the main vertices representing the

hour and minute hands, as well as the escapement and power source, are represented

by red nodes and laid out on a light grey grid. The faint node in the top left of the

graphic is a placeholder for another potential vertex, for example as might be used to

represent the sub-function of the second hand of a clock.

The directionality of the edges in the directed acyclic graph indicate the generation

order of the elements of the graph. Vertices that are created before others will be

connected by edges that point towards the more recent ones. It may be of more value

to the designer to transform the graph so that the directed graph represents power flow

through the design. In this case edges would represent effort in a manner comparable

to the use of bond graphs (Paynter 1961). Performing this transformation on the

function graph in Figure 4-6 results in one change: the direction of the edge between

nodes 1 and 4 is reversed to indicate power flow (Figure 4-7). In general, this

transformation can be implied by the interpretation of labels, i.e. [P] indicates power

source and therefore power flows from this vertex.

SECTION 4.3: A CLOCK GRAMMAR

- 74 -

31[M] [H]

5

4

2

7

6

[E] [P]

[c]
[c]

[c]

Figure 4-7: Transformed function graph to represent power flow

Each vertex of the function graph can be associated with separate axles, termed

spindles in the context of clocks, in the gear mechanism. The function grammar

determines the connectivity of these vertices, however, there is no explicit physical

data associated with these nodes. This information is contained in the structure

grammar, which is discussed in the next section.

4.3.2. The structure grammar

The structure grammar allows generation of a physical embodiment of a clock with

connectivity determined by the function grammar. Structural elements include

spindles, gears and support plates that are represented as parametric three-dimensional

components. The structure grammar contains rules that generate these components,

including their corresponding labels and spatial positions in the design, and are

invoked in parallel with the function rules. Each particular function rule corresponds

to one or more structure rules. Any parameters and spatial co-ordinates not explicitly

determined by constraints and rule relations can be provided by the user or chosen

randomly. The structure grammar is of the form:

SECTION 4.3: A CLOCK GRAMMAR

- 75 -

),,,(, SSSDataTypeStructure SRXEG = Equation 4-6

},,,{ KDISKPLATESPINDLEType ∈ Equation 4-7

=

MMM
Nout

Nin

N

N

N

out

in

out

in

r
r

id

r
r

id

r
r

id

Data

,

,

2,

2,

2

2

2

1,

1,

1

1

1

...,,,
R
r

R
r

R
r

Equation 4-8

{ } CON_id,X S K∈ Equation 4-9

{ }♣∈SS Equation 4-10

The language of this grammar is defined by the structural elements DataTypeE , where

subscripts refer to the information that defines the structure. The subscript ‘Type’

carries information about the type of structural element, for example a gear disk is

given the label DISK . The ‘Data’ subscript contains material properties, part features,

local and global part co-ordinates, as well as identifiers for the N elements in the

structure. Elements are assigned the same identifier id if they are part of the same

physical object, hence a gear disk and the spindle it is attached to are assigned the

same identifier since they correspond to the same vertex in the function graph. The

labels SX contain information such as which gear disks interact with each other. For

example, a gear disk that interacts with another gear disk on spindle n would carry

the label nCON _ . As with the function grammar, SS contains the initial symbol.

As the structure rules are used to create new components and add them to a design,

structure rules are also referred to as ‘Create Rules’, or ‘C-Rules’. The C-Rules, SR ,

as implemented for the clock grammar, are described in Table 4-3 and presented in

graphical form in Figure 4-8. This set contains a number of rules that are sufficient to

generate the form of a basic clock from the starting symbol. Gear pairs are

approximated by flat disks, or thick annuli if an axial hole is considered for the

spindle, where the outer radius of the disk corresponds to the pitch radius of the gear.

The reduction ratio of a gear pair is determined by the ratio of outer radii of the gear

disks of the pair. This is a fair simplification if tooth size is small with respect to the

dimensions of the gear. The structure representation in its current form therefore does

SECTION 4.3: A CLOCK GRAMMAR

- 76 -

not consider such gear design details as addendum and dedendum values27, nor does it

consider the effects of tooth shape and contact ratio on the performance of the gear

(Marghitu et al. 2001). Within the scope of this work, the refinement of the

representation is covered during the detail design phase of the overall design process

or is supplied by simulation tools (see chapter 6). The simplified representation is

suitable for synthesis of concepts and general architecture.

Table 4-3: Description of structure rules

Rule Description

1 Create a new spindle, replacing the initial symbol.

2 Add a spindle to the structure.

3 Connect two spindles with gear disks.

4 Add a base plate.

5 Add a power source (electronic) and connect two spindles.

6 Add a power source (clockwork) and connect two spindles.

7 Starting from two spindles, create an escapement.

Like the function rules, the structure rules, apart from the initial rule, are reversible.

Hence during the course of a design, an object or collection of objects can be removed

from the structure by finding it in the right hand side (RHS) of a structure rule and

replacing it with the corresponding left hand side (LHS). Structure rules are invoked

by function rules or can be executed manually. For example, adding a support plate to

a design (rule 4) is not linked to a function rule. It is important to note that there is not

a one-to-one mapping between function and structure rules, i.e. function rules invoke

a non-exclusive subset of the structure rules.

27 The addendum of a gear disk is the distance that the tooth profile extends outwards from the pitch
radius of the gear. The dedendum of a gear disk is the distance that the tooth profile extends inwards
from the pitch radius.

SECTION 4.4: CONSTRAINT SPECIFICATION

- 77 -

∅
Rule 4

support plate

♣
Rule 1

Spindle

n

Rule 2

nn m

Rule 6

clockwork
power
source

mn
n

m

Rule 3

interacting
gear disks

n
n

m

m

Rule 7
escapement
mechanism:
added as
integrated
componentn m mn

Rule 5
electronic
power
source

m mn n

Figure 4-8: The set SR of structure rules

4.4. Constraint specification

The importance of design constraints in synthesis was introduced in the background

chapter. These are of special significance as the structure elements and rules outlined

in this chapter are fully parametric. While this allows for variation in size of elements,

it is also necessary for these parameter values to fulfil both general design and

element-specific constraints, therefore ensuring the parametric and topological

validity of designs produced by the grammar.

General design constraints ensure that no physical impossibilities occur in the

structural design, such as two elements overlapping, i.e. sharing the same physical

space. Element-specific constraints are more detailed, for example the ‘mesh’

constraint ensures that the two gear disks of a spur gear pair interact, i.e. the sum of

the pitch radii is equal to the distance between the centres of the two disks. Another

element-specific constraint, valid for all spindles that are attached to hands on the

SECTION 4.4: CONSTRAINT SPECIFICATION

- 78 -

clock face, is that these ‘origin spindles’ must be placed at the origin, i.e. have co-

ordinates 0==YX , so that they can rotate around the same point to create a standard

analogue display. This constraint is necessary to generate standard analogue clock

faces. Relaxation of this constraint allows the generation of other possibilities, such as

clock hands not centred on the origin.

In general, all constraints can be separated into two categories, topological and

geometric constraints. All constraints are parametric to the extent that they control

parameters in the design, however, topological constraints have a direct impact on

connectivity and topology, i.e. they ensure functional requirements are maintained.

For example the mesh constraint discussed above is a topological constraint in that

gears are required to physically interact to uphold functional validity. A list of the

main topological constraints can be found in Table 4-4; geometric constraints are

listed in Table 4-5. In both tables a detailed description of the constraints is included.

Figure 4-9 shows a gear pair schematic with related parameter annotations.

dn,m

Rn(m) Rm(n)

tm(n)tn(m)

Zn(m)

z = 0
Zm(n)z

x
y

Figure 4-9: Gear pair schematic for constraint visualisation

SECTION 4.4: CONSTRAINT SPECIFICATION

- 79 -

Table 4-4: Topological constraints

Type Detailed description

Mesh

(plane)

Ensure that gear disks interact in the plane of the spur gear, i.e. that sum of
outer gear disk radii is equal to distance between spindles that gears disks

are attached to:

22

)()(,

)].[].([)].[].([YmYnXmXn

RRd nmmnmn

−+−=

+=

where X, Y are planar co-ordinates of spindles [n] and [m], [n(m)] is gear
disk on spindle [n] connecting to spindle [m] and vice versa.

Interact

(axial)

Ensure that the parametric elements interact in axial direction. For
example, for interacting gear disks:

() ()() () ()()[]
() ()() () ()()[])()()()()()(

)()()()()()(

nmmnnmnmmnmn

nmmnnmnmmnmn

ZZANDtZtZ
ORZZANDtZtZ

≥+≤+

≤+≥+

where n(m) is the gear disk on spindle n that connects to spindle m and vice
versa. Z is the absolute position of the gear disk from the XY plane, height
of this gear disk is tn. This constraint also affects interactions between gear

disks and the spindles they are attached to.

Ratio

Ensure the overall ratio of mechanism remains unchanged. If an individual
gear pair ratio changes, ensure that overall ratio of gear train remains

unchanged.

∏
=

=

=

N

n
n

nm

mn
n

RATIORatioThen

R
R

RatioLet

0

)(

)(

where n = 0, 1, 2, …, N are all gear joints that lie in series for which the
total ratio must conform to a particular value RATIO. For example the gear
joints between the hour and minute hands of a clock require a ratio of 60.

Free parameters, i.e. those that are not otherwise set by the constraints on the design,

may be set by the user or selected randomly. As part of computational generation

strategies that are introduced later in this chapter, the responsibility for setting these

parameters is given to the algorithms controlling a search process.

SECTION 4.4: CONSTRAINT SPECIFICATION

- 80 -

Table 4-5: Geometric constraints

Type Detailed description

Overlap
Ensure no overlap between parts within the parametric structure. A

collision-detection library is used to check proposed changes and advise on
geometric feasibility.

Boundary

Ensure that absolute and relative geometric parameters of elements fall
within acceptable ranges, e.g. bounding box, minimum/maximum

conditions:

ParamRlMaxParamnParamnParamRlMin
ParamAbsMaxParamnParamAbsMin

__2].[1].[__
__].[__
<−<

<<

where Param, Param1, Param2 are generic parameters, Max_Abs_Param
and Min_Abs_Param are absolute spatial constraints, Max_Rl_Param and

Min_Rl_Param are relative parameters.

Problem-
specific

Equality constraints that are usually problem-specific, for example the
constraint on the spindles that carry the clock hands requiring them to be

concentric:

ParammParamn].[].[= , where Param is a generic parameter.

Component Minimum / maximum part numbers N, e.g. maxmin NNN <<

The hard constraints specified in Table 4-4 and Table 4-5 come into play during the

application of grammar rules. Any addition or change to an existing collection of

components may not conflict with any of the existing constraints. For example,

adding a new component that would collide with an existing component is not

permitted. This is determined in the implementation using collision detection

software. As another example, consider the case of the ratio constraint. The grammar

ensures that gear disks are sized suitably to create the desired ratio.

In chapter 5, the possibility of modifying existing designs is introduced, for example

moving a spindle with an existing gear pair connection. Subsequent resizing of the

gear pair – to uphold the ratio constraint – must result in a valid structure, i.e. an

arrangement of components that does not violate any design constraints. Were this

change to result in such a violation, e.g. a collision with another component, the

grammar does not allow the change and the original, legal structure is restored. The

use of constraints is generic and allows new gear sets to be added to the chain, the

grammar ensuring that overall ratio-preserving gear radii are selected. The

modification of existing structures is discussed in more detail in chapter 5.

SECTION 4.5: VERIFICATION OF THE PARALLEL GRAMMAR

- 81 -

4.5. Verification of the parallel grammar

The clock grammar was verified through the recreation of an existing clock

configuration. This design was generated by hand-selecting function rules and

choosing parametric values for the corresponding structure rules to reflect the original

design. Figure 4-10 shows a generated model of the clock next to an image of the

dissected clock shown in Figure 4-2.

 Face side

Base side

Clock hands
attach here

Figure 4-10: Synthesized model of real clock (base and face plates not included).

Figure 4-11 illustrates the generation procedure step-by-step, showing the

transformations of the function graph and the physical structure by application of

grammar rules to re-create the original design. Starting with their respective initial

shapes, the first rules of both the function (rule A) and the structure (rule 1) grammars

are applied to create the first vertex in the function graph and the corresponding first

spindle in the structure representation. The starting spindle will be the minute hand

and so the vertex in the function graph is given the label [M] by applying rule C (c.f.

Table 4-2 and Figure 4-5). To aid visualisation, the same label has been added to the

structure representation in Figure 4-11.

The structure is then built up further. Applying function rules B and C allows a new

vertex to be added to the graph and labelled. This particular spindle will be an idler

between the minute and the hour hands, so it is given the label [c] which has been

suppressed in this graphic for clarity. In the structure grammar, rules 2 and 3 have

been applied as part of this step to create the parallel structural components: A new

SECTION 4.5: VERIFICATION OF THE PARALLEL GRAMMAR

- 82 -

spindle has been added and then linked to the first spindle by a pair of intermeshing

gear disks.

This procedure continues until the final design has been generated. Note how structure

rules 6 and 7 have been used to create a power source and an escapement, the latter

being represented by a standard spindle and gear disk. A second hand has not been

included as the original clock (Figure 4-2) did not have one. Rule applications in

Figure 4-11 are indicated by one-directional arrows to show the progression of the

design. As all rules (apart from the initial rules) are reversible, they could equally

have been represented by double-headed arrows to indicate that this is the case. Hence

a series of rule applications can be undone, if required, to retrace synthesis steps back

to an intermediate stage if the current design path is deemed to be fruitless or

unsuccessful.

SECTION 4.5: VERIFICATION OF THE PARALLEL GRAMMAR

- 83 -

2 3

♠

2 3

minute
spindle

[M] [M] [M]

2 3

hour
spindle

[M][M] [M]

[H][H]

2 7

escapement
(schematic)

[M] [M][M]

[H][H] [H]
[P][P] [P]

[E][E]

2 3
[M] [M] [M]

[H] [H][H]
[P][P][P]

2 6
[M][M][M]

[H][H][H]

[P] [P]

[M] [M][M]

[H][H][H]
[P][P][P]

gears for
escapement

1
♣

FUNCTION STRUCTURE

clockwork
mechanism

[M]

1[M] [H]

5

[E]

3

[P] 4

2

7

6

1[M] [H]

5

3

[P] 4

2
6

1[M] [H]

5

3

[P] 4

2

1[M] [H] 3

[P] 4

2

1[M] [H] 3

2

1[M]

2

1[M]

A, C

B, C

B, C

B, C

B, C

B, C

B, C

Same structure

Figure 4-11: Application of rules to create a clock design. The colouring of elements
in these diagrams has no functional purpose and is intended to allow spindle (orange),

gear disk (red) and power source (white) elements to be easily distinguished.

SECTION 4.6: GENERATION OF CLOCK DESIGNS

- 84 -

4.6. Generation of clock designs

The successful implementation of this grammar demonstrates that a parametric

grammar, that does not rely on pre-constructed fixed-size part libraries, can be used

for the spatial and functional generation of a three-dimensional mechanical systems

composed of gear disks and spindles. Further embodiments of this function graph can

be created using a simple generate-and-test algorithm to generate designs that satisfy

chosen design criteria. Solution generation is constrained by the design constraints,

for example restricting the space available for the whole structure or limiting the

maximum pitch radius of spur gears (Table 4-5). This section now explores some of

the basic possibilities for using the parallel grammar for generation of valid designs.

4.6.1. Complexity and generality

The fact that application of structure rules can successfully create complicated designs

from very simple descriptions is important for future development of this work. It is

surmised that a grammatical approach to aiding complicated design problems cannot

be efficient if very complicated and specific grammar rules are required as this would

adversely affect the portability of grammar rules to other design tasks of a similar

class.

As an example, consider, as discussed previously, the spindles that are attached to the

hands of the clock. These spindles could be placed anywhere in the clock structure,

however, to conform to the design specification that the hands of the clock must both

lie on the same axis so that they rotate around the same point on the clock face, a

clock-specific user constraint is imposed. This problem-specific constraint (Table 4-5)

ensures that these so-called ‘origin’ spindles with labels that indicate hour, minute or

second hands are placed at the centre of the clock cylinder and are attached to the

support plate on the face side of the artefact to allow the attachment of the clock

hands. This requires a more complex structure whereby shell-like spindles sit inside

each other like Russian Babushka dolls.

SECTION 4.6: GENERATION OF CLOCK DESIGNS

- 85 -

Figure 4-12 shows how the same rules can be used to create different structures where

the constraints condition the complexity of the structure. Three different final

structures are shown, each of which was generated by the same sequence of structure

rules but with different chosen parameters. From the starting symbol, rule 1 is applied

to create a spindle, and rules 2 and 3 are applied to create two spindles connected by

gear disks. The upper design shows the third spindle added as a shell around the initial

spindle. The important point is that each of these three possible structural designs was

created with the same structure rules, driven by constraints, to physically represent the

same function graph.

♣
1

2, 3

2, 3

2, 3

2, 3

Figure 4-12: Application of structure rules

4.6.2. Generate-and-test

Having introduced the parallel grammar for the step-by-step manual production of an

existing clock design (Figure 4-11) and investigated the low-level practicalities of

using simple rules for building up different structures with the appropriate constraints

(Figure 4-12), the possibility of computational generation of new designs was

examined. The simplest form of computational implementation for such a grammar

would be to prompt a user to provide a selection of function rules that, in turn, trigger

the corresponding rules in the structure grammar. This data-entry process can be

accelerated by allowing the user to input a set of function rules using an input file

SECTION 4.6: GENERATION OF CLOCK DESIGNS

- 86 -

with spindle and ratio data. A flowchart representation of the generate-and-test

algorithm can be found in Figure 4-13.

Build Up
Initial Design

Function Graph

Structure
Representation

INITIAL DESIGN

Modify
Design

Function Graph

Structure
Representation

PREFERRED DESIGN

Evaluate
DesignContinue?

Yes

Stop Design
Archive

No

Start

Figure 4-13: Generate-and-test algorithm for computational creation of design
solutions

(shaded area contains synthesis steps that are added in the next chapters)

If these above-mentioned structure rules fire successfully, i.e. are able to create the

relevant structures with the required parameters without breaking any constraints, a

successful design ensues. On some occasions, however, structure rules will fail to

complete successfully. This can occur in many situations, the simplest case being that

the required parameters would break basic constraints, e.g. a newly added component

may attempt to occupy the same space as an existing element in the design.

The generate-and-test algorithm uses random numbers to choose free parameters.

Hence unsuccessful rule applications can occur relatively frequently, as the rules,

which were designed to be as generic as possible so as to avoid highly tailored,

complex grammars, include no knowledge of the likelihood of application success

with regard to parameter ranges or application location within the design. In these

cases, the ‘brute-force’ method employed by the generate-and-test algorithm

repeatedly attempts to reapply a particular rule using a different set of randomly

generated parameters until success is achieved or a pre-set maximum number of

SECTION 4.6: GENERATION OF CLOCK DESIGNS

- 87 -

attempts has been made. With respect to the original grammar, each repeated

application corresponds to the grammar rules being applied in reverse to move the

design back to a previous stage where all constraints are fulfilled, so restoring the

validity of the partial design. Another rule application can then be attempted to try and

move the design towards completion.

In cases where rule application is repeatedly unsuccessful, a ‘return-to-base’ strategy

is employed to return to the starting symbol and restart the rule application process

from scratch. Consider attempting to apply structure rules 2 and 3 to create a new

spindle and gear pair of ratio 9:1 (see Figure 4-11 for examples of this rule

combination). The spatial constraint on the smaller of the two gear disks will result in

a minimum radius for this disk, with the 9:1 ratio resulting in the minimum distance

between the existing and new spindles being at least ten times the minimum radius as

specified by the spatial constraint (see Table 4-4 and Table 4-5 for constraints; see

Figure 4-9 for gear pair visualisation). If this minimum size results in components that

cause protrusion beyond the bounding volume of the design, then the results of this

rule application will always fail due to the overlap constraint.

4.6.3. (Re)creating designs

The generate-and-test algorithm provides a straightforward method of exploring the

language of clock designs described by the parallel grammar. Grammar rules were

used in conjunction with the algorithm to generate further designs as a redesign task

for the existing clock, shown in Figure 4-2. This design corresponds to the function

graph in Figure 4-6.

Firstly, it was attempted to find a design for a similarly constrained space as the

original clock. The volume for the clock was limited to a cylindrical space of height

20 mm and radius 30 mm, slightly bigger than the original dimensions. Additionally,

each spindle was required to be anchored to at least two base plates with a relaxation

on origin spindles to allow short ‘stubby’ spindles to be connected at just one end, as

is found in successful existing clock designs. This design requires three connections to

be made to the initial spindle [M]. This crowded configuration resulted in a low

SECTION 4.6: GENERATION OF CLOCK DESIGNS

- 88 -

success rate for the generate-and-test algorithm – 1068 attempts were required by the

algorithm before a solution was found and this design is shown in Figure 4-14. The

image is a picture of the virtual prototype generated as a VRML28 model at run-time

during the generation process. The ‘stubby’ hour spindle (#3 in the function graph)

can be seen at the bottom, with the thinner minute spindle (#1 in the function graph)

extending out above it. The gears for the power source and escapement can be seen

nearer the top of the picture. General spatial constraints were set to conform to

existing clock designs and are listed in Table 4-6.

3, [H]

1, [M]

4, [P]2, [c]

5, [c]

7, [E]

Figure 4-14: Solution set A – clock 1. Colourings are as before; in addition, plates are
blue and semi-transparent. Labels have been added to assist in spindle identification.
Spindle 7 ([E] indicates schematic escapement) is located behind spindles 5 and 6.

28 Virtual Reality Modelling Language. VRML is an industry standard for virtual reality, solid
modelling and general graphics work.

SECTION 4.6: GENERATION OF CLOCK DESIGNS

- 89 -

Table 4-6: Detailed spatial constraints for generate-and-test experiments

Parameter Explanation and rationale Value for sets A-D

maxR

maxR is an upper limit on the radius of
gear disks to inhibit creation of infeasible

part sizes (gear disk minimum radius
provided by outer radius of spindles they

are attached to).

40 mm

minRATIO 0.1

maxRATIO

These parameters provide upper and lower
limits on RATIO , the ratio reduction of

gear disks. 20

minWALL Minimum radial thickness of thin-walled
structures. 0.2 mm

minANNULUS Minimum axial thickness of disk-shaped
structures. 0.4 mm

min_ OFFSTAND Minimum clearance required between
non-interfering moving parts. 0.2 mm

min_TPOWER Minimum thickness of power source to
provide enough space for mechanism. 4 mm

min_ RPOWER Minimum radius of power source to
provide enough space for mechanism. 10 mm

In a typical example of how the design process might take place, it was decided that

requiring each spindle to be anchored at two points to base plates (coloured blue in

Figure 4-14) might not be as important a criterion as reducing the overall thickness of

the clock. Hence another experiment was carried out, requiring each spindle to be

anchored at one point in the design, but reducing the thickness of the overall height of

the design volume from 20mm to 10mm. All other constraining parameters were left

unchanged. Despite the space constraints, the loosening of the anchoring constraint

allowed for much faster design generation, with 20 possible designs generated in 82

attempts, of which the 3rd and 5th designs solutions generated are shown in Figure

4-15 (see Table 4-7 for comparison of constraint values for these different

experiments).

SECTION 4.6: GENERATION OF CLOCK DESIGNS

- 90 -

Figure 4-15: Solution set B – clock 3 (left) and clock 5 (right)

All the designs in solution set B feature a relatively high packing density of

components to overcome the restrictive spatial constraints. Additionally, most parts

are placed away from the clockwork power source (the white cylinder in the structure

representations). The size of this component is restricted by the minimum values

given in Table 4-6, as clockwork is quite bulky with respect to other parts in the

design. The spatial restrictions are minimum values rather than equality constraints as

the clockwork part is treated as a parametric component that can be sized according to

the ratio between it and its connecting gear pair.

With the origin spindles restricted to be at the centre of the cylinder, the power source

is one of the main spatial restrictions on these clock designs. It must not protrude

beyond the confines of the base plates as this would violate the boundary constraint

requiring the design to be contained within the cylindrical design envelope. Here the

similarities between these two designs end. Solution 3 has arranged all but the gear

pair between spindles 1 and 2 to be above the middle base plate, while solution 5 has

a more even spread with the gear pairs between spindles 1 through 4 below the middle

base plate.

Having generated new solutions for an existing design, a different clock design was

considered that would not require an escapement, as is found in designs where the

timing mechanism can be incorporated into the power source, for example in

mechatronic clock designs. A second hand was specified for this new design and a

possible function graph for the clock is shown in Figure 4-16. With relaxed height

constraints on the clock (as might be found for a carriage clock type design that is

placed on the mantelpiece of a living room) 20 new valid designs were generated after

72 attempts. Some of these designs, designated solution set C, are presented in Figure

4-17.

SECTION 4.6: GENERATION OF CLOCK DESIGNS

- 91 -

2

[S] 3[M] [H] 5

8

4

[P]

1

76

Figure 4-16: Solution set C – function graph

Figure 4-17: Solution set C – clock 5 (left) and clock 11 (right)

As a final experiment, designs were generated for a hypothetical function graph,

shown in Figure 4-18. This function graph has a total of 13 nodes, a considerably

larger number than those in the previous function graphs considered (7 for solution

sets A and B, 8 for solution set C). Moreover, 5 of these vertices carry main terminal

labels for the clock hands, escapement and power source. As in solution set C, the

three origin spindles must all be concentric, and the power source is not directly

attached to an origin spindle but connects to one of the idler gears between the second

and the minute hand spindles. The rationale for such a design is that longer gear trains

may be required if there is a low upper limit on the ratio of each gear pair, perhaps

due to power transmission limits imposed by a particular type of power source or gear

material. 20 valid designs were again generated for the more complicated function

graph resulting in a success rate more akin to that for solution set A: 20 solutions from

2381 attempts. To illustrate the range of the language described by the grammar, four

of these designs are shown in Figure 4-19.

