

Oliver Kaiser (IfA) Jan Ulrich (IfA) Tobias Greyer (IfA) Urban Mäder (IfA) Daniel Ambühl (IMRT) Michael Benz (IMRT) Tobias Ott (IDSC) Christian Peterhans (IDSC) GianAndrea Müller (IDSC) Gregory Richard (IDSC)

Speedcontroller

Praktikum Mess- und Regeltechnik Anleitung zum Versuch

Institut für Dynamische Systeme und Regelungstechnik Eidgenössische Technische Hochschule Zürich

19. Februar2024

Inhaltsverzeichnis

1	Einleitung	1
	1.1 Hintergrund	1
	1.2 Vorbereitung zu Hause	1
	1.3 Praktikum im Labor	1
2	Aufbau	2
3	Vorbereitung zu Hause	3
	3.1 Die offene Regelstrecke	3
	3.2 Der geschlossene Regelkreis	6
	3.3 Auslegen des Reglers	7
4	Versuchsdurchführung	10
	4.1 Die offene Regelstrecke	10
	4.2 Der geschlossene Regelkreis	12
	4.3 Auslegen des Reglers	12
	4.4 Windup	15
	4.5 Der geschlossene Regelkreis im Betriebspunkt Lüfter	16
	4.6 Bode-Diagramm des Betriebspunkt Scheibe	17
\mathbf{A}	Technische Datenblätter	19
	A.1 Daten des Wellenstranges	19
	A.2 Vorhandene Instrumentierung	20
	A.3 Regler-Plattform	20
в	MATLAB-Files	21
С	Beschreibung des Führungsverhaltens und des Störungsverhaltens	22
D	Verkabelung	23
\mathbf{E}	Oszilloskop	24
\mathbf{F}	Signal-Generator	26

1 Einleitung

1.1 Hintergrund

Drehzahlgeregelte Antriebe spielen in der industriellen Praxis eine zentrale Rolle als Stellglieder bzw. Aktuatoren. Beispiele dafür sind Werkzeugmaschinen und die meisten Anlagen der Verfahrensund Energietechnik. Gleichstrommotoren werden heute zunehmend durch Asynchronmotoren mit Frequenzumrichtern ersetzt. Diese haben in erster Näherung dieselben Regelungseigenschaften.

In diesem Versuch wird mit einem Labormodell die Wirkungsweise von analogen P– und PI-Reglern vorgestellt und untersucht.

1.2 Vorbereitung zu Hause

In der Vorbereitungsphase (d.h. *vor* dem Versuchstag) untersuchen wir mittels einer MATLAB-Simulation die Regelungsstrecke und legen dann mit Hilfe der Regeln von Ziegler-Nichols einen P- und einen PI-Regler aus. Um die gegebenen Anforderungen erfüllen zu können, werden Sie die Reglerparameter höchstwahrscheinlich nachtrimmen müssen. Um Ihnen den Programmieraufwand zu ersparen, finden Sie unter dem folgenden Link zwei MATLAB-files für die Simulation der Strecke und den Reglerentwurf:

http://www.idsc.ethz.ch/education/lectures/control-lab--messlabor-.html

Der erste Teil des Skripts führt Sie durch verschiedene Aufgaben, in denen ein Modell für die Regelungsstrecke entworfen und analysiert wird.

Zur Vorbereitung für das Praktikum müssen Sie:

- Kapitel 1 bis 3 durchlesen.
- $\hfill \square$ Alle Aufgaben in Kapitel 1 bis 3 lösen.

1.3 Praktikum im Labor

Am Laborhalbtag vergleichen wir unser Modell mit der Realität. Es ist das Verhalten des geschlossenen Regelkreises anhand der Sollwert-und Störsprungantworten systematisch zu erproben. Die Regler-Plattform ist dabei in Analogtechnik fertig implementiert und muss nur noch konfiguriert und parametriert werden.

2 Aufbau

Abbildung 1 zeigt den Aufbau der Versuchseinrichtung. Rechts befindet sich der DC–Antriebsmotor mit darunter angeordnetem Spannungsverstärker für die Motorspannung. Links befindet sich der Bremsmotor, mit dem ein Lastmoment durch Aufgeben eines entsprechendes Stromes über den Leistungsverstärker auf die Welle geschaltet werden kann. Die Welle in der Mitte besteht aus starren Kupplungen und einem aufgeschraubten Lüfterrotor. Dieser kann für weitere Versuche durch eine Scheibe ersetzt werden. Scheibe bzw. Lüfter können von der Welle abgeschraubt und seitlich am feststehenden Teil aufgeschraubt (*parkiert*) werden, um das Trägheitsmoment bzw. das Bremsmoment zu ändern.

Neben der Regelstrecke und dem analogen PID-Regler (vgl. Anhang A.3) befinden sich folgende Geräte am Laborplatz:

- ein Signalgenerator
- ein Oszilloskop zur Visualisierung der verschiedenen Signale.

Abbildung 1: Regelstrecke

Nummer	Bezeichnung
1	Bremsmotor
2	Antriebsmotor und Tachogenerator
3	Scheibe / Lüfterrad
4	Eingang Regelstrecke (U_R)
5	Ausgang Regelstrecke (U_{ω}) gefiltert und ungefiltert

Tabelle 1: Legende zu Abbildung 1

3 Vorbereitung zu Hause

3.1 Die offene Regelstrecke

Im Folgenden wird kurz auf die Modellierung der Regelstrecke eingegangen. Wir werden:

- 1. Die steady-state Stellgrössen für die beiden Betriebspunkte 'Scheibe' und 'Lüfter' bestimmen
- 2. die Implementierung in MATLAB nachvollziehen können.

