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Exercise 1 (Control Block Calculations)

a) This is a relatively standard depiction of a feedback control system. The trick in finding
the system transfer function ¥ is generally to derive equations for all important signals
separately and then combine them.
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Therefore y = X% (r — X3y). This can be simplified to
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b) In this diagram we are confronted with two loops of the type in Case C. Again we write
equations for all important signals. Another approach could be to apply Case C two
times.
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c)  This block diagram appears may appear more complex than it is:

y = —X1u— XXy
y(1 4 Xo¥3) = —Xju
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Exercise 2 (Definition and Derivation of the Transfer Function)

a)  We apply Laplace with zero initial conditions:

y(t) + 5y(t) + 10y(t) = u(t) + 10u(t) /L
s2Y (s) — sy(0) — §(0) + 5(sY (s) — y(0)) + 10Y (s) = sU(s) — u(0) 4+ 10U(s)
Y (s)(s* 4 5s +10) = U(s)(s + 10)

b)  System is given by:
&= Az + Bu (5)
y=Cz+ Du (6)

now we can apply the Laplace transform to equations 5 and 6. We get:

sX(s) —z(0) = AX(s) + BU(s)
Y (s) = CX(s)+ DU(s)

As a next step, we have to remember that transfer functions are derived with zero initial
conditions and solve for g(s):

(sI —A)X(s) = BU(s)
Y(s) =CX(s)+ DU(s)

X(s) = (sI — A)"'BU(s)
Y(s) =CX(s)+ DU(s)

Y (s) = C(sI — A)"'BU(s) + DU(s)

o(s) = 58 — C(sT—A)'B+D (7)
c)
g(s) = 58 — C(sI— A)'B+D
With
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the inverse of this matrix can be described by

(SI N A)—l _ 1 ) a2 —ai2
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and therefore

_ 1 s+1 3
(s = 4) 1:(3+2)(s+1)—0‘(—3).[ 0 s+2|
Therefore,
1 s+1 3 1
o(s) = 1 0}'(s+2)(s+1)—0'(—3)'[ 0 s+2| Jo| !

B s+1
9= GG
At this point, we can see that we have the term s 4+ 1 both in the numerator and the
denominator of the transfer function. With the cancellation of these factors, we lose
information about our system, namely that there is a pole and a zero at s = —1. This
phenomenon is called pole-zero cancellation. The transfer function can be written as




Exercise 3 (Realisation of Transfer Functions)
a)  The transfer function can be rewritten as

(s) $2+3-s24+s+5
S) =
g B +8-24 15540

This transfer function has a relative degree of 0. As stated in the task description (eq.
10), we want to have a part of the transfer function to be strictly proper and add a second
term D.

Given the general form

(s) = B3s3 + Ba2s® + Bis + Bo
g s3 + ags + a1s + ag

we can simply rewrite the transfer function as

bys? + bis + bo

9(s) = 5% 4+ ags® + ays + ag
with
D = jy
bo = Bo — Dag
b1 = 1 — Day
by = B2 — Das

This formula could be expanded to a higher degree.
The solution then is
—5-52—14-5+5
= 1 9
53—|—8-52-1-15~s+0+ )

9(s)

b)  With the given definitions, we can easily determine the controllable canonical form to be

0 1 0 0
A=]0 0 1|B=|0 (10)

0 —15 -8 1
C=[5 -14 —5|D=1 (11)

c¢) No, we can derive the controllable canonical form for all systems, even if they were not
controllable or observable in the first place. As you saw in exercise 2, observability and
controllability are no conditions to derive a transfer function from a given state space de-
scription. As the same holds for the derivation of the controllable canonical form, it follows
that neither controllability or observability are necessary to derive the minimal realisation.
In other words, we only realise the controllable and observable subspace of a given system
when deriving the controllable canonical form.

This means that the non-controllable or non-observable parts of a system get lost dur-
ing the transformation. The loss of information occurs in the frequency domain if we have
a pole-zero-cancellation (see exercise 2.c).



Exercise 4 (Poles and Zeroes of a Transfer Functions)

a)

b)

d)

We can determine the zeroes of this transfer function by solving the equation
Z(s)=8"+5s+3=0
It follows

—5+ V13

212 =
2

Equivalently, we can determine the poles of this transfer function by solving
P(s) =s(s+3)(s+5)=0
It follows

p1,2,3=0,-3,-5

The given transfer function does not have any zeroes. The poles can be determined by
solving the equation

(s+5)%(s +2)(s— 1) = 0

In is easy to see that the poles are

P1,2,3 = —95
pa=—2
ps=—1

Note that this system actually has three poles at s = —5. The concept of multiple poles is
important for future applications, such as the root locus method or the frequency response
(exercise sets 8-9).

With
§2 465 +9 = (s+3)>

We can observe a pole-zero cancellation, as the factors (s + 3) can be cancelled from the
transfer function. Therefore, g(s) simplifies to

() = s

S) =

T = 543)(s—2)

and we can see that the transfer function has no zeroes and two poles at p; = —3 and

Py = 2.

The given transfer function describes a 2nd order system. It has no zeroes and the poles
can be calculated by solving the equation

§2 4205+ (02 +w?) =0
It follows that
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Exercise 5 (Causality of Transfer Functions)

a)

b)

With the given transfer function, we can see that degree(Y) = 3 > degree(U) = 2.
Therefore, the system is strictly proper.

With the given transfer function, we can see that degree(Y) = 0 < degree(U) = 5.
Therefore, the system is improper. It is important to note that such a system is not
realisable.

With the given transfer function, the factor (s 4+ 3) is part of the numerator and the
denominator polynomial. As we will see in further lectures, it is unproblematic to cancel
these factors as the pole and zero described are negative. In this case we have a strictly
proper system with degree(Y) = 2 < degree(U) = 0.