SECTION 4.6: GENERATION OF CLOCK DESIGNS

- 92 -

2

4

8

7

13

5

11

10

[E] [P]

[S] [M]1 [H]

9

3

2
12

6

Figure 4-18: Solution set D – function graph (see Table 4-2 for explanation of labels)

Figure 4-19: Solution set D – clock 12 (top left), clock 17 (top right),
clock 18 (bottom left) and clock 19 (bottom right)

4.6.4. Comparison of generated designs

Visual inspection of virtual prototypes, i.e. VRML models, is important for design

generation as it provides instant feedback on the quality and range of designs being

produced. The information contained in such graphics, however, is only qualitative. A

designer is not likely to want to wade through thousands of design prototypes to find

the most likely candidates for developing a good design. The use of simple design

metrics can be used to assign quantitative figures of merit to designs prepared by the

generation process. An example of a simple metric is the mass of the design. With all

parametric data available, it is a simple matter to calculate the mass of a design for

given densities of material. Another simple metric is the aspect ratio of individual

SECTION 4.6: GENERATION OF CLOCK DESIGNS

- 93 -

components of the design, based on the principle of designing short, direct force paths

(French 1999). Plotting these performance metrics for the generated designs can

provide useful information to help direct the choice of suitable designs for

investigation. Metric data for the design results discussed in this section was

normalised to comparable values and plotted in Figure 4-20. The aspect ratio metric is

based on a least-squares calculation that penalises extreme differences in aspect ratio

(see Table 5-3). The depicted designs in the previous figures have been annotated.

Figure 4-20: Simple metric representation of solutions for data sets A, B, C and D

The distinct grouping of the different sets of designs is a direct result of the different

constraints set for the design scenarios. Set B has the strictest envelope of all the

designs and hence only low volume (and hence mass) components can be selected

during the generation process. This multi-objective presentation of the data also

highlights particularly noteworthy solutions that merit further investigation, for

example, solution 3 of set B has a particularly high aspect ratio metric value. Further

analysis of the solid model generated for this design (Figure 4-15) reveals that this is

consistent with a high number of flat, wide but relatively thin gear disks in this

particular design. Design metrics are considered in greater detail in subsequent

chapters. A list of the user-specified parameter values used for the generate-and-test

experiment sets A-D are listed in Table 4-7.

SECTION 4.6: GENERATION OF CLOCK DESIGNS

- 94 -

Table 4-7: User-specified parameter values for generate-and-test experiments

Parameter Detail Set A Set B Set C Set D

lower bound
[mm]

Lowest point of any
component in structure -5 -5 -10 -10

upper bound
[mm]

Highest point of any
component in structure 15 5 20 30

clock radius
[mm]

Radius of cylinder
containing clock body 30 30 30 30

spindle attachment Minimum number of plate-
spindle anchored points 2 1 1 1

4.6.5. Clans and families of designs

Having generated several design examples for the grammar it is worthwhile

investigating classification concepts with the design language. To what extent can two

designs be considered ‘different’ or ‘similar’? How could one describe this

quantitatively? The design domain of clocks is investigated in this case, but the

concepts introduced here will be applied to other domains in subsequent chapters.

The generated designs in sets A and B vary parametrically, but the underlying

structure is similar as all designs generated have exactly the same functional

representation (Figure 4-6). These designs can be considered to be members of a

‘family’ of designs. They have the same function graph and designs are distinguished

by having different parameters.

On a more abstract level, there are clear differences between these designs and those

in set C and D. Not only do the designs vary parametrically, but their fundamental

connectivity as specified in the function graph makes them distinct. In a similar

manner to class-based representation systems, these designs can therefore be thought

of as being in different ‘clans’, a level of abstraction higher than a family of designs.

This clan hierarchy is represented in Figure 4-21.

SECTION 4.6: GENERATION OF CLOCK DESIGNS

- 95 -

C
L

A
N

S More
abstract

Less
abstract

Clan_1
D

E
SI

G
N

S
FA

M
IL

IE
S

Clan_2 …

Family_1_1
Family_1_2

Family_1_3
Family_1_4

…

ALL DESIGNS

Design_1_3_1
Design_1_3_2

Design_1_3_3
…

Design_1_4_1
Design_1_4_2

Design_1_4_3
…

…

System Topology

Structure

Component Topology
(Architecture)

Figure 4-21: The clan hierarchy

Clans, at the top of Figure 4-21, differ in their system topology – main connectivity

lines are all that need be considered to decide whether a design lies within a clan.

Each clan contains many families, i.e. possible function graphs that can fulfil the

general clan system topology. These families, the middle layer in the figure, differ in

component topology. Each family, represented by a particular function graph,

contains many possible designs, i.e. possible parametric variations on the design

parameters specified in the structure representation of the function graph. Figure 4-22

shows a similar graphic to Figure 4-21 but with example designs taken from those

explored in this chapter.

SECTION 4.7: CONCLUSIONS

- 96 -

1[M] [H]

7

3

5
2

9

8

[E] [P]

4

6

[S] [M] [H]

[P]

[M] [H]

[E] [P]

2

4

8

7

13

5

11

10

[E] [P]

[S] [M]1 [H]

9

3

2
12

62

[S] 3[M] [H] 5

8

4

[P]

1

76

1[M] [H]

8

4

6

2

11

9

[E] [P]

5

7

3

10
1[M] [H]

5

3

4

2

7

6

[E] [P]

C
L

A
N

S
D

E
SI

G
N

S
FA

M
IL

IE
S

More
abstract

Less
abstractStructure

Component Topology
(Architecture)

System
 Topology

[S] [M] [H]

[P][E]

Figure 4-22: Clans and families of designs – some examples

4.7. Conclusions

This chapter has presented the creation and use of a parallel grammar based on an

FBS design model for mechanical design synthesis. The grammar has been used to

generate clock designs using three-dimensional parametric parts while adhering to a

set of geometric constraints. The implementation of the parallel grammar has shown

that the grammar-based design representation can produce valid designs and, in

combination with a generate-and-test algorithm, can produce clock designs targeted at

varying design criteria.

The parallel grammar presented aims to synthesise designs with required behaviour by

simultaneous consideration of both the function and structure of a design. Topological

synthesis of mechanical designs in the clock domain has been demonstrated using

parametric parts to create geometrically constrained solutions to a simple problem,

showing that constraints can be used to control the application of simple function and

structure rules to produce different solutions.

SECTION 4.8: LIMITATIONS

- 97 -

4.8. Limitations

The ultimate aim of this research is to develop methods and tools that can be used to

assist innovative mechanical systems design. However, many improvements are still

required. The parallel grammar provides a sound basis for developing a usable design

tool. The generate-and-test algorithm introduced above is relatively simple: the

system relies too heavily on brute force and does not exhibit good scalability, e.g.

increasing design complexity by a small degree (solution sets A and D over sets B and

C) results in a much lower success rate. This could be addressed by increasing the

amount of knowledge in the grammar rules, perhaps allowing grammar rules more

autonomy to consider their immediate environment before they are applied at a

particular point in the design. The stated aim, however, is to keep the grammar rules

as simple as possible to ensure flexibility of design generation and avoid task-specific

and narrowly defined grammars more akin to knowledge-based systems, so this route

will not be explored.

The structure rules in the parallel grammar are effective for building up possible

designs from scratch, but show a high degree of inflexibility once a design has been

generated. For example, each of the designs plotted in Figure 4-20 was generated

from scratch. Consider solution 3 of set B in this graphic that is far removed from the

remaining 19 designs in this set. On being presented with this data, the designer might

well want to investigate this particular design further and explore the design space

immediately adjacent to it. Currently, the designer would have to do this manually as

there is no way to simply modify parameters in the structure representation using the

grammar, as all structure grammar rules require addition or removal of components in

the design. Hence there is no simple method of lateral exploration of designs within

families and therefore no way of applying a simple search algorithm to locate good, or

even optimally directed designs, in this local design space.

The generate-and-test algorithm is able to generate different designs for a given

family of designs. To generate a design of a different family, a new function graph

must be specified by the user. This is rather inflexible. A good exploration of many

different families and clans of designs would require the user to specify a large

number of function graphs separately. It would be advantageous if some sort of

SECTION 4.9: IMPLEMENTATION DETAILS

- 98 -

modification could take place that would allow designs to be perturbed to move

between families. This would require a mechanism to remove and add nodes in a

function graph without altering the system topology specified by the clan. It would

also be useful to be able to generate different system topologies to generate even more

possible designs.

In summary:

• A method for perturbation within design families is required to enable local

exploration of designs within the language.

• The generation process for creating designs is wasteful and too naïve.

• A method for comparison of valid designs is required to improve the mediation

between design alternatives.

• It would be interesting to allow perturbation of designs to move between families

and clans to explore a greater search space than is currently considered.

The first three issues are addressed in chapter 5, the last point is taken up in chapter 7.

4.9. Implementation details

The parallel grammar has been implemented in a Linux-based C++ environment,

where the function and structure grammar are instantiations of two main classes. The

function graph is stored as a matrix that holds all edge, vertex and label information.

The structure representation comprises a linked list of instantiations of a general

element class. Labels and parametric data are stored within this format. Design

solutions are saved in main memory while the program is running. Data and models

are written to file upon completion of the generation procedure.

SECTION 4.9: IMPLEMENTATION DETAILS

- 99 -

A collision detection library, FreeSOLID29, is used to assist geometric constraint

satisfaction. With this library, constraints pertaining to the interference of objects do

not have to be described in the code explicitly, so making the process of constraint

checking more transparent. Designs generated by the system are exported as Virtual

Reality Modelling Language (VRML) files. These virtual prototypes are interpreted

by VRML viewers as three-dimensional design models that can subsequently be

visualised, inspected and analysed. A screenshot of a VRML viewer is depicted in

Figure 4-23. Cursor-controlled manipulation allows rotation and translation of the

viewpoint to enable visual analysis of the model.

Figure 4-23: Inspecting a generated model with a VRML viewer

Time taken for solution generation varies with the complexity of the function graph.

More straightforward solutions, for example sets B and C, are generated in time of the

order of seconds, for example, the 20 solutions for set B were generated in under 4 s

of user time, 1000 solutions for the same problem were generated in 143 s of user

time30. Problems with more restrictive constraints and more complicated function

graphs required a greater number of iterations, pushing the user time into the order of

minutes for generation of 20 designs.

29 http://www.win.tue.nl/~gino/solid/ (last accessed 7 November 2003)
30 This data was generated on a PC with a CPU running at 1200 MHz.

- 100 -

5. Finding preferred solutions31

This section introduces a two-pronged strategy to address the main improvement

issues raised in chapter 4 relevant to the generation of mechanical designs using the

parallel grammar. The approach presented (1) enhances computational generation of

new designs and (2) introduces the possibility of quantifying the quality of such

designs.

A modification method is introduced that enables the perturbation of parameters in

designs, therefore allowing the exploration of the design space local to a particular

partial or complete design. This extended method uses a new set of structure grammar

rules called perturb rules (P-Rules) that provide a means for enhancing the existing

generate-and-test algorithm. In situations where progression to a complete design has

faltered due, for example, to an ineffective layout of parts, the perturb rules allow the

spatial rearrangement of such problematic layouts to enable application of further

generative grammar rules and therefore the resumption of successful design creation.

The application of perturb rules does not affect the system topology of designs. Both

the LHS and RHS design states of a perturb rule application can be compared in a

like-for-like manner, introducing the possibility of using design metrics to mediate

between designs to provide a basis for searching out preferred design configurations.

This is the second main contribution of the work presented in this chapter.

31 An early version of this work is given in (Starling and Shea 2003).

SECTION 5.1: MODIFICATION OF DESIGNS

- 101 -

5.1. Modification of designs

The main achievement of the previous chapter was to demonstrate the successful

generation of valid designs using a grammatical approach. The parallel grammar rules

presented add and delete elements in their respective representations to move between

initial and final design states. Application of this set of grammar rules can be

imagined as large-scale changes to the design state, i.e. a part is always added or

removed.

5.1.1. Rationale for perturbation grammar

As part of the general synthesis process, it would be useful to be able to make more

minor changes to designs. Referring back to the family and clan classification

introduced in chapter 4 (Figure 4-21), being able to create designs of one family by

moving directly from design to design through parameter modification would be more

convenient than having to remove existing components and replace them with

parametrically different parts. Being able to change the parameters of existing

elements in the structure representation, without actually adding or removing parts as

above, would be a useful augmentation of the parallel grammar. Two main types of

situations are observed where access to such an extended set of grammar rules may be

of benefit.

The first requirement for design modification is as an aid to the generation of new

designs. During the process of building up a design from scratch, application of

structure rules to add new elements might fail due to an unfavourable component

layout in the existing structure. In the clock problems in chapter 4, consider

attempting to connect a new gear pair to the inner spindle of two concentric spindles.

If the inner spindle does not protrude significantly from the outer spindle ‘sleeve’, this

rule will be destined to failure from the outset if the parameters of the existing

structure cannot be altered.

The second main need for a modification process stems from the desire to explore the

local design space. For the generative design process to be of fundamental use to a

designer, merely producing designs that satisfy parametric and topological constraints

SECTION 5.1: MODIFICATION OF DESIGNS

- 102 -

is not enough. Having generated many possible solutions, it is also paramount to be

able to search for preferred design solutions. This equates to being able to explore the

local solution space of known valid designs.

5.1.2. Modification issues

Modifying designs equates to changing the parameters of design solutions. As an

example, consider a simple modification rule that adjusts the global position of one

end of a spindle or axle. This is a relatively simple modification to make, but the

change may only be permitted if the new design state does not violate any constraints,

such as making the object longer so that it collides with another object (collision

constraint), or making it shorter so that gear disks on this spindle become detached

(interact constraint). Hence changing one simple parameter of such a component can

cause the design to become invalid.

Other design modifications are more complicated than this. Moving the location of a

spindle in space requires gear disks on this spindle to be moved as well. The ratio of

the gear pair is required to be unchanged, resulting in a resizing of the gear disks on

the spindle, as well as those on connected axles. This knock-on effect means that an

initially successful modification (i.e. the original axle movement in this example) can

actually fail due to changes occurring beyond the scope of the initially altered

component (i.e. the subsequent gear resizing operation).

5.1.3. Expanded generation framework

An extended generation framework is presented in graphical format in Figure 5-1. The

core remains from Figure 4-13. Two major new decision boxes are added for design

modification and evaluation. Initial designs are modified and evaluated as part of a

cyclical synthesis process that results in improved designs.

SECTION 5.1: MODIFICATION OF DESIGNS

- 103 -

Build Up
Initial Design

Function Graph

Structure
Representation

VALID DESIGN

Modify
Design

Function Graph

Structure
Representation

MODIFIED DESIGN

Evaluate
DesignContinue?

Yes

Stop Design
Archive

No

Start

Figure 5-1: Finding preferred designs – modification and evaluation

(shaded area refers to updates introduced in chapter 6)

5.1.4. Perturb rules

The issues raised by parameter modification in designs have been discussed in section

5.1.2. Hence modification of design parameters is proposed through the use of perturb

rules (P-Rules), a new set of grammar rules that complement the existing C-Rules of

the structure component of the parallel grammar. These perturb rules allow the

variation of existing parametric structures as they facilitate parameter changes while

ensuring constraint satisfaction. A set of 14 perturb rules were created and these can

be seen in Figure 5-2 and Figure 5-3.

SECTION 5.1: MODIFICATION OF DESIGNS

- 104 -

P7

P1

P4

P2

P3

P5

P6

Figure 5-2: Perturb rules I

Table 5-1 and Table 5-2 give detailed descriptions of each of these rules including the

rationale behind their use for modifying designs, including key constraints that impact

their application. Compiling a portfolio of P-Rules is not meant to be an arbitrary

exercise and therefore this rationale is an important part of understanding their

particular impact on designs. This set of perturb rules should be thought of as a base

library that can be extended for new design problems.

SECTION 5.1: MODIFICATION OF DESIGNS

- 105 -

P11

P9

P10

P8

P12

P13

P14

Figure 5-3: Perturb rules II

The perturb rules take a variety of parameters that enable their application point and

resultant changes to be controlled. Of these, independent variables may be set by the

user. As an example, P1, the rule that allows the upper spindle axle to be shifted, takes

the scalar value of the desired shift as its input. As there can be more than one spindle

in a design, the rule also takes a spindle identifier as an input as well. More

complicated P-Rules take more inputs, e.g. P9, the rule that enables a spindle to be

moved in the plane orthogonal to its axis, requires two scalar inputs to designate the

shift in two-dimensional space as well as a spindle identifier to select the desired point

of application. Dependent parameters are determined internally by the perturb rules:

in the case of P12, the rule that inserts a new spindle and corresponding gear disks

SECTION 5.1: MODIFICATION OF DESIGNS

- 106 -

into a structure, the position of the new spindle can be calculated from the user-

specified radius of the new gear disks and the constraint requiring preservation of the

overall ratio of the gear pair connections.

Table 5-1: P-Rule details I

P-Rule Action Rationale

P1: Set
spindle top

Adjusts position of top of
spindle (and hence length)
while keeping the bottom

fixed

P2: Set
spindle
bottom

Adjusts position of bottom
of spindle (and hence

length) while keeping the
top fixed

Allows spindles to be either lengthened to
add more gear disks, or reduced in length

to avoid taking up space that could be used
more usefully by other elements.

Key constraint: interact.

P3: Move
gears

vertically

Moves a gear pair in the
axial direction

Allows variation of gear positions, for
example allowing torsion to be reduced if

two sets of gear pairs are too far apart.

Key constraint: interact.

P4: Move
spindle angle

Rotates a free spindle about
its connecting spindle

Allows for rotation of free spindle to find a
preferred valid location before connecting
it to further spindles via new gear pairs.

Key constraint: mesh.

P5: Set
spindle r_out

Sets outer radius value of a
spindle

P6: Set
spindle r_in

Sets inner radius value of a
spindle

Allows the creation of a shell to provide
concentric spindles. Can be used to create

stiffer spindles or reduce mass of a spindle.

P7: Set gear
top

Adjusts position of top of
gear disk

P8: Set gear
bottom

Adjusts position of bottom
of gear disk

Changes contact area of gear disks which
might be required by a particular gear

mechanism.

Key constraint: interact.

As with existing parallel grammar rules, these new perturb rules are not meant to be

an exclusive set. Designed with flexibility in mind, they are intended to be as generic

as possible so as to encourage compatibility with other design domains.

SECTION 5.1: MODIFICATION OF DESIGNS

- 107 -

Table 5-2: P-Rule details II

P-Rule Action Rationale

P9: Move
spindle

Moves spindle in plane
normal to axial direction

Allows rearrangement of spindles to create
more favourable distribution of gear sizes,
e.g. if a reduced aspect ratio of gear disks

is required.

Key constraints: ratio, mesh.

P10: Move
plate

Moves a base plate in axial
direction

Allows reduction in volume of overall
clock. Allows more space to be created in
clock structure if space is too crowded for

further rule applications.

P11: Change
plate radius Adjusts radii of base plates

Allows reduction in volume of overall
clock by reducing the radius of base plates.

Allows more space to be created within
clock structure if space is too crowded.

P12: Insert
spindle

Inserts a new spindle with
gear pairs into the structure

P13: Delete
spindle

Deletes a spindle with its
gears from a structure

Allows modification of designs between
design families. These rules allow minor

system topology to be changed, so
increasing the possible design solutions

that can be obtained by searching from any
particular initial solution.

P14: Vary
gear radius

Varies the ratio of
neighbouring gear pairs

Allows variation of local balance between
gear ratios. P12 inserts spindle with gear

disks of equal radius, this rule can
therefore alter this balance so that new

spindles can be created with different sized
gear disks.

An example of the use of perturb rules as part of the design generation process is

shown as a series of stepwise rule applications shown in Figure 5-4. A partial design

has been generated with concentric spindles at the origin (top left). A spindle is to be

added and connected, via a new gear pair, to one of the inner concentric spindles.

This, however, is not possible as the inner spindle is completely blocked by the outer

spindle that acts as a protective sleeve. This situation can be addressed using two P-

Rules. P10 moves the middle support plate down to make space (top right), followed

by an application of P1 to reduce the height of the blocking spindle (bottom right).

This enables the successful application of structure rules 2 and 3 to add a new spindle

and gear pair (bottom left).

SECTION 5.1: MODIFICATION OF DESIGNS

- 108 -

P10

2, 3

P1
Connection point lies
on obscured spindle

Support plate moved
down to free space

Top of outer obscuring spindle is shifted
to reveal previously obscured spindle

New gear pair
added successfully

Figure 5-4: Application of P-Rules to enable continuation of design generation.
P10 and P1 free up space on a previously obscured spindle to allow structure rules 2
and 3 to be applied to add a new spindle and connecting gear pair (light blue disks in

bottom left picture).

A final point to note is that the perturb rules do not affect the system topology of

designs, i.e. any alterations result in designs that are within the same clan. Perturb

rules P12 and P13 do alter the design family, thereby resulting in a change to the

function graph of the design. For example, applying P12 to insert a new spindle in a

gear train would result in a new node in the function graph as well. This change is

captured by a new function rule, function rule D, shown in Figure 5-5. A left-to-right

application of rule D corresponds to perturb rule P12, a right-to-left application of rule

D corresponds to perturb rule P13. The set of grammar rules used for a particular

design problem can be selected from the total library of grammar rules available. If

node insertion and deletion is not appropriate for the design problem under

investigation, then the grammar rules that enable these changes are not used.

SECTION 5.2: GEOMETRIC DESIGN METRICS

- 109 -

n n mD

X ∈ XF
X ∈ XF

X ∈ XF
Rule D:

Insert a new node (p) between
existing connected nodes

m
X ∈ XF

p X = [c]

1

n n

m

A

B

X ∈ XF X ∈ XF

Cn

X ∈ XF, N

n

X ∈ XF, T

♠

X ∈ XF, N

X ∈ XF, N

Rule A:
Create first vertex

Rule C:
Change vertex label from
non-terminal to terminal

Rule B:
Create vertex with non-

terminal label

Figure 5-5: Set of function rules FR with new rule D to insert/delete nodes

5.2. Geometric design metrics

The perturb rules introduced in section 5.1 represent one part of the two-pronged

strategy for improving design generation as they introduce the possibility of

modifying designs while simultaneously upholding their functionality. Having

introduced the machinery to enable such design modification, a method of making

decisions about the quality of designs is required to complete the second part of the

strategy for design generation improvement.

As discussed in chapter 3, determining the quality of mechanical designs is no easy

task. Papalambros and Wilde (2000) go so far as to say that a ‘criterion for evaluating

alternatives and choosing the “best” one cannot be unique’. Informative judgement on

design performance can be ascertained with detailed modelling and analysis of virtual

prototypes. The approach taken in this work is to look at geometric and behavioural

performance, enabling a supply of knowledge about the predicted behaviour of the

final product once it has been instantiated in an analysis model. However, behavioural

simulation methods are often computationally intensive and are therefore not

particularly suited to heuristic search methods that require a large number of iterations

before they can be expected to find optimally directed designs (see section 3.6).

Therefore, as an initial path of investigation, the possibility of using more time

efficient evaluation methods is investigated.

SECTION 5.2: GEOMETRIC DESIGN METRICS

- 110 -

The use of performance indices, or metrics, is prevalent in materials selection for

design, e.g. (Ashby 1992). From this standpoint a series of geometry-based metrics

were considered for assessing and comparing designs. The metrics are listed in Table

5-3 with explanatory text and a short rationale for each. These were not all produced

at once and represent a subset of possible design metrics that could be used to assess

mechanical systems. Some, for example the cost and mass metrics, are common from

work in structural synthesis. Others are more specific to mechanical design, such as

the compactness metric that provides a measure of both total and component volume.

Two of the metrics in this list introduce design-specific weightings that can be used to

fine-tune the performance of search strategies in a manner that will be discussed in

more detail later in this chapter.

One aspect that all the design metrics in Table 5-3 have in common is that their values

for a particular design can be calculated from the variables of the structure

representation. Hence a complete or partial design can be analysed rapidly using these

design metrics and the resulting information can be made available to a search process

wishing to make a decision on whether to accept or reject a particular parametric

design change. The design metrics in Table 5-3 are used in this and subsequent

chapters of this thesis.

SECTION 5.2: GEOMETRIC DESIGN METRICS

- 111 -

Table 5-3: Geometry-based metrics

Metric Description Rationale

Simple volume

totalV

Volume of complete
structure as cylindrical

bounding box.

Volume can be used as a measure of size
of design. Designs with limiting spatial
restrictions can be harder to generate as

these can restrict design generation.

Simple
compactness

∑
=

⋅
N

n
ntotal VV

1

Product of the sum of all
component volumes and
total enclosed volume of

complete structure.

Similar to simple volume metric but
places a premium on unused space in a

design.

Simple thickness

lowesthighest TT −
Thickness of complete

structure.

Mechanical designs with low thickness
can be desired. For example watches are
required to be thin to fit discreetly on a

user’s wrist.

Aspect ratio

()∑
=

N

n
np

1

2

Squared penalisation
function of high aspect
ratio components. Ratio

np is quotient of major
dimensions of each

part. 1≥np .

Load-bearing components with a high
aspect ratio have longer, indirect force

paths32. Additionally, injection moulded
plastics are difficult to manufacture for

high aspect ratios.

Weighted
thickness

()∑
=

⋅−
N

n
nn tzz

1
0

Local thickness metric
weighted by component
distance from a chosen

reference point.

An extension of the above simple
thickness metric using a weighting that,
when used with some search methods,
encourages rule applications that can

indirectly result in a reduction in
thickness

Weighted volume

()∑
=

⋅−
N

n
nn Vzz

1
0

Component volumes
weighted with distance
from chosen reference

point.