Abbildung 2: Die Strecke P(s)

Abbildung 2 zeigt das Blockschaltbild der offenen Regelstrecke. Die Stellgrösse U_R wird aufgrund des beschränkten Arbeitsbereiches der Operationsverstärker ($\pm 24V$) nur innerhalb bestimmter Grenzen ($\pm 4.8V$) verstärkt. Die Kennlinie des Verstärkers kann durch die folgenden Sättigungskennlinie beschrieben werden:

$$U_{S} = \begin{cases} -24V, & \text{für } U_{R} < -4.8V \\ K_{V} \cdot U_{R} & \text{für } -4.8 \leq U_{R} \leq 4.8V, \quad K_{V} = 5 \\ +24V, & \text{für } U_{R} > 4.8V \end{cases}$$
(1)

Aus der Theorie der Gleichstrommaschine ergibt sich folgende Differentialgleichung für den Ankerstrom i_A :

$$L_A \frac{d\,i_A}{dt} = U_d - R_A\,i_A \tag{2}$$

Hier ist L_A die Ankerinduktivität und R_A der Ankerwiderstand. U_d ist die Differenzspannung zwischen der Motoreingangsspannung U_S und der Gegen-EMK $K_G \omega$. Die Gleichung 2 führt zur in Abbildung 2 zu erkennenden Übertragungsfunktion. Der Ankerstrom erzeugt ein Antriebsmoment

$$M_A = K_M \cdot i_A. \tag{3}$$

Das resultierende Moment bewirkt eine Beschleunigung der Welle:

$$\Theta \frac{d\,\omega}{dt} = M_A - M_L \tag{4}$$

 Θ ist das Trägsheitmoment der Welle. Die Winkelgeschwindigkeit ω der Welle folgt durch Integration. Diese wird mit dem Tachogenerator (Generatorkonstante K_T) gemessen. Das resultierende Spannungssignal weist einen beträchtlichen Ripple auf und wird daher durch ein Analogfilter $G_{AF}(s)$ zweiter Ordnung mit einstellbarer Eckfrequenz ω_F geglättet:

$$G_{AF}(s) = \frac{\omega_F^2}{s^2 + 2D_F\omega_F s + \omega_F^2}$$
(5)

Hier ist s die Laplace–Variable, ω_F die nominale Eckkreisfrequenz und $2D_F$ der Dämpfungsgrad des Analogfilters.

Als Modell der Strecke folgt somit ein System vierter Ordnung. Die Differentialgleichung für die Zustandsvariable i_A ergibt sich aus Gleichung 2, die Differentialgleichung für die Zustandsvariable ω aus Gleichung 4. Der Analogfilter ist zweiter Ordnung. Deshalb werden zwei weitere Zustandsvariablen eingeführt: Die Ausgangsspannung des Analogfilters U_{ω} und eine Hilfsvariable x_3 ohne signifikante physikalische Bedeutung. Somit ergibt sich die folgende Zustandsraumdarstellung:

$$\begin{bmatrix} \dot{i}_{A} \\ \dot{\omega} \\ \dot{x}_{3} \\ \dot{U}_{\omega} \end{bmatrix} = \begin{bmatrix} -\frac{R_{A}}{L_{A}} & -\frac{K_{G}}{L_{A}} & 0 & 0 \\ \frac{K_{M}}{\Theta} & 0 & 0 & 0 \\ 0 & K_{T} \omega_{F} & -2 D_{F} \omega_{F} & -\omega_{F} \\ 0 & 0 & \omega_{F} & 0 \end{bmatrix} \begin{bmatrix} i_{A} \\ \omega \\ x_{3} \\ U_{\omega} \end{bmatrix} + \begin{bmatrix} \frac{K_{V}}{L_{A}} & 0 \\ 0 & -\frac{1}{\Theta} \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} U_{R} \\ M_{L} \end{bmatrix}$$

$$U_{\omega} = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i_{A} \\ \omega \\ x_{3} \\ U_{\omega} \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} U_{R} \\ M_{L} \end{bmatrix}$$

$$(6)$$

Bemerkung: Die Ausgangs- bzw. Regelgrösse der Strecke ist die Drehzahl der Welle, d.h. ω . Aufgrund des gerippelten Messsignales muss dieses gefiltert werden. Daher wird als Regelgrösse das gefilterte U_{ω} verwendet. In diesem Versuch spielt die Dynamik des Filters keine entscheidende Rolle. Dies muss aber nicht immer so sein!

Es sollen nun die Gleichgewichtslagen für die beiden Betriebspunkte (siehe Tabelle 2) berechnet werden. In der Gleichgewichtslage sind alle zeitlichen Ableitung gleich null. Somit können Sie die stationäre Stellgrösse U_R und die stationäre Regelgrösse U_{ω} für die beiden Betriebspunkte mit Hilfe von Gleichung 6 bestimmen. Die hierzu benötigten Parameter entnehmen Sie bitte der Tabelle 3. Ausführlichere Datenblätter finden Sie in den Anhängen A.1 und A.2. **Anmerkung:** Das Lastmoment des Lüfters ist von der Drehzahl abhängig. Vereinfachend dürfen Sie aber von einem konstanten Lastmoment von 6 mNm ausgehen.

Betriebspunkt	Trägheitsmoment Θ	Lastmoment M_L	Winkelgeschwindigkeit ω
Welle mit Scheibe	$210.2 \cdot 10^{-6} kg m^2$	$0 \ mNm$	$200 \ rad/s$
Welle mit Lüfter	$407.6 \cdot 10^{-6} kg m^2$	6 mNm	$200 \ rad/s$

Tabelle 2: Daten der beiden Betriebspunkte

Bezeichnung	Variable	Wert	Einheit
Verstärkungsfaktor Tachogenerator	K_T	19.1	mV/rad/s
Drehmomentkonstante Antriebsmotor	K_M	51.2	mNm/A
Ankerwiderstand Antriebsmotor	R_A	8.5	Ω
Verstärkungsfaktor Spannungsverstärker	K_V	5	—
Generatorkonstante Antriebsmotor	K_G	52.5	mV/rad/s
Nominale Eck-Kreisfrequenz Analogfilter	ω_F	20	rad/s

Tabelle 3: Relevante Daten für den stationären Betrieb

Betriebspunkt	Scheibe	Lüfter
$U_{\omega,ss}$		
$i_{A,ss}$		
$U_{R,ss}$		

Tabelle 4: stationäre Werte der Betriebspunkte

Nun haben Sie alle Informationen, um die folgenden Aufgaben lösen zu können:

- a) Berechnen Sie von Hand die stationären Betriebsdaten mit Gleichung 6. Tragen Sie die Ergebnisse in Tabelle 4 ein.
- b) Öffnen Sie das MATLAB Skript plant_step.m auf. Simulieren Sie damit die Sprungantworten. Führen Sie die Simulation für die verschiedenen Trägheits- und Lastmomente (Scheibe und Lüfter) durch.
- c) Drucken Sie die Plots der Sprungantworten aus oder speichern Sie diese, damit Sie später einen Vergleich mit den Messungen im Labor machen können.
- d) Vergleichen Sie die Sprungantworten von Scheibe und Lüfter. *Hinweis:* Beachten Sie, dass sich die Sprungantworten auf einen Stellgrössensprung von 1 V beziehen.
- e) Lesen Sie t_{90} und $\Delta U_{\omega,max}$ ab und tragen Sie diese in Tabelle 8 bei «Modell» ein. Hinweis: Die Definition für t_{90} finden Sie in Anhang C

3.2 Der geschlossene Regelkreis

Abbildung 3: Der geschlossene Regelkreis mit PI-Regler

Abbildung 3 zeigt den geschlossenen Regelkreis für einen PI–Regler. Neben der Standard-Rückführung wird eine Vorsteuerung (Feedforward) verwendet. D.h. es wird am Eingang der Strecke eine zusätzliche Spannung U_{FF} zum Reglerausgang addiert. Wird diese Spannung der für Tabelle 4 berechneten stationären Spannung gleichgesetzt ($U_{FF} = U_R$), wird der Regler nur dazu verwendet, Sollwertabweichungen vom Betriebspunkt, Störungen und Modellierungsfehler auszuregeln. Die Dynamik des Messelements kann vernachlässigt werden.

Die Darstellung des geschlossenen Regelkreises im Zustandsraum ist die folgende:

$$\begin{bmatrix} \dot{i}_{A} \\ \dot{\omega} \\ \dot{x}_{3} \\ \dot{U}_{\omega} \\ \dot{x}_{5} \end{bmatrix} = \begin{bmatrix} -\frac{R_{A}}{L_{A}} & -\frac{K_{G}}{L_{A}} & 0 & -\frac{K_{V}}{L_{A}} k_{P} & \frac{K_{V}}{L_{A}} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & K_{T} \omega_{F} & -2 D_{F} \omega_{F} & -\omega_{F} & 0 \\ 0 & 0 & \omega_{F} & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{T_{I}} & 0 \end{bmatrix} \cdot \begin{bmatrix} i_{A} \\ \omega \\ x_{3} \\ U_{\omega} \\ x_{5} \end{bmatrix} \\ + \begin{bmatrix} \frac{K_{V}}{L_{A}} & 0 & \frac{K_{V}}{L_{A}} k_{P} \\ 0 & -\frac{1}{\Theta} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \frac{1}{T_{I}} \end{bmatrix} \cdot \begin{bmatrix} U_{FF} \\ M_{L} \\ U_{Soll} \end{bmatrix} \\ + \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{T_{I}} \end{bmatrix} \cdot \begin{bmatrix} i_{A} \\ \omega \\ x_{3} \\ U_{\omega} \\ x_{5} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & k_{P} \end{bmatrix} \cdot \begin{bmatrix} U_{FF} \\ M_{L} \\ U_{Soll} \end{bmatrix}$$
(9)

Es wurde x_5 , die Ausgangsspannung des Integrators, eingeführt. T_I ist die Nachstellzeit des I-Anteils des PI-Reglers und k_P ist die Verstärkung des P-Reglers bzw. des P- und I-Anteils des PI-Reglers .

Für die Simulation der Regelstrecke wird die nichtlineare Kennlinie des Spannungsverstärkers, vgl. Gleichung 1, durch die proportionale Verstärkung K_V ersetzt. Wird der Betrag der Stellgrösse U_R grösser als 4.8 V, so bleibt bei der Laborapparatur das Ausgangssignal U_S bei ± 24 V. Dies führt zu dem sogenannten Windup. Hierauf wird im Rahmen der Versuchsdurchführung näher eingegangen (Abschnitt 4.4).

Beachten Sie, dass bei der Simulation nur Abweichungen vom jeweiligen Betriebspunkt betrachtet werden. Dementsprechend muss dem Sollwersprung (U_{Soll}) von 1 V gefolgt werden, während die Störung in U_{FF} auf null ausgeregelt werden sollte.

3.3 Auslegen des Reglers

Zur Auslegung des Reglers benutzen Sie heute das Verfahren von Ziegler–Nichols. Hierbei handelt es sich um ein empirisches Verfahren, das entworfen wurde, um Regler für unbekannte Strecken auszulegen. Wenn die Strecke bekannt ist, werden meist hochwertigere Verfahren angewandt. Um ein Gefühl für die Wirkungsweise von P– und PI–Reglern zu bekommen, werden Sie auch verschiedene Reglerparmeter in der Simulation anwenden.

In den folgenden Aufgaben werden Sie Schritt für Schritt durch die Auslegung des Reglers geleitet.

3.3.1 Kritische Verstärkung

Lösen Sie die Aufgaben a) bis e) für die Scheibe und für den Lüfter.

- a) Öffnen Sie das MATLAB-Skript speedcontroller.m.
- b) Lassen Sie das Skript laufen und wählen Sie den 'P'-Regler und die Scheibe.
- c) Stellen Sie $T_I = \infty$ (in MATLAB: Inf). Dies bedeutet, dass der I-Teil deaktiviert ist (reiner P-Regler). Starten Sie mit einem beliebigen k_p von beispielsweise $k_p = 8$.
- d) Vergrössern Sie k_p solange, bis die Sollwertsprungantwort stationär schwingt. *Hinweis 1:* Es wird auf dem Plot eine sinusförmige Schwingung erkennbar sein. *Hinweis 2:* Der gesuchte Wert für k_p für befindet sich ungefähr zwischen 10 und 15.
- e) Dieser Wert k_p , bei welchem das System stationär schwingt, definieren wir als die **kritische Verstärkung** k_p^* . Messen Sie die zu k_p^* gehörige kritische Periodendauer T^* und tragen Sie beide Werte je in Tabelle 6 und 7 ein.