An extension of the above simple volume
metric using a weighting that, when used
with some search methods, encourages

rule applications that can indirectly result
in a reduction in compactness.

Cost of materials

∑
=

⋅
N

n
nn Vc

1

Sum of products of cost
of materials per unit
volume data array.

Absolute financial cost of a design can be
a limiting factor in some circumstances.

Mass of
components

∑
=

⋅
N

n
nn V

1

ρ

Sum of products of
component density and

volume

Reducing (or increasing) mass can be of
importance for some design situations.

32 See (French 1999).

SECTION 5.3: SEARCHING FOR PREFERRED DESIGNS

- 112 -

5.3. Searching for preferred designs

The task of finding preferred designs within the language described by the grammar

falls into the category of non-linear constrained optimisation problems. The search

space, i.e. the entire language defined by the grammar, is multimodal, non-convex and

discontinuous due to the type of objective functions used and the coupled nature of

mechanical products. Deterministic methods, such as algorithms that rely on gradient

calculation, are not ideally suited to solving such problems.

The alternative to using deterministic methods is to employ a non-deterministic

approach. This may be imagined as navigating through a search tree at random

(section 3.6), i.e. examining nodes at random to find the best ones. Augmenting such

direct search methods with rules-of-thumb, otherwise known as heuristics, can

increase search efficiency (Winston 1993). Two relatively straightforward search

methods, random downhill search and simulated annealing, are chosen for their

simplicity and proven robustness for an initial test of the synthesis framework. The

aim is to find preferred solutions as determined by the design metrics in Table 5-3.

5.3.1. Random downhill search

Random downhill (RD) search is a kind of depth-first tree-traversal search where new

designs are generated at random. A path in a tree of nodes, i.e. solutions, is chosen

randomly where each of these new nodes is a child of the previous node. This method

ignores other nodes at the same depth and so the method plunges into the tree rather

than exploring solutions at a particular depth as would be undertaken by a breadth-

first approach. Introducing quality measurements allows a choice of paths to allow

movement only to nodes that improve the calibre of the design states as perceived by

design metrics.

With regard to employing perturb rules for a simple downhill search, any rule

application that leads to an inferior design (in this case an increase in objective

function if a minimisation of a design metric is desired) is rejected. Therefore simple

SECTION 5.3: SEARCHING FOR PREFERRED DESIGNS

- 113 -

downhill search is monotonic in metric space33, implying a certain naïvety: the

heuristic used does not necessarily hold in the general case, i.e. the best route to the

global solution may not necessarily, and very often does not, lie along the path

determined by downhill search. This is shown in one-dimensional simple schematic

form in Figure 5-6. Starting from design (1), the random downhill search algorithm

can find the preferred design state (2). Having located this local optimum the

algorithm is unable to climb out of this valley to continue the search and make

progress towards more optimal designs, such as design state (3). Complex designs

have large numbers of variables, resulting in a multi-dimensional terrain with many

local optima that slow progress towards optimally directed designs.

(1)

(3)

(2)objective
function

variable
change

Figure 5-6: Objective function values for (1) non-optimal, (2) locally optimal and (3)
globally optimal design states

(globality refers to points within the bounds of this sketch)

Locating a global optimum can be a difficult task. Generating a new best design

disproves the globality of the previous best solution. However, this does not prove

that this newest solution is a global optimum. In cases where an active constraint has

been reached, such as a minimum thickness, then global optimality can be ensured,

though in most cases search progress will cease before this theoretical limit is

reached. It is then difficult to say with certainty whether or not a more optimal

solution could be found by search along a different path.

The RD algorithm is shown in Figure 5-7. User-defined parameters for P-Rules are

selected at random as part of the search algorithm.

33 i.e. the algorithm is monotonous in its quest for improved designs. Design changes that do not
improve the objective function are rejected.

SECTION 5.3: SEARCHING FOR PREFERRED DESIGNS

- 114 -

Start

Choose Perturb
Rule

User-
Defined

Variables

Apply Perturb
Rule

Success? No

No

Evaluate New
Design

Accept New
Design

Keep Original
Design

Yes

Stop

Yes

Yes

New Design
Better?

Loop Limit
Reached?

No

Continue?

No

Yes

Figure 5-7: Random downhill search algorithm

5.3.2. Simulated annealing

Simulated annealing (SA) is a stochastic search method that is analogous to a type of

heat treatment process for metal alloys. Annealing refers to the gentle warming of an

alloy to a temperature sufficient to encourage diffusion, a thermally activated process,

without actually melting the material34. This annealing process removes

microstructure artefacts such as dislocations that may have been introduced through

processes such as cold-working or irradiation. The annealing process is therefore a

homogenisation process. As an example, some types of nuclear reactor vessels require

periodic annealing to restore their original structural properties after continuous

bombardment by neutrons has resulted in a destabilised microstructure.

34 A common rule-of-thumb states that the annealing temperature for an alloy is mT⋅6.0 , where mT is
the melting temperature of that alloy (Ashby and Jones 1998).

SECTION 5.3: SEARCHING FOR PREFERRED DESIGNS

- 115 -

The analogy with heat treatment of metals must not be taken too far. However, the

concept of post-anneal cooling of a metal is a good way of understanding how the

simulated annealing search process works. Having ‘heated’ (homogenised) the design

for a period of time to allow perturbations that may result in a less optimal value of

the objective function, a period of ‘cooling’ follows whereby the ‘temperature’ of the

design is reduced. As this happens, changes are increasingly likely only to be accepted

if they result in an improvement of the design. The ‘freezing’ process eventually fixes

the design in a preferred state. The SA algorithm as implemented for use with the

parallel grammar is shown in flowchart form in Figure 5-8.

Start

Choose Perturb
Rule

User-
Defined

Variables

Apply Perturb
Rule

Success? No

No

Evaluate New
Design

Accept New
Design

Keep Original
Design

Yes

Stop

Yes

Yes

Accept Worse
Design?

New Design
Better?

Loop Limit
Reached?

No

Yes

No

Continue?

No

Yes

Figure 5-8: Simulated annealing search algorithm

SA search is non-monotonic in metric space as it allows steps from ‘better’ to ‘worse’

designs. This allows the search method to avoid entrapment in local minima that are

far removed from more optimally directed designs (see Figure 5-6). As the

temperature parameter is reduced, the likelihood of such events occurring is reduced.

Additionally the step length (analogous to the diffusion distance in metals) is lessened

SECTION 5.3: SEARCHING FOR PREFERRED DESIGNS

- 116 -

to encourage more local exploration around the current design state. The parameters

that control these aspects of a typical simulated annealing process are listed in Table

5-4. The ‘annealing schedule’ is the term used to describe temperature as a function of

design iterations. Many different schedules exist, e.g. (Lam and Delosme 1998). The

common ‘vanilla’ schedule is used here where the temperature is reduced by a

constant factor after a fixed number of attempted or successful design changes.

Simulated annealing has been described as a ‘time-consuming, iteration-intensive

algorithm’ (Szykman et al. 1997) as search iterations carried out at annealing

temperatures can use up considerable computational resources.

Table 5-4: List of fundamental SA parameters with common value ranges used

Parameter Description

maxN

Number of iterations, i.e. design perturbations, allowed before the
search must terminate. Not strictly part of the simulated annealing
algorithm, it gives an upper bound on the amount of calculations

performed and therefore controls the extent to which search is
continued. The efficiencies of calculations with equal values for this

parameter may be compared.

Common value range: 10000 – 100000.

minµ

Number of accepted design changes that trigger a drop in temperature.
This parameter is reset to zero if a separate event causes a temperature

drop.

Common value range: 200 – 400.

kL

Length of Markov chain (in this case, number of attempted design
changes) that triggers a drop in temperature. This parameter is reset to

zero if a separate event causes a temperature drop.

Common value range: 500 – 1000.

0T

The starting temperature of the algorithm. The temperate T is reduced
from 0T as the search progresses. T controls the probability of

accepting a design change that results in a design state that is less
preferred than the original state.

Common starting value range: 1 – 10.

α
The factor α controls the temperature drop for the vanilla annealing

schedule.

Common value range: 0.0001 – 0.005.

SECTION 5.4: IMPROVED DESIGN GENERATION

- 117 -

5.3.3. Random downhill search vs. simulated annealing

The main subject matter of interest in this chapter is the investigation into the

feasibility of generating viable mechanical designs using an extended parallel

grammar that incorporates perturb rules. The search methods were chosen to enable a

robust proof of concept for the synthesis framework. The random downhill search

method was adopted for its ease of use and conceptual simplicity. Simulated

annealing was chosen as a proven, robust and mature method that has been used

successfully in synthesis research, e.g. (Szykman and Cagan 1997). More complicated

to implement than the random downhill search, it is nevertheless suitable for use with

modification rules (i.e. P-Rules) with relatively few changes from a standard

implementation as might be used for parametric search rather than synthesis.

Strengths and weaknesses of the two methods used have been summarised in Table

5-5.

Table 5-5: Summary of search methods used

Search method Advantages Disadvantages

Random downhill
(RD)

• Straightforward to
implement

• Monotonic in metric
space

Simulated annealing
(SA)

• Robust

• Non-monotonic in
metric space

• Performance dependent
on well-chosen
parameters

5.4. Improved design generation

An initial detailed comparative search was carried out for both the RD and SA

algorithms. The specification graph used for this comparison is the same as that used

for the most complicated design problem in chapter 4 (Figure 4-18). The initial

solutions generated for this design (e.g. Figure 5-9) are not optimal due to the large

spacing between components in the design. Using perturb rules as part of a search

algorithm allows preferred designs to be generated from this, and other, initial

designs.

The two algorithms were compared by initially generating five separate starting

designs for a bounding cylinder of radius 35 mm and height 20 mm. The second

SECTION 5.4: IMPROVED DESIGN GENERATION

- 118 -

initial solution of these five is shown in Figure 5-9. These initial designs, the same as

the valid designs generated in chapter 4, were each used as the ‘seed’ for 10 separate

search processes, or experiments, using both random downhill and simulated

annealing search algorithms to give a total of 50 final solutions for each search

method. A reduction in the thickness of designs was used as the sole objective

function for the search process.

20 mm

Figure 5-9: Initial solution #2. Thickness of initial solution is 20 mm.

A relatively large number of iterations were selected for each problem

(000,50max =N) to ensure an adequate capture of convergence behaviour. Simulated

annealing parameters were chosen after a few initial investigative trials to provide

sensible values in line with common practice (400min =µ , 1000=kL , 20 =T ,

0001.0=α). A main issue prior to the use of perturb rules was that generated designs

tended towards wasteful packing of components, resulting in large structures with a

large distance between the top and bottom of the design, i.e. a large thickness. In

general, thinner clocks are desirable. Consider as an example a wall-hanging

pendulum clock. Reducing the radius may not be of such great consideration as this

reduces the size (and therefore the visibility) of the clock face, however, a thinner

structure leads to a design with mass concentrated closer to the wall attachment, so

reducing the tension on the attachment that keeps it in place on the wall.

SECTION 5.4: IMPROVED DESIGN GENERATION

- 119 -

Both the random downhill and simulated annealing algorithms were able to modify

the five initial designs successfully and generate thin designs. The average values of

thickness metric over the 50 designs were very similar at just over 8 mm. The best

values achieved by the two algorithms differed by a greater margin: the best SA

solution was 5.7 mm, 1.0 mm thinner than the best RD solution. A summary of this

data set (solution set 5A) is shown in Table 5-6.

Table 5-6: Summary of random downhill and simulated annealing solutions for thin
clock designs – data set 5A

Thickness [mm] RD SA

Average value 8.3 8.1

Minimum value 6.7 5.7

Maximum value 11.4 10.6

Standard deviation 1.1 1.1

The data in Table 5-6 confirm that there is no great difference between the RD and

SA algorithms in this example and for these search parameter values. The SA

algorithm, as expected, produces some better results due to its ability to extricate itself

from local minima, however, the algorithm also spends a significant number of

iterations at a higher temperature in which preferred designs are not found. This can

be seen by comparing the progress of the two algorithms for one of the initial

solutions in data set 5A (Figure 5-10).

SECTION 5.4: IMPROVED DESIGN GENERATION

- 120 -

Initial high
temperature phase

Rapid convergence as
temperature drops

Only smaller changes occur as
design is fixed at low temperature

Initial rapid drop in
metric value

Different traces refer to progress for separate
experiments from same initial solution

Slow convergence
exhibited subsequently

Search cycles

Search cycles

Figure 5-10: Progress of RD (top) and SA (bottom) algorithms over 50,000 iterations.

 Solution set 5A, initial solution #2, progress traces shown for each of 10 experiments.

Figure 5-10 shows the progress traces for 10 experiments starting from the initial

solution in Figure 5-9. The traces are compatible with expected performance of the

algorithms. The RD algorithm makes initial rapid progress but is undermined by the

simplicity of its selection process. The SA algorithm makes no progress until the

temperature is dropped. However, it then makes more rapid moves towards preferred

SECTION 5.4: IMPROVED DESIGN GENERATION

- 121 -

designs. The traces flatten out as the temperature of the experiment is reduced and,

therefore, the probability of accepting designs with a higher metric value drop to zero.

The best design generated by the SA algorithm is depicted in Figure 5-11. With a

thickness of only 5.7 mm it is on the boundaries of feasibility for a clockwork

mechanism. The absolute theoretical minimum for this particular design is slightly

greater than 5.2 mm. This is calculated as the sum of the required minimum thickness

of the clockwork power source, the thickness of the three plates that the spindles are

connected to and a small stand-off distance between each component. The evaluation

procedure used for generating this design only considers overall thickness and has no

means of recognising the value of attempting to generate more compact components

that in turn will enable the generation of designs closer to the theoretical minimum. It

is therefore highly unlikely that a complex function graph such as that in Figure 4-18

could be instantiated as a valid structure at the minimum thickness without

considering more than merely the overall distance between top and bottom support

plates.

5.7 mm

Figure 5-11: Data set 5A, simulated annealing algorithm solution #18 – thinnest
design. Arrow highlights example of chunky gear disk.

The hypothesis that simple design metrics may be used to drive the design of

complicated designs, as introduced in section 5.2, begins to show some failings here.

Inspection of the design in Figure 5-11 brings to light some gear disks that are fairly

chunky, thicker than the minimum thickness requirement (determined by the spatial

constraint). Reducing these in size might free up more space in the centre of the

structure. P-Rule applications may then be able to increase the compactness of some

of the components as mentioned above. However, the simple thickness metric does

SECTION 5.4: IMPROVED DESIGN GENERATION

- 122 -

not provide a drive for the simple simulated annealing algorithm to reduce the

thickness of individual components.

It is required to reassess the evaluation method used in order to achieve this space

reduction. Table 5-3 provides us with a battery of metrics for design evaluation. So far

just one has been used as the driving force for searching out preferred designs. Rather

than considering overall design thickness, using a weighted thickness metric should

result in greater consideration of individual components in the design. The weighted

thickness metric considers the centre of mass of each design component and

multiplies it by its distance from a user-defined point, in this case the clock face

(Table 5-3). This should drive both the individual thickness of components down

while in turn also reducing the overall thickness of the whole design by freeing space

in the centre of the design to allow the outer support plates to be moved closer

together.

The same five initial designs as above were used in an identical experiment to

produce 50 design solutions using the weighted thickness metric. Again, both RD and

SA algorithms were used to generate solutions. The metric was a successful

evaluation method for the two search methods, allowing both to generate good

solutions as tabulated below (see Table 5-7 for this data set 5B). The chunky gear

disks from before do not get created, a result of using the modified design metric for

evaluation. The overall aim, however, is still to reduce the overall thickness of

designs. With respect to the simple thickness metric the results are not as good as

those generated previously. How can this be? Inspection of the resulting designs again

provides an answer. The mapping between the two metrics is fairly good, but cannot

be perfect. For example, the best design produced using the simple thickness metric

alone scores highest on the weighted thickness metric scale. However, this is not

always the case as the emphasis introduced by the weighted metric dilutes the pure

drive to produce an overall thin design.

SECTION 5.4: IMPROVED DESIGN GENERATION

- 123 -

Table 5-7: Results for weighted thickness metric – data set 5B

RD algorithm SA algorithm
Weighted thickness

[normalised]

Thickness

[mm]

Weighted thickness

[normalised]

Thickness

[mm]

Average 0.45 15.3 0.38 13.8

Minimum 0.34 12.1 0.26 9.4

Maximum 0.64 18.0 0.54 17.6

Standard deviation 0.09 1.5 0.07 2.2

It seems that the ideal solution may be found using a combination of objective

functions. Merely considering the simple thickness metric results in thin designs that

require small improvements (reduction in size of the chunky gear disks) that are

obvious to a designer upon inspection of the results. Introducing a new metric, the

weighted thickness metric, to address these issues results in an eradication of the

problematic chunky gear disks but softens the focus on producing thin designs as

originally specified.

To generate designs that balance the two goals, a linear combination of the simple and

weighted thickness metrics was used for the same design problem as before. Four

separate SA search runs were carried out with ratios of simple to weighted thickness

metric of 8:1, 4:1, 2:1 and 1:1 respectively. These ratios were applied after metric

normalisation. As usual, the same five initial designs were used to generate 50 new

design solutions. The results are reproduced in Table 5-8.

Table 5-8: Results for combined simple and weighted thickness metrics – data set 5C

Thickness [mm] Ratio 8:1 Ratio 4:1 Ratio 2:1 Ratio 1:1

Average 9.1 10.9 12.2 12.7

Minimum 6.4 6.8 8.0 7.6

Maximum 14.9 15.9 16.9 17.8

Standard deviation 2.1 2.7 2.2 2.2

This data shows a best performance for the high ratio (8:1) of simple to weighted

thickness metric that is just short of the quality provided by the pure simple thickness

metric (Table 5-6), the best result is a design of 6.4 mm thickness. Use of this

SECTION 5.4: IMPROVED DESIGN GENERATION

- 124 -

combined metric assists the finding of design solutions that are both thin overall and

have thin components. These results therefore present a trade-off for the designer of

solutions that satisfice good overall design criteria.

A similar approach was used for the generation of data set 5D (Table 5-9), replacing

the weighted thickness metric with a simple mass metric as defined in Table 5-3. For

the first time this provides a real drive to reduce the width of components as well as

their thickness. This is because a mass reduction is forthcoming if the volume of

materials is reduced. The results are slightly better than those of data set 5C,

suggesting that a more targeted approach at aiming for an overall increase in

compactness should also be successful at generating thin designs.

Table 5-9: Results for simple thickness and mass metrics – data set 5D

Thickness [mm] Ratio 8:1 Ratio 4:1 Ratio 2:1 Ratio 1:1

Average 8.9 10.6 11.3 12.1

Minimum 6.2 6.9 7.9 7.2

Maximum 13.6 16.3 16.5 17.3

Standard deviation 2.0 2.5 2.3 2.4

The last experiment of this chapter was carried out using only the compactness metric

from Table 5-3. Evaluation centres on the volume of individual components and that

of the overall design with a reduction in either leading to designs that score well for

this diagnostic. The results are better than for all previous experiments, both RD and

SA algorithms achieving consistently thin designs with minimum values below the

best previous design solutions. Surprisingly, the random downhill algorithm outscores

its simulated annealing counterpart, presumably because the compactness metric is

effective at successfully rewarding preferred design modifications and so negates the

positive effects of the initial annealing phase on the success of the search.

SECTION 5.5: CONCLUSIONS

- 125 -

Table 5-10: Results for search using compactness metric – data set 5E

RD algorithm SA algorithm
Compactness

[compound value]

Thickness

[mm]

Compactness

[compound value]

Thickness

[mm]

Average 0.22 7.5 0.27 8.0

Minimum 0.18 5.4 0.20 6.2

Maximum 0.36 10.0 0.35 10.0

Standard deviation 0.03 1.0 0.04 0.9

5.5. Conclusions

This chapter has extended the original parallel grammar by adding modification rules

that allow perturbation of the structure representations of partial and complete

designs. Using perturb rules, the existing design generation process has been

improved so as to enable parametric exploration of a design space. Coupled with

simple metrics for design evaluation, this has allowed the use of non-deterministic

search algorithms for computational generation of preferred designs. Metrics, based

on geometric properties such as mass, thickness and compactness, were successfully

used for generation of preferred designs using random downhill and simulated

annealing search algorithms. The performance of different metrics was investigated

by using them to drive search from an identical set of initial designs.

5.6. Limitations

The use of design metrics based on geometry alone allows for initial investigation of

possible preferred designs using appropriate search algorithms, as these metrics

provide a measure of performance in a manner that is efficient for initial study. For

the simple design case study presented in this section, these metrics prove adequate to

an extent, enabling the generation of preferred designs for constrained packing

problems, e.g. (Szykman and Cagan 1997), with parametric components and part

connectivity constraints. However, the actual behaviour of the generated designs is

only implied by the function and structure representations used to represent the clocks

of the case study. This can be seen as a disadvantage, as the possibility of

computationally generating a palette of design possibilities for consideration loses its

SECTION 5.6: LIMITATIONS

- 126 -

appeal if potential designs still require verification by way of behavioural modelling.

In addition, if this behavioural data has not been used during the generation process,

one cannot be certain that final designs generated using simple geometric design

metrics meet quantitative behavioural performance requirements. The aim of this

research, after all, is to investigate the possibilities for performance-based and

optimally directed synthesis of mechanical designs.

The idea of using automatic modelling and analysis of designs generated by

computational methods must therefore be investigated in more detail. This, in turn,

may well require a reassessment of the search algorithms used for design generation.

Despite their robustness and ease of implementation, both the random downhill and

simulated annealing algorithms used are relatively naïve and profligate (see section

5.3.3). Even if it were to prove possible to generate real-time analysis data, this is

likely to come at a computational price and a more efficient search algorithm would

be highly desirable.

A more efficient algorithm might benefit from using metric data more productively.

Combining the weighted and simple thickness metrics to compose a successful single-

valued function for more than one objective proved difficult, requiring repeated

experiments using many different weighted combinations of metrics to provide good

search results. While successful, the method is wasteful of both user time and search

cycles. Additionally, the method is not conducive to clear presentation of search

results.

In summary, the following is required:

• Automatic behavioural modelling during design generation to enhance the model

used to drive synthesis.

• A search algorithm that is compatible with the parallel grammar and can locate

preferred designs at less computational cost, i.e. in less time, than the RD and SA

algorithms.

SECTION 5.7: IMPLEMENTATION DETAILS

- 127 -

• Improved processing and presentation of performance data using true multi-

objective search.

These three issues are addressed in chapter 6 of this thesis.

5.7. Implementation details

The original C++ class structure was extended to implement the work presented in

this chapter. Both the perturb rules and design metrics were written as C++ functions

of the main class used for the structure representation of the parallel grammar. New

functions were verified by repeated application to simple problems to resolve

inconsistencies. The user’s selection of design evaluation metrics takes place through

file input to avoid unnecessary recompilation of computer code.

Having the complete program implemented within one piece of modular code enabled

the final compiled program to run rapidly. Having a low computational cost

associated with design evaluation allowed long search runs to be carried out, each

with many iterations, in a relatively short period of time. For the experiments

described above, finding solutions for 50,000 iterations took of the order of minutes

per solution: one particular measured example required 102 s on a 1200 MHz CPU.

- 128 -

6. Enhancing design evaluation

In this section the design evaluation phase of the parametric synthesis framework is

investigated in more detail. The use of behavioural modelling as an evaluation method

is considered as an extension to the geometry-based metrics of chapter 5. An

electromechanical camera is examined using the behavioural modelling language

Modelica. Behavioural simulations are run for parametric models generated by the

parallel grammar and this data is used for the performance-based evaluation of the

generated camera designs.

Even using relatively fast computers, running one such simulation takes of the order

of tens of seconds to complete, e.g. as an example, a simulation of the camera model

introduced in this section was analysed in 14.4 s using a PC with an AMD Athlon

2600+ CPU. The simple search algorithms from the previous chapter require many

objective function evaluations in order to obtain satisfactory levels of convergence,

hence using the search algorithms previously proposed is not feasible. Two changes to

the existing generative method are therefore introduced. Firstly, a hybrid pattern

search algorithm replaces the existing random downhill and simulated annealing

methods. This new algorithm attempts repeated patterns of modification rules that

have previously led to successful design modifications. Secondly, a true multi-

objective approach is employed to make better use of time intensive calculations

employed during the search process, allowing generation of a Pareto set of non-

dominated solutions, rather than a single solution, for further consideration by a

designer.

SECTION 6.1: FRAMEWORK FOR ENHANCED DESIGN EVALUATION

- 129 -

6.1. Framework for enhanced design evaluation

Having provided preliminary investigations into computational design generation and

modification in the last two chapters, this section centres on the evaluation phase of

the proposed mechanical design synthesis framework. Previously, metrics have been

used to enable fast evaluation of designs based on geometric considerations. Consider

evaluating the Audi R8 transmission introduced in chapter 1. A performance-based

evaluation may be of value in this particular instance. Design criteria for the gearbox

may include, for example, its robustness with respect to harsh manoeuvring and high

accelerations, as well as how much energy as a percentage of total input is lost to

friction in the transmission. Access to accurate analysis data of this kind would give

an insight into the predicted lifetime and safe operating limits of the gearbox.

While this evaluation process can be carried out as part of a manual iterative design

process, it can also be incorporated into an automatic procedure. This can be seen as

‘closing the loop’ on performance-based design, i.e. linking the generation and

simulation-based evaluation phases of design into a process that does not require

manual intervention.

Simulation-based design evaluation is incorporated into the design synthesis

framework in the same manner as geometry-based evaluation, c.f. Figure 5-1. The

evaluation phase is carried out by translating the current design to a behavioural

model in the native format of the simulation tool. The simulation is run and outputs

quantitative information about the behaviour of the design. This evaluation data is

then used to decide whether or not the new design is an improvement on previous

designs.