3.3.2 Ziegler–Nichols

Regler	k_p	T_I
Р	$0.5 \cdot k_p^*$	—
PI	$0.45 \cdot k_p^*$	$0.85 \cdot T^*$

Tabelle 5: Einstellregeln nach Ziegler–Nichols

Mit den gefundenen kritischen Werten k_p^* und T^* können wir nun gemäss den Ziegler-Nichols-Regeln in Tabelle 5 geeignete **Reglerparameter** finden.

a) Verwenden Sie Tabelle 5, um die (*ungetrimmten*, d.h. nicht optimierten) Reglerparameter $(k_p \text{ und } T_I)$ für die Regler «P» und «PI» der Scheibe zu finden. Tragen Sie die Ergebnisse in Tabelle 6 ein.

Hinweis: Für den PI Regler wählen Sie den 'PI'-Regler und danach wieder die Scheibe.

- b) Stellen Sie die in a) gefundenen (ungetrimmten) Reglerparameter k_p und T_I ein. Finden die Führungsgrössen der Scheibe und tragen Sie die Ergebnisse in Tabelle 6 ein. Hinweis: Die Definitionen für die Führungsgrössen finden Sie in Anhang C.
- c) Finden Sie die (ungetrimmten) Parameter k_p und T_I für die Regler «P» und «PI» des Lüfters. Tragen Sie die Ergebnisse in Tabelle 7 ein. Hinweis: Lassen Sie das Programm laufen und wählen Sie den 'P'-Regler oder 'PI'-Regler

Hinweis: Lassen Sie das Programm laufen und wahlen Sie den 'P'-Regier oder 'PI'-Regier und danach den Lüfter.

- d) Stellen Sie die in c) gefundenen *(ungetrimmten)* Reglerparameter k_p und T_I ein. Finden Sie die Führungsgrössen des Lüfters und tragen Sie die Ergebnisse in Tabelle 7 ein. *Hinweis:* Die Definitionen für die Führungsgrössen finden Sie in Anhang C.
- e) Optional: Finden das Störverhalten für die (ungetrimmten) Regler von Scheibe und Lüfter und tragen Sie die Ergebnisse in die Tabellen 6 und 7 ein. Hinweis: Betrachten Sie dafür die Matlab-Plots auf der rechten Seite. Hinweis: Die Definitionen dafür finden Sie in Anhang C.

3.3.3 Nachtrimmen

Oft ist der Ansatz mit Ziegler-Nichols nicht perfekt. Deswegen muss der Regler **nachgetrimmt** werden, sodass folgende Spezifikationen erfüllt werden:

- An regelzeit \leqslant 0.3s für 90% des stationären Wertes.
- Ausregelzeit \leqslant 1.5
s für ein Toleranzband mit $\pm 5\%$ vom stationären Endwert.
- Überschwingen (max. Regelfehler) $\leq 20\%$ vom stationären Endwert.

Wir üben das Nachtrimmen hier nur mit der Scheibe. Die Regler für den Lüfter müssen Sie nicht nachtrimmen.

Gehen Sie dazu folgendermassen vor:

- a) Prüfen Sie, ob die vorher gefundenen Regler der Scheibe die Spezifikationen erfüllen.
- b) Falls die Spezifikationen nicht erfüllt werden, müssen Sie den Regler nachtrimmen. Tragen Sie die Werte des *nachgetrimmten* Reglers in die Tabelle 6 ein. *Hinweis:* Das Trimmen erfolgt durch geschicktes Verstellen (nach Gefühl) von k_p und T_I .

Tabelle 6: Simulationsergebnisse für die Scheibe

Tabelle 7: Simulationsergebnisse für den Lüfter

4 Versuchsdurchführung

Diese Phase ist der zentrale Teil des Versuchsnachmittages im Labor. Sie soll zeigen, wie der Reglerentwurf an der Versuchsanlage umgesetzt wird und wie er sich bewährt.

Bevor wir den Regelkreis schliessen, müssen wir sicherstellen, dass unser Modell ausreichend gut mit der Realität übereinstimmt. Dazu werden wir die Simulationsergebnisse an der Versuchsanlage validieren.

Die tieffrequenten Bereiche des Stellverhaltens, d.h. der Verstärkungsfaktor und die dominante Zeitkonstante, werden am einfachsten aus einer Stellsprungantwort im offenen Regelkreis ermittelt. Je genauer die gemessene Sprungantwort zur Simulation passt, desto zuverlässiger werden die berechneten Reglerparameter sein. Und dementsprechend ist das Risiko einer Fehlfunktion niedriger.

4.1 Die offene Regelstrecke

- a) Studieren Sie im Anhang D den oberen Teil «Offene Regelstrecke». Versuchen Sie, alle Kabelverbindungen zu verstehen.
 Bitte machen Sie nur weiter, wenn Sie Teilaufgabe a) verstanden haben. Bitte lassen Sie die Verkabelung überprüfen, bevor Sie weitermachen.
- b) Verbinden Sie nun alle Kabel, um die offene Regelstrecke zu erhalten.
- c) Stellen Sie am Signal-Generator folgendes Signal ein:
 - Rechtecksfunktion
 - $\hfill\square$ Low Level: 0V
 - □ High Level: 1V
 - □ Frequenz: 50mHz

Hinweis: Verwenden Sie als Hilfe Anhang F, um den Signal-Generator einzustellen.

d) Stellen Sie das Oszilloskop so ein, dass sie die Stellgrösse U_R auf Channel 1 und die Systemantwort U_{ω} auf Channel 2 auslesen können.

Hinweis: Verwenden Sie als Hilfe Anhang E, um das Oszilloskop einzustellen.

- e) Lesen Sie t_{90} und $\Delta U_{\omega,max}$ am Oszilloskop ab. Tragen Sie die Ergebnisse in Tabelle 8 ein. Hinweis: Verwenden Sie den Cursor am Oszilloskop.
- f) Beantworten Sie folgende Fragen:
 - □ Welche Abweichungen zwischen Modell und Realität stellen Sie fest?
 - Was sind die Ursachen dafür?

Melden Sie sich beim Assistenten, um die Ergebnisse zu besprechen.

Betriebspunkt	Sch	eibe	Lü	fter
	Modell	Experiment	Modell	Experiment
$t_{90} [s]$				
$\Delta U_{\omega,max}$ [V]				

Tabelle 8: Vergleich der Sprungantworten

4.2 Der geschlossene Regelkreis

Wir konnten im vorherigen Kapitel zeigen, dass unser Modell genügend gut mit unserer Versuchsapparatur übereinstimmt. Somit sind wir jetzt bereit um unseren Controller in das System einzubinden und den Regelkreis zu schliessen. Gehen Sie dazu folgendermassen vor:

- a) Studieren Sie im Anhang D den unteren Teil «Geschlossener Regelkreis».
 - □ Versuchen Sie, alle Kabelverbindungen zu verstehen.
 - Versuchen Sie ausserdem, die Analogien zwischen der Versuchsapparatur und Abbildung 3 zu verstehen.
 - Bitte machen Sie nur weiter, wenn Sie Teilaufgabe a) verstanden haben.
- b) Verbinden Sie nun alle Kabel, um den geschlossenen Regelkreis zu erhalten. Achten Sie ausserdem auf folgendes:
 - □ Eingang der Regelungsstrecke am Anschluss mit Verstärkungsfaktor 5.
 - □ Frequenz des Ausgangsfilters ist auf 3Hz gestellt.

Bitte lassen Sie die Verkabelung überprüfen, bevor Sie weitermachen.

4.3 Auslegen des Reglers

Wir haben nun den Regler erfolgreich in unser System eingebunden. Natürlich könnten wir jetzt versuchen, die Reglerparameter für die Scheibe und für den Lüfter aus Kapitel 3.3.2 und 3.3.3 auszuprobieren.

Aus Übungszwecken werden wir jedoch versuchen, die geeigneten Reglerparameter **für die Scheibe** direkt an der Versuchsapparatur mit den kritischen Grössen und *Ziegler-Nichols* herzuleiten. In den folgenden Aufgaben werden Sie Schritt für Schritt durch die Auslegung der Regler für die Scheibe geleitet.

4.3.1 Vorbereitungen

- a) Stellen Sie sicher, dass sich die Scheibe auf der Welle befindet.
- b) Stellen Sie sicher, dass der Regler komplett ausgeschaltet ist. *Hinweis 1:* In Abbildung 7 müssen die Schalter 10 und 7 «off» sein. *Hinweis 2:* In diesem Zustand wirkt nur die Vorsteuerung U_{FF} .
- c) Stellen Sie am Signal-Generator folgendes Signal ein:
 - \square Rechtecksfunktion
 - $\hfill\square$ Low Level: 2.8V
 - □ High Level: 3.8V
 - □ Frequenz: 50mHz

Hinweis: Verwenden Sie Anhang F um den Signal-Generator einzustellen.

d) Stellen Sie die Vorsteuerung U_{FF} so ein, dass die Ausgangsspannung der Regelstrecke den Wert von $U_{\omega,ss}$ annimmt.

Hinweis 1: Die Vorsteuerung U_{FF} entspricht dem Potentiometer 12 in Abbildung 7.

Hinweis 2: Verwenden Sie bei der Vorsteuerung die Schalterstellungen (+) und (on).

Hinweis 3: Der Wert der Vorsteuerung U_{FF} wird etwa 2.1 betragen.

Hinweis 4: $U_{R,ss}$ finden Sie in Tabelle 4. Lassen Sie dies durch den Assistenten überprüfen.

4.3.2 Kritische Verstärkung

- a) Stellen Sie einen kleinen k_p -Wert (z.B 0.2) am Regler ein. Hinweis: Schauen Sie in Anhang A.3, wie k_p und T_I am Regler eingestellt werden.
- b) Schalten Sie das P-Element des Reglers ein und vergrössern Sie k_p solange, bis Sie Ausgangsspannung stationär schwingt. Beachten Sie dabei, dass das System aufgrund von einer limitierten Motorleistung nicht instabil wird und es deswegen mehrere k_p -Werte gibt, bei denen die Ausgangsspannung stationär schwingt. Deshalb suchen wir das tiefste k_p , bei dem unser System grenzstabil wird.

Hinweis: Dieses k_p definieren wir als unsere kritische Verstärkung k_p^* .

c) Messen Sie am Oszilloskop das zu k_p^\ast entsprechende T^\ast und tragen Sie beide Werte in Tabelle 9 ein.

4.3.3 Ziegler-Nichols

- a) Verwenden Sie Tabelle 5, um die *(ungetrimmten)* Reglerparameter $(k_p \text{ und } T_I)$ für die Regler «P» und «PI» der Scheibe zu finden. Tragen Sie die Ergebnisse in Tabelle 9 ein.
- b) Stellen Sie am PID-Regler die in
a) gefundenen (ungetrimmten) Reglerparameter k_p und
 T_I ein.

 $\mathit{Hinweis:}$ Schauen Sie in Anhang A.3, wie k_p und T_I am Regler eingestellt werden.

c) Finden die Führungsgrössen des *(ungetrimmten)* Reglers der Scheibe. Tragen Sie die Ergebnisse in Tabelle 9 ein.

Hinweis: Die Definitionen für die Führungsgrössen finden Sie in Anhang C.

- d) Die Aufgaben d) bis f) sind optional Um das Störverhalten zu messen, müssen wir unseren Messaufbau ein wenig verändern. Stellen Sie dazu zunächst die Vorsteuerung auf $U_{FF} = 0$. Als nächstes stellen Sie an Potentiometer 3 (Abbildung 7) einen konstanten Sollwert für $U_{\omega,ss}$ ein. Hinweis: $U_{\omega,ss}$ finden Sie in Tabelle 4.
- e) Ändern Sie das Signal am Signal-Generator, sodass es neu zwischen 0V und 1V wechselt. Der Signalgenerator erzeugt nun die Störung. Dazu muss der Output des Generators als Störgrösse mit einfacher Verstärkung in den Regler eingebracht werden.