Analysis tasks are routinely carried out as part of engineering design, e.g. as discussed

in section 1.2 for the sports car transmission example. In these cases, the modelling

process is a manual procedure. Considerable effort can be required to create a

meaningful behavioural model and run successful simulations. While the modelling

process is mainly done by hand, optimisation routines are sometimes used to find the

best parameter values for particular design components.

SECTION 6.2: BEHAVIOURAL MODELLING

- 130 -

There is, however, a difficulty with such an approach for the work that is required

here. As the method carries out synthesis, fundamentally different designs are

generated, i.e. designs can be from different design families and clans. As the

variation between designs increases from geometric parameter variation and

component topology through to system topology, so do the differences in a

behavioural model. They move from minor variable modification, changes in part

count and related connectivity through to variations in actual components present in

the design. Simulation models that reflect these changes can become increasingly

difficult to create computationally, automatically, for such wholescale changes. This

is an important issue as the design synthesis framework is meant to actively explore as

large a search space of potential designs as is possible. Limiting the search space to

small parameter variation of a starting design would not allow performance-driven

synthesis.

6.2. Behavioural modelling

The cross-domain object-oriented modelling language Modelica (c.f. footnote 14 on

page 52) has been chosen for this work. Modelica models can be simulated using

Dymola (c.f. footnote 15 on page 55), a simulation environment, to enable the

prediction of dynamic behaviour and interaction between components in the design. A

large range of component libraries are available that cover many different engineering

domains, including mechanical systems. These basic building blocks can be used to

create multi-domain design models, for example of mechatronic devices that combine

mechanical components and electronic circuits. The general framework for

simulation-based evaluation is not limited, however, to this particular behavioural

modelling technique.

Figure 6-1 illustrates a Modelica class representation of the simple gear pair shown in

Figure 4-9. This class was built up from library components such as inertia, shape and

friction elements. It was created using a graphical user interface (GUI) provided by

the Dymola environment that allows user-level interaction to choose, edit and

combine the existing elements as well as construct new elements. This class structure

can be built up to create complex interacting models using instantiations of a variety

SECTION 6.2: BEHAVIOURAL MODELLING

- 131 -

of component elements. In this way it is possible to combine a number of such gear

objects as well as similarly constructed elements for escapement and clockwork

power source mechanisms to represent the clocks generated in the previous two

chapters.

Cylinder shapes for visual
representation of gear
shaft and two gear disks

FrameTranslation
element allows shape
objects to be located in

RevoluteJoint element creates rotational
motion about a specified axis (in this
case the shaft axis of gear)

GearEfficiency
element

IdealGear element allows
gear ratio specification

IdealInertia element enables
calculation of inertia from
shape elements

Rotation input

Rotation output

Connection to
inertial frame of
reference of
general model

Translation/shape characteristics
Rotational characteristics

Figure 6-1: A simple Modelica model of a gear pair

6.2.1. Simulation

Having constructed a Modelica model, the Dymola environment enables the running

of simulations. A simulation model consists of a compiled executable and an input file

containing starting values of all parameters in the model. These files must be initially

generated using the Dymola GUI interface. Running the simulation then calculates the

behaviour of the system using Kron’s method of tearing to solve the system of

equations (Kron 1963). Upon completing the simulation the traces of each parameter

in the model are written to files that can then be analysed using the Dymola

environment or exported to other programs such as Matlab for further investigation.

This method of analysis is excellent for prototyping and manual testing of design

concepts. It requires human intervention at each step of the process and is therefore

SECTION 6.2: BEHAVIOURAL MODELLING

- 132 -

not appropriate for use as an evaluation method invoked by a search algorithm.

Additionally, the GUI diverts computing resources away from the main program

running the simulation, slowing the process down. It is imperative that the evaluation

phase takes as little computation time as possible to ensure that generation of and

search for beneficial designs proceeds as rapidly as possible.

Once the simulation executable has been compiled it can be re-used, separately from

the Dymola GUI, as a standalone program. A new simulation can be prepared by

updating the parameter values in the original parameter file to correspond to those of

the newly created design. This updating process can be effected efficiently with Perl

scripts to strip out and replace the original parameters in the input file. Subsequently

running the simulation executable as a standalone program in combination with this

altered input file enables fast, automatic analysis of a newly synthesised design.

6.2.2. Camera mechanism example

A fresh design task is introduced at this stage to outline the type of design synthesis

issues that can be investigated using performance-based evaluation. The synthesis task

involves the redesign of a mechatronic camera design based on an original product.

Camera design is an interesting example of how behavioural characteristics are an

important aspect of design. Compactness is viewed as desirable in this design domain,

but only without a degradation in behaviour, such as the quantity of light passing

through the camera lens, battery consumption and, if the camera has an automatic

winding feature to prepare the film for the exposure, the time taken for this winding

process. A main feature of high performance sports camera equipment is the

possibility of reeling off many frames per second to increase the likelihood of

achieving a good picture of a fast action sequence. Naturally, the balance of

requirements for different products and their target market varies. For single-use

cameras, power consumption is not an issue as these cameras usually require manual

winding and a battery can be made large enough to provide flash for each exposure.

SECTION 6.2: BEHAVIOURAL MODELLING

- 133 -

The modelling aspect of this case study, initially undertaken as a diploma project in

collaboration with Bolognini (2003), consists of representing and linking the winding

and shutter mechanisms of the camera. A basic multi-use camera, a Vivitar CV50,

was reverse-engineered to put together a Function-Behaviour-Structure representation

(Figure 6-2). The camera is manually controlled and functions by allowing photos to

be stored, frame by frame, through the brief opening of the camera shutter to expose

sequential portions of the camera film. After each such exposure, the film is moved

forward by the winding mechanism to prepare a fresh frame for exposure and

therefore to ready the camera for the next photo. Until this action has occurred, a user

cannot press the shutter release to instigate the taking of another photo.

Open
Shutter

Provide Power

Advance
Film

Have
Physical
Integrity

Allow Exposure of
Film

F B S

Take
Pictures

Flash and
Circuitry

Film and
Film Holder

Shutter
Mechanism

Structure
Support

Activation
Button

Figure 6-2: Function-Behaviour-Structure representation of a camera, adapted from
(Bolognini 2003)

A performance analysis was carried out of the original camera and two manually

redesigned models. Using the Dymola GUI, simulations were run to determine

performance characteristics such as battery usage per winding cycle, time between

pressing the shutter release and the actual photo being taken, and the time taken to

wind on the camera for the next frame. Of the two new camera designs, one design

was a parametrically modified version of the original model, i.e. it belonged to the

same design family as the original design. The other design altered the part count in

the gear train by removing a gear and manually changing parameters to ensure

validity of the new construct. Due to the architecture changes this new design can be

considered as being part of a new design family. This process was carried out by

SECTION 6.2: BEHAVIOURAL MODELLING

- 134 -

hand, requiring considerable effort to set the correct parameters for the redesigned

models (Bolognini 2003).

The question is now whether it is possible to use a computational synthesis approach

to generate new camera designs. The manual redesign approach used to create and

analyse the new camera designs is time-consuming and the number of possible

alternatives is thus small. Can the behavioural feedback loop be closed to allow fast

computational generation of new performance-driven designs?

The focus of investigation is the winding mechanism of the camera, essentially a

linear gear train that transfers torque from the motor to the winding pivot at the base

of the film cradle. These two items, film and motor, cannot be mounted in greater

proximity to each other due to packing considerations in the main camera body. The

current design, a linear gear train, is shown in Figure 6-3 with a close-up of the

mechanism in Figure 6-4. There are seven spindles in total, the two ends of the gear

train connected to the film and motor respectively as well as five gears associated

with the gear train. These gears must sit in a confined space, precluding the possibility

of using only a few larger sized gear disks to bridge the gap between film and motor

as these disks would overlap with the camera casing.

Motor

Gear train attaches to winding
mechanism here

Film

Figure 6-3: Vivitar camera with winding mechanism exposed (view from bottom)

SECTION 6.2: BEHAVIOURAL MODELLING

- 135 -

1, [S]

7, [W]

Gears for manual rewind

6

4 3

2
5

Figure 6-4: Winding mechanism of existing camera (gear train close-up)

Labels and numbering correspond to function graph in Figure 6-5.

Figure 6-5 shows the function graph of the winding mechanism (Figure 6-4). As it is a

linear gear train, it is less complicated than some of the function graphs used to

represent the clock designs previously. There are seven vertices in this function graph

corresponding to the seven spindles in the gear train. These seven vertices are

connected by a total of six edges; correspondingly, six separate gear pairs connect the

spindles in the camera (c.f. Figure 6-4). The labels used for the camera model are

listed in Table 6-1.

1[S] [W]

53

42

7

6
[c]

[c]
[c]

[c]

[c]

Figure 6-5: Function graph of original camera winding mechanism

SECTION 6.2: BEHAVIOURAL MODELLING

- 136 -

Table 6-1: Explanation of terminal labels used for the camera design problem

Label Meaning

c A terminal vertex indicating further connectivity (no change from previous
definition for clock grammar).

S A terminal vertex that corresponds to the shaft of the motor in the camera
design.

W A terminal vertex that corresponds to the final axle of the winding
mechanism that is used to wind on the film.

In order to enable compatibility with the existing parallel grammar and allow greater

parameter variation, the different components in the winding mechanism (Bolognini

2003) were altered from the original Modelica specifications. The standard gear

element is shown in Figure 6-1. The three shape elements that represent the gear disks

and connecting spindle (bottom right of diagram) can be parametrically modified to

vary the size and ratio of the gear. The inertia element of the gear class (top right of

diagram) calculates the inertia of the element from these parameters. A gear train

class is made up of a number of these gear elements. The existing gear train with five

components is depicted in Figure 6-6. These five gear elements correspond to the five

vertices in Figure 6-5 labelled as connecting vertices ([c]).

Gear train
connects to motor
shaft [S] here

Gear train connects
to winding
mechanisms [W]
here

Figure 6-6: Gear train class (Bolognini 2003)

The two end spindles of the gear train (corresponding to vertices labelled [W] and [S]

in the function graph in Figure 6-5) are fixed in space. These constraints are added as

SECTION 6.2: BEHAVIOURAL MODELLING

- 137 -

user-defined general parameters that determine the position of spindles depending on

their label. The end spindle that connects to the motor [S] is very similar to a standard

gear element (Figure 6-1). At the other end of the gear train, the spindle that is joined

to the film cradle [W] is a more complex construction as it is the interface between the

main winding and shutter mechanisms (Figure 6-7). This element was also modified

from the original model to allow external accessibility to the parameters of the gear

disk (Shape1) that connects to the gear train.

Bearing friction of
mechanism modelled here

Components to provide
interaction with camera
winding mechanism

Figure 6-7: The end element [W] of the gear train that is connected to the film cradle

Components without annotation are explained in Figure 6-1; diagram adapted from
(Bolognini 2003).

6.2.3. Parallel grammar addition

The winding mechanism described is conceptually similar to the clock design tasks

considered in the chapter 5. The mechanism consists of axles (spindles in clock

terminology) that are linked by spur gear pairs. The dimensions and power

requirements of the objects produced are similar, therefore the scale of the design

tasks can be said to be of the same order.

A major difference between the two systems is that there is no requirement on

maintaining the gear ratio between gear disks while modifying the camera design. The

SECTION 6.3: PERFORMANCE FEEDBACK

- 138 -

resultant behaviour after any changes is monitored by simulation. This is different

from the clock example where the ratio constraints ensure that the clock hands behave

in a manner that fulfils functional specification. Essentially a hard constraint has been

relaxed and changed into a performance measure that can be used for design

evaluation.

To enable ratio changing for a single gear pair, a new perturb rule is added to the

existing library. In keeping with the previous assumption that there are a reasonable

number of gear teeth evenly distributed about the gear disks, this new addition to the

library is relatively straightforward, merely allowing the ratio of a gear pair to be

changed by adjusting the pitch radii of the two disks. Information on the new perturb

rule is summarised in Table 6-2 with a visualisation in Figure 6-8. Note that the

distance between the two spindles remains unchanged as the rule is applied.

P15

Figure 6-8: New addition to parallel grammar (perturb rule P15) for camera design

Table 6-2: Details of new perturb rule P15

P-Rule Action Rationale

P15: Change
gear ratio

Changes the ratio of a gear
pair. This alters the

behaviour of the gear pair
as well as changing its
physical dimensions

Changing gear ratios alters the torque of
the rotating elements. Enabling these

values to be changed allows more
preferential gear ratios to be sought out.

 Key constraint: mesh.

6.3. Performance feedback

As discussed in section 6.2.1, a Dymola simulation model consists of two parts, an

executable and a parameter input file. The executable is pre-compiled using the

SECTION 6.3: PERFORMANCE FEEDBACK

- 139 -

Dymola GUI for each design family that is to be considered. For the camera case

study, nine separate simulation executables were prepared for a range of design

families with two through ten components in the gear train. This was a

straightforward process as an object-oriented model is used. All that was required was

to edit the gear train class (Figure 6-6) to the required number of gear elements. If this

had been a manual exercise, correct starting parameters for each of these additional

new gear trains elements would have had to be determined. However, as these

parameters will be generated by the parallel grammar this arduous process is not

necessary.

Running Dymola simulations produces data sets for parameters in the model. As an

example, Figure 6-9 shows the angle of rotation, θ, in the gear train of the three

spindles furthest from the electric motor (Figure 6-6) in a photo-taking scenario. The

shutter is exposed at about 0.9 s, after which the gear train winds the film on to ready

the camera for the new shot. The different spindles rotate at different speeds due to

the ratios in the gear train.

time / [s]

si
n

(θ
 +

 φ
0)

Figure 6-9: Angle of rotation θ of spindles in gear train during camera operation.

φ0 is a constant.

SECTION 6.3: PERFORMANCE FEEDBACK

- 140 -

With Dymola simulation models in place, the only step still required is to output the

desired performance data in a convenient format. An expedient method of analysing

the data output from the simulation process is by studying the final parameter values

at the end of the simulation run. This is an agreeable method for cumulative signals,

for example the total energy drawn from a battery over a period of time. Current flow

and charge usage simulation data for such an experiment is plotted in Figure 6-10.

The final value can be read off a plot of function value against time to provide the

required data, in this case just under 4 C of charge.

time / [s]

C
ur

re
nt

 /
[A

]
C

ha
rg

e
(-

Q
B

at
te

ry
) /

 [C
]

Figure 6-10: Power consumption from battery during camera winding operation.

However, other signals may not be obtained in such a simple manner. The blue trace

in Figure 6-11 is a boolean plot showing when the electrical circuit is closed,

indicating when current is being drawn from the battery to power the winding

mechanism that rotates to prepare the camera for the next exposure. The exact

moment at which this process completes is an important piece of information, as a

short winding time means that the camera is readied for a new photo in less time.

As the data is plotted as a function of time, there is no mapping from function value to

independent variable. In this case, a new parameter has to be added to the model that

reacts to the particular event of interest and stores the time at which this occurs. In

Figure 6-11, the signal tstop (‘time_stop’ in diagram legend) does precisely this when

the electric circuit reopens.

SECTION 6.3: PERFORMANCE FEEDBACK

- 141 -

time / [s]

t st
op

 (t
im

e_
st

op
) /

 [s
]

ci
rc

ui
t_

op
en

 /
[tr

ue
/fa

ls
e]

2. Time of
event of

interest is
stored in tstop

signal

1. Event
of interest

occurs

3. tstop signal
is available

at end of
simulation
period as

signal output

Figure 6-11: Performance-based evaluation – the tstop signal output

For the camera design example, three performance variables, listed in Table 6-3, were

considered. The tstart variable is not affected by changes to the winding mechanism, so

the main performance-based metrics for this example are tstop and Qbattery. In general it

is desirable to reduce both of these values. Further implementation details on how the

performance-based evaluation step is carried out are outlined at the end of the chapter

(section 6.7).

Table 6-3: Performance-based evaluation variables

Variable name Description Rationale

PERF1

tstart

Time after simulation start at
which the photo is taken.

An ideal camera takes a photo at
the precise instant the user

depresses the shutter release.
Practically, a delay occurs at this

point that is an undesirable
performance characteristic.

PERF2

tstop

Time after simulation start at
which the camera has wound on
the film and is readied for a new

photo.

A quick winding time is
beneficial to the user as it allows

the camera to be used to take
successive shots to capture a

series of pictures.

PERF3

Qbattery

The total charge drawn from the
battery during the winding

process.

Long battery life is a desirable
characteristic of products such

as cameras.

SECTION 6.4: A MULTI-OBJECTIVE HYBRID PATTERN SEARCH

- 142 -

6.4. A multi-objective hybrid pattern search

A side effect of using behavioural analysis is the possibility of a radical slow-down of

the design generation process. Previously, evaluation data based on geometry metrics

alone could be obtained simply and at no great computational cost. This justified the

use of search algorithms whose advantages lie in their robustness and ease of

implementation rather than rapid convergence characteristics.

Due to the combinatorial nature of searching for preferred designs, it is not feasible to

use such wasteful algorithms if there is a significant computational cost association

with obtaining evaluation data. It is therefore required to make better use of each

design evaluation. Based on successful work on deterministic pattern search methods

(Torczon 1997), such an approach was adapted for use with the parallel grammar to

take advantage of improved convergence criteria over simulated annealing (Yin and

Cagan 1998). A good body of work exists that has investigated the use of pattern

search methods using rotation and translation moves in Cartesian space to tackle

packing problems, from simple knapsack problems through to more complicated

mechanical connectivity tasks such as clutch layout for automatic transmissions (Yin

and Cagan 2000b; Yin et al. 1999). These algorithms employ heuristics, for example

allowing component positions to be swapped, that have been found to be successful in

making pattern search algorithms more efficient (Yin and Cagan 2000a).

6.4.1. Hybrid pattern search

An adapted method, referred to as a hybrid pattern search, is now presented for use

with the parallel grammar. Traditional pattern search methods work by

deterministically attempting ever-reducing steps in an attempt to improve the quality

of the solution. Patterns of successful steps are repeated in attempt to accelerate the

search progress towards an optimal solution. The Hooke and Jeeves (1961) algorithm

is a commonly used pattern search method and an example of the basic algorithm is

shown in Figure 6-12 for search in two-dimensional Cartesian space. Alternate

increments and decrements in each variable are carried out with successful steps being

repeated in combination as a pattern step. The steps are reduced in size if no

SECTION 6.4: A MULTI-OBJECTIVE HYBRID PATTERN SEARCH

- 143 -

improvement is achieved until the step size is smaller than a pre-specified threshold

value. This terminates the search.

x1

x2

accepted step
rejected step
accepted pattern move
rejected pattern move
base points

Initial base point

Search space boundary

Figure 6-12: Hooke and Jeeves algorithm for a two-dimensional function space
(Hooke and Jeeves 1961)

In the example in Figure 6-12 the successive base points show progress towards the

best solution. The method can be generalised for search in n-dimensional space. To be

applicable for design modification this search method must be adapted as, unlike the

changing of co-ordinates in the example in Figure 6-12, it is not possible to modify

the variables of a design freely as many changes would result in invalid designs. For

example, changing the radii of connecting gear disks would, in almost all cases, result

in a broken connection of that gear pair. Hence perturb rules, with their in-built

constraint fulfilment, must be utilised as before to ensure validity of designs when

changing design parameters.

A flowchart representation of the hybrid pattern search algorithm is shown in Figure

6-13. The general principle of the method is to find patterns of modification rules that

are successful at improving designs as determined by performance evaluation. Once

found, these patterns are attempted repeatedly to encourage rapid convergence to

preferred designs. The algorithm has two main phases, (1) a local and (2) an extended

pattern search phase. The local pattern search consists of choosing Np perturb rules

SECTION 6.4: A MULTI-OBJECTIVE HYBRID PATTERN SEARCH

- 144 -

(referred to as a sequence of length Np) and applying these modifications in turn. After

each successful change, the newly modified design is evaluated. Then, if the sequence

is successful at finding an improved design, this pattern of rules is repeated with

evaluation taking place only after the complete sequence of perturb rules has been

completed.

Start

Extended
Pattern
Search

Stop

Yes

Pareto
 Archives

Local
Pattern
Search

Change Search
Parameters? No

Change Search
Parameters

Yes

No
Stopping

Criteria Met?

Figure 6-13: Flowchart of hybrid pattern search algorithm

The key variable for this search process is the parameter Np, the discrete number of

rule applications chosen to be applied as the pattern sequence. This is different from

the step size Di,x, a parameter that governs the range of perturb rule input values, for

example the allowed increase in length of a spindle. As different perturb rules can be

active on different scales, the subscript x in Di,x enables the specification of a step size

Di for different perturb rules x. The subscript i serves to differentiate the step size Di

from other parameters (see Table 6-7). Similarly to simulated annealing, decreasing

refinements to designs are required and the step size Di,x is therefore reduced as the

search algorithm progresses.

The extended pattern search is very similar to the local pattern search except that,

during the first application of the pattern, evaluations are not carried out after every

modification, but only after the full sequence has been applied. This introduces the

SECTION 6.4: A MULTI-OBJECTIVE HYBRID PATTERN SEARCH

- 145 -

possibility of capturing sequences of modifications that initially result in worse

performance only to enable subsequent modifications that result in a final increase in

performance. This is shown schematically in Figure 6-14 (c.f. Figure 5-6). The

sequence of three perturb rules result in an overall improvement in the objective

function value, even though the first perturb rule modification increases the objective

function value. This may increase the chance of escaping from local minima in design

space (Vale and Shea 2003), as is found in simulated annealing search.

Perturb rule modifications

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

1 2 3 4

Design states

Objective function
value of initial
design state

Figure 6-14: A non-monotonic sequence of objective function changes (schematic)

The hybrid pattern search is a non-deterministic search algorithm as the perturb rule

parameters are not specified explicitly by a user but are generated at random within

bounds determined by the pattern parameters. Parameter selection is outlined in more

detail in the implementation part of this chapter where the algorithm is discussed in

greater depth (section 6.7.2). Initial pattern step sizes are determined by the user and

are reduced as design modification progresses.

6.4.2. Multi-objective search

The search algorithms used in chapter 5 sought out a single most preferred solution,

using a metric or a combination of metrics to evaluate the quality of the design. This

is adequate if the objective function evaluation matches user requirements.

SECTION 6.4: A MULTI-OBJECTIVE HYBRID PATTERN SEARCH

- 146 -

However, design tasks are usually ill-defined problems. Consider the clock designs

generated in the previous chapter (set 5C) for a combination of two different metrics.

In this case, the metrics were complementary, i.e. both drove search roughly in the

desired direction, but finding the perfect balance between the weightings of these two

metrics in order to provide the best answer was not easy. It required the running of

many separate experiments using trial and error to find the right combination that

generated the best results. In this case, neither of the two objective functions used (the

weighted and simple thickness metrics) perfectly matched the design goal. The use of

objective functions in combination is not always intuitive and it is therefore difficult

to predict what combinations are likely to prove successful.

In a complicated design task it may be a question of attempting to satisfice a large

number of competing design objectives that are not all simultaneously attainable.

Whether design objectives are complementary or are in conflict with each other may

not even be possible to predict in advance. This is especially likely in situations where

design synthesis is being used to explore completely new design spaces that a

designer may not be familiar with.

In both cases, i.e. for complementary and competing objectives, using a true multi-

objective method can be a useful method of finding good solutions to optimisation

problems. For competing objectives, the aim is to produce an archive of designs that

gives a trade-off between the design objectives under consideration, such as cost

versus a behavioural performance aspect of some kind. This enables the maximum

amount of information about the trade-off to be visualised to allow the designer to

make an informed selection of a satisficing compromise. In the case of co-operating

design objectives, the multi-objective approach is also advantageous as the method

creates collections, termed archives, of preferred designs.

Design archives are the key to multi-objective search. Seeking out this information at

the first time of asking provides more information at similar computational cost as

doing one search using the previous single-objective methods. All designs created by

the generation algorithm are submitted to a design archive to determine whether or not

it is a ‘good’ design and should be kept. The ‘goodness’ of a design is determined by

checking whether the new design is dominated by any other solution already in the

SECTION 6.4: A MULTI-OBJECTIVE HYBRID PATTERN SEARCH

- 147 -

archive, i.e. a solution has not already been found that is better than the new solution

with respect to all objectives under consideration. If the new design is not dominated

by an existing design it is added to the archive. The archive is then re-examined to

determine if the newly added design dominates any of the previously stored designs.

Any such dominated designs are removed from the archive and discarded. Figure 6-15

shows the now complete synthesis algorithm diagram (c.f. Figure 4-13 and Figure

5-1) with usage of design archives for multi-objective evaluation.

Build Up
Initial Design

Function Graph

Structure
Representation

INITIAL DESIGN

Modify
Design

Function Graph

Structure
Representation

PREFERRED DESIGN

Evaluate
DesignContinue?

Yes

Stop Design
Archive

No

Start

Figure 6-15: Multi-objective synthesis algorithm.

At any stage of search, inspection of the archive yields the best designs with respect to

each objective function under consideration, as well as intermediate designs that show

good trade-off characteristics between these objectives. This set of non-dominated

solutions, named the Pareto35 set, allows a large quantity of data to be presented in a

convenient format. A great strength of this approach is that no a priori knowledge

regarding the quantitative trade-off between the objectives is required for this method

to be successful.

35 The set of non-dominated solutions are named in memory of Vilfredo Pareto after his economics
work on ‘ophelimity’. This concept introduces the idea of an individual making a decision based on the
desirability rather than the actual utility of the outcome of this decision. Maximum ophelimity
describes a situation much like a Pareto front where the overall desirability of a system cannot be
increased without a reduction elsewhere (Pareto 1906).

SECTION 6.4: A MULTI-OBJECTIVE HYBRID PATTERN SEARCH

- 148 -

6.4.3. Hybrid search verification

The performance of the new hybrid pattern search method is investigated by

reproducing the clock design experiment used for the main demonstration problem in

chapter 5 (see section 5.3). Each run of the multi-objective algorithm creates an

archive of best solutions obtained from the starting solution, so it is not necessary, as

with the RD and SA algorithms, to carry out multiple separate experiments from each

initial design. Where previously 50 search cycles generated 50 designs in total (5

separate initial solutions and 10 preferred design generated from each), only one

search cycle is required to generate an archive from each initial design.

Design archives for 20 initial solutions are generated for the clock design problem in

Figure 4-18. These 20 initial valid solutions are generated from scratch using the C-

Rules of the parallel grammar. Search is then conducted from each of these to find

preferred designs.

Despite producing more designs of interest this method requires less computational

resources than the simple search methods used previously. The aim, as in section 5.4,

is to generate thin designs. Three complementary objective functions are used,

thickness, weighted thickness and compactness. To be accepted by an archive, a

newly modified design must show an improvement in one of the evaluation functions

over the designs already in the archive. Such non-dominated solutions are added to

the archive and may, in turn, dominate existing designs in the archive. Therefore

consideration of weighted thickness and compactness allows designs to be archived

that do not necessarily show an improvement in thickness, the main objective, but

whose changes with respect to the other design metrics are beneficial for future

reductions in thickness.

The main user-controlled parameter of the hybrid pattern search is the length NP of the

pattern sequence (Table 6-7). This is the length of the chain of modifications that,

when successfully completed, can be considered a pattern. A short pattern is more

likely to be applied successfully and therefore may result in a large number of

SECTION 6.4: A MULTI-OBJECTIVE HYBRID PATTERN SEARCH

- 149 -

successful modifications. A longer pattern, however, is more likely to find complex

combinations of perturb rule applications that result in desired design changes. Hence

different values of NP were chosen for comparative purposes. For each of the 20

Pareto archives generated by the pattern search, the best metric values are chosen and

tabulated in Table 6-4. The best thickness values are generated for the simplest pattern

length (i.e. NP = 1), with the average thickness values increasing with pattern length.

Table 6-4: Summary of hybrid pattern search results for thin clock designs
(twenty design archives, 20,000 search cycles each)

Pattern Length Np

Thickness [mm] 1 2 3 4

Average value 6.9 8.2 8.7 8.9

Minimum value 5.3 6.2 5.7 6.6

Maximum value 8.1 13.5 11.9 14.6

Standard deviation 0.8 1.6 1.5 2.3

The data from the design archives can be presented in many different formats. As

three metrics have been used for this experiment, the Pareto set is effectively a two-

dimensional surface in the space of the three evaluation metrics. Having generated the

data summarised above, it is of interest to investigate the archives that contained the

best results with respect to thickness, i.e. the minimum value in Table 6-4. The

members of the best archives are plotted against their metric values in Figure 6-16.

Metric values are normalised prior to search to be of the same order of magnitude.

SECTION 6.4: A MULTI-OBJECTIVE HYBRID PATTERN SEARCH

- 150 -

Figure 6-16: Best archives generated for different pattern lengths Np

The best values in the archive are those that are nearest the front bottom corner, as this

location corresponds to the minimum for all objectives. The two archives for 2=pN

and 3=pN are intermingled, whereas the other two archives are more clearly divided

in metric space. Visualising three-dimensional data in two dimensions is not easy ,

and Figure 6-16 is confusing in that the human eye attempts to project the plotted

points onto the co-ordinate planes of the graph. This can partially be overcome using a

dynamic viewer. This representation then becomes very effective, allowing a designer

to investigate the location of particular points by moving the viewpoint of the three-

dimensional around in space. For clarity, future data in this non-interactive thesis will

be presented as two-dimensional projections.

Another interesting result from this experiment is that the best design produced by the

hybrid pattern closely approaches the global optimum. From Table 6-4, the thinnest

clock generated by the algorithm has thickness 5.3 mm, only a fraction more than the

SECTION 6.4: A MULTI-OBJECTIVE HYBRID PATTERN SEARCH

- 151 -

absolute theoretical minimum calculated in chapter 5. This design is shown in Figure

6-17.

5.3 mm

Figure 6-17: Very thin clock design (thickness 5.3 mm) – pattern step length 1=pN ,
solution #5 from 19th design archive

This very thin design is at the limit of what is possible given the design constraints

and is better than the previous best designs generated in section 5.4. The power source

is the limiting factor with a minimum thickness of 4 mm. Each of the three support

plates specified for this design has a thickness of 0.4 mm, so the design generated is

the thinnest possible while allowing space vertically between the limiting elements.

To obtain this thinnest design the algorithm has arranged all the gears and spindles

between two of the support plates, sandwiching the middle plate to the bottom plate

without any components in between. This is an interesting design, as it introduces the

possibility of only using two support plates. Being able to peruse such design ideas as

virtual prototypes is an example of the potential of the proposed synthesis approach to

spark design innovation. Manual inspection of this model may allow the designer to

consider new ideas such as removing the middle support plate and using the algorithm

to generate favourable layouts that are stable with only the two remaining plates.

The potential merits of the multi-objective hybrid pattern search have been shown and

verified through the previous example. The method generates better results for the test

clock design problem using less computational resources. The generation of a design

archive of Pareto solutions is useful as it provides a large amount of information about

the design space in a concise manner.

SECTION 6.5: SEARCH RESULTS

- 152 -

6.5. Search results

Having compared the hybrid pattern search algorithm with previous simplistic

methods (section 6.4.3) for verification purposes, performance-based evaluation was

introduced to investigate the camera redesign problem introduced in section 6.2.2.

6.5.1. Performance-based results

Pareto sets of possible camera designs were generated using a variety of different

combinations of objective functions. The perturb rules used previously were

employed as well as the new modification rule P15 for the camera domain (Figure

6-8). Perturb rules P12 and P13, the rules that allow insertion and deletion of new

spindles into the design, allowed component topology to be altered and therefore

enabled different design families to be explored by this search method. This is of

particular relevance to the camera redesign problem as it would be interesting to be

able to gain insight into the design rationale for designing the camera gear train with

five separate spindles (Figure 6-6). Such solutions are referred to as ‘5-noded’

solutions. Why were ‘4-noded’, ‘6-noded’ or other design families not chosen for the

original design? As further verification of the method it is desired to generate such

significantly different designs, i.e. from different families, to explore their

performance merits with respect to the original design.

Rather than just plot the pure Pareto front of generated designs, the non-dominated

solutions for each individual design family are stored. This is done by using a Pareto

archive as well as a so-called ‘noded Pareto archive’. Each new design is submitted to

a family-specific ‘mini-Pareto archive’ as well as the overall Pareto archive. For

example, a newly generated 7-noded solution is submitted to the overall Pareto

archive to see if it a non-dominated solution compared to all other designs. It is then

also submitted to the noded Pareto archive consisting only of 7-noded solutions, to see

whether it is dominated by all previously found 7-noded solutions. Acceptance by a

noded Pareto archive is used as a criterion for determining a successful design

modification. This method allows the algorithm to explore the limits of each design

family as well as merely looking for the overall best-performing designs.

SECTION 6.5: SEARCH RESULTS

- 153 -

Figure 6-18 shows all the solutions in the noded Pareto archive for the two main

performance-based design objectives, Qbattery, the charge removed from the camera

battery to wind on the device after taking a photo, and tstop, the time at which this

process is completed. It was expected that these two performance metrics should be

competing objectives and this is borne out in the diagram. The 4-noded solutions are

effectively the overall Pareto front, but including the noded Pareto sets adds more

information about the space of alternatives, showing the trade-off between Qbattery and

tstop for different design families. The relationship between these two objectives is

almost directly proportional as other component parameters, such as mass of

elements, have only a weak effect on these characteristics. This relationship was

determined by the search algorithm without a priori knowledge about the detailed

mechanism controlling this relationship.

The original design has tstop values of 1.9 s (Bolognini 2003). From Figure 6-18 it can

be seen that this presents a good trade-off between the two objective functions for 5-

noded solutions. Increasing the number of gear elements increases the potential losses

from each component, demonstrating that a lower number of nodes is a more

preferred design strategy. Hence, it might have been expected that a 4-noded solution

would have been used, as the plot shows that a design with only four gear elements in

the gear train shows better design characteristics. To answer this question further

investigations must be carried out.

Figure 6-19 shows multi-objective design archives for tstop and mass objectives, as

well as the initial solutions that served as the starting points for the design archive.

These starting solutions are the initial designs generated using C-Rules after which

design modification takes place using perturb rules, or P-Rules (see section 6.4.3).

Note how these initial solutions all have the same value of tstop as the initial design

generation procedure used ratio information from the original design. This plot helps

explain why a 4-noded solution may not have been used for the original camera. Due

to the larger gear disk size required to bridge the constant gap between the ends of the

gear train if only four gears are used, the 4-noded Pareto has greater mass than other

solutions, such as the 5- and 6-noded data sets. Hence a 5-noded solution might have

been chosen to avoid using gear disks with overly large radii. Using a gear train with

five elements therefore presents a good trade-off between mass and tstop. A plot from a

SECTION 6.5: SEARCH RESULTS

- 154 -

different experiment for the same objective functions shows similar results, albeit

with lower mass solutions near the left of the diagram (Figure 6-20).

Figure 6-21 shows data for aspect ratio and battery usage. The aspect ratio metric is of

particular relevance as the camera gears are made of plastic and are therefore likely to

be injection moulded (Ulrich and Eppinger 1995), in which case a low aspect ratio of

parts is desirable. The 4-noded solutions are to the right end of the plot, indicating

again the increased radius of the gear disks for these solutions. The results are less

clear-cut than for data sets shown previously. Note the lower Qbattery values of some of

the 5- and 6-noded solutions. Figure 6-18 shows that cameras with gear trains

designed to these specifications would have long winding times, e.g. in excess of 5 s.

Not all data produced by the multi-objective method provides as much information.

Figure 6-22, a plot for battery usage against mass, shows no real trade-off between

these two variables. The vertical line of design solutions shows there is no great

dependency between mass and the number of nodes in the gear train. The best

solution by far is the 4-noded solution in the bottom left of the graph, which might

explain the poor performance of high-noded solutions, e.g. the 9- and 10-noded

solutions in the top right hand corner.

Figure 6-18: Multi-objective camera search results for tstop and qbattery (data set 01450)

Original design

SECTION 6.5: SEARCH RESULTS

- 155 -

Figure 6-19: Multi-objective camera search results showing initial solutions (data set
16042)

Archived design #43

Archived design #44

Archived design #32

Figure 6-20: Multi-objective camera search results for mass [scaled metric value] and
tstop [s]

(data set 16092)

SECTION 6.5: SEARCH RESULTS

- 156 -

Figure 6-21: Multi-objective camera search results for aspect ratio and battery usage
(data set 30691)

Figure 6-22: Multi-objective camera search results for mass and battery usage (data
set 30698)

SECTION 6.5: SEARCH RESULTS

- 157 -

Two Pareto designs from Figure 6-20 are shown in Figure 6-23. The light blue boxes

and cylinders in these pictures show existing hard boundary constraints such as the

existing camera housing, the film and the winding motor. The pictures are snapshots

of the virtual prototypes generated automatically for each solution in the archive.

8, [W] 7 6

5

4

3

2

1, [S]

Figure 6-23: Pareto solutions #43 (top) and #44 (bottom) from data set 16092

(c.f. Figure 6-20)

Design #43 is a 6-noded solution; design #44 is a 5-noded solution. The former has

been labelled to give an overview of what the components are; the latter has been left

unlabelled to allow a clearer view of the structure. The proximity of the designs in the

Pareto archive is not surprising as they are quite similar: one of the designs was

created from the other. Spindle ‘2’ in design #43 does not exist in design #44, where

spindles 1 and 3 are connected directly. The remaining components are the same.

Figure 6-24 is another design generated in the same experiment. It is a 10-noded

solution, resulting in a configuration with many parts. Due to its high part count, it is

SECTION 6.6: CONCLUSIONS

- 158 -

unlikely that such a design would be considered for further development for this

particular layout of boundary constraints. However, if low-noded solutions were not

so easy to design due to a more constrained spatial layout, being able to generate

high-noded solutions such as that in Figure 6-24 could be of benefit.

Figure 6-24: Pareto solution #32 from data set 16092

(c.f. Figure 6-20)

6.6. Conclusions

This chapter has addressed some additional requirements of performance-based

mechanical synthesis. The main objective was to enhance design evaluation to judge

the quality of designs created by the parallel grammar in terms of behaviour criteria as

well as the previously-used geometric metrics (chapter 5). The use of computational

behavioural modelling achieved this aim, enabling actual performance parameters to

be considered by the evaluation step of the design synthesis framework.

A new case study, a camera gear train redesign task, was introduced as a test case for

behavioural performance-based analysis. An existing camera design was analysed,

alternative design configurations were considered and virtual prototypes of these were

generated. Evaluation hinged on simulation of parametric designs generated by the

parallel grammar. In combination with existing geometry-based metrics a series of

designs were generated to understand the rationale for the original camera. Data from

this process provided information on the performance envelope of the camera and

enabled new design possibilities to be considered.

SECTION 6.7: IMPLEMENTATION DETAILS

- 159 -

To take full advantage of the performance data from the simulation environment a

hybrid pattern search method was introduced that performed better than the random

downhill and simulated annealing search methods used previously (c.f. sections 5.4

and 6.4.3). This new search algorithm is well-suited to finding good designs through

the modification of constrained design problems. The algorithm is tailored for use

with a perturb rule library introduced in chapter 5.

It has still not proved possible to generate new clans of designs computationally. The

current implementation requires a user to choose the system topology of a design that

the parallel grammar takes as functional specification to generate initial designs. As

useful as it is to be able to generate new layouts for design families and even mediate

between different families during search, it would be a truly exciting prospect to be

able to abstract the specification one level higher to allow computational generation of

new design clans that can then be taken forward to virtual prototypes.

This chapter can be considered as a proof-of-concept demonstration for behavioural

simulation-based feedback to drive computational design synthesis for the purposes of

creating designs with desirable characteristics. The next question is to consider

whether this work can be applied beyond the simple clock and camera case studies.

This is the topic of chapter 7. Vehicle gearbox design is considered as a design field

that is likely to see increasing use of computational synthesis methods over the next

few years.

6.7. Implementation details

In line with the computer aided engineering design methodology discussed in chapter

2 (Figure 2-2), scripting languages were used to provide the link between previously

incompatible software (Ousterhout 1998). The implementation of the performance

feedback code made extensive use of Perl and Bash scripts to mediate between the

original C++ generation code and the Modelica analysis software. This approach has

resulted in a flexible toolbox for accessing and running simulations in the Dymola

modelling environment that could also be used with other design generation code.

SECTION 6.7: IMPLEMENTATION DETAILS

- 160 -

6.7.1. Behavioural performance feedback

The implementation of the performance-based design method hinges on code that is

used to pass information between the generation and analysis software packages. The

files, variables and C++ functions used for this are listed in Table 6-5 and Table 6-6.

The process can be split into three tasks, (1) exporting the new design from the

generation software, (2) analysing this design and (3) re-importing the performance

evaluation data into the generation software. These steps are controlled by the three

C++ functions listed in Table 6-5 and are outlined in detail in Figure 6-26.

Table 6-5: C++ functions and run-time variables for performance feedback

C++ Function Run-time variables
make_changes_file $1 – machine to use for simulation

get_performance_data $2 – number of nodes in solution
read_performance_data $3 – Process ID (PID)

As discussed above, file scripts (written in Perl) were used for flexible manipulation

of text files to quickly strip data from files and replace new parameter values in an

efficient manner. The use of scripting languages enabled a relatively seamless

interaction between design generation code (Linux-based) and analysis software

(Windows-based). Simulations were run separately from the generation platform on a

dedicated analysis machine (AMD Athlon 2600+); bash scripts were used to transfer

files between machines. Time lost through file transfer was offset by a faster

simulation time due to this distribution of synthesis and analysis tasks to separate

machines.

Figure 6-25 shows a screenshot of the camera model in the animation window of the

Dymola modelling environment. The diagram is annotated to highlight key parts of

the model. The 6-noded model shown is adapted from the original 5-noded model

developed by Bolognini (2003).

SECTION 6.7: IMPLEMENTATION DETAILS

- 161 -

[S]

[W]

Gear trainShutter

Shutter release

Shutter mechanism

Figure 6-25: Modelica model of Vivitar CV50 as animated in Dymola modelling
environment, adapted from (Bolognini 2003).

Table 6-6: Files used for performance feedback implementation

File Type Detail

watchdog.pl Perl Controls failed ssh executions when
running simulations on separate machines

change.pl Perl Uploads new design parameters to
Dymola input file

get_results.pl Perl Reads required results from Dymola
results file

send_node_A Bash script
send_node_B Bash script
send_node_C Bash script
send_node_D Bash script

Scripts used for file transfer when
simulations are being run on dedicated

analysis machine

changes_000PID Text Exported data from generation code with
information about parameter changes

wd_status
_000PID.txt Text Control file that holds information about

success or failure of ssh processes
diagnostic Text Performance variables requested by user

perf_data_PID.txt Text Actual data values for performance
variables

dsin.txt Text Dymola simulation parameter input file

dsfinal.txt Text Dymola simulation parameter file of final
results

dsres.mat Matlab Dymola simulation results
dymosim_$2.exe Executable Dymola simulation executable

SECTION 6.7: IMPLEMENTATION DETAILS

- 162 -

• make_changes_file

- Takes current code-generated solution and writes geometric parameters to
changes_000PID

• get_performance_data

- Calls send_node_A $1 $2 $3
- Retrieves particular Modelica dsin.txt input file for $2 nodes to xdsinPID.txt
- Runs change.pl $3 to vary parameters in xdsinPID.txt as specified in

changes_000PID
- SSH copies xdsinPID.txt to simulation machine as dsin.txt

- Calls send_node_B $1 $2 $3
- SSH runs Modelica simulation file dymosim_PID.exe on machine $1

- Calls send_node_C $1 $2 $3
- SSH copies Modelica final results file dsfinal.txt to local file dsfinalPID.txt

- [option] Calls send_node_D $1 $2 $3
- SSH copies Modelica data file dsres.mat to local file dsresPID.txt

- Runs get_results.pl
- Reads required performance variables from diagnostic
- Strips these data values from dsfinalPID.txt and writes them to

perf_data_PID.txt

• read_performance_data

- Returns performance data from perf_data_PID.txt as scalar function

Figure 6-26: Performance feedback file structure

6.7.2. Hybrid pattern search details

The hybrid pattern search algorithm takes a variety of parameters that can be set by

the user to fine-tune the search for improved results. These are detailed in Table 6-7.

The algorithm is outlined in C++ pseudocode code in Figure 6-27.

SECTION 6.7: IMPLEMENTATION DETAILS

- 163 -

Table 6-7: User-defined parameters for hybrid pattern search algorithm

Variable Explanation C++ variable name
Example

value

Ns

Number of initial starting
solutions generated using the

parallel grammar
SOLUTIONS 15

Ne

Number of final preferred
archives generated from each

initial solution
EXPERIMENTS 1

NC

Maximum number of search
cycles permitted for each

experiment
SEARCH_CYCLES 100

NP Length of pattern sequence NNN 2

Napp

Number of perturb rule
applications permitted on each

search cycle
N_APP 100

Nbase

Number of cycles without
successful changes before
picking a solution from the

archive and continuing from the
search from this design

RETURN_TO

_ARCHIVE
50

Nparam

Number of cycles without
successful changes before

reducing the pattern step sizes
Di,x

COOL_PARAMETERS 5

Dstep
Factor by which pattern
parameters are reduced COOL_RATE 0.8

Di,x
Pattern step sizes, where x is the

group of the perturb rule X_STEP 2 – 8

Dfloor, x Pattern step lower limit X_MIN 0.1 – 1

The following text is pseudocode for the hybrid pattern search algorithm.

// Start of hybrid pattern search pseudocode

// Declare parameter flags
// Flag used to check if sequence is being applied successfully
bool pattern_application = true

// Initialise archives
Initialise noded Pareto archives Ap,i
Initialise Pareto archive Ap

// This is the current design to search from
design = current design

while (stopping criteria are not met)

SECTION 6.7: IMPLEMENTATION DETAILS

- 164 -

// Local Pattern Search
pattern_application = true
for (int i=0; i<NC; i++)

Select a sequence of length NP of Perturb Rule types at random
for (each of these Perturb Rules in the sequence)

Apply this Perturb Rule to design using range from Di,x and
at a random application point

while (application of this perturb rule is unsuccessful)
Apply this Perturb Rule to design using range from Di,x

and at a random application point
if (no of attempts at completing while loop > Napp)

pattern_application = false
break outer while loop

end if
end while
if (pattern_application == true, i.e. design changed

successfully)
Submit changed design to archives Ap,i and Ap
if (submission of design to Ap is unsuccessful)

break for loop
end if

end if
end for

if (sequence of Perturb Rules was successful)
pattern_application = true
while (pattern_application == true)

Repeat this sequence of Perturb Rules to design
while (application of this sequence is unsuccessful)

if (attempts at completing while loop > Napp)
pattern_application = false
break outer while loop

end if
end while
if (design changed successfully)

Submit changed design to archives Ap,i and Ap
if (submission to Ap is unsuccessful)

pattern_application = false
end if

end if
if (number of applications > Napp)

break while loop
end if

end while
end if

end for

// Extended pattern search
for (int i=0; i<NC; i++)

pattern_application = true
while (pattern_application == true)

Select a sequence of Perturb Rule types (random)
Partner this sequence with application points (selected at

random)
Partner this sequence with application range from Di,x
// Apply this sequence of Perturb Rules to design
while (application of this perturb rule sequence is

unsuccessful)
if (no of attempts at completing while loop > Napp)

pattern_application = false
break outer while loop

end if
end while
if (design changed successfully)

Submit changed design to archives Ap,i and Ap
if (submission to Ap is unsuccessful)

pattern_application = false
end if

end if
if (number of loops on while > Napp)

break while loop
end if

end while
end for

if (no design successfully submitted to Ap in above)

SECTION 6.7: IMPLEMENTATION DETAILS

- 165 -

nochange_counter++
else

nochange_counter = 0
end if

// Return to base
if (nochange_counter > Nbase)

Randomly select a design Da from Ap
design = Da

end if

// Pattern parameter reduction
if (nochange_counter > Nparam)

Reduce pattern parameters by specified step length
end if

end while

// End of hybrid pattern search pseudocode

Figure 6-27: Pseudocode for hybrid pattern search algorithm

- 166 -

7. Industrial applicability

This chapter investigates the industrial applicability of the synthesis work in this

thesis and, specifically, the parallel grammar as a means of design generation.

Previous chapters built up a parallel grammar formalism for mechanical design

synthesis. The parallel grammar was implemented computationally to investigate

simple synthesis tasks, each chosen to address key issues in computational mechanical

synthesis. The proposed formalism is now taken a step closer to practical tasks by

studying two industrial design examples, with specific reference to the storyboard

(section 1.2.1).

The parallel grammar is now expanded to represent the language of spur gear systems,

which introduces the concept of clutches, i.e. allowing axles to be connected by more

than one gear pair. Clutches allow shifting between different gear trains to provide

alternative overall gear ratios. A multi-speed power drill is demonstrated as an initial

example followed by the generation of a novel gearbox design for a vehicle

transmission system. The parallel mechanical grammar is verified through the

recreation of transmission layouts for current generation vehicles. Validation of the

grammatical approach to synthesis is provided by assessing how it addresses the

needs of a leading automotive transmission design company.

7.1. Validation of the parallel grammar

The clock and camera design case studies explore several challenges of computational

synthesis applied to mechanical design. The parallel mechanical grammar was shown

to be successful at recreating existing designs as well as enabling the discovery of

preferred new designs.

SECTION 7.1: VALIDATION OF THE PARALLEL GRAMMAR

- 167 -

Moving on from the exploratory case studies it is now desired to place the method

into the context of current synthesis tasks that are relevant to industry today. Where

the previous case studies provided verification of the parallel grammar and its place in

the computational synthesis framework, new case studies with greater industrial

applicability now validate the approach and demonstrate the potential utility of design

synthesis tools.

Consider the parametric synthesis framework introduced in chapter 2 (Figure 2-3), the

four phases of which have been addressed in previous chapters. After initial

investigation of design case studies, the parallel grammar was used to generate both

existing and new designs (chapter 4). Evaluation was considered on different levels,

firstly using a geometric performance metrics alone (chapter 5) and then secondly

using simulation-based, behavioural performance (chapter 6). In these chapters,

stochastic search was used to mediate between design configurations within the

described language.

This chapter takes the thesis full circle with the investigation of new design problems

for validation purposes. Two case studies are considered, the design of a corded

power drill and the design of vehicular power transmissions, specifically the

generation of possible layouts for 5-speed transaxle gearboxes.

7.1.1. Power drill design

The generic term ‘drill’ refers to a tool that makes cylindrical cavities in bulk solids.

Drills range in size from small devices for creating holes in wood or masonry through

to large-scale machines for heavy industry that can be used to drill for oil or excavate

tunnels for rail and road transport links. For the purposes of this case study the former

end of the spectrum will be considered, in particular drills that are often referred to as

‘power drills’, i.e. hand-held electrically-powered drills that are operated by a single

user. These machines are popular both with professionals, such as builders and

carpenters, and amateurs, such as hobby enthusiasts. Power drills exist in many

guises, for example as corded drills that rely on a supply of alternating current (AC) to

power an electric motor. Battery-powered, i.e. direct current (DC), tools are also

SECTION 7.1: VALIDATION OF THE PARALLEL GRAMMAR

- 168 -

common: these allow greater mobility while in use. Input power produces rotational

motion that is transferred to a drill ‘chuck’ that securely holds a drill ‘bit’, the part of

the tool that makes contact with the solid being drilled. Drill bits are often short-lived

as they either snap or are worn out by abrasion, necessitating a chuck that enables

quick replacement of worn drill bits as well as ensuring safe operation.