Hinweis: Die einfache Verstärkung entspricht dem Eingang 11 in Abbildung 7.

f) Finden das Störverhalten für den ungetrimmte Regler der Scheibe und des Lüfters und tragen Sie diese in die Tabellen 9 ein. *Hinweis:* Die Definitionen dafür finden Sie in Anhang C.

4.3.4 Nachtrimmen

Vermutlich ist der Ansatz mit Ziegler–Nichols wie bereits zuvor nicht perfekt. Deswegen kann der Regler wieder getrimmt werden, sodass folgende Spezifikationen erfüllt werden:

- An regelzeit \leqslant 0.3s für 90% des stationären Wertes.
- Ausregelzeit \leqslant 1.5
s für ein Toleranzband mit $\pm 5\%$ vom stationären Endwert.
- Überschwingen (max. Regelfehler) $\leq 20\%$ vom stationären Endwert.
- a) Falls Sie vorher die optionalen Aufgaben d) bis f) des Kapitels 4.3.3 gelöst haben, müssen Sie das Setup wieder in die Konfiguration bringen, die sie zuvor in Aufgabe a) bis c) hatten.
- b) Prüfen Sie, ob die vorher gefundenen Regler der Scheibe die Spezifikationen erfüllen. Hinweis: Das Trimmen erfolgt durch geschicktes Verstellen (nach Gefühl) von k_p und T_I .

Rufen Sie Ihren Assistenten, um die Ergebnisse zu besprechen.

Tabelle 9: Versuchsergebnisse für die Scheibe

4.4 Windup

Wenn Sie Sollwertsprünge mit dem Signalgenerator auf den PI-Regler geben, können Sie bei genügend grossen Sprüngen beobachten, dass einer Erhöhung der Drehzahl nur langsam gefolgt wird. Der Istwert wird anschliessend grösser als der Sollwert .Plötzlich erkennt man einen umgekehrten Sprung der sich von oben dem Sollwert nähert. Dieses Verhalten hängt mit der Stellgrössenbeschränkung zusammen. In Abbildung 4 wird der Unterschied zwischen einer Sprungantwort ohne (durchgezogene Linie) und mit (gestrichelte Linie) Stellgrössenbeschränkung dargestellt.

Abbildung 4: Sprungantwort eines Regelkreise ohne Stellgrössenbeschränkung (durchgezogene Linie) und mit Stellgrössenbeschränkung (gestrichelte Linie).

Die Ursache liegt im sättigenden Spannungsverstärker. Ab einem Eingangssignal von $\pm 4.8 V$ gibt er ein konstantes Signal von $\pm 24 V$ aus. Der Spannungsverstärker gerät in die Sättigung. Man bezeichnet dies auch allgemein als Stellgrössenbeschränkung.

Die Stellgrössenbeschränkung führt im Experiment dazu, dass die Regelstrecke dem Sprung nicht so schnell folgen kann, wie der Regler annimt. Der Regler hat keine Kenntnis von der Stellgrössenbeschränkung. Über die Ausgangsrückführung bzw. den Regelfehler bemerkt der Regler, dass die Strecke seinen Vorgaben nicht (schnell genug) folgt. Als Folge hiervon integriert der I–Anteil den Regelfehler U_e auf. Der Regler wickelt sich auf wind up. Erst wenn sich das Vorzeichen des Regelfehlers umkehrt, kann sich der I–Anteil wieder verringern. Daraus resultiert das in der Abbildung 4 dargestellte überschwingen.

Um dieses Phänomen zu vermeiden, gibt es eine Vielzahl von Möglichkeiten, die unter dem Begriff *Anti-windup* zusammengefasst werden. Im wesentlichen laufen alle Anti-windup-Massnahmen darauf hinaus, die Differenz zwischen der unbeschränkten Stellgrösse und der beschränkten zu erfassen und dem anti-windup-Teil des Reglers mitzuteilen. Damit kann dieser erkennen, wenn er in der Sättigung ist und den I–Anteil abschalten.

- a) Bringen Sie das System zurück in die Konfiguration des offenen Regelkreises, in der Sie das Führungsverhalten analysiert haben.
- b) Messen Sie die Spannung des Reglerausganges (Stellgrösse U_R), sie wird während dieses Vorganges grösser als 4.8 V sein.
- c) Stellen Sie das in Abbildung 4 links dargestellte verhalten auf dem Oszilloskop dar. Um dieses Phänomen besser zu erkennen erhöhen Sie die Amplitude des aufgeprägten Sollwertsprunges.

4.5 Der geschlossene Regelkreis im Betriebspunkt Lüfter

Wir überprüfen die simulierten Reglerparameter für den Lüfter. Wir werden versuchen, direkt die Reglerparameter zu implementieren, die wir mit unserer Simulation gefunden haben. Gehen Sie dazu folgendermassen vor:

- a) Tauschen Sie die Scheibe gegen den Lüfter aus.
- b) Stellen Sie am PID-Regler die in Kapitel 3.3.2 Aufgabe c) gefundenen Reglerparameter k_p und T_I ein. Schauen Sie, ob Sie mit dieser Methode brauchbare Regler erzeugen können. Hinweis: Schauen Sie in Anhang A.3, wie k_p und T_I am Regler eingestellt werden.
- c) Falls das Modell in MATLAB nicht gut genug der Realität entspricht, wird unser Regler unbrauchbar. In diesem Fall bestimmen Sie, wie bei der Scheibe, die kritischen Werte k_p^* und T^* .

Füllen Sie die Tabelle 10 aus.

- d) Vermutlich ist der Ansatz mit Ziegler–Nichols wie bereits zuvor nicht perfekt. Überprüfen Sie wieder, ob die folgenden Spezifikationen eingehalten werden:
 - An regelzeit ≤ 0.3 s für 90% des stationären Wertes.
 - Ausregelzeit ≤ 1.5 s für ein Toleranzband mit $\pm 5\%$ vom stationären Endwert.
 - Überschwingen (max. Regelfehler) $\leq 20\%$ vom stationären Endwert.
- e) Beantworten Sie zum Schluss folgende Fragen:
 - Werden die Spezifikationen erfüllt?
 - □ Falls nicht: Warum nicht?