A particular drill was chosen for this case study in conjunction with design engineers

at Black and Decker, a global power tool manufacturer. The KR850CRE (Figure 7-1)

features a power output of 850 watts at a voltage of 230-240V, a user-controlled

choice of output rotation (clockwise or anti-clockwise), optional hammer-drill mode

and a two-speed gearbox. First gear provides high torque but a lower maximum

rotational velocity, while second gear provides high maximum rotational velocity but

at a lower torque. The gear selector can be seen in Figure 7-1, where the two gears are

labelled ‘1’ and ‘2’. In hammer-drill mode, the device leaks some rotational kinetic

energy to effect a high-frequency axial motion to ‘hammer’ down on the point of

impact with the bulk solid. This is a very effective way of drilling masonry as the

compressive stresses introduced by this action cause the bulk solid to crumble. Drill

bits with hardened tips are usually required for this mode of operation.

 Figure 7-1: Black and Decker KR850CRE corded drill

SECTION 7.1: VALIDATION OF THE PARALLEL GRAMMAR

- 169 -

The KR850CRE corded drill was reverse engineered for comparison with an existing

exploded component diagram (Figure 7-2).

Figure 7-2: Exploded part diagram of corded drill36

Parts mentioned in text are highlighted.

36 From product user manual. Also available at http://www.2helpU.com (last accessed 30 November
2003)

SECTION 7.1: VALIDATION OF THE PARALLEL GRAMMAR

- 170 -

The architecture of the product is straightforward. Power (#112 – numbers refer to

Figure 7-2) enters through the handle and supplies the electric motor (#101, #102) that

sits atop the handle. This is the main mass-contributing component in the design.

Apart from the rotating shaft of the motor there are two further rotating axles (#120,

#125), connected by gear pairs, that lie inside the drill with the chuck (#140) attached

at the far end of the drill body. The ratio between the second and third rotating axles

can be altered by activating the clutch (#127) that slides the gear elements on shaft

#120 to engage one of the two possible gear pair combinations.

From a mechanical design perspective the aspect of interest in this case study is the

multiple gear train controlling the high/low torque output of the drill (Figure 7-3). The

questions that could be addressed with a computational synthesis approach are

whether alternative layout options or a change in the existing gear ratios could

maximise operating performance. One can envisage further developments allowing

detailed modelling of a drill to allow wholescale redesign options to be considered,

such as studying the performance of the selected motor. However, at this point it is

desired to place the case study in the context of practical industrial development

where the designers use off-the-shelf components rather than consider parametric

design variations.

Figure 7-3: Close-up detail of exploded drill gear mechanism

At Black and Decker, the design of new products, e.g. corded drills such as the

KR850CRE, is driven by two main design teams. An ‘outer’ team works on the

design of clam-shell bodies with the dual functions of providing a stable base for

components parts and providing the user interface for the product. Rapid prototyping

SECTION 7.1: VALIDATION OF THE PARALLEL GRAMMAR

- 171 -

is used to create selective laser sintering (SLS) models of the outer form that can be

produced to a level of detail similar to the final product. The ‘inner’ team is

responsible for selection and placement of electromechanical components to fulfil the

functional design specification. In practice, the ‘outer’ team are always looking to

shrink the design envelope while the ‘inner’ team demands more space for the

components of the product, resulting in a two-way ‘tug-of-war’ to find the best

satisficing compromise (Hewitt 2003).

7.1.2. Vehicle gearbox design

Internal combustion engines used in vehicles have narrow operating ranges where

torque and power are at optimal levels. Therefore to provide a vehicle, such as a car,

with a useful range of speeds, a gearbox is required. A gearbox contains a number of

parallel gear trains of differing ratio that can be selected, one at a time, to transfer

power from engine to driven wheels to suit the driving conditions. The storyboard in

the introduction considers the design of a transmission system for a racing car as

inspiration for this research. The design of an automotive manual gearbox is now used

as a final industrial case study.

Figure 7-4 shows a simplified sketch of the forward portion of a passenger car. Front

wheel drive is commonly used for non-speciality motor vehicles, which in most cases

means the engine is located at the front. Vehicle dynamics dictate that the heavy

engine block is centrally mounted, resulting in restricted space on both sides of the

engine. Sitting on one side of the engine in one of these restricted spaces, the gearbox

takes a rotational input from the engine, converts this rotation by a given ratio and

outputs the new rotation to the differential that then drives the front wheels of the car.

The driver of the vehicle selects these ratios by moving a gear stick: it is standard

practice to have a choice of five forward gear ratios and one reverse ratio. These are

termed ‘speeds’, i.e. the first ratio is the first speed, the second ratio is the second

speed, etc. This configuration is known as a ‘5-speed gearbox’.

SECTION 7.1: VALIDATION OF THE PARALLEL GRAMMAR

- 172 -

Engine

Front of car

Gearbox

Right front wheel Left front wheel

Direction
of travel

Transaxle
direction

Differential

Figure 7-4: Sketch of front wheel drive passenger car layout, adapted from (James
2003)

As more powerful vehicle engines have become more affordable and popular, there

has been a trend for gearboxes to have more speeds. Older cars, such as pre-1980s

vehicles, mostly used 4-speed gearboxes. 5-speed gearboxes are now considered

standard, while 6-speed gearboxes are also common (Arzethauser 2003), providing

the driver with more ratios to allow optimal torque and power levels for varying

driving conditions. Some high-powered vehicles, e.g. the Bugatti Veyron37, have 7-

speed gearboxes.

As the axis of the front wheels is restricted to lie across the vehicle and orthogonal to

the direction of travel, it is common practice to align the shafts of the gearbox in this

direction as well. This layout is termed a transaxle (‘across the axle’) gearbox (James

2003). The differential, required to permit different rotation speeds of the front wheels

to allow for steering, is then aligned between the front wheels at the output end of the

gearbox. The simplest layout that can be considered for a 5-speed gearbox is shown in

Figure 7-5.

37 The Veyron engine provides 736 kW at 6,000 rpm. http://www.bugatti-cars.de/bugatti/ (last accessed
9 January 2004).

SECTION 7.1: VALIDATION OF THE PARALLEL GRAMMAR

- 173 -

Direction
of travel

Transaxle
direction

2nd

1st

Reverse3rd4th5th

Input from
engine

Output to left
front wheel

Output to right
front wheel

Differential

Figure 7-5: A standard 5-speed gearbox layout, adapted from (James 2003)

This standard transaxle 5-speed gearbox has three main shafts. The output shaft from

the engine is connected to an intermediate shaft by a set of different gear pairs, one for

each speed available to the driver. If no speed is selected, the gear disks on the

intermediate shaft do not grip the intermediate shaft. Hence the engine can run with

the input shaft rotating and all the gear pairs on the intermediate shaft spinning freely.

This is termed ‘neutral’ speed. If the driver selects one of the forward speeds, a clutch

mechanism activates to connect the intermediate shaft with the relevant gear pair.

Hence an input rotation causes the intermediate shaft to rotate, resulting in power

being transferred to the differential and thus also to the front wheels of the vehicle.

Reverse gear works in a similar manner, except that there is another gear disk on a

separate shaft that engages to rotate the wheels of the car backwards.

A main design issue with transaxle gearboxes is the space restriction between the

engine and the outside of the vehicle, as the former is constrained to be centrally

mounted. The gear pair for fifth speed in the standard layout considered in Figure 7-5

is quite close the right front wheel of the vehicle. A 6-speed gearbox based on this

layout with another gear pair added to the end of the shafts would be difficult to

SECTION 7.1: VALIDATION OF THE PARALLEL GRAMMAR

- 174 -

implement. Another difficulty is that long shafts flex when loaded, resulting in

substandard meshing characteristics and reduced performance. Using a greater

number of intermediate shafts for alternative layouts would result in greater

complication but could resolve some of the issues with the standard layout.

Several alternative layouts already exist in current cars. The layout of a new design,

used in the Rover 75 and other vehicles, is shown in Figure 7-6. The differential is

shown without its protective covering as used in Figure 7-5, otherwise the differential

design is similar. Third, fourth and fifth speed work in the same fashion as in the

standard layout: the input shaft drives intermediate shaft A via the relevant gear pair

and power is transferred to the differential.

5th
3rd4th

Differential

Output to left
front wheel

Output to right
front wheel

Input from
engine

Intermediate B

Intermediate A

Intermediate C

2nd 1st

Reverse

Figure 7-6: An alternative 5-speed gearbox layout, adapted from (James 2003)

First and second speed function in a different way. The input shaft actually consists of

two concentric shafts, the original input axle that connects to the engine and a

concentric sleeve (intermediate C). For third, fourth and fifth speed these are locked

together and the fused entity acts as a single shaft, passing power from the engine

directly to intermediate shaft A and then on to the differential. When first or second

speed are selected, the concentric shafts (input and intermediate C) disengage, and

SECTION 7.1: VALIDATION OF THE PARALLEL GRAMMAR

- 175 -

power flows between these concentric, non-fused shafts via intermediate shaft B. The

third speed gear pair is then used to transfer power to intermediate shaft A. Figure 7-7

shows the alternative 5-speed gearbox layout when first speed has been selected. All

non-loaded gears have been removed from this graphic. Note how only one gear on

intermediate shaft C is used, hence it acts as an idler for this gear train.

Differential

Output to left
front wheel

Output to right
front wheel

Input from
engine

Intermediate B

Intermediate A

Intermediate C

Figure 7-7: First speed loaded gears for alternative 5-speed gearbox layout, adapted
from (James 2003)

The differences between the standard and alternative gearbox layouts are summarised

in Table 7-1. There are situations when the standard gearbox layout is not adequate

for the type of car being designed. In these cases, being able to generate possible

alternative layouts suited to the particular new requirements would be beneficial.

Generating a host of new design ideas could widen the possibilities considered by a

designer and therefore increase the chances of finding a configuration that is tailored

to the vehicle being designed.

SECTION 7.1: VALIDATION OF THE PARALLEL GRAMMAR

- 176 -

Table 7-1: Summary of gearbox layout options

Gearbox layout Advantages Disadvantages

Standard
• Conceptually simple

• Low part count

• Long shafts

• Restricted gear ratios due to
distance between shafts

Alternative
• More gear ratio options

• Requires less space in
transaxle direction

• Complex

• Higher part count

This case study was carried out in conjunction with Romax Technology, a small

company that produces gearbox design software. Their main product,

RomaxDesigner38, is used by many leading automotive firms to design gearboxes.

The core competence of Romax Technology is the complete modelling of mechanical,

specifically automotive gear-based, systems. RomaxDesigner models gearboxes to a

high level of detail, including specifics such as addendum and dedendum values, and

allows detailed optimisation of gear tooth profiles as well as other features. This

attention to detail makes it possible to analyse complex phenomena such as shaft

misalignment and gear whine, performance characteristics that are important to

gearbox manufacturers.

A computational synthesis tool incorporating simulation-based evaluation using

RomaxDesigner would enable the automated generation of new gearbox layouts. The

alternative layout for the 5-speed gearbox introduced in this chapter is not difficult to

visualise, however, other vehicles require more complex layouts. On-road heavy-duty

trucks, such as Kenworth’s T60439, and off-road vehicles, such as tractors, feature

gearboxes with up to 18 speeds. The design alternatives for such problems are

numerous and a computational method could be of assistance to enable designers to

rapidly explore a wide range of alternatives. A detailed modelling tool like

RomaxDesigner complements the higher-level gear system representation used by the

parallel grammar.

38 http://www.romaxtech.com/ (last accessed 2 December 2003)
39 http://www.kenworth.com.au/t604/summary.asp (last accessed 2 January 2004)

SECTION 7.2: CLUTCHES

- 177 -

This case study is of particular relevance to the automotive industry. It is generally

thought that current vehicle transmission technology requiring gearboxes will be used

until at least the year 2020 (Poon 2003). Computer modelling and simulation in this

design domain has been increasing in recent years and the incorporation of

computational synthesis is considered the next step towards faster gearbox

development and implementation cycles. Computational synthesis is thus of strategic

importance to the vehicle industry (Poon 2003).

7.2. Clutches

Before the case studies can investigated, the existing parallel grammar requires one

main extension: this is necessary as the design representation used for the clock and

camera case studies does not support the connection of two shafts by multiple gear

pairs. Such arrangements occur in gear mechanisms where different speeds can be

selected (c.f. Figure 7-5).

No changes to the structure grammar are required for multiple connections, as

clutched configurations can be created using the existing parallel grammar C-Rules.

This process is demonstrated in Figure 7-8. The sequence shows structure rule 2 being

applied to add a new shaft to an existing partial design. Subsequently, two separate

applications of rule 3 are carried out that add two gear pairs of differing ratio between

the new shaft and the rest of the mechanism.

Rule 2 Rule 3Rule 3

New shaft First
gear pair

Second
gear pair

Figure 7-8: Multiple shaft connections with existing structure rules

SECTION 7.2: CLUTCHES

- 178 -

Multiple gear pairs connecting the same shafts cannot be engaged at the same time, as

this would cause the system to be over-determined, so no movement would occur.

Clutches are used to mesh gear pairs in turn, whereby the gear disks are splined40 and

can be moved axially over small distances to engage with the shaft at their centre.

Detailed component representations of these clutches are not included in the design

representation as they are considered beyond the scope of parametric synthesis for

conceptual design stages.

While the structure grammar remains unchanged, the function grammar requires an

additional rule to enable multiple gear connections between axles to be represented.

The current set of function rules (Figure 5-5) does not allow creation of a new edge

between vertices with an existing connecting edge. A new rule is added to allow such

a change, resulting in a multigraph representation that allows more than one edge

between the same nodes. The new function rule is shown in Figure 7-9. The set of

labels used has been changed to reflect the new components used in the drill and

gearbox case studies. These are listed with a short explanation in Table 7-2.

XF, N ∈ {t, c, S, B, D, Z}

n n
mE

X ∈ XF X ∈ XF

X ∈ XF
Rule E:

Create additional connection
between existing connected nodes

m
X ∈ XF

Figure 7-9: New function rule E for the drill and gearbox case studies

40 A spline is a key that fits into grooves in a shaft, wheel or other attachment so as to allow
longitudinal movement of the latter (source: Oxford English Dictionary).

SECTION 7.2: CLUTCHES

- 179 -

Table 7-2: Explanation of terminal labels used for the validation case studies

Label Meaning

c A terminal vertex indicating further connectivity (no change from previous
definitions).

S A terminal vertex that corresponds to the input shaft.

B A terminal vertex that corresponds to the drill bit output shaft.

D A terminal vertex that corresponds to the differential output shaft. The
differential and front wheels are attached to this shaft.

Z
A terminal vertex that corresponds to a shaft that has a separate behavioural
mode whereby it can be rigidly connected to a concentric shaft through
clutch activation.

7.2.1. Black and Decker drill

The updated parallel grammar can now be used to investigate the industrial case

studies presented. A function representation of the corded drill is created using the

parallel grammar. This is shown in Figure 7-10, using the same triangular grid to lay

out the graphs as in previous examples. Two possible sequences of rule applications

are shown. The sequence to the right of the figure shows a set of rule applications that

builds a path to the output node in small steps from the input. The left hand sequence

uses rule D to insert the connection node after a direct edge from input to output has

been created.

SECTION 7.2: CLUTCHES

- 180 -

Rule B Rule B

Rule A

Rule C

Rule E

Rule CRule D Rule B

Rule C

Rule C

1[S]

3[#]

2

1[S]

[#]

1[S]

1[#]

1[S]

3[B]

2

1[S]

 [#] 3

[c]
2

1[S]

[B] 3

[c]

2

1[S]

[B] 3

[c]

2

1[S]

[c]

Figure 7-10: Two possible rule sequences to create a function representation for the
drill case study

The final function graph in Figure 7-10 is a directed acyclic multigraph as it allows

more than one edge to connect the same two vertices. The function graph at the end of

the generation sequence corresponds to the structure representation produced in

Figure 7-8. The final parallel representation is shown in Figure 7-11. Models

generated can then be used to explore design possibilities using evaluation data from

geometry-based metrics and from simulation data as demonstrated in chapter 6.

SECTION 7.2: CLUTCHES

- 181 -

2

1[S]

[B] 3

[c]

1, [S]

3, [B]

2, [c]

Gear 1
Gear 2

Gear 1 Gear 2

Figure 7-11: Drill case study: function (top left) and structure (top right)
representations; assembled mechanism (bottom)

Assembled mechanism is shown in neutral state, i.e. neither gear is engaged.

As shown in Figure 4-7, the function graph can be thought of as representing power

flow through the design. The function graph for the drill case study, created in Figure

7-10, has two edges connecting vertices 2 and 3. However, only one edge can be

activated at any one time using a clutch mechanism, otherwise the one degree of

freedom mechanism is overconstrained. The two power flow paths for the two drill

speeds are unambiguous in this graph.

The corded drill case study is a useful introduction to the multigraph representation.

Design improvements based on variations of the existing design shown in Figure

7-10, such as the introduction of a new shaft to allow smaller gear disks to be

employed, would most likely be outweighed by an unacceptable increase in part

count. The drill layout is unlikely to change from its existing simple layout. The

design challenge for this particular product is in providing performance such as

reliability, high power and aesthetics at very low cost.

SECTION 7.2: CLUTCHES

- 182 -

7.2.2. Transmission system

The case for a computational synthesis approach to design generation is more

compelling for the vehicle transmission case study. The alternative 5-speed gearbox in

Figure 7-6 has been successfully used in current vehicles to fit the gearbox into a

constricted space, thus solving a major design issue. The growing demand for 6-speed

gearboxes, where these layout problems are particularly acute, indicates that a

computational method of generating new designs, i.e. exploring different design clans,

could be of real advantage. Furthermore, off-road and heavy-duty vehicle gearboxes,

which can have eighteen or more speeds, are even more complex and present further

challenges. A computational method of exploring the multitude of valid design

possibilities could be effective for generating alternative performance-driven designs.

A graph representation of the standard 5-speed gearbox configuration (Figure 7-5) is

shown in Figure 7-12. This graph is relatively straightforward, containing five

separate paths between vertices 1 and 2, corresponding to the five speeds of the

gearbox, and a single connection between nodes 2 and 3, corresponding to the output

to the differential.

Figure 7-12 also shows a representation of the alternative 5-speed gearbox layout

(Figure 7-6). A new label, [Z], is introduced, corresponding to concentricity with its

parent vertex. This new label represents the dual function of such concentric shafts,

i.e. they can be coupled and decoupled using a clutch mechanism. The edge between

nodes 1 and 4 is dashed to highlight the special status of this connection, showing that

it does not correspond to a standard gear pair but to a connection between concentric

shafts in the structure representation, e.g. input shaft and intermediate shaft C in

Figure 7-6.

SECTION 7.2: CLUTCHES

- 183 -

TRANSFORM

2

1[S]

3

[c]

[D]

2

1
[S]

3

[c]

[Z]4

[c]
5

[D]

Figure 7-12: Function graph for standard (left) and alternative (right) 5-speed
transaxle gearbox layout

The representations in Figure 7-12 are similar to existing graph grammar approaches,

e.g. (Schmidt et al. 2000). If it were possible to perform a transformation on the

standard 5-speed gearbox representation to enable the generation of the function graph

of the alternative design representation, similar transformations could be used to

generate further design clans that fulfil the same functional specification as the initial

standard design. This work can be seen as a functional analogy to grammar

transformation to follow style variations in architectural design (Knight 1994). Here

the aim is to capture the language of gearbox designs that can be used for vehicle

applications. The resulting function graphs from this exploration could then be used as

an input for the parallel grammar to search for preferred designs.

Before this transformation can be studied in more detail it is necessary to distinguish

between ‘active’ and ‘inactive’ edges in the graphs in Figure 7-12. In the simple drill

case study there are two speeds that can be selected by the user and the two

corresponding power flow paths in the function multigraph are unambiguous (Figure

7-10). In the 5-speed gearbox, however, there are more possible combinations of

power flow paths than there are speeds. The five actual power flow paths are shown in

Figure 7-13. Active edges, i.e. gear pairs that have been engaged, are coloured black

and inactive edges, i.e. gear pairs that are not engaged, are shaded grey. Each separate

gearbox speed can therefore be recorded by noting the sequence of edge traversals

between input and output. The notation lists the sequence of vertices from input to

output for each speed. If an ambiguous path is specified, i.e. there is more than one

edge between two particular vertices, the vertex distinguishing identifier is noted in

brackets. These sequences are included in Figure 7-13 for the alternative 5-speed

gearbox configuration.

SECTION 7.2: CLUTCHES

- 184 -

2

1
[S]

[D] 3

[c]

[Z]4

2

1
[S]

[D] 3

[c]

[Z]4

2

1
[S]

[D] 3

[c]

[Z]4

2

1
[S]

[D] 3

[c]

[Z]4

2

1
[S]

[D] 3

[c]

[Z]4

 First speed

 Fourth speed

 Second speed

 Fifth speed

 Third speed
1 – 5(1) – 4 – 2(3) – 3 1 – 5(2) – 4 – 2(3) – 3 1 – 4 – 2(3) – 3

1 – 4 – 2(4) – 3 1 – 4 – 2(5) – 3

[c]
5

[c]
5

[c]
5

[c]
5

[c]

5

Figure 7-13: Active edges for different speeds in the alternative 5-speed gearbox
graph (RHS of Figure 7-12) with node sequence for each speed

(active edges black, non-active edges shaded grey)

7.2.3. Graph modification

The graph grammar has not yet been used to computationally generate designs from

different design clans. For the gearbox case study, two existing designs have been

considered, a standard and an alternative 5-speed configuration, both taken from

current industry examples. The former is a common, simple layout used historically

since the advent of the motorcar41; the latter is a more recent innovation. Capturing

the changes required to modify the graph representation of the standard gearbox to

create that of the alternative gearbox would enable the same transformation rules to be

used to discover other new design configurations.

To find new gearbox configurations, graph exploration is attempted separately from

the parallel grammar environment, as linking all graph changes to corresponding

structure changes initially could hinder the process. The main aim is to consider

SECTION 7.2: CLUTCHES

- 185 -

possible successful design clans, therefore consideration of architecture, i.e. design

families, and detailed design parameters will not be considered here.

Further function rules are required to fully capture the design transformation

illustrated in Figure 7-12. The two function rules in Figure 7-14 allow function graphs

to be altered more radically, enabling the detachment and reattachment of existing

graph edges. For the purpose of representing a parallel set of one degree of freedom

mechanisms, such as a gearbox, these new modification rules may not be used to

make modifications that introduce circuits into the graphs. Circuits represent

overconstrained mechanisms and therefore an exploratory move that creates such a

circuit must be considered illegal.

FRule F:
Detach edge at target vertex and

reattach to new vertex

X ∈ XFn

X ∈ XF

m

p
X ∈ XF

n

X ∈ XF

m

p

X ∈ XF

X ∈ XF

GRule G:
Detach edge at source vertex and

reattach to new vertex

X ∈ XFn

X ∈ XF

m

p
X ∈ XF

n

X ∈ XF

m

p

X ∈ XF

X ∈ XF

X ∈ {null, t, c, S, B, D}

Figure 7-14: Graph modification rules

An example sequence of legal exploratory rule applications is shown in Figure 7-15 to

transform the graph representing the standard 5-speed gearbox into the graph

representing the alternative configuration (Figure 7-12).

41 French carriage-makers Panhard and Levassor are credited with the first use of clutched gears on two
parallel shafts in the late 19th century, replacing previous belt-driven drive mechanisms.
http://www.citroen.mb.ca/citroenet/html/p/panhard1.htm (last accessed 16 January 2004)

SECTION 7.2: CLUTCHES

- 186 -

2

1[S]

3

[c]

[D]

2

1[S]

3

[c]

[D]

[Z]4

Rules B, C

Rule F
2

1
[S]

3

[c]

[Z]4

[c]
5

[D]

2

1[S]

3

[c]

[D]

[Z]4

Rule G

x 3

Rule D
2

1
[S]

3

[c]

[Z]4

[c]
5

[D]

Figure 7-15: A sequence of exploratory function graph transformations.
The initial (top left) and final (bottom left) graphs are the standard and alternative 5-

speed gearbox configurations from Figure 7-12.

The framework provided by the graph modification rules allows the creation of

further configurations. An example of such a design, generated using the grammar

rules by hand, is shown in Figure 7-16 with active edges for each speed shown in

Figure 7-17. This layout has three concentric shafts, nodes 1, 3 and 5. Such a complex

layout may well not be viable for a production vehicle, however, such an arrangement

could be applicable if a closely packed transmission is required.

3 5

7

1

[c]
2

[c]
4

[c]
6

[D]

[Z] [Z][S]

Figure 7-16: 5-speed gearbox configuration synthesised with the exploratory grammar

SECTION 7.2: CLUTCHES

- 187 -

3 5

7

1

[c]
2

[c]
4

[c]
6

[D]

[Z] [Z][S]

3 5

7

1

[c]
2

[c]
4

[c]
6

[D]

[Z] [Z][S]
3 5

7

1

[c]
2

[c]
4

[c]
6

[D]

[Z] [Z][S]

3 5

7

1

[c]
2

[c]
4

[c]
6

[D]

[Z] [Z][S]
3 5

7

1

[c]
2

[c]
4

[c]
6

[D]

[Z] [Z][S]

First speed
1 – 2 – 3(1) – 4 – 5 – 6 – 7

Second speed
1 – 2 – 3(2) – 4 – 5 – 6 – 7

Third speed
1 – 3 – 4 – 5 – 6 – 7

Fourth speed
1 – 3 – 5 – 6 – 7

Fifth speed
1 – 3 – 6 – 7

Figure 7-17: Active edges for different speeds in the novel 5-speed gearbox graph
(Figure 7-17) with node sequence for each speed to indicate power flow

(active edges black, non-active edges shaded grey)

A grammatical approach is equally applicable for more complex redesign problems.

Off-road vehicles, e.g. trucks, construction vehicles and piste-bashers42, are often

equipped with gearboxes that provide high torque for adverse terrain. Such gearboxes

require more speeds than standard on-road vehicles and transmissions with an excess

of 15 speeds not being uncommon. The 15-speed gearbox shown in Figure 7-18 is

based on a current design43 on the market with a 2.2 kNm maximum torque

specification. Power flow diagrams for each speed are shown in Figure 7-19. The five

high torque speeds are referred to as ‘deep reduction’ (DR) gears.

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6

Figure 7-18: Function graph for 15-speed gearbox for on/off-road vehicle

42 Piste-bashers are tracked vehicles with large snow shovels that are used to prepare flat and safe areas
on mountainsides (referred to as pistes) for people to ski on. A large range of gear speeds enable
vehicular access to steep mountain slopes as well as allowing high speed travel over flatter terrain.
43 http://www.roadranger.com/csee/trans_srvman.htm (last accessed 29 December 2003)

SECTION 7.2: CLUTCHES

- 188 -

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6
DR speed 1

1 – 2 – 3(1) – 4 – 6 – 7
DR speed 2

1 – 2 – 3(2) – 4 – 6 – 7
DR speed 3

1 – 2 – 3(3) – 4 – 6 – 7

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6
DR speed 1

1 – 2 – 3(4) – 4 – 6 – 7
DR speed 5

1 – 3 – 4 – 6 – 7
First speed

1 – 2 – 3(1) – 4 – 5 – 7

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6
Second speed

1 – 2 – 3(2) – 4 – 5 – 7
Third speed

1 – 2 – 3(3) – 4 – 5 – 7
Fourth speed

1 – 2 – 3(4) – 4 – 5 – 7

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6

Fifth speed
1 – 3 – 4 – 5 – 7

Sixth speed
1 – 2 – 3(1) – 5 – 7

Seventh speed
1 – 2 – 3(2) – 5 – 7

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6
Eighth speed

1 – 2 – 3(3) – 5 – 7
Ninth speed

1 – 2 – 3(4) – 5 – 7
Tenth speed
1 – 3 – 5 – 7

Figure 7-19: Active edges for different speeds in the 15-speed gearbox graph with
node sequence for each speed to indicate power flow

(active edges black, non-active edges shaded grey)

SECTION 7.2: CLUTCHES

- 189 -

For large trucks that use many-speed gearboxes, the space constraints that made the

alternative 5-speed gearbox layout necessary (Figure 7-6) are not usually quite so

pressing. However, alternative layouts can still be advantageous. The high levels of

torque required by off-road applications means that shaft deflection is an increased

risk, to the extent that the structure of such designs is split using mirrored off-axis

intermediate shafts to decrease the load on individual components (see schematic in

Figure 7-20). Hence reducing space is a driving constraint even in these large-scale

designs.

Figure 7-20: Schematic layout of 15-speed gearbox44

A function graph for an alternative 15-speed gearbox layout that can be generated

using the extended function grammar is shown in Figure 7-21. A gearbox based on

this configuration is shorter with the mainshaft gears corresponding to vertex 8

aligned above and below the plane of the diagram in Figure 7-20.

44 Eaton Fuller Heavy Duty Transmissions, Service Manual TRSM-1500, February 2003

SECTION 7.3: CONCLUSIONS

- 190 -

3 5

7

1

[c]
2

[c] 4
[D]

[Z] [Z][S]

[Z]
6

8
[c]

Figure 7-21: Alternative layout of 15-speed gearbox

7.3. Conclusions

This chapter has investigated the industrial applicability of the parallel grammar for

computational synthesis of gearboxes. The method is validated through analysis of

industrial case studies that demonstrate the parallel grammar and show its industrial

relevance. The method is used to investigate corded drill and vehicle transmissions

designs, specifically 5-speed transaxle gearboxes. These case studies are more

complex than previous examples given for two reasons. Firstly, power flow through

these designs is considerably higher than in the previous examples. Secondly, these

case studies contain multiple possible power flow paths, controlled by clutches that

engage and disengage gear pairs, to provide different operating speeds. The latter

required an extension to the function grammar to represent and generate clutched gear

systems.

Different design clans, in this case alternative 5-speed gearbox configurations, are

created using a modification grammar, based on the existing function grammar, that

transforms existing graphs by manipulating edges to create new connections. This

new grammar allows the transformation of a function graph representing the standard

5-speed gearbox layout into a graph representing the alternative layout. Further design

configurations, such as those in Figure 7-16 and Figure 7-21, can also be generated

with this modification grammar.

- 191 -

8. Discussion and conclusions

This dissertation has investigated the development of a computer-based method of

synthesising solutions to mechanical engineering design problems. The method uses a

parallel grammar that builds up and modifies designs using dual representations of

function and form; constraints ensure that designs created by the parallel grammar are

topologically and parametrically valid. Performance evaluation data, derived from

geometry-based metrics and automatic behavioural simulation, is used to create single

and multiple objective functions enabling stochastic search algorithms to find

preferred performance-driven designs.

Verification for this work is carried out by reproducing existing designs for case

studies based on a clockwork clock, a simple mechatronic camera, a corded power

drill and manual gearboxes for on- and off-road vehicles. The synthesis tasks in these

case studies centre around the creation of serial and parallel gear trains using

parametric components. Validation of the research is demonstrated by assessing the

strategic needs of an industrial firm that specialises in design and modelling of

automotive vehicle transmissions. Based on initial results, the possibilities for

synthesis of new designs – using an exploratory grammar and subsequent embodiment

using the parallel grammar framework – are shown to be of relevance to industry.

8.1. Contributions

The aim of this research, captured in the thesis statement (Figure 1-1), is to prove the

viability of methods for computational synthesis in mechanical engineering design

domains. This research investigates the feasibility of such synthesis methods using a

parametric synthesis framework (Figure 2-3).

SECTION 8.1: CONTRIBUTIONS

- 192 -

A summary of the main contributions of this thesis is now presented:

• A parallel grammar is developed within the parametric synthesis framework to

generate families (chapters 4 and 5) and clans (chapter 7) of designs using a

parallel representation of both function and parametric form. This grammar,

implemented for four case studies (chapters 4 - 7) using common grammar rule

libraries with domain-specific rules added as necessary, is shown to be useful in

aiding the creation of novel design configurations and generating parameters for

virtual prototypes. The parallel grammar fulfils the three criteria that allow

characterisation as a design compiler (Ward 2001), c.f. section 3.2.

• The parallel grammar uses topological and parametric constraints to ensure

validity of the design solutions generated so that they match the task specification

(chapter 4). The use of collision detection libraries for constraint checking enables

an effective approach to three-dimensional packing problems, allowing connected

structures to be built up from scratch (chapter 4) and subsequently modified

(chapter 5) to generate preferred designs.

• Mechanical performance includes both behavioural and spatial requirements.

Performance-based synthesis is pursued through the use of geometric design

metrics (chapter 5) and the use of behavioural modelling (chapter 6). To direct the

search for preferred designs, automatically generated simulation models are

analysed throughout the synthesis process to provide feedback on the quality of

designs as they are generated.

• A new multi-objective hybrid pattern search algorithm (chapter 6) is developed to

add a pragmatic approach to stochastic search in cases when evaluation is

computationally expensive.

• An appraisal of the viability of parametric synthesis based on a parallel grammar

is provided by two industrial case studies (chapter 7). The parallel grammar shows

particular promise for use in the design and development of many-speed novel

vehicle transmission configurations.

SECTION 8.2: DISCUSSION

- 193 -

8.2. Discussion

The C- and P-Rules of the parallel grammar enable the generation and parametric

modification of designs, providing the means to explore a vast design space. The size

of this design space, i.e. the design language, made accessible to algorithm-driven

exploration by the parallel grammar, results in combinatorial explosion. Geometric

and topological constraints bound the search space in order to focus on purposeful

designs and, coupled with behavioural design evaluation, ensure validity of designs

generated by the grammar.

The parallel representation of function and form used by the synthesis framework

enables the differentiation of simple rules to maximise generative flexibility using the

grammar while still allowing the representation of complicated structures. The

parametric synthesis method enables a bottom-up approach to design, piecing together

and modifying components to fulfil a previously established specification. The

representation used to describe designs is compatible with behavioural modelling

techniques that can be used to apply domain-specific knowledge to design problems

initially investigated with a more general approach. For example, the parametric

camera gear train designs generated in chapter 6 were exported to a more

sophisticated modelling environment to provide simulation data in the particular

environment of the camera model.

This bottom-up nature of generating designs using the parallel grammar has

consequences that affect the success of the synthesis formalism. The application of

parallel grammar rules requires determination of application points, i.e. where in the

design to apply a rule, and input parameters. When used in conjunction with

automatic synthesis methods, these parameters are generated stochastically. The

success of grammar rule application depends on suitable input, but it is often difficult

to determine in advance what parameter ranges and application points are likely to be

more successful than others. The incorporation of machine learning techniques, e.g.

(Vale and Shea 2003), might be used to increase the success rate of parametric

modification, thereby improving the effectiveness of search for optimally directed

SECTION 8.2: DISCUSSION

- 194 -

designs. An alternative method of increasing the success rate of rule applications

would be to incorporate more knowledge into grammar rules, but this could unduly

restrict the design space and thus would not necessarily be a good approach.

The systems approach of the parametric synthesis method is suited to the case studies

analysed in this research, where specification of design synthesis tasks is based on

input/output characteristics. Particular constraints are added to these basic

requirements by a user. Design tasks can be achieved in modular fashion, for example

one could synthesise automotive gearbox designs and subsequently generate solutions

for a differential to be added to the vehicle design. However, when breaking down

design problems into small blocks, as with the bottom-up approach described here,

existing concepts of modularity are not always adequate for representation of

complexity. The use of behavioural simulation for evaluation of designs as they are

generated enables the evaluation of this complexity in the form of emergent

behaviour, i.e. behaviour that is more intricate than was initially envisaged.

Behavioural evaluation of a design requires the existence of a simulation model that

represents the mechanism under consideration. The current method requires this

model to be made by hand, separately from the computational synthesis process. The

parallel grammar contributes only the parameters for an already-specified family of

designs. Generating such simulation models is complicated: capturing the

functionality of the camera in the model is a difficult task. Once completed and pre-

compiled, the models require long evaluation times (c. 15 s) that are not desirable for

a synthesis tool capable of rapid generation of new designs. In chapter 6, search is

hampered by a slow evaluation time for behavioural performance metrics. Two areas,

therefore, need addressing: (1) automatic creation and (2) faster evaluation of

simulation models.

Scalability issues are important in design synthesis research, as solvable small-scale

problems can become intractable on a larger scale. The initial generation of designs

using the parallel grammar is susceptible to scaling, as adding more components does,

in general, result in structures with more complex constraints. Once initial valid

designs have been generated, however, modification using perturb rules takes place on

as local a basis as required by the specific grammar rule that is in use. Scaling has less

SECTION 8.3: FURTHER RESEARCH

- 195 -

of an effect on the success of this process at a local level, i.e. whether modifications

are successful or not, but search times are still affected due to consideration of a

greater number of design variables.

8.3. Further research

There are many avenues of possible future work that could make a mature technology

for mechanical design from the synthesis formalism explored in this thesis. These

avenues have been separated into two groups. Firstly, short term work is outlined,

listing areas of research that could be taken further to develop the research presented

in this dissertation. Secondly, longer term research goals are posited, indicating how

specific projects could take this research into new areas to explore related topics.

8.3.1. Short term

The parallel grammar has been implemented for connected systems using components

such as shafts, spur gears and support plates. This work could be extended to use a

larger library of parts to enable more design domains to be considered. As an

example, the inclusion of bevel gears would enable the analysis of gearboxes based on

layouts other than the transaxle designs considered in chapter 7.

The parallel grammar supports generalised layouts, but further work is required to

unleash this generality in the current implementation. The data structures used for the

case studies in this research constrain shafts to lie parallel to each other. The

incorporation of new components for the solution of other problems, such as

longitudinal gearbox layouts, requires shafts to be aligned parallel to the direction of

vehicle travel.

Further work is required to enhance the hybrid pattern search to record more

information about successful grammar rule applications, such as parameter ranges and

points of application, to learn modification strategies that might improve convergence

on optimally directed designs during search.

SECTION 8.4: FINAL WORDS

- 196 -

The current behavioural modelling process using Dymola could be improved by

identifying key areas of a design that need to be modelled and then focussing on these

alone. In chapter 6, the current implementation models the complete camera

mechanism each time an evaluation is carried out and hence a reduction in the size of

the model could lead to a faster evaluation time. The difficulty in making such model-

reducing decisions lies in deciding what architecture chunks are critical.

8.3.2. Long term

The automatic behavioural evaluation method used in this thesis is an exciting

development in the field of synthesis and could form the basis of a dedicated project

that would focus on generating more fundamental behavioural analysis models ‘on the

fly’. The camera simulation model in chapter 6 requires pre-compiled executables for

each family of designs that are to be considered. Extending this technology to be able

to create pre-compiled executables that can be used for each clan of designs would

enable a greater variety of designs to be evaluated for behavioural performance.

Due to the nature of the parallel grammar, the form and function representations used

are straightforward. More sophisticated, yet still simple representations, e.g. based on

features, might be used to allow the parallel grammar to develop more complex

designs without introducing undue complexity to the grammars used.

The parallel grammar has demonstrated potential for use in the specific area of vehicle

gearbox design. A dedicated project could see this work implemented in more detail,

with grammar rules, constraints and modelling techniques tailored to this particular

design field.

8.4. Final words

True performance-based computational synthesis is an exciting prospect for

mechanical design. It is hoped that, with a view to underpinning future developments

and advances, the research presented here has helped piece together those parts of the

synthesis jigsaw puzzle that are of particular relevance to mechanical systems design.

- 197 -

9. Glossary

Explanation of terms and acronyms. Cross-reference indicates main or first text

occurrence. Italics signify entry elsewhere in glossary.

AC Alternating Current. p. 167

Addendum The maximum outward extension of a gear tooth
profile from the pitch radius of that gear.

p. 76

A-Design Agent-based Design. An agent-based approach to
design synthesis (Campbell et al. 2003).

p. 37

Back Loading The interaction of modules in a design at run-time.
Primarily of importance when performance of
other modules is affected, e.g. loading an engine
alters the behaviour of this engine.

p. 35

Bond Graphs An method of representing physical systems by
modelling energy interchange.

p. 52

CAD Computer Aided Design. Commonly used to refer
specifically to computer-aided sketching tools.
See also CaeD.

p. 17

CaeD Computer-aided engineering Design. The use of
computers in design, including, but not limited to
CAD.

p. 24

CaeDRe A Computer-aided engineering Design Research
environment proposed by Bracewell and Shea
(2001).

p. 25

CAM Computer Aided Machining. p. 19

CEM Design Complex Electro-Mechanical Design. p. 35

Clockwork Mechanical mechanisms based on springs, ratchets p. 67

CHAPTER 9: GLOSSARY

- 198 -

and winding gears.

CPU Central Processing Unit. p. 17

C-Rule Create Rule. A grammar rule that builds up a new
part of a structure, i.e. creates a new part of the
structure. See also P-Rule.

p. 75

CSP Constraint Satisfaction Problem. p. 58

DC Direct Current. p. 167

Dedendum The minimum inward extension of a gear tooth
profile from the pitch radius of that gear.

p. 76

Design The deliverables of the engineering design process.
See Definition 3-5.

p. 47

Design Synthesis The process of making, generating or creating new
designs. See section 3.2 for detailed discussion.

p. 34

DFA Design For Assembly. p. 54

DFM Design For Manufacture. p. 54

DR Gear Deep Reduction Gear. Refers to high torque speeds
of a 15-speed gearbox.

p. 56

Dymola A behavioural modelling tool. Dymola uses Kron’s
method of ‘tearing’ (Kron 1963) to solve sets of
simultaneous equations.

p. 55

EDS Edinburgh Designer System. p. 50

EGT Epicyclic Gear Train. A gear train with ‘planetary’
gears that rotate about a ‘sun’ gear.

p. 46

eifForm A general structural engineering tool for
computational truss design synthesis (Shea et al.
2003).

p. 43

Engineering Design The process of engineering design. See Definition
3-1.

p. 29

Escapement A type of ratchet device that controls mechanism
advancement in a clock to enable time keeping.

p. 73

FBS model Function-Behaviour-Structure model. A modelling
framework proposed by Umeda et al. (1990).

p. 48

FFREADA Function to Form Recursive Annealing Design
Algorithm. Design synthesis approach using

p. 45

CHAPTER 9: GLOSSARY

- 199 -

string grammars (Schmidt and Cagan 1998).

FuncSION ‘Compositional synthesis’ approach to conceptual
design using pruned exhaustive search (Liu et al.
2003).

p. 38

GA A Genetic Algorithm. A stochastic search algorithm
that ‘evolves’ populations of solutions using
natural selection.

p. 57

Gearbox A part of a transmission system that contains a set of
parallel gear trains of differing ratio. One of these
can be selected at any one time to transfer power
from engine to point of power application.

p. 20

GGREADA Graph Grammar Recursive Annealing Design
Algorithm. Successor to FFREADA, developed to
synthesise designs that feature non-serial function
and form dependencies (Schmidt and Cagan
1997).

p. 45

Grammar A type of production system. p. 39

Grammar Rule Part of a grammar. p. 39

GUI Graphical User Interface. p. 45

Heuristic A ‘rule-of-thumb’. p. 57

Heuristic Search See Definition 3-8. p. 57

HVAC Heating, Ventilation and Air-Conditioning. p. 59

Hybrid pattern
search

Non-deterministic search method developed for use
with the parallel grammar that, in a manner
similar to conventional pattern search methods,
seeks to repeat successful sequences of design
modifications to increase search efficiency.

p. 142

LHS Left Hand Side. p. 41

MEMS Micro Electro-Mechanical Systems. p. 44

Modelica An object-oriented software language for the
modelling of physical systems.

p. 53

MOSA Multi-Objective Simulated Annealing (Suppapitnarm
et al. 1999).

p. 43

MTM Motion Transformation Matrix. Used by Kota and
Chiou (1992) to represent rotation and translation.

p. 37

CHAPTER 9: GLOSSARY

- 200 -

Objective Function A quantifiable measure of ‘goodness’ of a design for
use with search algorithms.

p. 54

Optimally Directed
Design (entity)

A design in the co-ordinate range of the global
optimum.

p. 43

Optimally Directed
Design (process)

‘Design optimisation that directs […] design
generation towards the numeric range of a global
optimum’ (Shea 1997). See section 3.6.

p. 55

Parallel Grammar A grammar for generating representations of form
and function.

p. 66

Pareto Archive Set of non-dominated solutions to an optimisation
problem. See section 6.4.2.

p. 145

Pattern Search A deterministic search algorithm that seeks to repeat
successful sequences of design modifications to
increase search efficiency.

p. 56

PFRS Product Family Reasoning System (Siddique and
Rosen 2001).

p. 46

Pitch Radius The pitch radii of two meshing spur gears describe
the circles that remain tangent throughout the
engagement cycle (Marghitu et al. 2001).

p. 75

Production System A formalism for generation. See section 3.3 and
(Gips and Stiny 1980).

p. 37

P-Rule Perturb Rule. A grammar rule that modifies, i.e.
perturbs, a structure. See also C-Rule.

p. 103

RCD Ring-plate Cycloid Drive. A type of EGT
mechanism.

p. 46

RD Random Downhill search. A random search method
that accepts moves if an objective function
improvement is recorded. Not to be confused with
hill climbing, which is a gradient-based method.

p. 112

RHS Right Hand Side. p. 42

SA Simulated Annealing is a stochastic search method
that is analogous to ‘annealing’, a heat treatment
process for metal alloys.

p. 57

Satisfice To ‘decide on and pursue a course of action that will
satisfy the minimum requirements necessary to
achieve a particular goal’ (source: Oxford English
Dictionary).

p. 41

CHAPTER 9: GLOSSARY

- 201 -

Skeleton Model A geometry-based design heuristic used by Wahl et
al. (2003) to assess the ‘goodness’ of
mechanisms.

p. 54

SLS Selective Laser Sintering. A rapid prototyping
technique, products of which are referred to as
‘SLS models’.

p. 171

Transmission In mechanical engineering, the components that
transmit power from the driveshaft to the point of
power application, i.e. in the case of automotive
engineering the driven wheels of a vehicle.

p. 20

VLSI Very Large Scale Integration. p. 35

VRML Virtual Reality Modelling Language. p. 88

- 202 -

10. References

Adams, D (1988), The Hitchhiker's Guide To The Galaxy, Tor Books.

Agarwal, M (1999), Supporting Automated Design Generation: Function Based

Shape Grammars and Insightful Optimization, PhD Thesis, Carnegie Mellon

University, Pittsburgh.

Agarwal, M and Cagan, J (2000), “On the use of shape grammars as expert systems

for geometry-based design”, Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, 14, pp. 431-439.

Alber, R and Rudolph, S (2003), “'43' - A Generic Approach for Engineering Design

Grammars”, AAAI'03 Spring Symposium: Computational Synthesis, Stanford,

California, pp. 11-17.

Alber, R, Rudolph, S and Kröplin, B (2002), “On Formal Languages in Design

Generation and Evolution”, WCCM V: Fifth World Congress on

Computational Mechanics, Vienna, Austria.

Al-Hakim, L, Kusiak, A and Mathew, J (2000), “A graph-theoretic approach to

conceptual design with functional perspectives”, Computer-Aided Design,

32(14), pp. 867-875.

Andersson, J (2001), Multiobjective Optimization in Engineering Design, PhD thesis,

Linköpings University, Linköpings.

Antonsson, EK (1997), “The Potential for Mechanical Design Compilation”,

Research in Engineering Design, 9(4), pp. 191-194.

Antonsson, EK and Cagan, J (2001), Formal Engineering Design Synthesis,

Cambridge University Press, Cambridge.

CHAPTER 10: REFERENCES

- 203 -

Antonsson, EK and Whitney, DE (1997), “Correspondence”, Research in Engineering

Design, 9(4), pp. 246-247.

Arzethauser, K (2003), “Gears galore”, in Watch International, G. Kern and H. A.

Pantli, eds., 13(3), pp. 56-59.

Ashby, M and Johnson, K (2002), Materials and Design, Butterworth-Heinemann,

Oxford.

Ashby, MF (1992), Materials Selection in Mechanical Design, Butterworth-

Heinemann, Oxford.

Ashby, MF and Jones, DRH (1998), Engineering Materials 2, Butterworth-

Heinemann, Oxford.

Bamsey, I, Smith, C, Staniforth, A and McDermott, M (2001), “Transmission

Symphony: Audi R8 Transmission by Ricardo”, Race Tech, 6(5), pp. 33-40.

Blessing, LTM, Chakrabarti, A and Wallace, KM (1998), “An Overview of

Descriptive Studies in Relation to a General Design Research Methodology”,

in The Key to Successful Product Development, E. Frankenberger, P. Badke-

Shaub, and H. Birkhofer, eds., Springer-Verlag, pp. 42-56.

Bolognini, F (2003), The Performance Aspects of Mechanical Design Synthesis,

CUED/C-EDC/TR125, Department of Engineering, Cambridge University,

Cambridge.

Boothroyd, G and Dewhurst, P (1989), Product Design for Assembly, Boothroyd

Dewhurst, Inc., Wakefield, RI.

Boothroyd, G, Dewhurst, P and Knight, W (1994), Product Design for Manufacture

and Assembly, Marcel Dekker, Inc, New York.

Bracewell, RH (2002), “Synthesis based on function-means trees: Schemebuilder”, in

Engineering Design Synthesis, A. Chakrabarti, ed., Springer Verlag, London,

pp. 199-212.

Bracewell, RH and Johnson, AL (1999), “From embodiment generation to virtual

prototyping”, International Conference on Engineering Design, ICED 99,

Munich, pp. 685-690.

CHAPTER 10: REFERENCES

- 204 -

Bracewell, RH and Sharpe, JEE (1994), “The use of Bond Graph Methodology in an

Integrated Interdisciplinary Design System”, Joint Hungarian-British

Mechatronics Conference, Budapest, pp. 595-600.

Bracewell, RH and Sharpe, JEE (1996), “Functional descriptions used in computer

support for qualitative scheme generation - "Schemebuilder"”, Artificial

Intelligence for Engineering Design, Analysis and Manufacturing(10), pp.

333-346.

Bracewell, RH and Shea, K (2001), “CAEDRE: A Product Platform to Support

Creation and Evaluation of Advanced Computer Aided Engineering Tools”,

13th International Conference on Engineering Design, Glasgow, UK, pp. 539-

546.

Bracewell, RH, Shea, K, Langdon, PM, Blessing, LS and Clarkson, PJ (2001), “A

Methodology for Computational Design Tool Research”, 13th International

Conference on Engineering Design, Glasgow, UK, pp. 181-188.

Broenink, JF (1999), Introduction to Physical Systems Modelling with Bond Graphs,

University of Twente, Dept EE, Control Laboratory.

Brown, K (1997), “Grammatical Design”, IEEE Expert, 12(2), pp. 27-33.

Brown, KN, McMahon, CA and Sims Williams, JH (1995), “Features, aka The

Semantics of a Formal Language of Manufacturing”, Research in Engineering

Design, 7, pp. 151-172.

Burgess, SC, Moore, DF, Newland, DE and Klaubert, HL (1997), “A Study of

Mechanical Configuration Optimisation in Micro-systems”, Research in

Engineering Design, 9(1), pp. 46-60.