Rufen Sie Ihren Assistenten, um diese Fragen zu besprechen.

	Lüfter (ungetrimmt)	
Kritische Werte (Simulation):	$k_{p}^{*} =$	$T^{*} =$
Kritische Werte (gemessen):	$k_p^* =$	$T^{*} =$
Regler:	P-Regler	PI-Regler
k_p :		
T_I :	_	
	Führungsv	verhalten U_{soll} :
Anregelzeit [s]:		
Ausregelzeit[s]:		
Überschwingen $e_{max}(t)$ [%]:		
Stationärer Regelfehler e_{∞} [%]:		

Tabelle 10: Versuchsergebnisse für den Lüfter

4.6 Bode-Diagramm des Betriebspunkt Scheibe

Zum Schluss bestimmen wir das Bode-Diagramm des Systems mit Scheibe. Das Bode-Diagramm hilft uns zu verstehen, wie das System ein Eingangssignal bei verschiedenen Frequenzen verstärkt und verschiebt.

4.6.1 Vorbereitungen

- a) Stellen Sie sicher, dass sich die Scheibe auf der Welle befindet.
- b) Bringen Sie das System in die Konfiguration des offenen Regelkreises wie in Anhang D.
- c) Stellen Sie am Signal-Generator folgendes Signal ein:
 - Sinusfunktion
 - $\hfill\square$ Low Level: $-1\,{\rm V}$
 - $\hfill \square$ High Level: $1\,{\rm V}$
 - $\hfill\square$ Frequenz: $0.1\,{\rm Hz}$

Hinweis: Verwenden Sie Anhang F um den Signal-Generator einzustellen.

4.6.2 Sinus-Antwort

- a) Rechnen Sie in Tabelle 11 die Frequenzen von Hz zu rad/s um.
- b) Messen Sie für 0.1 Hz die Doppelamplitude der entstehenden Systemantwort und notieren sich diese in Tabelle 11.

Hinweis: Siehe Abbildung 5a für eine visuelle Erklärung.

- c) Messen Sie für 0.1 Hz den Zeitunterschied zwischen den Wellenbergen der Eingangs-Welle und Systemantwort und notieren sich auch diese in der Tabelle 11. *Hinweis:* Siehe Abbildung 5b für eine visuelle Erklärung.
- d) Berechnen Sie die Magnitude $|G(j\omega)|$ und Phasenverschiebung $\angle G(j\omega)$. Bespreche Sie Ihre Werte mit Ihrem Hilfsassistenten, bevor Sie fortfahren.
- e) Wiederholen Sie diese Messungen für die Frequenzen 0.2 Hz, 0.3 Hz, 0.4 Hz, 0.5 Hz und 1 Hz.

Abbildung 5: Hinweis zu den Messungen

f [Hz]	$\omega~[{\rm rad/s}]$	Doppelamplitude [V]	$ G(j\omega) $ [dB]	$\Delta t \ [s]$	$\angle G(j\omega)$ [rad]
0.1					
0.2					
0.3					
0.4					
0.5					
1					

Tabelle 11: Frequenzantwort für die Scheibe

4.6.3 Bode-Diagramm

- a) Skizzieren Sie das Bode-Diagramm der Scheibe (Abbildung 6). Vergessen Sie dabei nicht,
 ω anstatt fzu verwenden!
- b) Was fällt Ihnen am Bode-Diagramm auf? Wie verhält sich das System bei hohen/tiefen Frequenzen?
- c) Interpolieren Sie die Durchtrittsfrequenz aus ihrer Skizze. *Hinweis:* Abschätzen genügt, Sie brauchen nicht zu rechnen.

Abbildung 6: Leeres Bode-Diagramm

A Technische Datenblätter

A.1 Daten des Wellenstranges

Spannungsverstarker für Anthebsmoto	sverstärker für Ant	triebsmoto
-------------------------------------	---------------------	------------

Eckfrequenz	60	kHz
Eingangsbereich	± 10	V
Verstärkungsfaktoren (steckbar) K_V	0.1, 1, 5	
Ausgangsbereich	± 24	V
max. Dauer-Ausgangsstrom	2.0	A

Nennspannung	± 24	V
Leerlaufdrehzahl (4400 Upm)	461	$\frac{rad}{s}$
Anlaufmoment	149	mN
max. Dauerleistung	37	W
mittlerer Leerlaufstrom	50	mA
max. Dauerstrom	1.2	A
max. Drehzahl (9000 Upm)	942	rad
Gegen-EMK=Generatorkonst. K_G 5.5 $\frac{mV}{Upm}$	52.5	$\frac{mV}{rad}$
Ankerinduktivität L_A	1.3	mH
Ankerwiderstand R_A	8.5	Ω
Drehmomentkonstante=Motorkonst. K_M	51.2	$\frac{mN}{\Delta}$
Rotor-Trägheitsmoment	$5.2 \ 10^{-6}$	kgn

Welle ohne Lüfter	
-------------------	--

Trägheitsmoment der Scheibe	$203 \ 10^{-6}$	kgm^2

Welle mit Lüfter		
Trägheitsmoment	ca. 400 10^{-6}	kgm^2
Bremsmoment bei nom. Drehgeschw. 200 rad/s	ca. 6	mNm

Stromverstärker zum Lastmotor

Eckfrequenz	ca. 30	kHz
Eingangsbereich	± 10	V
Verstärkungsfaktor (steckbar)	10, 100, 400	$\frac{mA}{V}$
Ausgangsbereich Spannung	± 24	V
Ausgangsbereich Strom	± 2	A

Lastmotor

Nennspannung	± 24	V
Leerlaufdrehzahl (6750 Upm)	707	rad
Anlaufmoment	128	mNm
DauerLeistung (max.)	27	W
mittlerer Leerlaufstrom	110	mA
max. Dauerstrom	1.4	A
max. Drehzahl (9000 Upm)	942	$\frac{rad}{s}$
Gegen-EMK (Generatorkonst. K_G) 3.4 mV/Upm	32.5	$\frac{mV}{rad/s}$
Ankerinduktivität	0.75	mH
Ankerwiderstand	6.2	Ω
Drehmomentkonstante (Motorkonst. K_M)	33	$\frac{mNm}{A}$
Rotor-Trägheitsmoment	$2 \ 10^{-6}$	kgm^2

Bemerkung: K_G und K_M haben die gleichen SI-Einheiten.