Cagan, J (1990), Innovative Design of Mechanical Structures from First Principles,

PhD Thesis, University of California at Berkeley, California.

Cagan, J (1994), “Shape annealing solution to the constrained geometric knapsack

problem”, Computer-Aided Design, 26(10), pp. 763-770.

Cagan, J and Agogino, AM (1987), “Innovative Design of Mechanical Structures

from First Principles”, Artificial Intelligence for Engineering Design, Analysis

and Manufacturing, 1(3), pp. 169-189.

CHAPTER 10: REFERENCES

- 205 -

Cagan, J and Mitchell, WJ (1993), “Optimally directed shape generation by shape

annealing”, Environment and Planning B: Planning and Design, 20, pp. 5-12.

Cagan, J, Szykman, S, Clark, R, Dastidar, P and Weisser, P (1996), “HVAC CAD

layout tools: a case study of university/industrial collaboration”, Design

Engineering Technical Conferences and Computers in Engineering

Conference, Irvine, California.

Cagan, J and Vogel, CM (2002), Creating Breakthrough Products, Prentice Hall PTR,

Upper Saddle River.

Callahan, S and Heisserman, J (1997), “A Product Representation to Support Process

Automation”, in Product Modeling for Computer Integrated Design and

Manufacture, M. Pratt, R. Sriram, and M. Wozny, eds., Chapman and Hall,

London, pp. 285-296.

Campbell, MI, Cagan, J and Kotovsky, K (1999), “A-Design: An Agent-Based

Approach to Conceptual Design in a Dynamic Environment”, Research in

Engineering Design, 11, pp. 172-192.

Campbell, MI, Cagan, J and Kotovsky, K (2000), “Agent-Based Synthesis of

Electromechanical Design Configurations”, Journal of Mechanical Design,

122(1), pp. 61-69.

Campbell, MI, Cagan, J and Kotovsky, K (2003), “The A-Design Approach to

Managing Automated Design Synthesis”, Research in Engineering Design,

14(1), pp. 12-24.

Campbell, MI and Hasad, A (2003), “Design Evaluation Method for the Disassembly

of Electronic Equipment”, International Conference on Engineering Design,

ICED'03, Stockholm, Sweden.

Campbell, MI and Rai, R (2003), “A Generalization of Computational Synthesis

Methods in Engineering Design”, AAAI'03 Spring Symposium: Computational

Synthesis, Stanford, CA, pp. 34-41.

Chakrabarti, A and Bligh, TP (1996), “An approach to functional synthesis of

mechanical design concepts: theory, applications and emerging research

issues”, Artificial Intelligence in Engineering Design, Analysis and

Manufacturing, 10(4), pp. 313-331.

CHAPTER 10: REFERENCES

- 206 -

Chakrabarti, A and Bligh, TP (2001), “A scheme for functional reasoning in

conceptual design”, Design Studies, 22, pp. 493-517.

Chakrabarti, A and Johnson, A (1999), “Detecting Side Effects in Solution

Principles”, International Conference on Engineering Design, ICED 99,

Munich, pp. 661-666.

Chakrabarti, A, Langdon, P, Liu, Y-C and Bligh, TP (2002), “An approach to

compositional synthesis of mechanical design concepts using computers”, in

Engineering Design Synthesis, A. Chakrabarti, ed., Springer Verlag, London,

pp. 179-197.

Chandrasekaran, B and Josephson, JR (2000), “Function in Device Representation”,

Engineering with Computers, special Issue on Computer Aided Engineering,

16, pp. 162-177.

Chase, SC (1996), “Design Modeling With Shape Algebras and Formal Logic”,

ACADIA '96, Tucxon, AZ.

Chase, SC (2002), “(Re)design of construction assemblies with

function/behaviour/structure grammars”, Design e-ducation: Connecting the

Real and the Virtual, Proceedings of the 20th Conference on Education in

Computer Aided Architectural Design in Europe, Warsaw, pp. 356-359.

Chase, SC and Liew, P (2001), “A Framework for Redesign using FBS Models and

Grammar Adaptation”, CAAD Futures 2001, Eindhoven, The Netherlands.

Chiou, S-J and Kota, S (1999), “Automated conceptual design of mechanisms”,

Mechanism and Machine Theory, 34, pp. 467-495.

Chomsky, N (1957), Syntactic Structures, Mouton, The Hague.

Couper, AS (1858), “On a new chemical theory”, The Philosophical Magazine and

Journal of Science, 16, pp. 104-116.

De Kleer, J and Brown, JS (1984), “A Qualitative Physics Based on Confluences”,

Artificial Intelligence, 24, pp. 7-83.

Deb, K and Jain, S (2003), “Multi-Speed Gearbox Design Using Multi-Objective

Evolutionary Algorithms”, Journal of Mechanical Design, 125(3), pp. 609-

619.

CHAPTER 10: REFERENCES

- 207 -

Duarte, JP (2003), “A Discursive Grammar for Customizing Mass Housing”, Digital

Design: 21st International eCAADe Conference, Graz University of

Technology, Austria, pp. 665-674.

Duarte, JP (in progress), “Customizing Mass Housing: The grammar of Alvaro Siza's

Houses at Malagueira”, Environment and Planning B.

Dym, CL (1994), Engineering Design: A Synthesis of Views, Cambridge University

Press.

Dym, CL and Levitt, RE (1991), Knowledge-Based Systems in Engineering, McGraw-

Hill Inc, New York.

Earl, CF (1987), “Shape grammars and the generation of designs”, in Principles of

Computer-aided Design, J. Rooney and J. P. Steadman, eds., Pitman

Publishing, London, pp. 297-315.

Egginger, U (2003), “Eternity in an Hour”, in Watch International, G. Kern and H. A.

Pantli, eds., 13(1), pp. 39-41.

Elmo, Gum, Heather, Holly, Mistletoe and Rowan (2002), Notes towards the

Complete Works of Shakespeare, Paignton Zoo Environmental Park.

Finger, S and Rinderle, JR (1989), “A Transformational Approach to Mechanical

Design using a Bond Graph Grammar”, First ASME Design Theory and

Methodology Conference, Montreal, Quebec, pp. 107-116.

Finger, S and Rinderle, JR (2002), “Transforming behavioural and physical

representations of mechanical designs”, in Engineering Design Synthesis, A.

Chakrabarti, ed., Springer Verlag, London, pp. 303-317.

Forbus, KD (1984), “Qualitative process theory”, Artificial Intelligence, 24, pp. 85-

168.

Forbus, KD, Nielsen, P and Faltings, B (1991), “Qualitative spatial reasoning: The

clock project”, Artificial Intelligence, 51, pp. 417-471.

French, M (1994), Invention and Evolution, Second ed., Cambridge University Press.

French, M (1999), Conceptual Design for Engineers, Third ed., Springer-Verlag,

London.

CHAPTER 10: REFERENCES

- 208 -

Fricke, G (1996), “Successful Individual Approaches in Engineering Design”,

Research in Engineering Design, 8(3), pp. 151-165.

Gips, J and Stiny, G (1980), “Production Systems and Grammars: a Uniform

Characterization”, Environment and Planning B, 7, pp. 399-408.

Glover, F and Laguna, M (1997), Tabu Search, Kluwer Academic Publishers, Boston,

MA.

Gustafson, GB and Wilcox, CH (1998), Analytical and Computational Methods of

Advanced Engineering Mathematics, Springer-Verlag, New York.

Hansen, CT and Andreasen, MM (2002), “Two approaches to synthesis based on the

domain theory”, in Engineering Design Synthesis, A. Chakrabarti, ed.,

Springer Verlag, London, pp. 93-108.

Heisserman, J and Mattikalli, R (1998), “Representing Relationships in Hierarchical

Assemblies”, ASME Design Engineering Technical Conferences, Atlanta,

Georgia, USA.

Heisserman, J and Woodbury, R (1994), “Geometric design with boundary solid

grammars”, in Formal Design Methods for CAD, J. Gero and E. Tyugu, eds.,

Elsevier Science BV, North-Holland, Amsterdam, pp. 85-105.

Hewitt, K (2003), Black and Decker, Private Communication, 2 April 2003

Holland, JH (1975), Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, MI.

Hooke, R and Jeeves, TA (1961), “Direct Search Solution of Numerical and Statistical

Problems”, Journal of the Association for Computing Machinery (ACM), 8(2),

pp. 212-229.

Hoover, SP and Rinderle, JR (1989), “A Synthesis Strategy for Mechanical Devices”,

Research in Engineering Design, 1, pp. 87-103.

James, B (2003), Romax Technology, Private Communication, 7 November 2003

Jensen, T (2000), “Function Integration Explained by Allocation and Activation of

Wirk Elements”, ASME 2000 Design Engineering Technical Conferences,

Baltimore, Maryland.

Johnson, S (2001), Emergence, Penguin, London.

CHAPTER 10: REFERENCES

- 209 -

Karnopp, D and Rosenberg, RC (1968), Analysis and Simulation of Multiport

Systems: The Bond Graph Approach to Physical System Dynamics, The MIT

Press, Cambridge, Massachusetts.

Karnopp, DC, Margolis, DL and Rosenberg, RC (2000), System Dynamics, Third ed.,

John Wiley & Sons, Inc, New York.

Kirkpatrick, S, Gelatt Jr, C and Vecchi, M (1983), “Optimization by Simulated

Annealing”, Science, 220(4598), pp. 671-680.

Knight, TW (1994), Transformations in Design, Cambridge University Press,

Cambridge.

Kota, S and Chiou, S-J (1992), “Conceptual Design of Mechanisms Based on

Computational Synthesis and Simulation of Kinematic Building Blocks”,

Research in Engineering Design, 4, pp. 75-87.

Koza, JR, Keane, MA and Streeter, MJ (2003), “What's AI Done for Me lately?

Genetic Programming's Human-Competitive Results”, IEEE Intelligent

Systems, 18(3), pp. 25-31.

Kron, G (1963), Diakoptics: the piecewise solution of large-scale systems,

MacDonald, London.

Krstic, D (2001), “Algebras and grammars for shapes and their boundaries”,

Environment and Planning B: Planning and Design, 28, pp. 151-162.

Lam, J and Delosme, J-M (1998), “Performance of a New Annealing Schedule”,

Proceedings of the 15th ACM/IEEE Design Automation Conference, Anaheim,

CA, US, pp. 306-311.

Li, X, Schmidt, L, He, W, Li, L and Qian, Y (2001), “Transformation of an EGT

Grammar: New Grammar, New Designs”, ASME 2001 Design Engineering

Technical Conferences, Pittsburgh, Pennsylvania.

Li, X and Schmidt, LC (2000), “Grammar-Based Designer Assistance Tool for

Epicyclic Gear Trains”, ASME 2000 Design Engineering Technical

Conferences, Baltimore, Maryland.

CHAPTER 10: REFERENCES

- 210 -

Liew, P and Chase, SC (2001), “Describing Designs with Function-Behaviour-

Structure Graphs”, Mathematics and Design, Geelong and Melbourne,

Australia.

Lipson, H and Pollack, JB (2000a), “Evolution of Physical Machines: Towards

Escape Velocity”, 6th International Conference on Artificial Intelligence in

Design, AID'00, Worcester Polytechnic Institute, Worcester, Massachusetts,

USA, pp. 269-285.

Lipson, H and Pollack, RB (2000b), “Automatic Design and Manufacture of Robotic

Lifeforms”, Nature, 406(6799), pp. 974-978.

Liu, YC, Chakrabarti, A and Bligh, TP (1999), “Transforming Functional Solutions

into Physical Solutions”, ASME Design Theory and Methodology Conference,

Las Vegas, Nevada.

Liu, Y-C, Bligh, T and Chakrabarti, A (2003), “Towards an 'ideal' approach for

concept generation”, Design Studies, 24, pp. 341-355.

Marghitu, DB, Diaconescu, CI and Craciunoiu, N (2001), “Machine Components”, in

Mechanical Engineer's Handbook, D. B. Marghitu, ed., Academic Press, San

Diego, California, pp. 244-339.

Martello, S and Toth, P (1990), Knapsack Problems: Algorithms and Computer

Implementations, John Wiley and Sons, Ltd, New York.

McCormack, J and Cagan, J (2000), “Enabling the use of Shape Grammars: Shape

Grammar interpretation through general shape recognition”, ASME Design

Engineering Technical Conference, Baltimore, Maryland.

McCormack, JP and Cagan, J (2003), “Increasing the Scope of Implemented Shape

Grammars: A Shape Grammar Interpreter for Curved Shapes”, ASME 2003

International Design Engineering Technical Conferences, Chicago, Illinois,

USA.

McCormack, JP, Cagan, J and Vogel, CM (2002), “Crossing the '63 Riviera with a

Concept Cielo: Capturing, Representing and Generating the Buick Brand”,

ASME 2002 Design Engineering Technical Conferences, Montreal, Canada.

Moon, Y-M and Kota, S (2002), “Automated synthesis of mechanisms using dual-

vector algebra”, Mechanism and Machine Theory, 37, pp. 143-166.

CHAPTER 10: REFERENCES

- 211 -

Newell, A and Simon, HA (1972), Human Problem Solving, Prentice-Hall,

Englewood Cliffs, NJ.

Otto, K and Wood, K (2001), Product Design: Techniques in Reverse Engineering

and New Product Development, Prentice-Hall, Inc., Upper Saddle River, New

Jersey.

Ousterhout, JK (1998), “Scripting: Higher Level Programming for the 21st Century”,

IEEE Computer, 31(3), pp. 23-30.

Pahl, G and Beitz, W (1996), Engineering Design, Second ed., Springer.

Pahl, G and Wallace, K (2002), “Using the Concept of Functions to help Synthesis

Solutions”, in Engineering Design Synthesis, A. Chakrabarti, ed., Springer-

Verlag, London, pp. 109-119.

Papalambros, PY and Wilde, DJ (2000), Principles of Optimal Design, Cambridge

University Press.

Pareto, V (1906), Manual of Political Economy, 1971 translation of 1927 ed., A. M.

Kelley, New York.

Paynter, HM (1961), Analysis and Design of Engineering Systems, MIT Press,

Cambridge, USA.

Petrovski, H (1994), Design Paradigms: Case Histories of Error and Judgement in

Engineering, Cambridge University Press, Cambridge, UK.

Poon, SY (2003), Romax Technology, Private Communication, 21 November 2003

Popplestone (1987), “The Edinburgh Design Systems as a Framework for Robotics:

The Design of Behavior”, Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, 1(1), pp. 25-36.

Post, E (1943), “Formal reductions of the general combinatorial decision problems”,

American Journal of Mathematics, 65, pp. 197-268.

Pugliese, M and Cagan, J (2002), “Capturing a Rebel: Modeling the Harley-Davidson

Brand through a Motercycle Shape Grammar”, Research in Engineering

Design, 13(3), pp. 139-156.

Raphael, B and Smith, IFC (2003), Computer-Aided Engineering, John Wiley & Sons

Ltd, Chichester.

CHAPTER 10: REFERENCES

- 212 -

Reeves, CR (1996), “Modern Heuristic Techniques”, in Modern Heuristic Search

Methods, V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D. Smith,

eds., John Wiley & Sons Ltd, Chichester, pp. 1-25.

Rosen, DW (1993), “Feature-Based Design: Four Hypotheses for Future CAD

Systems”, Research in Engineering Design, 5(3), pp. 125-139.

Schmidt, LC and Cagan, J (1995), “Recursive Annealing: A Computational Model for

Machine Design”, Research in Engineering Design, 7, pp. 102-125.

Schmidt, LC and Cagan, J (1997), “GGREADA: A Graph Grammar-based Machine

Design Algorithm”, Research in Engineering Design, 9, pp. 195-213.

Schmidt, LC and Cagan, J (1998), “Optimal Configuration Design: An Integrated

Approach using Grammars”, Journal of Mechanical Design, 120(9), pp. 2-9.

Schmidt, LC, Shetty, H and Chase, SC (2000), “A Graph Grammar Approach for

Structure Synthesis of Mechanisms”, Journal of Mechanical Design, 122, pp.

371-376.

Schmidt, LC, Shi, H and Kerkar, S (1999), “The "Generation Gap": A CSP Approach

Linking Function to Form Grammar Generation”, ASME Engineering

Technical Conference, Las Vegas, Nevada.

Sharpe, JEE (1978), “Application of Bond Graphs to the Synthesis and Analysis of

Telechirics and Robots”, 3rd Symposium on Theory and Practice of Robots

and Manipulators, Third International CISM-IFToMM Symposium, Udine,

Italy, pp. 217-227.

Shea, K (1997), Essays of Discrete Structures: Purposeful Design of Grammatical

Structures by Directed Stochastic Search, PhD Thesis, Carnegie Mellon

University, Pittsburgh.

Shea, K, Aish, R and Gourtovaia, M (2003), “Towards Integrated Performance-Based

Generative Design Tools”, Digital Design: 21st International eCAADe

Conference, Graz University of Technology, Austria, pp. 553-560.

Shea, K and Cagan, J (1997), “Innovative dome design: Applying geodesic patterns

with shape annealing”, Artificial Intelligence for Engineering Design, Analysis

and Manufacturing, 11, pp. 379-394.

CHAPTER 10: REFERENCES

- 213 -

Shea, K and Cagan, J (1998), “The design of novel roof trusses with shape annealing:

assessing the ability of a computational method in aiding structural designers

with varying design intent”, Design Studies, 20, pp. 3-23.

Shea, K and Smith, IFC (1999), “Applying shape annealing to full-scale transmission

tower re-design”, Proceedings of DETC99: 1999 ASME Design Engineering

Technical Conferences, Las Vegas, NV.

Shea, K and Starling, AC (2003), “From Discrete Structures to Mechanical Systems:

A Framework for Creating Performance-Based Parametric Synthesis Tools”,

AAAI'03 Spring Symposium: Computational Synthesis, Stanford, CA, pp. 210-

217.

Shi, H (2003), “Partitioning Knowledge for Generative Configuration Design”,

ASME 2003 Design Engineering Technical Conferences, Chicago, Illinois,

USA.

Siddique, Z and Rosen, DW (1999), “Product Platform Design: A Graph Grammar

Approach”, ASME Design Engineering Technical Conference, Las Vegas,

Nevada.

Siddique, Z and Rosen, DW (2001), “On combinatorial design spaces for the

configuration design of product families”, Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, 15(2), pp. 91-108.

Simon, HA (1973), “The Structure of Ill-Structured Problems”, Artificial Intelligence,

4(3), pp. 181-201.

Simon, HA (2001), The Sciences of the Artificial, Third ed., The MIT Press,

Cambridge, Massachusetts.

Sobel, D (1998), Longitude, Fourth Estate, London.

Sriram, RD (1997), Intelligent Systems for Engineering: A Knowledge-Based

Approach, Springer-Verlag, London.

Stahovich, TF (2001), “Artificial Intelligence for Design”, in Formal Engineering

Design Synthesis, Chapter 7, E. K. Antonsson and J. Cagan, eds., Cambridge

University Press, Cambridge, pp. 228-269.

CHAPTER 10: REFERENCES

- 214 -

Stahovich, TF and Kara, LB (2001), “A representation for comparing simulations and

computing the purpose of geometric features”, Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, 15(2), pp. 189-201.

Standish, TA (1998), Data Structures in Java, Addison-Wesley.

Starling, AC and Shea, K (2002), “A Clock Grammar: The Use of a Parallel

Grammar in Performance-Based Mechanical Design Synthesis”, 2002 ASME

International Design Engineering Technical Conferences, Montreal, Canada.

Starling, AC and Shea, K (2003), “A Grammatical Approach to Computational

Generation of Mechanical Clock Designs”, International Conference on

Engineering Design, ICED'03, Stockholm, Sweden.

Steinmetz (1909), Theory and Calculation of Transient Electric Phenomena and

Oscillations, McGraw Publishing Co., New York.

Stiny, G (1980a), “Introduction to Shape and Shape Grammars”, Environment and

Planning B, 7, pp. 343-351.

Stiny, G (1980b), “Kindergarten Grammars: designing with Froebel's building gifts”,

Environment and Planning B, 7, pp. 409-462.

Stiny, G (1990), “What is a design?”, Environment and Planning B: Planning and

Design, 17, pp. 97-103.

Stiny, G (1991), “The Algebras of Design”, Research in Engineering Design, 2, pp.

171-181.

Stiny, G (1992), “Weights”, Environment and Planning B: Planning and Design, 19,

pp. 413-430.

Stone, RB and Wood, KL (2000), “Development of a Functional Basis for Design”,

Journal of Mechanical Design, 122, pp. 359-370.

Suh, NP (2001), Axiomatic Design, Oxford University Press, New York.

Suppapitnarm, A, Seffen, KA, Parks, GT, Clarkson, PJ and Liu, JS (1999), “Design

by Multiobjective Optimisation using Simulated Annealing”, ICED'99:

International Conference on Engineering Design, Munich.

CHAPTER 10: REFERENCES

- 215 -

Szykman, S and Cagan, J (1995), “A Simulated Annealing-Based Approach to Three-

Dimensional Component Packing”, Journal of Mechanical Design, 117(June),

pp. 308-314.

Szykman, S and Cagan, J (1997), “Constrained Three-Dimensional Component

Layout Using Simulated Annealing”, Journal of Mechanical Design, 119(1),

pp. 28-35.

Szykman, S, Schmidt, LC and Shetty, H (1997), “Improving the Efficiency of

Simulated Annealing Optimization through Detection of Productive Search”,

ASME Design Engineering Technical Conferences, Sacramento, California,

US.

Tay, EH, Flowers, W and Barrus, J (1998), “Automated Generation and Analysis of

Dynamic System Designs”, Research in Engineering Design, 10, pp. 15-29.

Thoma, JU (1975), Introduction to Bond Graphs and their Applications, Pergamon

Press, Oxford.

Thornton, AC (1993), Constraint Specification and Satisfaction in Embodiment

Design, PhD thesis, University of Cambridge, Cambridge.

Tiller, M (2001), Introduction to Physical Modeling with Modelica, Kluwer Academic

Publishers, Boston.

Torczon, V (1997), “On the Convergence of Pattern Search Algorithms”, SIAM

Journal on Optimization, 7(1), pp. 1-25.

Ulrich, KT and Eppinger, SD (1995), Product Design and Development, McGraw-

Hill.

Ulrich, KT and Seering, WP (1987), “Achieving Multiple Goals in Conceptual

Design”, Intelligent CAD, I. Proceedings of IFIP TC/WG 5.2 Workshop on

Intelligent CAD, Boston, USA, pp. 213-222.

Ulrich, KT and Seering, WP (1989), “Synthesis of Schematic Descriptions in

Mechanical Design”, Research in Engineering Design, 1(1), pp. 3-18.

Ulrich, KT and Seering, WP (1990), “Function Sharing in Mechanical Design”,

Design Studies, 11(4), pp. 223-234.

CHAPTER 10: REFERENCES

- 216 -

Umeda, Y, Tadeda, T, Tomiyama, T and Yoshikawa, H (1990), “Function,

Behaviour, and Structure”, Applications of Artificial Intelligence in

Engineering V: Design, Berlin, pp. 177-193.

Vale, CAW and Shea, K (2003), “Learning Intelligent Modification Strategies in

Design Synthesis”, AAAI'03 Spring Symposium 'Computational Synthesis',

Stanford, CA.

Wahl, J-C, Sartor, M and Fauroux, J-C (2001), “Using the Skeleton Model for

Preliminary Geometrical Synthesis of 3D Kinematic Chains”, ICED'01: 13th

International Conference on Engineering Design, Glasgow, UK.

Wahl, J-C, Sartor, M and Paredes, M (2003), “A General Framework for Automated

Conceptual Design of One-DOF Mechanisms”, International Conference on

Engineering Design, ICED'03, Sweden, Stockholm.

Ward, AC (2001), “Mechanical Design Compilers”, in Formal Engineering Design

Synthesis, chapter 12, E. K. Antonsson and J. Cagan, eds., Cambridge

University Press, Cambridge, pp. 428-441.

Welch, RV and Dixon, JR (1991), “Conceptual Design of Mechanical Systems”,

Proceedings of the 1991 ASME Design Theory and Methodology Conference,

Miami, Florida, pp. 61-68.

Whitney, D (1996), “Why mechanical design cannot be like VLSI design”, Research

in Engineering Design, 8(3), pp. 124-138.

Wielinga, B and Schreiber, G (1997), “Configuration-Design Problem Solving”, IEEE

Expert, 12(2), pp. 49-56.

Winsor, J and MacCallum, K (1994), “A Review of Functionality Modelling in

Design”, The Knowledge Engineering Review, 9(2), pp. 163-199.

Winston, PH (1993), Artificial Intelligence, Third ed., Addison Wesley.

Yan, H-S (1998), Creative Design of Mechanical Devices, Springer-Verlag,

Singapore.

Yin, S and Cagan, J (1998), “A Pattern Search-Based Algorithm for Three-

Dimensional Component Layout”, Proceedings of the 24th ASME Design

Automation Conference (DAC-5582), Atlanta, Georgia, USA.

CHAPTER 10: REFERENCES

- 217 -

Yin, S and Cagan, J (2000a), “Exploring the Effectiveness of Various Patterns in an

Extended Pattern Search Layout Algorithm”, ASME Design Engineering

Technical Conferences, Baltimore, MD, USA.

Yin, S and Cagan, J (2000b), “An Extended Pattern Search Algorithm for Three-

Dimensional Component Layout”, Journal of Mechanical Design,

122(March), pp. 102-108.

Yin, S, Cagan, J, Hodges, P and Li, X (1999), “Layout of an Automobile

Transmission using Three-Dimensional Shapeable Components”, Proceedings

of the 25th ASME Design Automation Conference (DAC-8564), Las Vegas,

Nevada, USA.