A.2 Vorhandene Instrumentierung

Tachogenerator	mit	Verstärker
----------------	----------------------	------------

Verstärkungsfaktor K_T	10 V bei 5000 Upm	19.1	$\frac{mV}{rad/s}$
Spannungsripple	Doppelamplitude bei 18-facher	300	mVpp
	Drenkreisirequenz		

Analogfilter

Eingangs-Spannung		± 10	V
Ausgangsbereich		± 10	V
Nominale Eck-Kreisfrequenz	ω_F	20	$\frac{rad}{s}$
Dämpfungsgrad	$2D_F$ (max. flach)	1.414	5

A.3 Regler-Plattform

Der Regelkreis wird hier über einen analogen PID-Regler auf der Basis von Operationsverstärkern geschlossen. Der Regler ist in Abbildung 7 dargestellt. Die gewünschte Reglerstruktur (P, PI, PID, etc.) kann über Kippschalter gewählt werden. Die Parameterwerte werden durch Einstellen der Widerständs- und Kapazitätswerte folgendermassen eingestellt:

- $K_P = \{0.00 \dots 9.99\} \cdot 2$
- $k_p/T_I = \{0.00\dots 9.99\} \cdot \frac{0.1\mu F}{C1}$
- $T_D = \{0.00 \dots 9.99\} \cdot \frac{0.1 \mu F}{C^2}$

 $\{0.00...9.99\}$ steht hierbei für die Verstärkungsfaktoren k der Drehregler. C1 und C2 sind zwei einstellbare Kondensatoren, die die Werte 10nF, $0.1\mu F$, $1\mu F$ und $10\mu F$ annehmen können. Wollen Sie beispielsweise $k_p/T_I = 56$ einstellen wollten, dann müssen Sie den Drehregler auf 5.6 (5 im Fenster, 6 auf der Strichskala), und C1 auf 10nF stellen. Vergessen Sie nicht den Kippschalter für den I-Anteil zu aktivieren!

Abbildung 7: Regler

Nummer	Bezeichnung
1	Sollwert Eingang (U_{Soll})
2	Sollwert Ausgang (U_{Soll})
3	Drehregler konstanter Sollwert (wird zu Sollwert Eingang addiert) (U_{Soll})
4	Sollwert Anzeige (U_{Soll})
5	Istwert Eingang (U_{ω})
6	Drehregler P-Anteil (k_p)
7	Kippschalter P-Anteil
8	Drehregler I-Anteil (k_p/T_I)
9	Einstellrad Kondensator I-Anteil (C_1)
10	Kippschalter I-Anteil
11	Vorsteuererung Eingang (U_{FF})
12	Drehregler konstante Vorsteuerung (wird zu Vorsteuerung Eingang addiert) (U_{FF})
13	Vorsteuerung Anzeige (U_{FF})
14	Regler Ausgang (U_R)

Tabelle 12: Legende zu Abbildung 7

B MATLAB-Files

Die beiden MATLAB-Files finden Sie online unter den folgenden Links:

http://www.idsc.ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/ idsc-dam/Lectures/Control-Systems-1/plant_step.m

http://www.idsc.ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/ idsc-dam/Lectures/Control-Lab/speedcontroller.m

C Beschreibung des Führungsverhaltens und des Störungsverhaltens

Zur Beschreibung des Führungsverhaltens und des Störungsverhaltens des geschlossenen Regelkreise werden folgende Begriffe benutzt, die in Abbildung 8 dargestellt sind. Der Plot repräsentiert die Sollwertsprungantwort und die Störsprungantwort des geschlossenen Kreises.

Abbildung 8: Illustration der Messgrössen

- Anregelzeit [s] (t_{90}) : Die Zeit, die bis zum ersten Erreichen von 90% des stationären Endwertes vergeht. Dieser Endwert muss nicht immer dem angelegten Sprung entsprechen (stationärer Regelfehler).
- Ausregelzeit [s] (t_s) : Die Zeit, bei der die Abweichungen vom stationären Endwert kleiner als das Toleranzband sind.
- Toleranzband beschreibt die Abweichungen vom stationären Endwert. Übliche Werte liegen zwischen $\pm 1\%$ und $\pm 5\%$
- max. Regelfehler (Überschwingen): Üblich sind hier Werte zwischen 5% und 20% vom stationären Endwert.

Definitionen

$$e_{\max,F\ddot{u}hrungsverhalten} = \frac{\Delta U_{\omega,\max} - \Delta \hat{U}_{\omega,ss}}{\Delta \hat{U}_{\omega,ss}}$$
$$e_{\infty,F\ddot{u}hrungsverhalten} = \frac{\Delta \hat{U}_{\omega,ss} - \Delta U_{\omega,ss}}{\Delta U_{\omega,ss}}$$
$$e_{\max,St\"{o}rungsverhalten} = \frac{U_{\omega,\max} - \hat{U}_{\omega,ss}}{\hat{U}_{\omega,ss}}$$
$$e_{\infty,St\"{o}rungsverhalten} = \frac{\hat{U}_{\omega,ss} - U_{\omega,ss}}{U_{\omega,ss}}$$

Führungsverhalten		
$\Delta U_{\omega,\max}$	Maximales Überschwingen	
$\Delta U_{\omega,ss}$	Erwarteter stationärer Endwert	
$\Delta \hat{U}_{\omega,ss}$	Gemessener stationärer Endwert	
Störungsverhalten		
$U_{\omega,\max}$	Maximales Überschwingen	
$U_{\omega,ss}$	Erwarteteer stationärer Endwert	
$\hat{U}_{\omega,ss}$	Gemessener stationärer Endwert	

Verkabelung \mathbf{D}

Offene Regelstrecke (ohne Regler):

E Oszilloskop

F Signal-Generator

